Light-weight containers for Isabelle:
efficient, extensible, nestable

Andreas Lochbihler

Institute of Information Security, ETH Zurich
andreas.lochbihler@inf.ethz.ch

Abstract. In Isabelle/HOL, we develop an approach to efficiently im-
plement container types such as sets and maps in generated code. Thanks
to type classes and refinement during code generation, our light-weight
framework is flexible, extensible, and easy to use. To support arbitrary
nesting of containers, we devise an efficient linear order on sets that can
even compare complements and non-complements. Our evaluation shows
that it is both efficient and usable.

1 Introduction

Recently, executable implementations have been generated from increasingly
large developments in theorem provers. Early works [3,8,16] implemented con-
tainers inefficiently, in particular as lists and closures, or burdened the formalisa-
tion with complex data structure details. Today, refinement approaches [5,6,9,10]
enable the verification to operate on abstract types like sets and functions — for
code generation, the refinement replaces them with efficient implementations.
For use in large-scale projects, they should meet four requirements:

ease of use It requires little effort to apply the refinement to an application.

flexibility Applications themselves can choose which implementations to use
for which container, and can easily switch between them; multiple imple-
mentations for the same container type are supported simultaneously.

extensibility When a user adds another implementation or a new type of stored
data, he need not touch the existing parts. This is crucial for modularisation:
Libraries can be included unchanged and extended incrementally.

nesting Containers can be nested arbitrarily, e.g., a map from sets to sets of sets.

For the proof assistant Isabelle/HOL and its code generator [7], the exist-
ing approaches differ in where the refinement happens. On the one hand, the
Isabelle Collections Framework (ICF) [9] explicitly models refinement inside the
logic: it defines a uniform interface to various verified data structures. It meets
the above criteria except for ease of use and nesting. First, users must manually
introduce copies for all definitions such that they use the interface and prove
refinement subject to invariants of the data structure. In practice, refinement
can make up a substantial part of the development [15]. Second, Isabelle’s proof
automation assumes unique representation of objects, but ICF-style refinement
introduces multiple ones, e.g., both lists [a, b] and [b, a] implement the same set

{a,b}. So, at present, the ICF does not support a set of sets implemented as
unordered lists or red-black trees (RBT) — although demand for nested sets has
been expressed on the Isabelle mailing list, e.g., posts 4D779F63.9050506Qirit.fr
and 89A2F83C-2AE8-44B7-B1ED-5EDD4E160C1FQloria.fr.

On the other hand, Haftmann et al. [6] advocate for refinement inside the
code generator, see §1.1 for an introduction. This is easy to use, as the user
need not bother about the details of implementations. In particular, represen-
tations remain unique in the logic, so nesting is possible. Yet, the current state
in Isabelle2013 is far from fully exploiting the available features. For example, it
supports only one implementation for each type, i.e., all sets are implemented
either as lists or as RBTs. In a case study on extracting a Java interpreter [15],
the elements of some sets could not be ordered linearly (as required for RBTSs),
so all sets were inefficiently implemented as lists.

Contributions We present an easy to use approach (called LC for light-weight
containers) based on Haftmann’s [6]. It supports multiple implementations and
is flexibile, extensible, and nestable (§2). We devise a configurable scheme to
automatically choose a suitable implementation based on the type of what is to
be stored (§2.3). To avoid type class restrictions, we adapt a Haskell approach
with type constructor classes [17] to Isabelle’s single-parameter type classes. For
the presentation, we focus on sets implemented as closures, lists, distinct lists, or
RBTs. As our development covers all set operations from Isabelle, it can replace
the default setup for code generation in applications without much ado. We have
also covered maps, i.e., support the two fundamental container types.

Second, to support arbitrary nesting of sets, we devise an efficient linear order
on sets (§3). It requires only linearly many comparisions between the elements
and supports comparisons even between complements and non-complements. As
Isabelle’s automated disprover quickcheck [2] relies on code generation, it is
important to support complements, too.

Third, we evaluate our approach in two micro-benchmarks and a case study
(§4). The benchmarks show that our approach generates code as efficient as the
ICF and that the linear order on sets is also efficient. The case study with the
Java interpreter shows that our approach integrates seamlessly with the existing
Isabelle setup and is therefore as easy to use; switching from Isabelle’s default
setup to ours did not require any adaptations. Moreover, multiple implementa-
tions for sets and maps improve the execution times.

Moreover, our way of combining the powerful features of the code generator
is novel; we describe the ideas in §5. We would like to stress that we have proven
all lemmas and refinements in this paper in Isabelle; LC is available online [14].

1.1 Background: the code generator framework and refinement

Isabelle’s code generator [6,7] turns a set of equational theorems into a functional
program with the same equational rewrite system. The translation guarantees
partial correctness by construction, as it builds on equational logic.

Program refinement separates code generation issues from the rest of the
formalisation in Isabelle. As any (executable) equational theorem suffices for

117

http://mid.gmane.org/4D779F63.9050506@irit.fr
http://mid.gmane.org/89A2F83C-2AE8-44B7-B1ED-5EDD4E160C1F@loria.fr

code generation, the user may locally derive new (code) equations to use upon
code generation. Hence, existing definitions and proofs remain unaffected.

For data refinement, the user replaces constructors of a datatype by other
constants and derives equations that pattern-match on these new (pseudo-)con-
structors. Neither need the new constructors be injective and pairwise disjoint,
nor exhaust the type. Again, this is local as it affects only code generation, but
not the logical properties of the refined type. Thus, one cannot exploit the type’s
new structure inside the logic.

