The ASW Protocol Revisited: A Unified View !

2

Paul Hankes Drielsma? Sebastian Modersheim ®

Information Security, ETH Zurich, CH-8092 Zurich, Switzerland

Abstract

We revisit the analysis of the ASW contract signing protocol and use a unified
view of the protocol as a whole as a basis to reason about the protocol and its
objectives. This line of reasoning yields a simpler and clearer model of agents and
protocol objectives which is within the scope of standard security analysis methods,
as it does not require fairness constraints and uses only standard authentication
and secrecy properties. We also analyse this model for finitely and infinitely many
sessions of the protocol using the automated analysis tools OFMC and its extension
OFMC-FP.

Key words: Contract Signing, Fair Exchange, Automated
Protocol Analysis

1 Introduction

Contract signing protocols like the ASW protocol presented in [1] allow their
users to digitally sign contracts without having to meet and sign a document
or exchange it via standard mail, which can be very helpful in everyday com-
munication in the business world.

When considering the formal analysis of such protocols, the difficulty arises
that they are out of scope of many existing protocol analysis methods: al-
though the act of signing and exchanging messages is standard for these meth-
ods, it is difficult to integrate the objectives which contract signing protocols
aim to fulfil and the special assumptions upon which they rely.

We present a unified view of the ASW protocol in which the subprotocols
are seen as a single protocol with different possible execution paths. While
this view is implicit in the protocol models built, for instance, in [5,14], we

! This work was partially supported by the FET Open Project IST-2001-39252 and the
BBW Project 02.0431, “AVISPA: Automated Validation of Internet Security Protocols and
Applications”.
2 Email: drielsma@inf.ethz.ch
3 Email: moedersheim@inf .ethz.ch

This is a preliminary version. The final version will be published in

Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

explicitly describe and reason about the protocol and its objectives based on
this high level view, which yields a simpler, more intuitive understanding of
the ASW contract signing protocol.

In particular, our model is simpler than other approaches in two respects.
First, as a consequence of our view, one does not have to distinguish between
an intruder and dishonest and corrupt participants (or even different degrees
of corruption), as it is necessary in several other models. Second, adopting this
view allows us to reason about the objectives of such a protocol in a simple
yet powerful way. We demonstrate, for instance, how several of the security
objectives identified by the designers of the protocol can in fact be expressed
as standard secrecy and authentication properties, thus “opening the door”
to a variety of existing automated protocol analysis tools.

We then apply our unified view concretely, constructing a model of the
ASW protocol and formally analysing it using the tools we have developed in
our group, the On-the-Fly Model-Checker OFMC and its abstraction-based
extension OFMC-FP. Both were developed in the context of the AVISPA
project (http://www.avispa-project.org), which offers a toolset for the
automated analysis of security protocols and applications. Using OFMC, we
can verify the protocol for finitely many sessions (that is, executions of the
protocol). Beyond this, we also perform an analysis with OFMC-FP, verifying
the protocol for infinitely many sessions.

In the analysis, the tools report an attack on the ASW protocol which
results from a subtlety in the specification of the objectives. Adapting these,
we were able to verify that the protocol does ensure a slightly weaker objective
that still implies the main fair exchange objective.

We observe that, even given the simpler understanding of the protocol
that our approach affords, the design of a formal model for automatic analysis
presents several challenges. After introducing these, we briefly discuss the
results of our automated analysis for both finitely and infinitely many protocol
sessions.

2 Background

The ASW protocol, presented by Asokan, Shoup, and Waidner in [1], is an
optimistic fair exchange protocol for contract signing intended to enable two
parties to commit themselves to a previously agreed upon contractual text.
A trusted third party (T3P) is involved only if dispute resolution is required
(hence the term optimistic, which differentiates this approach from others
in which an online trusted party is involved in every exchange). In resolving
disputes, the T3P issues either a replacement contract asserting that he recog-
nises the contract in question as valid, or an abort token asserting that he has
never issued, and will never issue, a replacement contract. An important re-
quirement of the protocol is that the intruder cannot block messages between
an honest agent and the T3P forever.

