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Abstract. Isabelle/HOL is not just a theorem prover, it has become
a functional programming language. Algebraic datatypes and (pure) re-
cursive functions are defined with various packages and compiled to ex-
ecutable code with the code generator. In this work, we explore whether
and how this programming language is suitable for developing applica-
tions, which are stateful, interact with the environment, and use external
libraries. To that end, we have implemented a prototype of the TLS net-
work protocol as a case study. We present a model of interaction in HOL
and its compilation, and discuss on the challenges in application devel-
opment that the theorem prover/HOL Isabelle poses.

1 Introduction

Fourteen years ago, Berghofer and Nipkow implemented the first code gener-
ator for Isabelle/HOL [2]. Today, the code generator [16,17] translates an ex-
ecutable subset of higher-order logic to the target languages Standard ML,
OCaml, Haskell, and Scala. It corresponds to a functional programming language
with algebraic (co)datatypes [3,6,38], recursively defined functions [6,22,23], type
classes [18], and Prolog-like inductive definitions [1]. Code generation has become
a valuable part of Isabelle; it supports understanding of specifications [33,34]
and debugging theorems [7] and enables proofs by reflection [9,37]. Several ap-
plications [13,21,29,32,36] have been implemented in Isabelle/HOL’s functional
language, verified with Isabelle and compiled to the target languages.

In these applications, the generated code consists of pure functions. Some
wrapper code (written manually outside of Isabelle/HOL) triggers their evalua-
tion and provides the user interface. The extracted functions are self-contained,
i.e., everything they depend on is written in Isabelle/HOL. This makes sure that
the generated code is partially correct by the meta-theory of the code genera-
tor.1 These applications show that Isabelle/HOL supports the development of
self-contained batch-style functional programs sufficiently well.

But what happens if we go beyond this kind of programs? Can an Isa-
belle/HOL application be stateful, use external libraries, and interact with the
environment? What challenges does developing an application in Isabelle/HOL
1 For efficiency reasons, a few types like bool and integer and their operations are
replaced by target-language primitives. Nevertheless, these types are definitionally
constructed in Isabelle—when proofs use evaluation, their correctness relies on the
replacement being sound.



face? To find answers to these questions, we have conducted a case study with the
Transport Layer Security (TLS) protocol [12] (see §2 for an introduction). We
have implemented TLS in Isabelle2013-2 and generated an executable Haskell
implementation. TLS is a good case study, because

relevant the TLS protocol is widely used in the real world and security-critical;
interactive the implementation interacts over the network with an unknown

environment, possibly several times during one invocation;
stateful the connection state must be passed on between consecutive transmis-

sion requests of the application layer; and
comparable TLS has previously been implemented in functional languages [4],

so we can discuss Isabelle/HOL’s peculiarities (§7).

In this work, we discuss the challenges and present our approaches and design
decisions. In particular,

– we present an executable HOL model of probabilistic interactive programs
(§3);

– we show how to import library functions from the target languages into HOL
and use them in the implementation (§4); and

– we discuss how HOL’s restrictive type system prevents straightforward ap-
proaches to monadic programming (§5) and state passing (§6), and show
how to circumvent the restrictions.

Large interactive and stateful applications face the same challenges. Thus, we
hope that our approaches can be re-used in other contexts.

2 Overview of TLS and the case study

The TLS protocol ensures the security (confidentiality, integrity, and authen-
ticity) of data transmitted over an open network. In the OSI network stack,
TLS operates on the session and presentation layers. It is the basis of many
application protocols such as HTTPS, SSH, and SMTPS. In a first phase called
handshake, communication partners authenticate with certificates (if desired)
and exchange a secret session key. Subsequent data from the application layer is
encrypted with the session key to achieve confidentiality. Message authentication
codes guarantee integrity and authenticity of the data.