For example, Isabelle’s default code generator setup represents sets (type
a set) with the two pseudo-constructors set and coset of type a list = « set,
which represent the (complement of the) finite set of elements in the given list.
Note that they are neither injective (set [1,2] = set [2, 1], but [1,2] # [2,1]), nor
do they exhaust the type « set if « is infinite (e.g., {1,3,5,...}), nor are they
disjoint if « is finite (set [True| = coset [False] for booleans). Nevertheless, the
following equations implement the membership test € on type a set:

(z € set xs) = (memb xs x) (x € coset xs) = (mmemb zs) (1)

where memb xs = checks if z equals one of xs’s elements by traversing xs — the
type class equal provides the implementation of these equality tests.

This is an example of sort refinement: The equality test in memb’s code
equations requires that « is of sort equal, but memb’s specification in the logic
as Axs z. x € set xs does not. The code generator collects, propagates, and checks
all sort constraints upon code generation. Thus, it propagates « :: equal via (1) to
€, too. Sorts intersect: Suppose that another pseudo-constructor tree represents
finite sets as binary search trees and we use (x € tree t) = (lookup t x # None),
where lookup obtains the linear order on « from the type class linorder. Then,
the code generator enforces that any invocation of € operates on sets whose
element type instantiates both equal and linorder.

1.2 Related work

The ICF approach [9] considers refinement inside the logic superior to refinement
in the code generator, as the implementation can exploit the refined structure
and, e.g., resolve non-determinism from underspecification such as the order of
iteration over a set. However, the ICF requires more adaptations; some automa-
tion has been developed for monadic programs [10], but this still requires adapt-
ing the application to the refinement calculus. We argue that both approaches
complement each other, and recommend to use the ICF only when necessary, and
to stick with the simpler refinement in the code generator whenever possible. For
example, in [15], we used Haftmann’s approach when sets and maps are accessed
only through membership tests and lookup operations, respectively, and the ICF
to resolve non-determinism, e.g., to pick an arbitrary element from a set.

Peyton Jones [17] and Chen et al. [4] show that Haskell’s single-parameter
type classes do not suffice for bulk-type polymorphism (flexibility and extensibil-
ity in our terminology). Our approach nevertheless succeeds, because refinement
is incremental and we do not have to extend the generated code itself.

118

Lescuyer’s Containers library [11] for Coq efficiently implements finite sets
and maps with type classes, but he cannot represent set complements. His linear
order on sets is based on the lexicographic ordering of the sorted list of elements.

2 Multiple implementations for containers

Sort intersection as described in §1.1 creates problems in large-scale applications
that use the same HOL container type such as « set for different «, as some el-
ement types « fail to meet all sort constraints. In previous work [15], e.g., some
sets contain strings (a sequence of characters) and others functions. Unfortu-
nately, we could not make strings an instance of linorder, because the order on
lists had already been fixed to the partial prefix order elsewhere, and functions
lack computable equality for the type class equal. Thus, we had to stick with
inefficient lists which allow duplicates, see §4.3 for details.

In this section, we introduce new type classes which any type can be made
an instance of and show how to support multiple implementations (§2.1). Thus,
sort, intersection is no longer a show-stopper. Then, we demonstrate extensibility
by adding new data and a new implementation (§2.2). To improve usability,
we devise a configurable scheme for automatically choosing an implementation
(§2.3) and show how to deal with binary operations (§2.4).

2.1 New type classes and multiple implementations

To avoid instantiation obstacles, Peyton Jones [17, §3] introduces new type
classes whose parameters already tell whether the operation is supported. Here,
we borrow his idea and adapt it to the theorem prover setting. We introduce a
new type class ceq for equality on container elements (to make the overloading
explicit, we write the type parameter as a superscript to type class parameters):

class ceq = fixes ceq® :: (a = a = bool) option
assumes ceq® = |eq| = eq = (op =)

The declared equality operator ceq™ tells whether elements of type o may be
tested for equality at all. If so (ceq® = |eq] for some eq; | -| denotes definedness),
the assumption enforces that eq in fact implements HOL equality op = (we
forbid other congruence relations, as Isabelle’s proof automation cannot handle
them well). Otherwise (ceq® = None), ceq does not impose any constraints on
the implementation and — as all proofs rely only on the specified assumptions
— neither must any usage of ceq®. Thus, every type can be made an instance
of ceq. For example, the instantiations for the function space constructor fun
(written infix as =) and natural numbers nat are as follows:

instantiation fun :: (type, type) ceq begin instantiation nat :: ceq begin
definition ceq®=# = None definition ceq™' = |op = |
instance ((proof)) end instance ((proof)) end

Unfortunately, we cannot follow Peyton Jones’ development any further: he
introduces a type constructor class for collection type constructors that specifies

119

the operations, but Isabelle does not support type constructor classes. Instead,
we use data refinement. For the moment, we only consider three implementations:
lists with and without duplicates and characteristic functions; in §2.2, we add
efficient RBTs. To that end, we define four pseudo-constructors for a set that
replace set and coset for the code generator:

char. function ChF :: (= bool) = « set ChFP ={z.Pu}

monad style MSet :: a list = « set MSet xs = set xs
distinct list DSet :: a dlist = « set DSet ds = {x. dmemb ds z }
complement Compl :: «a set = « set Compl A=A

For « of sort ceq, the type « dlist consists of all lists from « list whose elements
are pairwise distinct w.r.t. the equality operator from ceq; if ceq® is undefined,
« dlist consists of all lists. dmemb ds x checks if x occurs in ds using ceq’s equality
operator. We model the complement of a set A (notation A) as Compl A.
Monad-style sets (MSet) can be used to model non-determinism. They allow
duplicates and avoid equality checks whenever possible, e.g., for insert, U, and
bind. Still, we do implement operations that require equality, but they may fail
at run time when ceq® is None. Membership, e.g., uses the following equation:

(2)

(x € MSet xs) = (case ceq® of None = error (A_. x € MSet xs)
| leq] = memb’ eq xs x)

where error logically returns its argument applied to the unit value (), but it
raises an exception in the generated code at run time; the unit closure ensures
termination in call-by-value languages like ML. As memb’ takes the equality
operation as a parameter, we do not depend on the type class equal. Note that
membership € cannot be total, as we deliberately do not require an implemen-
tation for equality. Like in the common case of missing patterns in functional
programs, the user himself must ensure that ceq® is defined for the element type
«a whenever he calls € on MSet. The other pseudo-constructors do not need such
a run time check, as we have defined them logically in terms of membership:

(x€ChF P) =Pz (xe€DSet ds)=dmembdsx (r€ComplA)= (x¢gA)

2.2 Extensibility

Extensibility expresses that one may use containers with new types of elements
and add new implementations for a container without editing the existing code
base. This ensures that users can freely extend a container framework. In this
section, we demonstrate that our light-weight approach achieves this.

To use a new type of elements, one merely has to instantiate the new type
classes, i.e., ceq in the example. As the operations can default to None, this is
always possible. For example, arithmetic expressions:

datatype expr = Val nat | Var string | Plus expr expr | Times expr expr
instantiation expr :: ceq begin

definition ceq®™?" = |_0p = J Note that the datatype declaration al-
instance ((proof)) end ready generates code equations for op =.

120

Next, we show how to add an implementation of sets backed by RBTs. This
requires a linear order on container elements, i.e., a new type class corder (where
class.linorder leq It denotes that leq is a linear order and [t its strict version):

class corder = fixes corder® :: ((a = a = bool) x (o« = a= bool)) option
assumes corder® = |(leq, lt) | = class.linorder leq It

Our RBT implementation builds on the verified RBT formalisation in Is-
abelle’s library, which is based on the linorder type class; we only have to adapt
it to corder. Analogous to « dlist, the type « srbt of RBT sets contains all
RBTs that are sorted according to corder, if corder is defined; otherwise, it con-
tains all binary trees irrespective of sorting and balancing. Then, we define the
new pseudo-constructor RSet rs = { x. rmemb rs x } where rmemb denotes the
lookup operation on « srbt, which uses corder for comparing elements. To fin-
ish, we declare RSet as another pseudo-constructor for a set and prove code
equations for all set operations. Again, operations like insert are correctly im-
plemented only if corder implements some linear order; otherwise, they fail with
an exception during execution.

(x € RSet rs) = rmemb rs x
insert © (RSet rs) = (case corder® of None = error (A_. insert x (RSet rs)) (3)
| |-] = RSet (rinsert x rs))

Sort refinement requires that from now on all element types inhabit corder,
too, as « has sort corder in (3). Hence, we instantiate corder for the element
types. Since it is very similar to the linorder type class, the instantiations are
canonical and full Isabelle support is available, e.g., Thiemann’s order generator
for data types [19]. For example, the proofs in the following are automatic.

derive linorder expr

instantiation nat :: corder begin instantiation expr :: corder begin
definition ceq™" = |(op <,0p <)] definition ceq®™P" = |(op <,0p <)]
instance ((proof)) end instance ((proof)) end

2.3 Automatically choosing an implementation

Recall from (2) and (3) that the generated code raises a run-time exception in
case of an unsupported operation. One can analyse the code equations to that
end before code generation, but we have not yet implemented such an analysis.
Instead, we let the generated code choose the implementation based on the oper-
ations the element type provides, e.g., use RSet only if corder® is defined. Then,
we are sure that the necessary operations are available, i.e., the exception in (3)
cannot occur. However, exceptions can still occur when a set operation has no
implementation at all. For a set of functions, e.g., € will still fail in (2). This is a
design choice: We want to support « set for all a. If o does not permit to imple-
ment a set operation at all, it is the user’s fault to apply the operation to « set.

121

Peyton Jones [17, §3.3] proposes a similar approach, but his is neither exten-
sible nor flexible. He avoids the implementability problem by requiring equality
for all element types, but this does not fit to how sets are used in Isabelle.

All sets originate from either a set comprehension ChF' P or the empty set ().
We ignore the pseudo-constructor ChF, as the operations for ChF do not depend
on ceq or corder. For (), our code equations heuristically pick an implementation.
The following is a first, naive attempt in the style of [17]:

() = (case corder™ of |_| = RSet rempty @)
| None = case ceq® of || = DSet dempty | None = MSet [])

This equation uses RBTs if there is a linear order on the elements. Otherwise,
it tries distinct lists for equality and picks monad-style sets as last resort. This
way, RBT's are only used for element types that do provide a linear order corder.
Thus, the error in (3) cannot trigger. Nevertheless, we cannot eliminate the
check, as the user still can misuse RSet in his own equations. However, (4) offers
too little control over the choice and thus violates flexibility. For some types, it is
sensible to use distinct lists even if there is a linear order — for bool with just two
elements, e.g., the DSet implementation is four times faster than the RSet one.!

Instead, we let an overloaded operation choose the implementation:

class set-impl = fixes set-impl® :: set-impl

The type set-impl (inhabited by only one value Set-IMPL) has a pseudo-con-
structor for each implementation: Set-ChF, Set-dlist, Set-RBT, Set-Monad, plus
Set-Auto for automatic selection like in (4). They are only pseudo-constructors
such that we can add more for new implementations later. Then, we implement
¢ via) = sempty set-impl®, where the function sempty, logically defined by
sempty Set-IMPL = (), chooses the desired implementation:

sempty Set-ChF = ChF (A_. False) sempty Set-dlist = DSet dempty
sempty Set-RBT = RSet rempty sempty Set-Monad = MSet]
sempty Set-Auto = (case corder® of |_| = RSet rempty | ...)