2

http://www.avispa-project.org

Exchange subprotocol:

1. O—R: me = Sigo(Vo, Vg, T,text, h(No))
2. R— O: mey= Sigp(mey, h(Ng))

3. O—=R: Nop

4. R— O: Ng

Abort subprotocol:

1. O—=T: ma = Sigo(aborted, mey)
2. T — O: may=if resolved(me;) then Sigr(mey, mes)

else Sigr(aborted, may) ; aborted(ma;) = true

Resolve subprotocol:

1. O—=T: mr;=me;,mesy
2. T — O: mry=if aborted(me;) then Sigr(aborted, me;)
else Sigr(mey, mes) ; resolved(me;) = true

Fig. 1. The Subprotocols of ASW

2.1 Protocol Objectives

The objectives that such a protocol is supposed to fulfil are manifold. We
discuss here the security objectives identified by the designers and later refer
to these informal descriptions in the discussion of our verification. Note that [1]
refers to “fairness” in the sense of “fair exchange,” but we adopt this latter
term to avoid confusion with the notion of fairness constraints as understood
by the model checking community, which we will use later.

Though [1] presents a framework for the fair exchange of arbitrary items,

we consider only the application of this framework to contract signing. We
therefore describe the objectives that follow in a manner specialised to our
purposes.

1. First and perhaps foremost is the notion of fair exchange, which intu-
itively means that, at the end of a protocol execution, either both parties
possess valid contracts, or neither does. In particular, we require that if
one agent ends up with only an abort token, then the other cannot be in
possession of a valid contract.

2. Effectiveness means that, if two honest agents P and () have finished
the protocol and never chose to abandon the current protocol run, then
each indeed has a valid contract.

3. The protocol also provides guarantees of timely completion: more specif-
ically, the originator and responder of a protocol run can be sure of
completion within a finite amount of time.

3

4. The objective of non-repudiability, in the contract signing case, means
that the contract contains an implicit proof of the agents’ acceptance of
the contractual text.

5. Third party verifiability dictates that, if the trusted third party should
be corrupt and behave in such a way as to compromise fairness of the
exchange for one of the protocol participants, then this corrupt behaviour
can be proven to an external verifier.

The requirements for fair exchange are often stated in terms of liveness
properties of the form “if one agent has a valid contract, then the other either
has one as well or is in the position to eventually obtain one.” In general,
liveness properties are problematic for a variety of verification approaches, in
particular those involving infinite state-spaces. In this case, one often approx-
imates liveness properties via safety properties, i.e. if the protocol satisfies the
safety property, then it also satisfies the liveness property that was approxi-
mated, as it is for instance done in [14]. In §3, we similarly identify appropriate
safety properties to check; as we will show, however, from our unified view of
the protocol we can directly obtain appropriate safety properties by a simple
meta-reasoning.

2.2 FExplanation of the protocol

The protocol, shown in Fig. 1, consists of three subprotocols: exchange, abort,
and resolve. The former involves only the two protocol participants, the orig-
inator O and the responder R, while the latter two are only executed if the
trusted third party 7T is called upon to resolve a dispute. Our notational con-
ventions are as follows: Sigo(M) denotes the digital signature of message M
by agent O, whose public key for signature verification is V5. The contractual
text we call text. During the protocol, each party generates a nonce, which
we write Np and Ny for the originator and responder, respectively. Finally,
the function h is a cryptographic hash function which is assumed to be colli-
sion resistant. We note that the protocol defines two kinds of valid contracts:
either the standard contract as it is obtained by the exchange subprotocol, or
a replacement contract issued by the T3P, and both hold equal validity.

The Exchange Subprotocol: If both participants are honest and in the
absence of network failures or intruder intervention, after execution of the
exchange subprotocol, both will be in possession of a valid standard contract.

Both originator and responder generate nonces Np and Ny which are
called their respective secret commitments to the contract. Given these, they
compute their so-called public commitments by hashing these values, yielding
h(No) and h(Ng), respectively. The protocol then proceeds in two rounds: in
the first, each party expresses his public commitment to the agreed-upon con-
tract but does not disclose his secret commitment. In the second round, they
then exchange their respective secret commitments. Each party can then hash
this latter and thus verify that the purported secret commitment he receives

4

indeed corresponds to the public commitment from the first protocol stage.
At the end of this exchange, each party is in possession of a valid standard
contract of the form mey, mesy, No, Ng.

The Abort Subprotocol: If O does not receive R’s reply mey within an
acceptable time frame (where the definition of “acceptable” is left entirely up
to O), he may abort the protocol by invoking the trusted third party. He sends
a signed abort request ma; indicating that he wishes to abort the exchange.