Internally, TLS uses five sub-protocols arranged in two layers. On the lower
layer, the record protocol encrypts, decrypts, authenticates, and verifies the data
according to the current security parameters. The others (handshake, change
cipher spec (CCS), alert, and application) on the higher layer communicate
through the record protocol. The handshake protocol negotiates the crypto-
graphic algorithms and generates and exchanges the session key. The CCS pro-
tocol signals a change in the security parameters to the peer. The application
protocol takes care of transmitting the application’s data. The alert protocol
signals errors which typically abort the session immediately.



In our case study, we have implemented TLS in version 1.0 and a simple
command-line client and a single-threaded server to exchange data. The TLS
implementation supports fragmentation, renegotiation, session resumption, and
the key exchange algorithms RSA and anonymous Diffie-Hellman, and the ci-
phers RC4 and DES (for the encryption of application data).2 It uses a TCP
socket for data transmission. Full details on the TLS implementation can be
found in [41].

3 Interactive programs

In our case study, the TLS client and server interact with the user and the
network. We program them in Isabelle/HOL, but we run them in some target
language of the code generator. Therefore, they must meet the requirements
of the code generator. In this section, we present a HOL model of interactive
programs and how the code generator compiles them.

For a function client :: α⇒ β (for some types α and β), the code generator
needs equational theorems of the form client . . . = . . . as the code equation. All
HOL functions are pure, i.e., their result only depends on the inputs given as
parameters. The client’s output, however, depends on the input received from
the network, and there is no way to know the input from the network already
when we launch the client. Therefore, we model the interaction in HOL explicitly
as a codatatype, whereas all computations between two interactions are ordinary
HOL functions.

3.1 Probabilistic interactive values

Our model of interaction is inspired by Harrison’s reactive resumption monad
[19]. Basically, an interactive value either is a pure result α or performs IO, i.e.,
it sends some output or request o to the environment and then processes some
input ι (the response) which yields another interactive value. Since interactive
programs need not terminate, the following codatatype (rather than a datatype)
models such values.3

codatatype (α, o, ι) resumption =
Pure (result : α) | IO (output : o) (continuation : ι⇒ (α, o, ι) resumption)

Yet, our model is slightly more involved than this. The communication part-
ners in security protocols consume randomness to create their own cryptographic
material that protects the security of the transmitted data. In the above model,
2 RC4 and DES are known to be vulnerable to attacks; stronger encryption schemes
are left as future work. Our design of the implementation supports such extensions
smoothly (§6.2) as we have addressed the challenges of uniformly handling stream
and block ciphers already for RC4 and DES.

3 Harrison’s reactive resumption monad differs from resumption in that the continu-
ation returns a transformer in a state monad rather than an interactive value. See
§6.1 for the disadvantages of the monad managing the state in Isabelle/HOL.



we could feed the randomness (an infinite bit stream) as an additional param-
eter to client and the client is then responsible for passing the unused tail to
the continuation. However, this is unsatisfactory for two reasons. First, the ex-
plicit passing is error-prone and clutters the code of the functions. Second, it
complicates developing generic reasoning techniques about the probabilities of
executions. Hurd [20] has formalised a monad for pure probabilistic functions in
this style, but he demands that all functions satisfy the well-formedness condition
“strong independence”. Instead, we explicitly model a consumer of randomness
as a reader of coins (of type bool), whose structure encodes all necessary invari-
ants. In particular, its semantics in (1) below will ensure that every bit is in fact
used at most once. In §5, we introduce a monadic structure for the reader.

codatatype α coin-reader =
Yield (yield : α) | Read (cont : bool⇒ α coin-reader)

Finally, our model (type (α, o, ι) reactive) of probabilistic interactive values
(PIV) folds the reader into the resumption. Thus, a PIV first consumes random-
ness and then yields either a pure result α or performs IO by outputting o and
processing some input ι to return another PIV.

datatype (α, o, ι, χ) react =
Pure (result : α) | IO (output : o) (continuation : ι⇒ χ)

codatatype (α, o, ι) reactive =
Reactive (reactive : (α, o, ι, (α, o, ι) reactive) react coin-reader)

The special values Fail = Read (λ_. Fail) and RFail = Reactive Fail model com-
putations that do not terminate.