Note that we could have overloaded) directly without the detour set-impl
and sempty. Yet, as Isabelle allows overloading only for constants with exactly
one type parameter, this does not extend to other container types like maps with
multiple type parameters. Our approach also works such container types.

Below, we give three example instantiations for set-impl. As motivated above,
bool chooses distinct lists although corder?®® is defined. o option (the type of
|-] and None) inherits the choice from its type argument, as it adds only one
value. In contrast, a set of sets discards any preference from the element type
and falls back on automatic selection. This seems sensible, as a set of sets can
become much larger than a set of the elements.

set-implP°° = Set-dlist set-impl® °Ptio" =set-impl® set-impl® *°t = Set-Auto
! Build, e.g., the set { True, False } and check membership for both elements. Under
PolyML, 1M (10M) iterations take .05s (.47s) for DSet and .21s (2.05s) for RSet.

122

Moreover, users can later change the implementations for a type «, if they
want to: as all pseudo-constructors are logically equivalent, proving a different
code equation for set-impl® is straightforward: As all pseudo-constructors are
logically equal to Set-IMPL, we can, e.g., prove set-impl® °P%°" = Set-ChF and
use this code equation to choose characteristic functions as default for a option.

2.4 Binary operations

Binary operations like N and U require pattern-matching on both sets, i.e., the
number of possible combinations grows quadratically with the number of imple-
mentations. In the ICF [9], a Ruby script automatically generates implementa-
tions for all combinations, all of which use a generic implementation parametrised
by iterators and basic operations. More efficient implementations for special com-
binations (like intersecting two RSets [1]) are not supported.

With our approach, sequential pattern matching in the target language offers
a better solution. First, we derive general equations that pattern-match only on
one constructor and compute the result generically. Second, we show equations
for special cases with more efficient implementations, which take precedence
over the generic ones as pattern matching is sequential. This keeps the number
of equations linear in the number of implementations plus the optimised cases.
Moreover, the general equations automatically cover future set implementations.

For intersection and RSet, e.g., we obtain the following, where rfilter P rs
retains only rs’s elements that satisfy the predicate P and rint is the fast inter-
section algorithm on « srbt.

RSet rs1 N RSet rsg = (case corder®of None = ... | |-] = RSet (rint rsy rsz))
RSet rs N A = (case corder®of None = ... | |_| = RSet (rfilter (Az. x€ A) rs))
AN RSet rs = (case corder®of None = ... | |_| = RSet (tfilter (Az. € A) rs))

When we prove these equations, we cannot exploit sequentiality of pattern
matching, i.e., we implicitly prove that all right-hand sides are equal when the
left-hand sides unify. This is only possible as refinement happens in the code gen-
erator, i.e., our pseudo-constructors abstract from the concrete representation.
As the ICF models the refinement in the logic, it cannot prove such equalities.

3 Executable linear order on sets

Recall that our approach abstracts from different implementations in the logic.
Thus, it directly supports arbitrary nesting of containers, provided that we make
the container type an instance of the type classes — in our example, ceq and corder
for o set. Not to lose on efficiency, we now devise a linear order C on sets and
implement corder® *¢* = | (C,C)|. This is one example where the separate type
class corder is crucial: As Isabelle fixes the canonical order < on « set to the
non-linear subset order C, we cannot make « set an instance of Iinorder.

By the axiom of choice, there is a linear order on every set, but we cannot
implement this order, so it is useless here. Fortunately, it suffices if we can decide

123

the ordering on representable sets. Given a linear order < on the elements, we
first define a linear order on the finite and cofinite sets. Then, we extend it to a
linear order on all sets by the axiom of choice (§3.1), as corder requires a linear
order on all elements. Our equations for code generation (§3.2) pattern-match
on the pseudo-constructors which represent only finite or cofinite sets. If the
(co)finite sets are given as sorted lists of their (non-)elements, C requires at most
linearly (in the size of the lists) many <-comparisons — except for comparing a
finite and a cofinite set when « is finite, because a set may be both finite and
cofinite. For the latter case, we show that further operations on « are necessary,
and implement them for « set to ensure nestability and extensibility (§3.3).

Moreover, our order C satisfies the following properties for all sets A, A’ and
finite sets F, F’, which facilitate proving the code equations in §3.2:

(P1) 0C A and A C UNIV (P3) ACAMff A/C A o
(P2) If F C F’, then F C F’ (P4) If « is infinite, then F C F’

Properties P1 and P2 describe the similarity with the subset order: the empty set
() and the full set UNIV of all elements are the least and greatest sets, resp., and C
extends C on finite sets. Hence, when iterating over a set of finite sets in ascend-
ing order, one visits subsets before supersets. P3 allows to drop the Compl con-
structor on both sides if the relation is reversed, i.e., complement is anti-mono-
tone. P4 expresses that finite sets are always less than cofinite sets, if a’s universe
is infinite. If o is finite, ' C F’ is inconsistent with P2 () C {a} C UNIV = {),
i.e.,, {a} =0, a contradiction), because then sets are both finite and cofinite.

3.1 Definition

We construct our linear order C from two intermediate partial orders C; and
Co, where each step extends the previous order.