The T3P is assumed to maintain a permanent database of contracts for
which he has been called upon to arbitrate. If he has already asserted the valid-
ity of the contract (indicated by resolved(me;)), then he sends the originator
a replacement contract of the form Sigr(mey, meg). Otherwise, he replies with
a so-called abort token, signing the originator’s abort request and adding an
entry in his database of aborted contracts. Such a token does not render an
existing contract invalid, but rather serves merely as a promise from the T3P
that he has not previously resolved the contract in question and will not do
so in the future.

The Resolve Subprotocol: The resolve subprotocol is analogous to the
abort but can be invoked by either participant. The parties will request reso-
lution of a contract from the T3P if they do not receive the secret commitment
nonce of the other party within a reasonable amount of time. A resolution
request includes both messages from the first stage of the exchange subpro-
tocol, me; and mes. If the T3P has already issued an abort token for the
contract in question (indicated by aborted(me;)), he replies in kind with an
abort token. Otherwise, he issues a replacement contract and indicates in his
database that he has resolved the contract.

2.8 The Intruder Model

We adopt the standard intruder model of Dolev and Yao [8] in which the
intruder has complete control over the network but cannot break cryptography.
In addition, the intruder can play as a normal protocol participant, acting as
either the originator or the responder, but not as the T3P.

As we will discuss in more detail in §3, such an intruder model already
subsumes the possibility of compromised or dishonest agents that collaborate
with the intruder, and we want to show that the interests of honest agents are
always ensured, even in protocol runs with the intruder.

3 The Unified View

The key idea behind this paper is to view, and reason about, ASW’s subpro-
tocols not in isolation, but rather as one protocol. This view is implicit in the
construction of the protocol and accordingly also in the models of the protocol
built by [5,14]. We explicitly exploit this view to reason about properties of
the protocol. More specifically, we consider the abort and resolve subprotocols

5

exchange;. O — R : me;

if timeout then abort;. O —= T : may
aborty. T'— O : may (abort token or replacement contract)

else

exchanges. R — O : mes

exchanges. O — R : No

if timeout then resolve;. O — T : mry
resolvey. T'— O : mry (abort token or replacement contract)

else

exchange,. R — O : Ng

Fig. 2. Originator role under our unified view of the protocol.

to be part of the main exchange protocol. The originator role, for instance,
looks then as shown in Fig. 2 (the responder role is similar), where timeout
represents the event that the agent playing O did not receive a reply to his
last message within a reasonable amount of time. We avoid specifying the
concrete amount of time after which the timeout shall occur: it may be just a
few seconds or a full hour—important for the security of the protocol is only
that there is such a timeout, so the agent will not wait for an answer forever.
Fig. 3 illustrates the internal states of an agent playing the originator role:
after sending his initial message, he is in the state in which he waits for a reply
until the timeout. If the timeout occurs, then he tries to abort the protocol
and thus waits for the answer of the trusted third party (which can be either
a replacement contract or the signed abort token). Otherwise (if he receives
a reply in time), he carries on with the regular protocol execution and sends
his nonce, arriving in a state similar to the one he was in after sending the
first message: either there is a reply within the allotted time or he contacts
the trusted third party.

This model, though abstract, is thus a faithful representation of a real
implementation of the protocol, as agents indeed protect themselves with such
internal timeouts. Note that this is related to the possibility of abuse in this
contract signing protocol: when the originator has made the first step, the
responder has the freedom to either accept the contract by sending the second
message, or to reject it by ignoring it. In particular, a dishonest responder
could abuse the originator-signed part of the contract in negotiations with
other agents (for instance, by soliciting more advantageous contracts from
competitors). Note that, unlike for instance the similar GJM [9] protocol, the

6

ALV S ALV, YA A AL A A AL

¢ exchange;. O — R: me;

Sent initial message to responder ‘

timeout
abort;. O — T: ma,

‘ Asked trusted third party for abort

Reply from responder
exchangey. R — O: mas
exchanges. O — R: No

Received reply from responder
Sent own nonce to responder

timeout
resolve;. O — T mry

Reply from responder ‘Asked trusted third party for resolve ‘
exchangey;. O — R: Ng =

T — O: resolve tofen~ -~ -T — O: abort token

‘ Possess valid standard contract ‘ ‘ Resolved by trusted third party ‘ Aborted

Fig. 3. A state transition view of the originator role. The dashed line represents a
transition that can never occur if the trusted server is honest, as we will show below
as part of our analysis.

ASW protocol has no means to prevent this abuse by special cryptographic
primitives such as private contract signatures. Thus, the timeout is the only
way to narrow the window of the originator’s vulnerability to abuse attacks
as argued in [6].