3.2 Semantics of probabilistic interactive values

Reasoning about PIVs is based on a trace semantics. We start with the semantics
of coin readers. The function consume :: α coin-reader⇒ bool stream ⇒ (α ×
bool stream) option executes a coin reader for a given bit stream (defined by
(1) with Krauss’ partial-function package [23]). It returns None iff the reader
keeps reading forever the given bit stream.

consume (Yield x) bs = Some (x, bs)
consume (Read f) (b · bs) = consume (f b) bs (1)

A trace of a PIV for a given bit stream is a possibly infinite list of events
(output-input pairs) which is terminated by the result and the unconsumed bits
or None if it keeps reading the bit stream.

type-synonym (o, ι) event = o× ι
codatatype (α, β) tllist = TNil β | TCons α ((α, β) tllist)
type-synonym (α, o, ι) trace = ((o, ι) event, (α× bool stream) option) tllist

The set of all traces of a PIV for a given bit stream is defined as the greatest
solution (in the complete lattice of sets with the subset ordering) of the following
equation



traces (Reactive r) bs =
(case consume r bs of None⇒ {TNil None }

| Some (Pure x, bs′)⇒ {TNil (Some (x, bs′)) }
| Some (IO out c, bs′)⇒

⋃
in∈wf-responses out

TCons (out, in) ‘ traces (c in) bs′)

where the function wf-responses :: o⇒ ι set over-approximates the possible re-
sponses by the environment to the given output, and f ‘ A = { f x. x ∈ A }
denotes the image of f under A.

For illustration, consider two interactions: reading and printing a line of text.
Each interaction has one representation for the output and one for the input.
The output StdIn requests a line of input from the terminal and the response
Receive s provides it. Conversely, StdOut s requests to print the line s, and Ack
acknowledges this. Accordingly, the constants stdin and stdout perform a single
interaction.

stdin = io StdIn (λin. case in of Receive s⇒ Done s | _⇒ RFail)
stdout s = io (StdOut s) (λin. case in of Ack⇒ Done () | _⇒ RFail)

Here, Done x stands for Reactive (Yield (Pure x)) and io out c abbreviates
Reactive (Yield (IO out c)). The function wf-responses ensures that the semantics
considers only traces in which inputs correspond to outputs, i.e., Receive answers
StdIn and Ack answers StdOut.

wf-responses StdIn = range Receive wf-responses (StdOut _) = {Ack }

3.3 Compilation of probabilistic interactive values

In the generated code, stdin and stdout are implemented by their defining equa-
tion, i.e., as values of the (co)datatypes that we have defined so far. In particular,
they do not call the target language API for reading from and writing to the
terminal. One could instruct the code generator to bind them to this API. How-
ever, this will not work in our setting, because we have to make sure that the
bit stream is correctly passed on. Instead, we implement an interpreter for PIVs
and prove that its execution corresponds to one of the traces in traces, but we
do not specify which. To that end, we define a type α IO as a partial transformer
of the environment (of the unspecified type real-world) with the standard monad
operations return and >>=. During code generation, the IO type constructor is
mapped to Haskell’s IO and dropped in the other languages.

typedecl real-world
typedef α IO = UNIV :: (real-world⇀α× real-world) set

The interpreter interp-reactive :: (α, o, ι) reactive⇒ bool stream⇒ α IO depends
on an interpretation function interp :: o⇒ ι IO that produces for a given output
o the response ι of the environment.



interp-reactive (Reactive r) bs =
(case consume r bs of

Some (Pure x, bs′)⇒ return (x, bs′)
| Some (IO out c, bs′)⇒ interp out >>= (λin. interp-reactive (c in) bs′))

We show that this interpreter is sound with respect to the semantics traces.
Formally, the interpreted run of a PIV corresponds to one of its traces pro-
vided that interp in fact satisfies the specification wf-responses and returns total
transformers.