First, we define that A 7 B holds whenever both A and B are finite and
B contains the mininum element of the symmetric difference of A and B. Intu-
itively, if A = set as and B = set bs with as and bs duplicate-free and <-sorted
in ascending order, A C; B iff as precedes bs in the lexicographic list order w.r.t.
the converse > of < (Lem. 1). For a three-value type with order 0 < 1 < 2, e.g.,
C1 orders the sets as follows:

®E1 {2} Cq {].}El {1,2}E1 {O}El {0,2}[1 {0,1} Cq {0,1,2} (5)

Taking the converse of < is crucial for the above properties. In the example,
the lexicographic list order w.r.t. < would give {0,1,2} C; {1}, which violates
P1 and P2. Moreover, note the symmetry with complements in (5): the n-th set
from the left is the complement of the n-th set from the right.

For finite types like in (5), C; completely determines C. So let us move on to
infinite types. Fix a set of sets € :: a set set with two properties: (i) If A :: « set
is finite, then A € €. (ii) If « is infinite, then A € € iff A € €. Such a € exists:
If « is finite, take UNIV. Otherwise, consider the subset order restricted to sets

124

of sets that satisfy (i) and the “only if” direction of (ii). For any chain in this
order, the union of the chain’s sets of sets is an upper bound. Thus, by Zorn’s
lemma, the order has a maximal element — and all maximal elements satisfy (i)
and (ii). For infinite o, the set € decides for each set A if T treats it like a finite
set (A € @) or like a cofinite set (A ¢ €). If A is infinite, this decision does
not matter, as we do not care about infinite sets, but it ensures complement
symmetry P3.

Next, Co extends C1 to a linear order on € such that () is the least element.
Hence,) Co A even if A € € is infinite. By the order extension principle, Co
exists. This suffices for our purpose, as we care only about finite sets, i.e., we
need not specify Co completely for infinite A and B.

Finally, we mirror Cs at the boundary of € to obtain complement symmetry
P3. We define C as follows:

ACB=(ifA€€then ALy BVBgCelse B€EABLCy A)

Property P4 holds as the cofinite sets, which are not in €, are greater than the
finite ones (which are members of €). Note that if « is finite, € = UNIV and

therefore, C is identical to Co and ;.

3.2 Code equations

Now, we derive code equations to implement and C for finite and cofinite
sets. In the following, we assume that a (co)finite set is given as a sorted and
duplicate-free list of (the complement’s) elements. Thanks to the above prop-
erties, some combinations are straightforward: P3 reduces comparisons between
two cofinite sets to comparing their complements; and P4 already decides com-
parisons between one finite and one cofinite set if « is infinite. Thus, only two
cases are left: comparing two finite sets and — if « is finite — comparing a finite
and a cofinite set.
For the first case, we show that [C; is a kind of lexicographic ordering:

Lemma 1. Let A and B be non-empty, finite sets and let Min A and Min B
denote their respective minimum elements. Then, A C1 B iff Min A > Min B,
or Min A= Min B and A— {Min A} Cy B—{Min B}.

Corollary 1. Letxs and ys be sorted, duplicate-free lists. Then, set xs 1 set ys
iff lexord (>) xs ys, where lexord (>) is the lexicographic order on lists for the
element order >.

Thus, we can implement comparisons between finite sets efficiently as a lexico-
graphic order. If we store the sets in sorted order (like RBTs do), the number of
element comparisons is linear in the size of the sets.

Now, only comparisons between a finite and a cofinite set remain if « is finite.
Unfortunately, we cannot (computationally) decide such comparisons solely by
looking at the representations of finite and cofinite sets. This is not a fault of our
choice for , but impossible for any linear order € implemented as a polymorphic

function of type « set=>« set=>bool. To see this, compare the sets { a } and 0. If

125

a is the only value that inhabits o, {a } = 0 and therefore {a} &) and 0 & {a},
as € is irreflexive. Otherwise, {a } # 0 and thus {a } € P or) € {a} by linearity.
Thus, € must know whether o contains further values, but it cannot compute
that solely from its arguments { a } and (. Similar examples show that € has to
know if there are further values above, below, or between any two values.

Therefore, we introduce another overloaded operation proper interval pi® of
type « option=- « option=- bool that checks whether an open interval is proper,
i.e., non-empty. Intervals are given by their bounds, None represents unbounded-
ness. Hence, all implementations of pi® satisfy the following specification (note
that (3z. True) = True as all HOL types are inhabited):

pi® None None = True pi® None |y| = (Fz. 2 < y)
pi® |z| None= (3z. z < z) pi® |z| |yl =3z z<zAz<y)

(6)

Now, we present the case of comparing a complement with a non-complement.
To decide A CT; B, where A = set xs and B = set ys are given by sorted and
duplicate-free lists, we use the following function cle of type a option= « list =
a list = bool — a similar function Iec (not shown) deals with other case A C; B:

cebdb] [=-—pi*b None
cleb(x-xs) [=-pi®blz]Acle|z]| zs]
ceb [(y-ys)=-pi®blyl Acle|y] [ys)

cleb (z-xs) (y-ys) = (if x <y then ~pi* b |z] Acle |z]| zs (y-ys)
else if y < x then = pi® b |y] Acle |y| (z-xs) ys
else = pi* b |x])

The additional parameter b acts as a lower bound: cle b interprets the comple-
ment set xs with respect to the set of values greater than b (notation 1) instead
of UNIV. As it further assumes set xs U set ys C bT, it ignores all values not
in b1. For example, cle |0] treats the type from (5) as if it were 1 < 2, i.e., it
considers only the left half of (5).

Lemma 2. Let o be finite, and xs and ys be sorted and duplicate-free, and
set xs U set ys C b. Then, set xs NbT C set ys iff cle b xs ys.

Corollary 2. If a is finite, s and ys are sorted and duplicate-free, then
set s C set ys = cle None xs ys.