Although we assume that the intruder can control the entire network ac-
cording to the Dolev-Yao model, the protocol requires that he cannot block
messages between an honest agent and the T3P forever. One could intuitively
imagine this situation as follows: all network connections could crash, but an
honest agent can still transmit the necessary messages over other media (e.g.
ordinary mail) to the T3P and this process cannot take forever.

One could say that we thus have two kinds of fairness assumptions: first,
an honest agent will not wait forever for an answer from the other party,
and second, the “emergency” protocols with the T3P will eventually succeed.
Looking once again at Fig. 3, we can interpret this combination of fairness
constraints as the guarantee that an honest agent playing the originator role
(and a similar guarantee holds for the responder role) will not stay forever in
any of the intermediate states (the states of the figure with an outgoing arrow),
but will eventually reach one of the three final states, (i) where he received
the responder’s nonce? and thus now possesses a valid standard contract, (ii)
where he received a valid replacement contract from the trusted third party,
or (iii) where he received an abort token.

Thus, the two fairness constraints (timeout and guaranteed reply from the
T3P) are sufficient to conclude that every honest agent playing either the

4 If the responder sends a secret commitment that, when hashed, does not correspond with
the public commitment, then this is treated as if he had not sent any message at all (which
will probably result in a timeout).

originator or the responder role will eventually end up with either a valid
(standard or replacement) contract or an abort token. Roughly speaking, if
the agent receives a valid contract, then his interests are ensured, but if he
receives an abort token, then it remains to show that nobody else can obtain
a valid contract.

This gives us a fresh view on the protocol, as with a simple meta-argumen-
tation we can now go from a model with fairness constraints to a state-
reachability property in an infinite state transition system without fairness
constraints.

The idea is essentially that we need only to check that if an honest agent
reaches his final state of the protocol execution, then the guarantees he should
obtain through the protocol are indeed satisfied. In other words, we do not
need to consider the guarantees of agents in their intermediate states, since
they will eventually reach their final state and we thus spare ourselves any
considerations of the form “if the agent can eventually reach a certain state”
in the properties we check.

The encoding of the objectives as safety properties is the basis for the de-
ployment of automatic and semi-automatic methods for infinite-state analysis.
Also in finite-state analysis, the restriction to safety properties is often essen-
tial, e.g. [14] use a similar argumentation that checking the protocol with
fairness conditions can be reduced to checking properties of “terminal states”
of agents.

4 Encoding of the Objectives

We now want to contrast two models: on the one hand, the model with the
fairness constraints described above (i.e. that the agent will eventually get the
timeout and the reply from the trusted third party), and on the other hand a
model without fairness constraints.

In the model without fairness, the state transitions of the honest agents
as shown in Fig. 3 are interpreted as follows: there is no timeout and no
guaranteed replies, thus an agent can remain in any intermediate state forever.
An agent’s local state transition system is thus non-deterministic, as in the
states where an honest agent waits for the reply of the other party, he can
at any time (i.e. without timeout) begin the abort or resolve protocol, as
appropriate.

It follows immediately that, if there is a violation of a safety property in
the model with fairness, then there is also a violation in the model without
fairness. This shows that our approach is sound in the sense that if we can
prove properties in the model without fairness constraints, then they must
also hold in the model with fairness constraints. The challenge is to find
appropriate safety properties that indeed hold without the fairness constraints
and that imply the safety and liveness properties of §2.1 that we wish to check.

We now review the objectives laid out in §2.1 under the new view of the

8

protocol and show how to encode those objectives that we wish to check as
safety properties.

Let us begin with objective (3.), timely completion, which means that an
honest agent will always eventually reach a valid standard or replacement
contract or an abort token. This objective is a direct consequence of the
model with fairness constraints, as discussed, and thus does not need to be
explicitly checked.

Objective (1.), fair exchange, is the main objective of the protocol, namely
that either both parties obtain a contract or neither does. We decompose this
objective into the following two:

la. If an honest agent receives an abort token, then nobody (except the
trusted third party) can ever obtain a valid standard or replacement
contract.

1b. If an agent A (who is not necessarily honest) has obtained a valid
standard or replacement contract signed by an honest agent B, then
B also possess a valid contract or can obtain one from the trusted
third party.