In the example above, we declare two unspecified functions stdin-impl ::
String.literal IO and stdout-impl :: String.literal⇒ unit IO. We tell the code gener-
ator to bind them to the target language functions for reading and writing a line
on the terminal. The interpretation function interp dispatches StdIn and StdOut
to stdin-impl and stdout-impl, resp.

interp StdIn = stdin-impl >>= return ◦ Receive
interp (StdOut s) = stdout-impl s >> return Ack

The generated code contains the PIVs as values of the codatatype reactive and
the interpreter interp-reactive to run them (it also takes a parameter for the bit
stream). This separation has two disadvantages. First, the code is harder to read,
because the PIVs do not use the sequencing notation of the target language (e.g.
; in SML, >>= in Haskell)—only the interpreter does. Second, interpretation
has some run-time overhead, as the datatype values have to be constructed
and destructed. Fortunately, the interpreter only acts when evaluation consumes
randomness or interacts with the environment; data processing is not interpreted,
as ordinary HOL functions do this. Thus, we expect little impact on performance.

In return, modeling and reasoning benefits from the separation in two ways.
First, the gap between the interpreted function and the generated code is small
(the approach is similar to the mapping by Bulwahn et al. [8]). This is important
because the correctness of the mapping to the target language is unverified and
thus trusted. Second, we can explicitly feed the source of randomness to the
semantics and therefore reason about probabilities inside the logic.

4 Foreign function interface

In this section, we demonstrate that the adaptation facility of the code gener-
ator provides a minimalistic foreign function interface (FFI) for Isabelle. Our
TLS implementation uses the FFI for two purposes. First, to call functions in
cryptographic libraries. Second, to map the actual interaction operations to their
target language operations. This way, PIVs in our HOL model interact with the
real world during execution. In detail, we have imported line-based terminal IO
(stdin-impl and stdout-impl) and a network API based on TCP sockets.

Adaptation maps constants specified in HOL to target language constants
such that the code becomes more readable and more efficient [15]. By default,
Isabelle/HOL maps the types bool, unit, α×β, α option, and α list to their coun-
terparts in the target languages, and a library theory does so for char. Moreover,



there are the special types integer and String.literal that reflect arbitrary-precision
integers and strings from the target language. They are used to interface with
target-language operations, especially for arithmetic and error printing. All these
types and their operations are modelled in HOL.

In contrast, a FFI provides access to libraries without a detailed model—
the type signatures suffice. This is crucial for application development, because
reimplementing the library in HOL would defeat the point of using a library.
Unfortunately, this sometimes cannot be avoided (see §5.2). Moreover, the FFI
supports data exchange between Isabelle/HOL programs and the libraries.

Our approach to FFI in Isabelle works as follows. To import a type and a
function in Isabelle/HOL, one declares them with typedecl and consts, resp.,
and thus leave them unspecified. Using adaptation, one instructs the code gener-
ator to serialise them to the imported function. Declaring and not specifying the
types and functions has the advantage that the adaptation is automatically cor-
rect whenever the imported functions obey referential transparency,4 because
we can only prove trivial statements like non-emptiness and reflexivity about
unspecified types and constants.

This works well in practice, but the details can be tricky. In particular, two
issues are worth pointing out, which we illustrate with examples below. First,
exchanging data between Isabelle/HOL and the imported functions can only be
done via types of the target language, because the code generator does not offer
a reliable way to access generated types and functions from adaptations. Second,
the code generator supports four target languages each of which offers a different
API. As the code equations are the same for all target language, one has to find
a common base that can be mapped to all the APIs with as little glue code as
possible.