Let us see how cle works. The first two cases correspond to A N b1 C () for
A = set [or A = set (x-ws). By P1, this holds iff ANbt = @ — and the
two equations use pi® to test if A exhausts bf. The third case is symmetric:
b1 C set (y - ys) holds iff b1 C set (y - ys), i.e., set (y - ys) exhausts bf. The last
case is the most interesting one. Suppose that < y. Then, there must not be a
value between b and x; otherwise (pi® b |z]), the minimum element of AN b7 is
lower than the minimum element y of B, so AN bt J; B by Lem. 1. Moreover,
neither y - ys nor the complement of = - xs contain z, as the lists are sorted
and duplicate-free. Thus, set (x - xs) NbT = set xs N |z |1 and cle recurses. Now

126

suppose that y < x. Then, there must not be a value between b and y; otherwise
Min (ANbt) < Min B and thus B ©; ANbt by Lem. 1. As y < and the
lists are sorted, y is the minimum element of both AN bt and B. Thus, we can
remove y from both sets in the recursive call by raising b to |y| and dropping y
from B. This is correct by Lem. 1. Finally, if z = y, we have found an element
in which the sets differ. If = pi b [z], then y € B is the minimum element of
the symmetric difference between AN b7 and B, so B T AN bt. Otherwise, the
converse holds.

As can be seen from cle’s definition, every case requires at most two compar-
isons and one call to pi, and every recursive call consumes one list element. Thus,
deciding A C B is linear in the size of A and B if « is finite — for infinite o, this
takes constant time by P4. To decide whether « is infinite, we use another type
class to overload FIN® with the meaning of finite UNIV. Finite types implement
FIN® as True, infinite ones as False.

In summary, (8) below implements the total order on sets, where ... repre-
sents the usual test for corder® being defined and that A and B are finite (except
for the first equation). The function s2I A returns A’s elements as a sorted (w.r.t.
corder®) and duplicate-free list — for A = RSet rs, s2l rs traverses rs in-order; for
DSet (MSet), s21 sorts the elements (and removes duplicates); it fails with an ex-
ception for ChF and Compl as expected. The element type o must instantiate the
type classes corder, pi and FIN. Note how (8) exploits that pattern matching is
sequential (cf. §2.4): the last equation, e.g., executes only if A and B are no com-
plements. Thus, sequentiality saves us from manually implementing all 28 cases.

Compl AC Compl B=... BC A

Compl A C B =... FIN® Acle None (s21 A) (s2] B) (8)
A C Compl B =... FIN® — lec None (s21 A) (s2] B)
A C B =...lexord (>) (s21 A) (s2] B)

3.3 Nesting and extensibility

Still, we cannot use RBTs for sets of sets of sets, as we have not yet instantiated
pi for sets. To implement pi® ¢, we must also know «’s cardinality — to that end,
we use the overloaded constant card-UNIV* from [12]. To see why cardinality
matters, consider the sets () and UNTV = (). Now, pi® ** |@] [@] holds iff there
is a set A with) C A C UNIV iff more than one value inhabits o. Yet, pi® does
not suffice to decide this: As we represent UNIV as J, we do not get hold of any
value of a;, which we need for calling pi®.

We now implement pi® *¢*. The border cases are easy thanks to P1:
pi® *°* None |B| = (B # 0) pi® %" | A] None = (A # UNIV)

However, we can compute pi® *** |A| |B] only if A and B are (co)finite, i.e.,
we need to pattern-match on the pseudo-constructors like in (8). Note that
pi® ¢ | Compl A| |Compl B] = pi*** |B] |A| holds by P3. For the other
cases, we define auxiliary functions PI, Plc, and cPI For example,

pi® *°* |A] |Compl B| = ... Plc None 0 (s2] A) (s2] B) (9)

127

where Plc satisfies (10) if « is finite, s and ys are sorted and duplicate-free
lists, and set xsUset ys C bT; ||A|| denotes the number of elements of the set A.

Plc b ||UNIV — bt|| s ys = (A C bt set xs 1 AN ATy set ysNbt) (10)

Like cle, the three functions traverse the list representations and call pi* at most
linearly many times. Their definitions are technical, but provide no new insights.

At last, we can order arbitrary nestings of sets and thus implement them as
RBTs efficiently. Yet, the specification (6) for pi®* violates our rule of making
sure that every type can be instantiated: They depend on the default linear order
<, which does not work for « set. Therefore, we introduce another overloaded
constant cpi® — its specification is the same as (6) except that corder replaces <
and corder® # None and FIN® guard the equations. Hence, we have to implement
cpi® sensibly only for finite types «, for which we have provided an order, too.
As most types are infinite, the restriction to finite types saves a lot of work.

4 Evaluation

To evaluate the efficiency and usability of our approach, we have performed two
micro-benchmarks (§4.1 and §4.2) and integrated it with the Java interpreter
(§4.3). All run-time tests ran on a Pentium DualCore E5300 2.6GHz with 2GB
of RAM using Ubuntu GNU /Linux 9.10 and PolyML 5.4.1 or mlton 20100608;
the figures are the average of four runs.

In preliminary tests, we noticed that Isabelle’s default implementation based
on lists sometimes outperformed LC with RBTs, even for large sets. We found
that intermediate lists caused the slowdown. When we represent the sets as
RBTs, s2I in code equations such as (8) and (9) first converts them into lists.
While this simplifies the definitions and proofs, constructing the whole inter-
mediate list is costly at run time - especially as the first few elements often
suffice. Thus, we have manually eliminated such intermediate lists using the
destroy/unfoldr pattern from shortcut fusion [18] before performing the bench-
marks; we have proved the transformation correct in Isabelle.

