More About TAS and IsaWin — Tools for

Formal Program Development
— Tool Demo Submission for FASE 2000 —

Christoph Liith! and Burkhart Wolff?

! Bremen Institute of Safe Systems (BISS), FB 3, Universitéit Bremen
cxl@informatik.uni-bremen.de
% Institut fir Informatik, Albert-Ludwigs-Universitiit Freiburg
wolff@informatik.uni-freiburg.de

Introduction

We present a family of tools for program development and verification, compris-
ing the transformation system TAS and the theorem proving interface IsaWin.
Both are based on the theorem prover Isabelle [6], which is used as a generic
logical framework here. A graphical user interface, based on the principle of di-
rect manipulation, allows the user to interact with the tool without having to
concern himself with the details of the representation within the theorem prover,
leaving him to concentrate on the main design decisions of program development
or theorem proving.

The tools form an integrated system for formal program development, in
which TAS is used for transformational program development, and IsaWin for
discharging the incurred proof obligations. However, both tools can be used sep-
arately as well. Further, the tools are generic over the formal method employed.

In this extended abstract, we will first give a brief overview over TAS and
IsaWin. Since TAS and IsaWin have been presented on previous ETAPS con-
ferences [1, 3], the presentation will highlight the new features as sketched out
below.

The Transformation Application System TAS

TAS is a system for formal transformational program development. In a nutshell,
formal program development with TAS proceeds as follows. The user begins by
stating an initial specification with respect to a particular signature. The sig-
nature, corresponding to an Isabelle theory, is edited in an external file, and
contains definitions of operations, data types, axioms, etc. The initial specifi-
cation is transformed by applying correctness-preserving transformation rules,
either generated automatically from existing theorems or taken from a library of
predefined transformations. A particular feature of TAS is that transformation
rules are based on theorems, which means that we can prove their correctness
in a precise logical sense.

TAS Window System [HOL]
File Development Settings Help

@
Clnssort MNew subst
(Z‘E) CQuicksort

e)

Caort

Construction History

Construction history
sort: X sort ®

@ Bpply Instantiate case distinction

atld_assoc sort x = (if x = [] then sort x else sort x)

i 2pply Instantiate Simplify

P
QJL Sort ¥ = (if ¥ = [] then [] else sovt g
T 2pply Instantiate trafo(R t I, Edit subst
oz e St — pply Instantiate trafo(Recomposition I, Edit subst)
on ', Edit substy e
TE s g enen [
else let (xl,x2) = gsplit (sort z)
TAS Current Development in meras (x, o
Lavednce Proof Obligations: 2 (2} § Next match
Soryac e sort x =
(if x = [] then (if = = [] then []
else let (x1,22] - gsplit = in merge (sort =1, sort z2}) else let (¥f,%2) = gsplit x
in merge {sort x1, sort x2})
Close
Instantiate Case distinction
NAME: Instantiate Case distinction
< History B Next Match Close
External transformation Case distinction
This transformation introduces a case distinction
Proof Ohligations: on the ewpression supplied as the parameter.
2 open (2 total)
2t
-
e A e s T if 7c then 7t else 7t

2% []

Parameters:
== sort x =

2 [=> x= [1
{deb i(xl,x2) = geplit =
in merge (sort xl, sort x2))

Close

Show A11 Close

Fig. 1. Screenshot of TAS. Windows, clockwise from top left: the notepad, the con-
struction history, a transformation, the proof obligations and the construction area.

Fig. 1 shows a screenshot of TAS. The principle of direct manipulation in
the design of the user interface means that the user should not have to remem-
ber the names of transformation rules, theorems, or other objects, but should
instead be able to work with meaningful gestures as often as possible. Hence,
transformation rules, substitutions and other intermediate results are placed on
the notepad, where they are represented by icons and can be manipulation by
drag&drop. Transformational development takes place in the construction area,
where the current specification can be manipulated by pointing — we can mark
a particular subterm and apply a transformation to it, or ask for all applicable
transformations.

TAS is generic over the formal method employed, as long as it supports a no-
tion of correctness-preserving refinement. Instantiations of TAS include higher-
order logic, where the refinement is based on logical equivalence, and the process
calculus CSP, where the refinement is based on the usual refinement of processes.