In the case study, we used the FFI heavily to access the cryptographic li-
braries of the target language. We did not want to reimplement these algorithms
to avoid that security problems slip in. Currently, we only use Haskell as tar-
get language, because Haskell’s crypto platform5 provides a nice functional API
with type classes. However, we plan to design an Isabelle crypto library with
serialisations to the available libraries in all target languages.

For example, consider the FFI import of the SHA1 hash implementation
Crypto.Hash.SHA1.hash. In Haskell, this function digests a ByteString rather
than a string. Hence, we import both ByteString and the hash function with
the following declarations.6

4 Referential transparency is crucial. For example, we can prove serial () = serial ()
by reflexivity. However, if we serialise serial to a function that returns the number
of times it has been called (like the serial function in Isabelle/ML), the generated
code for the equality test statement evaluates to False. That is, the generated code
does not adhere to the specification.

5 https://github.com/vincenthz/hs-crypto-platform
6 The declarations show an inconvenience of adaptation. To import a library function,
one must write a boilerplate Haskell module (Isa_Crypto_Hash in the lower part),
which contains the import statement and exports the function of interest.

https://github.com/vincenthz/hs-crypto-platform


typedecl byte-string
consts hash-sha1 :: byte-string⇒ byte-string
code-printing constant hash-sha1 ⇀ (Haskell) Isa_Crypto_Hash.hash_sha1

code-printing code-module Isa_Crypto_Hash ⇀ (Haskell) {*
import qualified Crypto.Hash.SHA1;
hash_sha1 = Crypto.Hash.SHA1.hash;

*}
code-reserved Haskell Isa_Crypto_Hash

However, hash-sha1 cannot yet be used, as there is no way to get hold of a
byte-string (in the executable fragment of HOL). So, we additionally import
Haskell’s conversion functions pack and unpack between lists of unsigned bytes
and ByteString with similar declarations. Fortunately, the first author has pre-
viously modelled unsigned bytes in Isabelle/HOL [28]. Thus, we can end the
chain of importing external types and their conversion functions here.

Next, we illustrate the intricacies of supporting four target languages simulta-
neously using the type uint8 of unsigned bytes from [28]. The HOL-Word library
[11] already formalises the type 8 word of unsigned bytes as an instance of the
general type α word. However, adaptation only works for type constructors, not
type expressions like 8 word. That is why the type (constructor) uint8 copies
8 word and its operations. Unfortunately, unsigned bytes are available only in
the SML Basis library (Word8.word) and Haskell (Word8); Scala only provides
signed bytes (Byte), and we have not found anything in the OCaml standard
library. Sign-sensitive operations like division therefore need different implemen-
tations for different target languages, but recall that all languages use the same
code equations. We circumvent this restriction by specifying adaptations for dif-
ferent constants as shown in Fig. 1. Division div on uint8 is implemented in terms
of uint8-div, which is unspecified if the divisor is 0; this accounts for the fact that
division by 0 is not specified uniformly across the target languages. The code
equation for uint8-div implements unsigned division in terms of signed division
uint8-sdiv and shift operations using an algorithm from [39]. Finally, signed divi-
sion on uint8 uses signed division sdiv on 8 word, which itself is implemented via
unbounded integers following [11]. For SML and Haskell, uint8-div is serialised
directly to the provided operations, i.e., the equation for uint8-div is ignored.
For Scala, adaptation kicks in only for uint8-sdiv, i.e., uint8-div is implemented
according to the formally proven code equation. As there are no adaptations
for OCaml, unsigned division follows the chain of code equations down to un-
bounded integers (starting with those in Fig. 1). This is not particularly efficient,
but one could write a library of unsigned bytes for OCaml directly and import
it analogously.