4.1 Comparison with other approaches

The first micro-benchmark compares our approach with Isabelle’s default imple-
mentation for sets, the ICF [9], and a conventional, RBT-based implementation.
We start with the empty set, insert n numbers, then remove n numbers, then
test n numbers for membership, and iterate over the set counting those elements
less than n. All numbers are chosen randomly between 0 and 2n and imple-
mented with ML’s arbitrary precision integers. As discussed in [9], this bench-
mark measures the efficiency of the most common operations insertion, removal,
membership and iteration, which all of the above implementations support.
Table 1 shows the run times under mlton for different n. As the first three
rows all use RBTs, we can estimate the overhead that our approach (LC) and
ICF add to a direct implementation with RBTs. LC’s overhead is less than 1%,

128

Impl. / n 10k 20k 30k 40k 50k 100k 500k 1M 1.5M 2M std. dev.

LC 065 .138 .213 .295 .375 .825 5.1710.8 17.0 23.3 < 2.0%
ICF 066 .139 .217 .300 .387 .839 5.1711.8 17.423.9 < 14%
RBT 065 .135 .211 .292 .376 .818 5.59 10.8 17.0 23.3 < 23%
default 1.50 5.72 3.08 22.8 36.2 <10 %

Table 1: mlton run times in seconds for the comparison benchmark; the last
column bounds standard deviation (in percent of the run times) over all n.

the ICF’s varies between 2% and 10%. The last row refers to Isabelle’s (much
slower) default setup with lists, which has quadratic complexity. Under PolyML,
the RBT-based implementations take more than twice as long, and the average
overheads are 2.5% for both ICF and LC. In conclusion, our approach is as
efficient as the ICF and would be a good replacement for Isabelle’s default setup.

4.2 Nested sets

This benchmark exercises the linear order on sets from §3. It starts with () and in-
serts n sets to obtain a set A of sets. We generate each member set by inserting a
random number of random numbers and randomly taking the complement; ran-
dom numbers are chosen between 0 and m. Then, we check whether A contains
another 100 sets generated the same way, and compute the size of the union of all
sets in 4. We now use unsigned 32-bit words from Isabelle’s word library for the
numbers; so we exercise the pi implementation, too, as the word type is finite.

10000 % | o Jefault o 25000
LC o ’ 6 3001 20000

o 520 iy
Q 200 |] 15000
ERUR o £
o = 10 000
s 100 | 2
5000
01 ¢ 1 1 n 0L 1 1 1 1 —
100 1000 10000 0 200 400 600 800 1000

Fig. 1: mlton run times for the benchmark with nested sets

Figure 1 shows the mlton run times for Isabelle’s default setup —— and ours
—x— — like in §4.1, PolyML runs take twice as long. In the log-log plot on the left,
m is fixed and n varies. From n = 1000 on, the plots are linear with slope 2 and
1, respectively. As the slope denotes the exponent of the polynomial complexity,
this confirms that Isabelle’s setup is quadratic and ours almost linear. While

129

default is almost as fast as LC for small sets, LC is much faster for larger n and
m. For n = 25000 and m = 100, e.g., it is 5.6 min vs. 35.6 min.

On the right, we now vary the size m of the inner sets for fixed numbers n
of sets, but show only our approach LC. As the scales are linear, the plots fit a
mlogm curve. This shows that our linear order on « set is indeed efficient.

4.3 Case study: Java interpreter

In [15], we generated an interpreter for multithreaded Java from JinjaThreads, a
large (86kLoC) Isabelle formalisation. Already for small programs, we achieved
performance gains of 13% by pre-computing the lookup functions that extract
information from the program declaration. We cached the information in (asso-
ciative) lists using data refinement from « set and («, 8) mapping, Isabelle’s type
for finite executable maps. Type class restrictions disallowed more efficient im-
plementations like RBTs, because the keys are (class) names, i.e., lists of chars,
and ordering for lists has already been fixed to the (partial) prefix order.

Switching to our new approach was straightforward: we only had to im-
port our new Isabelle files and instantiate the new type classes ceq, corder, and
set-impl for the custom types as explained in §2. All existing definitions and
proofs remained untouched. All in all, it took less than two hours. This shows
that our approach is indeed easy to use.

To assess the impact on run-time, we took
a Java program with 99 classes, converted it to
JinjaThreads input syntax using Java2Jinja [13, WE _SC VM
§6.5], and ran the well-formedness checker (WF), w/o 2.51 5.81 .086
the source code interpreter (SC), and the virtual ~lists .013 5.39 .053
machine (VM) on it. Table 2 shows the timings; LC .009 5.35 .106 (.053)
the first row gives the timing for the original
JinjaThreads versions without caching, the sec- Table 2: PolyML run times [s]
ond with list-based caching. LC denotes our new for the Java interpreter
approach: it gains 30% over the list-based imple-
mentation for WF, which heavily exercises the lookup functions and profits most
from caching. As the interpreter calls the lookup functions less frequently, the
gain is much smaller (1%). Surprisingly at first, LC ruins the VM performance —
it is even slower than without caching. The bottleneck is the automatic selection
of the set implementation. Internally, the VM uses sets also as a non-determinism
monad the type of whose elements is built from 84 type constructors and 3 type
variables. Hence, the execution of each bytecode instruction needs to query the
available operations of all these constructors before it picks a set implementa-
tion. As a remedy, we disabled the automatic selection locally by replacing 0
with MSet [] in the VM’s code equations. This improves the run-time to .068s
and requires only three Isabelle declarations. To achieve the same performance
as list-based tabulation (.053s), we further replace the other operations on these
sets with those that only have code equations for MSet. Hence, we save the
dictionary constructions that emulate the type classes ceq and corder in ML.