Objective (1a.) is the main objective of our analysis, as it reflects the basic
guarantee linked with the abort token. The nice aspect of this objective is
that it refers to the final state of an honest agent (which will not subsequently
change), not to an intermediate state. It is thus possible to check in the model
without fairness that in all states where an agent has reached a final state
with an abort token, nobody except the T3P can generate a valid standard
or replacement contract matching that abort token. The inability to generate
these messages can be expressed in standard protocol analysis approaches by
secrecy properties. We can thus reduce the main objective of the protocol to
a standard property in protocol analysis (though there is a technical difficulty
in the direct application of tools as we will discuss below).

Objective (1b.) is a consequence of objectives (la.) and (3.): if an agent
A possesses a valid contract signed by an honest agent B, then by (3.) B will
also eventually reach either an abort token or a valid contract, and by (1a.),
if he gets an abort token, then A cannot possess a valid contract, which is a
contradiction. Thus B will eventually obtain a valid contract.

Note that the circumstance in which the intruder or a dishonest agent
playing the role of the originator can obtain both a valid contract and an
abort token (by performing a normal run with an honest agent and asking the
T3P for an abort) is not a violation of the objectives above: the abort token
only guarantees that the T3P has never and will never resolve this contract
but does not render an existing contract invalid.

We now turn to the objective (2.), effectiveness. In the view of our model,
where every honest agent will eventually reach a final state, effectiveness means
that when an honest agent A receives an abort token for a session with an
honest agent B, then A or B must have chosen to abort the contract. Since the
abort token from the T3P contains the signature of the agent A or B according

9

to the protocol, it contains the implicit proof that either A or B indeed wants
to abort the protocol run. Effectiveness is thus an implicit guarantee due to
the form of the abort token, and will therefore not be considered in the later
analysis.

Objective (4.), non-repudiability, can also be seen as a consequence of
the message formats, since in a valid standard or replacement contract, the
signatures of both parties are contained and we can thus assume that they
agree with the contract text. However, we are also interested in a further
analysis, namely an analysis of the authentication properties (or agreement
properties in [10]) of ASW. Our analysis will include checks for replay and for
confusions of nonces. Such standard authentication properties do not rely on
fairness and are thus straightforward to check.

Finally, objective (5.), third-party verifiability, is not relevant in our setting,
as we assume that the T3P is always honest.

To summarise, we have showed that several objectives of the protocol are
direct consequences of its structure, assumptions, and message formats. In
essence, an honest agent will receive either an abort token or a valid contract.
In the latter case, his interests are ensured, while it remains to show that
in the case of an abort token, his interests are also ensured. This amounts
to checking that, if an honest agent obtains an abort token, then the valid
contract remains secret. Thus due to our view and the meta-reasoning about
the protocol we have obtained a model that falls within the realm of standard
automated protocol analysis approaches (which often support only secrecy and
authentication properties), and we have avoided fairness issues completely. As
we will see in the following section, the analysis even of this simplified model
is challenging.

Let us conclude this section with a remark on the intruder model. Several
approaches distinguish between the intruder and dishonest or corrupted agents
(with various degrees of corruption). One of the reasons for this distinction is
that the security properties of a protocol usually only hold for sessions between
honest agents. In particular, the intruder can play, under his real name, the
role of the initiator or the responder in a session with an honest agent; in such
a session no security properties are ensured for this honest agent, while this
session should not jeopardise the security of other sessions between honest
agents.

Due to our simplified view, the main security property that we have to
check for ASW, namely (1la.) that the secrecy of the valid contract once an
honest agent has received an abort token, should also hold in the case that the
other agent is dishonest. (But it is not necessarily ensured that this dishonest
agent also has the same security guarantee.) This means that we need not
distinguish between various kinds of corruption of dishonest agents.

10

5 Results

In the previous section, we have developed a unified view of the ASW protocol
and a formulation of safety properties. We now apply these ideas concretely,
formally specifying and then automatically analysing the protocol using two
tools that we have developed in our group.

The first tool is the On-the-Fly Model-Checker (OFMC) which is based on
a symbolic representation of the intruder, called the lazy intruder [4]. For ter-
mination, it requires a bound on the number of sessions that can be performed,
but does not require other restrictions, e.g. on the complexity of messages.
This is similar to the finite-state analysis of [14].

The second tool OFMC-FP is an extension of OFMC with an abstract
fixed-point computation of the reachable states when there is no bound on
the number of protocol runs that can be executed, however the complexity
of messages is bounded in this method. OFMC-FP is still in a preliminary
state at the time of writing: in particular, the user must manually design the
employed abstractions.