5 Monadic Programming

Most of our TLS implementation is written in monadic style because sequencing
is ubiquitous, e.g., checking and propagating errors, parsing input, consuming



x div y = (if y = 0 then 0 else uint8-div x y)
uint8-div x y = (if 128 ≤ y then if x < y then 0 else 1

else if y = 0 then uint8-div0 x
else let q = (uint8-sdiv (x >> 1) y)<< 1

in if x− q ∗ y ≥ y then q + 1 else q)
uint8-sdiv x y = (if y = 0 then uint8-div0 x else x sdiv y)

code-printing constant uint8-div ⇀ (SML) Word8.div ((_), (_))
and (Haskell) Prelude.div

code-printing constant uint8-sdiv ⇀ (Scala) (_ / _).toByte
code-abort uint8-div0

Fig. 1. Code equations and adaptations for division on unsigned bytes uint8

randomness, and exchanging messages. In this section, we present the monads for
PIVs (§5.1) and parsing (§5.2) and discuss how Isabelle’s restrictions influenced
our design decisions. In particular, unspecified imports via the FFI (as discussed
in the previous section) are not always feasible (§5.2).

5.1 A monad for interactive programs

A monad consists of a unit operation and a sequencing operation >>=, which obey
the three monad laws: the unit is neutral for >>= on both sides and >>= is associa-
tive. We define monad operations on coin readers (type _ coin-reader), resump-
tions (type (_, o, ι) resumption for fixed o and ι) and PIVs (type (_, o, ι) reactive)
and prove the monad laws. The units are given by Yield, Pure, and Done =
Reactive ◦ Yield ◦ Pure, resp. The sequencing operations are defined by primitive
corecursion as follows.

Yield x >>= g = g x Read f >>= g = Read (λb. f b >>= g)
Pure x >>= g = g x IO o c >>= g = IO o (λi. c i >>= g)
Reactive r >>= g =

Reactive (r >>= (λr′. case r′ of Pure x⇒ reactive (g x)
| IO o c⇒ Yield (IO o (λi. c i >>= g))))

Additionally, we equip both types with a chain-complete partial order (ccpo)
with least elements Fail and RFail, resp. This makes it possible to define monadic
PIVs with Krauss’ partial-function package [23].

Unfortunately, the construction above is not as elegant as it could be. In Isa-
belle’s type system, only individual monads can be expressed in HOL; monads
in general would require type operators. Therefore, we have to settle with the
syntactic illusion of monads and do notation by Krauss and Sternagel [24]. More-
over, monad transformers [27] cannot be expressed either. However, the type
reactive merely combines the coin reader monad with the resumption monad.
With monad transformers, the manual construction of reactive and the proofs of
the monad laws and possibly of ccpo structure would not be needed, it would



follow by composing coin-reader and resumption. The proofs about reactive reflect
this redundancy, too. Following the recursion through a codatatype (coin-reader)
and a datatype (react), they nest a case analysis inside a coinduction inside an-
other coinduction. We have not been able to parametrise the sequencing opera-
tion on coin-reader such that the coin-reader lemmas can be reused in the proofs
about reactive. Instead, we essentially reprove them in the coinductions about
reactive, which leads to large and complicated proofs that are hard to automate.

5.2 Parsing

Parsing and validating the received messages constitutes a considerable part
of our TLS implementation. At first, we thought about importing an efficient,
well-tested parsing library like Parsec [26] from Haskell using the FFI interface.
However, this turned out to be impractical, because one cannot prove anything
useful about unspecified functions. Recall that we are interested only in imple-
menting TLS, not in proving. Nevertheless, the packages for defining recursive
functions rely on definitional principles which an unspecified type of parsers
cannot provide (function requires a termination proof [22], partial-function
a ccpo and monotonicity [23], and primcorec a corecursor [6]).

