
Understanding Model Transformation by Classification
and Formalization

Shane Sendall, Rainer Hauser, Jana Koehler, Jochen Küster, Michael Wahler

IBM Zurich Research Laboratory
CH-8803 Rüschlikon, Switzerland

{sse, rfh, koe, jku, wah}@zurich.ibm.com

Software modeling techniques offer a means to address the size and complexity of
modern day software problems through the use of abstraction, projection, and
decomposition. Typically, multiple models are used to describe non-trivial software
systems. However, if such models must be related and kept consistent by hand, then
the viability of modeling as a means to reduce risks, minimize costs, improve time-to-
market, and enhance product quality is nullified (most probably made even worse).
As such, model-driven development approaches, in the direction of OMG’s Model
Driven Architecture initiative [OMG03], must be supported by tools that are at least
able to automate the various tasks of keeping models consistent. Furthermore, the
more that the various activities of model elaboration, synthesis, and evolution can be
automated the more the above stated factors will be better addressed.

Our team at IBM ZRL [BPIA], entitled Business Process Integration and
Automation (BPIA), is involved in research and development of model transformation
techniques for model-driven development approaches in the domain of ebusiness
solutions [GGK+03, HK04, KHK+03]. We are performing work on transforming
business-level models to IT-level models and we are involved in the QVT-Merge
submission for OMG’s Meta Object Facility (MOF) 2.0 Query/View/Transformation
Request for Proposal [OMG02]. Our effort in the latter area consists of work on a
standard model transformation language for transforming MOF models, where MOF
is an OMG standard for defining meta-models, i.e., the abstract syntax of a modeling
language.

The problem of model transformation is similar to the one of program
transformation and it also makes use of metaprogramming techniques [CH03, SK03].
However, it takes a slightly different direction by working with object-oriented
metamodels, which define object graphs rather than syntax trees. We define the term
model transformation in the following way: A model transformation is a mapping of a
set of models onto another set of models or onto themselves, where a mapping defines
correspondences between elements in the source and target models.

There are a number of different contexts of use that are applicable to QVT model
transformations [Omg02]; these can be broken into two broad categories, inspired by
Visser’s classification for program transformation [Vis01]: language translation, and
language rephrasing. In the former, a model is transformed into a model of a different
language, i.e., a different model, and in the latter, a model is changed in some way,
which may involve producing a new target model with the changes (distinct models)
or changing the existing source model (single working model).

Like in [Vis01], language translation can be further sub-divided into migration: a
model is transformed to another one at the same level of abstraction; synthesis: a
model is transformed to another one at a lower level of abstraction; and reverse
engineering: a model is transformed to another language at a higher level of
abstraction.

Language rephrasing can be sub-divided into normalization: a model is
transformed by reducing it to a sublanguage; refactoring: a model is restructured,
improving the design, so that it becomes easier to understand and maintain while still
preserving its externally observable behavior; correction: a model is changed in order
to fix an error; and adaptation: a model is changed in order to bring it up to date with
new or modified requirements.

The mapping between models established by the transformation may be required to
be preserved over time. We call this characteristic of transformation synchronization

2 Shane Sendall, Rainer Hauser, Jana Koehler, Jochen Küster, Michael Wahler

[GGK+03]. Examples of synchronization include: round-trip engineering and views.
As part of synchronization, propagation of changes to a model may be made in one or
more directions. Synchronization may be activated in a strict or loose fashion. Strict
synchronization requires all changes to models to be taken into account immediately
or in the next consistent state, e.g., views. Loose synchronization makes no statement
on when synchronization should occur.

There are many different approaches available for model transformation; some of
these include: relational/logic, functional, graph rewriting, generator/template-based,
and imperative [CH03].

Our premise is that the different categories of model transformation in the QVT
space are suited to different languages and approaches. As such, we believe that we
should move towards understanding the requirements of each category and look at
which kind of language is suited to which subset of problems. In doing so, we would
like to understand the common requirements and also those that differ, and eventually
build languages that are specifically address those specific problems.

Some questions that we are interested in addressing/discussing include:
• The field of compilation has a well understood categorization of languages.

Building upon this work, how can one effectively formalize the different usage
categories in the QVT space and the different model transformation languages so
that we can more rigorously understand which ones match which domain? How
“declarative” can we make a language targeted for such domains? What further
categorization could we do with such formalizations?

• Bi-directional synchronization is a difficult problem in general. What existing
approaches offer solutions? Is bi-directional transformation equivalent to uni-
directional transformations in either direction? How do you avoid clobbering
existing information on the return trip? How can trace information help in the
return trip?

References

[BPIA] Business Process Integration and Automation, IBM Zurich Research Labs,
Switzerland, 2004. http://www.zurich.ibm.com/csc/ebizz/bpia.html

[CH03] K. Czarnecki, S. Helsen; “Classification of Model Transformation Approaches”.
Proceedings of the 2nd OOPSLA Workshop on Generative Techniques in the
Context of the Model Driven Architecture, USA, 2003.

[GGK+03] T. Gardner, C. Griffin, J. Koehler, R. Hauser; “A review of OMG MOF 2.0 Query
/ Views / Transformations Submissions and Recommendations towards the final
Standard”. MetaModelling for MDA Workshop, England, 2003.

[HK04] R. Hauser, J. Koehler; “Compiling Process Graphs into Executable Code”. GPCE-
04, 2004.

[KHK+03] J. Koehler, R. Hauser, S. Kapoor, F. Wu, S. Kumaran; “A Model-Driven
Transformation Method”. EDOC 2003, pages 186-197.

[OMG02] Object Management Group; “Request for Proposal: MOF 2.0 Query / Views /
Transformations”, 2002. http://www.omg.org/docs/ad/02-04-10.pdf

[OMG03] Object Management Group; “MDA Guide Version 1.0.1”. 2003.
[SK03] S. Sendall and W. Kozaczynski; “Model Transformation - the Heart and Soul of

Model-Driven Software Development”. IEEE Software, vol. 20, no. 5,
September/October 2003, pp. 42-45,

[Vis01] E. Visser; “A Survey of Strategies in Program Transformation Systems”.
Electronic Notes in Theoretical Computer Science, eds. Gramlich and Lucas, vol.
57, Elsevier, 2001.