Both OFMC and OFMC-FP were developed in the context of the AVISPA
project and are based on the specification languages developed in this project.
The user specifies protocols using the High-Level Protocol Specification Lan-
guage (HLPSL [2]); these specifications are then automatically translated into
the low-level Intermediate Format (IF [3]) which is the input language for au-
tomated analysis tools. The first task is thus to specify our view of the ASW
protocol in HLPSL.

5.1 Specification

The construction of a formal model of ASW presents three major challenges:

Firstly, an aspect of the protocol that is difficult to model is the data-
base of aborted and resolved contracts maintained by the T3P. Many existing
protocol specification languages cannot express this, however HLPSL and IF
include the necessary constructs (i.e. finite sets of messages) to model such
a database. Moreover, the database cannot be integrated directly in infinite
state verification approaches that use abstraction.

Secondly, when using OFMC, we bound the number of sessions of the
honest agents to obtain a finite state-space. However, there is no a priori
bound on the number of steps that the T3P can perform: in particular, the
intruder can exchange an unbounded number of messages with the T3P. In
the finite-session analysis with OFMC, we therefore also bound the number
of requests from the intruder that the T3P can process.

Finally, although we have reduced the main problem of our analysis to a
secrecy question, a further subtlety arises. When an abort token containing
an initial message me; is issued, we must check for the secrecy of any valid
contract that contains me;. We thus do not state the secrecy of only one par-

11

er. I — R:me; ei. I — R:me;

es. R— 1 :mesy €. R— 1 :mey

es. I — R: Ny Intruder stops communication
eq. R—1: Npg

ar. I — T : ma r1. R— T : {mey, mey’}

as. T'— I : abort token ro. T — R : abort token

Fig. 4. An attack returned by OFMC: The intruder (denoted as I') aborts a contract
that has already been exchanged. In a subsequent run with the same responder,
the responder is then unable to resolve the protocol.

ticular message, but of a pattern of messages. Such a feature is currently not
supported by HLPSL and IF (or most other protocol specification languages).
As a simple way around the problem we specify an honest agent that acts as
an observer and flags an error state appropriately.

5.2 Bounded-session Analysis with OFMC

Bounding the number of sessions and the number of requests from the intruder
that the T3P processes, we can now directly check whether the transition of
the referee ever fires, as well as check authentication properties.

OFMC discovers several authentication problems that were already iden-
tified in [14]. First, the protocol does not provide strong authentication (in-
jective agreement as defined by Lowe in [10]), as it has no explicit protection
against replay: if the intruder listens to a session of two honest agents, he
can replay the exchange protocol with the responder any number of times
and obtain valid contracts, each with a fresh responder nonce. However, we
think one should assume an implicit replay-protection as part of the con-
tract, e.g. transactions are usually identified by unique transaction numbers.
In this scenario, we thus check that the protocol provides weak authentica-
tion (also called non-injective agreement, [10]). Weak authentication with
respect to the contractual text and the nonces Ny and Np is also violated,
and OFMC returns an attack trace resulting from the same authentication
problems reported in [14]. Finally, weak authentication with respect to only
the contractual text is verified by OFMC for various finite test scenarios.

When turning to the secrecy properties we have formulated, OFMC re-
ported the attack displayed in Fig. 4. Assume the intruder I acting as the
protocol originator and an honest responder R have completed a run of the
exchange subprotocol without involving the T3P (steps e; through e4). Each
generated a secret commitment (N; and Ng, respectively) and ends up with
a valid contract in the standard form. Assume now that the intruder issues
an abort request for this same contract to the T3P. This latter, having never

12

before resolved the contract in question, will respond with a valid abort token.
The intruder now starts a second session with R, replaying the first message
me; from the previous session. R generates a new nonce Nz’ and replies in
good faith with the second message mey’, including the hash of this new nonce.
The intruder, however, does not reply with his nonce but rather ignores R.
In turn, R will time out and request resolution of the contract from the T3P,
who will respond with an abort token, since the originator message me; in
question has already been aborted by I. Upon completion of the second pro-
tocol session, R therefore has an abort token, while I has a valid contract
that corresponds to this abort token (in the sense that it contains the same
initial message me;). Of course, R himself also possesses this contract, having
exchanged it with I in the first protocol session.