IsaWin

IsaWin is a graphical user interface for the theorem prover Isabelle. It can be
used together with TAS to discharge the proof obligations arising from transfor-
mational developments, or as a stand-alone interface to Isabelle. It allows access
to all of Isabelle’s basic functionality, such as forward and backward resolution,
simplification and classical reasoning. An instantiation of IsaWin with the em-
bedding of the algebraic specification language CASL into Isabelle is the subject
of a submission to the TACAS conference [5].

What’s New?

The new features build on the strengths of TAS and IsaWin: the graphical user
interface and its principle of direct manipulation. The basic idea is that we can’t
relieve the user of certain design decisions during the development or proving
process, but we can support him as much as possible. To this end, we attempt
to provide exactly as much information as needed, eliding unnecessary details
but preserving the essentials. Details should remain available, but only per user
request. The user of course needs to be knowledgeable in the particular logic
or formal method used, but should not have to remember names or syntactic
representations of transformations, theorems or operations (although this might
help speed up the interaction).
The new features can be grouped as follows:

— Search functions look for applicable transformations or theorems in a par-
ticular situation. The user can mark a subterm, and have the system list all
applicable transformations or theorems in a chooser.

— The transformation library allows transformations to be grouped into differ-
ent folders (to distinguish e.g. complex design transformations from simple
logical transformations). Further, the system supports the interactive, fully
automatic generation of transformations from theorems.

— The history is displayed as an interactive hypertext. By clicking on the name
of an applied transformation rule, the rules itself is displayed; a principle
which is used pervasively for all names.

— With the filer, we can import signatures and specifications from the filing
system.

— TAS supports the reuse of developments by allowing the generation and
abstraction of transformation rules from transformational developments.

— A new instantiation of TAS to support a variation of Back and Wright’s
refinement calculus is currently being developed.

More Information

For details of the system architecture underlying TAS and IsaWin, and in par-
ticular the generic graphical user interface, we refer to [4]. The wider context of
TAS and IsaWin, the UniForM project, is described in [2].

Further information, and the tools themselves, are available from our web
page at http://www.informatik.uni-bremen.de/~agbkb/.

System Requirements

TAS and IsaWin will run on most systems on which a Standard ML compiler
and Tcl/Tk are available. In particular, a Tcl/Tk interpreter (wish), and a full
Standard ML compiler (such as Standard ML of New Jersey) which furthermore
implements the Posix modules from the SML Basis Library, are needed. Binary
distributions are available for Solaris and Linux (SuSE distribution). On these
systems, TAS and IsaWin need at least 32 MB, and 64 MB to run comfortably.

References

1. Kolyang, C. Liith, T. Meier, and B. Wolff. TAS and IsaWin: Generic interfaces
for transformational program development and theorem proving. In M. Bidoit and
M. Dauchet, editors, TAPSOFT 97’: Theory and Practice of Software Development,
number 1214 in LNCS, pages 855-859, Lille, France, April 1997. Springer Verlag.

2. B. Krieg-Briickner, J. Peleska, E.-R. Olderog, and A. Baer. The UniForM work-
bench, a universal development environment for formal methods. In J. M. Wing,
J. Woodcock, and J. Davies, editors, FM’99 — Formal Methods. Proceedings, Vol.
II, number 1709 in LNCS, pages 1186-1205. Springer Verlag, 1999.

3. C. Liith, H. Tej, Kolyang, and B. Krieg-Briickner. TAS and IsaWin: Tools for
transformational program developkment and theorem proving. In J.-P. Finance,
editor, Fundamental Approaches to Software Engineering FASE’99. Joint European
Conferences on Theory and Practice of Software ETAPS’99, number 1577 in LNCS,
pages 239-243. Springer Verlag, 1999.

4. C. Liith and B. Wolff. Functional design and implementation of graphical user
interfaces for theorem provers. Journal of Functional Programming, 9(2):167-189,
March 1999.

5. T. Mossakowski. CASL — from semantics to tools. Submitted to TACAS 2000.

6. L. C. Paulson. Isabelle - A Generic Theorem Prover. Number 828 in LNCS. Springer
Verlag, 1994.