130

5 Conclusion and future work

We have proposed a light-weight approach to getting efficient code from Isabelle
formalisations based on type classes and code generator refinement. It is flexible,
extensible, and nestable. Our benchmarks and a case study show that it is indeed
efficient, easy to use, and fits in the existing Isabelle libraries.

Four features of Isabelle’s code generator have been crucial for this work:

Incremental declarations are the key to extensibility, as we can adjust the
code generator setup right until code generation. This allows us, e.g., to
bypass the impossibility results for single-parameter type classes [4,17].

Data refinement permits to represent values differently in logic and code. For
configuration options for code generation, we suggest to take this to extremes
(as shown in §2.3): Merge all cases in the logic! So, users can add further
cases (data refinement) and change the configuration (program refinement).

Type classes enable overloading, our generated code uses them to query poly-
morphic type parameters. Type classes for code generation should be inde-
pendent of those for logical concepts (e.g., corder vs. linorder, §2). For exten-
sibility, they should be definitional such that every type can instantiate them.

Sequential pattern matching has helped to keep the effort linear in the num-
ber of implementations, see §2.4 and (8). This feature is hardly known; in
Isabelle2013, such equations must be declared in the reversed order.

The next step is to cover more container types and implementations, e.g.,
bags and hash tables. Moreover, we want to integrate LC with Isabelle’s pack-
ages such that they instantiate the type classes automatically. Also, we hope
to equip Isabelle’s code generator with an analysis that catches exceptions due
to unsupported operations already at generation time. Future case studies will
show how much effort LC saves in new developments.

Acknowledgements We thank D. Lohner and J. Breitner for valuable discussions
and comments on earlier drafts and F. Haftmann and L. Bulwahn for helping
with the code generator. This work has been partially funded by DFG grant
Sn11/10-2.

References

1. Appel, A W.: Efficient verified red-black trees. http://www.cs.princeton.edu/
~appel/papers/redblack.pdf (2011)

2. Berghofer, S., Nipkow, T.: Random testing in Isabelle/HOL. In: SEFM’04, pp.
230-239. IEEE Computer Society (2004)

3. Berghofer, S., Reiter, M.: Formalizing the logic-automaton connection. In:
TPHOLs’09. LNCS, vol. 5674, pp. 147-163. Springer (2009)

4. Chen, K., Hudak, P., Odersky, M.: Parametric type classes. In: LFP’92, pp. 170-
181. ACM (1992)

5. Greve, D.A., Kaufmann, M., Manolios, P., Moore, J.S., Ray, S., Ruiz-Reina, J.,
Sumners, R., Vroon, D., Wilding, M.: Efficient execution in an automated reasoning
environment. J. Funct. Program. 18(1), 15-46 (2008)

131

http://www.cs.princeton.edu/~appel/papers/redblack.pdf
http://www.cs.princeton.edu/~appel/papers/redblack.pdf

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

Haftmann, F., Krauss, A., Kuncar, O., Nipkow, T.: Data refinement in Is-
abelle/HOL. In: ITP’13. LNCS, vol. 7998, pp. 100-115. Springer (2013)
Haftmann, F., Nipkow, T.: Code generation via higher-order rewrite systems. In:
FLOPS’10. LNCS, vol. 6009, pp. 103-117. Springer (2010)

Klein, G., Nipkow, T.: A machine-checked model for a Java-like language, virtual
machine and compiler. ACM Trans. Progr. Lang. Sys. 28, 619-695 (2006)
Lammich, P., Lochbihler, A.: The Isabelle Collections Framework. In: ITP’10.
LNCS, vol. 6172, pp. 339-354. Springer (2010)

Lammich, P., Tuerk, T.: Applying data refinement for monadic programs to Hop-
croft’s algorithm. In: ITP’12. LNCS, vol. 7406, pp. 166-182. Springer (2012)
Lescuyer, S.: Containers: a typeclass-based library of finite sets/maps. http:
//coq.inria.fr/pylons/contribs/view/Containers/v8.3 (2011)

Lochbihler, A.: Formalising FinFuns — generating code for functions as data from
Isabelle/HOL. In: TPHOLs’09. LNCS, vol. 5674, pp. 310-326. Springer (2009)
Lochbihler, A.: A Machine-Checked, Type-Safe Model of Java Concurrency : Lan-
guage, Virtual Machine, Memory Model, and Verified Compiler. PhD thesis, Karls-
ruher Institut fiir Technologie, Fakultét fiir Informatik (2012)

Lochbihler, A.: Light-weight containers. Archive of Formal Proofs (2013) http:
//afp.sf.net/entries/Containers.shtml, Formal proof development.
Lochbihler, A., Bulwahn, L.: Animating the formalised semantics of a Java-like
language. In: ITP ’11. LNCS, vol. 6898, pp. 216-232. Springer (2011)

Marié, F.: Formal verification of a modern SAT solver by shallow embedding into
Isabelle/HOL. Theor. Comput. Sci. 411(50), 4333-4356 (2010)

Peyton Jones, S.: Bulk types with class. In: Haskell Workshop 1997. (1997)
Svenningsson, J.: Shortcut fusion for accumulating parameters & zip-like functions.
In: ICFP’02, pp. 124-132. ACM (2002)

Thiemann, R.: Generating linear orders for datatypes. Archive of Formal Proofs
(2012) http://afp.sf.net/entries/Datatype_Order_Generator.shtml, Formal
proof development.

132

http://coq.inria.fr/pylons/contribs/view/Containers/v8.3
http://coq.inria.fr/pylons/contribs/view/Containers/v8.3
http://afp.sf.net/entries/Containers.shtml
http://afp.sf.net/entries/Containers.shtml
http://afp.sf.net/entries/Datatype_Order_Generator.shtml

	Light-weight containers for Isabelle: efficient, extensible, nestable