Formally this violates the objective (la.): an honest agent has an abort
token, while somebody else (the intruder) has a valid contract. It is not
really a problem, since the honest agent itself also has this valid contract.
In particular, the original objective (1.) is not violated, since both agents
indeed possess valid contracts for the same contractual text. This is somewhat
surprising, as we now see that there can be situations in which an honest
agent indeed possesses both a valid contract and an abort token. Note that
objective (1a.) is also considered by [14], who reported problems in the relation
of nonces and contracts but did not detect that (1a.) can be violated. The
same authors report in [13] an analogous attack on GJM, a similar contract
signing protocol [9]. We note also that the improvement of the protocol that
they suggest to address the authentication problems described above does not
prevent this situation.

We have therefore relaxed objective (1a.) to the following weaker objective
(1a'.): “if an honest agent has an abort token, then he also possesses a valid
contract or nobody else can obtain one.” Note that this property together
with (1b.) still implies fair exchange (1.). For this weakened objective, OFMC
detected no further attacks.

We also wish to note that an additional check on the responder side for
replay of public commitments would prevent this attack.

5.3 Unbounded-session Analysis with OFMC-FP

We have also analysed the protocol using OFMC-FP, which employs a novel
abstraction-based fixed-point computation. It was necessary to extend the
existing OFMC-FP technique to allow for the integration of the server and its
database of contracts. The technique is not completely automatic as the user
must himself specify an appropriate abstraction.

OFMC-FP can also detect attacks, but due to the abstraction they may
not be possible in our initial concrete model; however, if the security is proven
for the abstract model, then this also holds for the concrete model. This is
similar to other abstraction-based verification approaches like [7].

13

Using the OFMC-FP technique, we have established the verification results
of OFMC for an unbounded number of participants, sessions, and transitions
of the T3P; only the complexity of messages is bounded in this method. In
particular, we have first shown that weak authentication on only the contrac-
tual text holds. Further, OFMC-FP reveals that a dishonest initiator can
obtain a valid standard contract which has also been aborted by the server,
which subsumes the violation of (la.) already reported above. Also, we es-
tablished that in all such situations, the other party also obtained a valid
standard contract and thus verified the weakened property (1a’.). We note,
however, that as part of the analysis, we have found that, for property (1a’.)
to hold, an important prerequisite is the fact that an honest agent playing in
the originator role can never obtain an abort token from the T3P as a reply
to a resolve request, explaining the dashed line in Fig. 3.

6 Related Work and Conclusion

A substantial body of literature exists on the analysis of contract signing
protocols, in particular ASW and the similar GJM protocol.

Shmatikov and Mitchell undertake an analysis (with a bounded number
of sessions) of both the ASW and the GJM protocol using the finite-state
model-checker Murp [12,13,14]. Their approach is closest to ours, namely
they also follow the principal idea to reduce the problem of fairness properties
to safety properties. While they also implicitly employ the unified view of the
protocol, they do not use it explicitly to perform meta-reasoning about the
protocol. Another difference is that they also distinguish the intruder from
dishonest agents (with varying degrees of corruption). Moreover, they check
abuse-freeness for the GJM protocol (while ASW is not designed to ensure
abuse-freeness).

Das and Dill [7] were the first to describe the automated analysis of a
contract signing protocol, GJM, for an unbounded number of session using
abstractions and the model-checker Murp. Similar to our analysis, they focus
on the property of fair exchange.

Kremer and Raskin [11] focus on abuse-freeness and argue that, under cer-
tain assumptions, even the ASW protocol is abuse free (while this was not one
of the original objectives of the protocol designers). To appropriately model
strategies of malicious agents and strategic advantages over other agents, they
use a game theoretic method and alternating transition systems. They per-
form an automated analysis using the model-checker MOCHA; note that they
do not consider multiple runs of the protocol in parallel and adopt the strong
typing assumption. ®

There are several works (which do not focus on automated analysis) on

5 The strong typing assumption is a stronger restriction than bounding the message size
as it is done by OFMC-FP; no similar restriction is necessary for OFMC.

14

reasoning about such protocols and their guarantees, in particular optimism
and fairness [5,6]. The employed models are considerably more detailed than
ours in that they explicitly use time-outs and distinguish intruder and (dif-
ferent kinds of) dishonest agents. Also, here a similar view to ours is often
taken, though to our knowledge not been used to reason about the protocol
and its objectives.

We adopt this unified view and use it explicitly to reason about the proto-
col’s objectives and thereby reduce several of them to standard authentication
and secrecy properties which are easily digestible by many automated analysis
tools for which protocols like ASW would previously have been out of scope.

Yet, as described in §5.1, even under the unified view, the specification and
analysis with existing protocol analysis tools is challenging, in particular this
holds for the modelling of the trusted third party that maintains a data-base
of aborted and resolved contracts.

Our analysis demonstrated the same authentication failures discussed in
[14] and also revealed that a guarantee that one might intuitively expect of
the protocol, objective (1a.), is in fact violated by the attack we present. We
can, however, show that, beyond these problems, the protocol is secure.

While we have focused on ASW in our work to date, we are optimistic that
the benefits offered by the adoption of such a unified view will be applicable to
similar protocols as well. In general, the meta-reasoning we perform regarding
security objectives can help not only to better understand the objectives of
a given protocol, but, as we have seen, can also identify potential ways in
which seemingly complicated objectives can be reduced to more standard no-
tions such as authentication and secrecy. In this way, we hope to extend the
applicability of existing methods for the formal analysis of security protocols.

References

[1] N. Asokan, V. Shoup, and M. Waidner. Asynchronous protocols for optimistic
fair exchange. In Proceedings of the IEEE Symposium on Research in Security
and Privacy, pages 86-99, 1998.

[2] AVISPA. Deliverable 2.1: The High-Level Protocol Specification Language.
Available at www.avispa-project.org/delivs/2.1/, 2003.

[3] AVISPA. Deliverable 2.3: The Intermediate Format. Available at
www.avispa-project.org/delivs/2.3, 2003.

[4] D. Basin, S. Modersheim, and L. Vigano. An On-The-Fly Model-Checker
for Security Protocol Analysis. In E. Snekkenes and D. Gollmann, editors,
Proceedings of ESORICS’03, LNCS 2808, pages 253-270. Springer-Verlag, 2003.
Available at www.avispa-project.org.

[5] R. Chadha, M. Kanovich, and A. Scedrov. Inductive methods and contract-
signing protocols. In P. Samarati, editor, Proceedings, 8th ACM Conference on

15

www.avispa-project.org/delivs/2.1/
www.avispa-project.org/delivs/2.3
www.avispa-project.org

Computer and Communications Security, pages 176-185, New York, November
2001. ACM Press.

[6] R. Chadha, J. C. Mitchell, A. Scedrov, and V. Shmatikov. Contract signing,
optimism, and advantage. In CONCUR: 14th International Conference on
Concurrency Theory. LNCS, Springer-Verlag, 2003.

[7] S. Das and D. L. Dill. Successive approximation of abstract transition relations.
In Proceedings of the 16th Annual IEEE Symposium on Logic in Computer
Science (LICS-01), pages 51-60, Los Alamitos, CA, June 16-19 2001. IEEE
Computer Society.

[8] D. Dolev and A. Yao. On the Security of Public-Key Protocols. IEEE
Transactions on Information Theory, 2(29), 1983.

[9] J. A. Garay, M. Jakobsson, and P. MacKenzie. Abuse-free optimistic contract
signing. In Proc. 19th International Advances in Cryptology Conference —
CRYPTO ’99, pages 449-466, 1999.

[10] G. Lowe. A hierarchy of authentication specifications. In Proceedings of the
10th IEEE Computer Security Foundations Workshop (CSFW’97), pages 31—
43. IEEE Computer Society Press, 1997.

[11] J. Raskin and S. Kremer. Game analysis of abuse-free contract signing. In
15th IEEE Computer Security Foundations Workshop, pages 206-220. IEEE
Computer Society Press, June 2002.

[12] V. Shmatikov and J. C. Mitchell. Analysis of a fair exchange protocol. In
Proceedings of the 1999 FLoC Workshop on Formal Methods and Security
Protocols, Trento, Italy, 1999.

[13] V. Shmatikov and J. C. Mitchell. Analysis of abuse-free contract signing.
In Proceedings of the 4th International Conference on Financial Cryptography
(FinCrypto °00), 2001.

[14] V. Shmatikov and J. C. Mitchell. Finite-state analysis of two contract signing
protocols. Theoretical Computer Science, 283(2):419-450, June 2002.

16

	Introduction
	Background
	Protocol Objectives
	Explanation of the protocol
	The Intruder Model

	The Unified View
	Encoding of the Objectives
	Results
	Specification
	Bounded-session Analysis with OFMC
	Unbounded-session Analysis with OFMC-FP

	Related Work and Conclusion
	References