Therefore, we reimplemented the Parsec library [26] in Isabelle/HOL.7 This
made it possible to prove that the monadic >>= operation on parsers satisfies the
following congruence rule (where parsec-range q returns all possible results of a
successful run of the parser q).

p = q
∧
x. x ∈ parsec-range q =⇒ f x = g x

p >>= f = q >>= g
(2)

The function package uses this rule to enable reasoning about the results of
sub-parsers in termination proofs of recursive parsers. For example, consider
the parser certsp for a list of X509 certificates in Fig. 2. It takes the expected
length n (an unsigned 32-bit integer) of the (remaining) string of certificates8

and returns the list of certificates it parses. As it is defined with the function
package, recursion must be shown to terminate. Fortunately, the number of
remaining bytes n decreases in the recursive call.9 However, this only holds after
the checks of the assertion parser assertp, because subtraction might otherwise
7 We briefly tried to delegate this task to Haskabelle [14], but failed due to bugs in
Haskabelle and strictness annotations being unsupported. We have not yet adapted
the code generator for the parser. So, it does not serialise the parser functions to
the Haskell library, because soundness would be hard to achieve. Consequently, the
generated parser is probably less efficient than the original, because boxing and
strictness annotations are lost in the round trip.

8 As usual in network protocols, TLS message fields of variable length start with the
length of the fields. Thus, we know in advance how many bytes the parser is supposed
to process.

9 In principle, recursion must terminate anyway because the input to the parser is
a finite list and some input is consumed before the recursive call. However, the



certsp n = (if n = 0 then parsec-return [] else do {
assertp (n ≥ 3) ("certificate list is too short: " @ show n);
len← uint24p;
assertp (len > 0) "certificate length is 0";
assertp (len ≤ n− 3) "certificate exceeds certificate string";
cert← parse-bytes len;
cs← certsp (n− 3− len);
parsec-return (X509v3 cert · cs)

})

Fig. 2. Monadic parser for a list of X509 certificates

underflow. It is the above congruence rule that makes these checks available in
the termination proof, because assertp b msg succeeds only if b holds.

In principle, we could code the assertions as normal ifs and do without (2).
However, the code quickly becomes hard to read, as if statements break the do
block apart. Hence, the FFI import of Parsec is not a viable option.

6 State passing

The TLS protocol is inherently stateful, as it must maintain the connection state
across several calls to its API. Since the implementation already lives in a monad,
it might be tempting to delegate the state management to the monad. However,
this causes several problems (§6.1). Therefore, we decided to treat the state as
an ordinary value that is passed from one function to the other. Between two
TLS calls, the application must make sure that the next call receives the TLS
state that the previous call has returned. That is, we impose the burden of state
passing on the programmer.

In some cases, one can avoid these problems by storing the operations on the
state rather than the state itself. The implementation uses this for the state of
the cipher suites (§6.2).

6.1 Problems with hiding the states in the monad

Initially, we tried to let the monad take care of the state, like Harrison does
in [19]. Unfortunately, we ran into several problems. In this section, we discuss
three of them.

First, HOL’s type system severely restricts how the state can be used. Basi-
cally, there are two options. Either, the state type shows up in the monad’s type

input is not a direct argument of the function, it is hidden in the parser type.
Consequently, the function package cannot exploit this in the termination proof.
Danielsson [10] designed a library of total parser combinators in Agda, which might
solve this problem. However, it is not yet clear how to express his constructions
without dependent types and to obtain efficient parsers with good error reporting
capabilities.



as an additional type parameter σ, which applications instantiate as needed. This
makes it difficult to combine applications with different state types, as Bulwahn
et al. have already noted [8] in the context of Imperative-HOL. Or, the state is
represented as a universal domain in which all storable types can be encoded.
In [8], the domain nat covers all first-order values of countable types. This ex-
cludes, in particular, all string-processing functions and many codatatypes like
bit streams. Even if the domain can be enlarged to cover functions up to some
fixed order, state transformers never can be stored for cardinality reasons.

Second, the semantics and implementation of PIVs get more complicated.
Interaction with the world can always result in unexpected responses, so it is
reasonable to not specify functions like stdin-impl and stdout-impl. In contrast,
data stored in the state should provably remain the same while, say, a message
is being sent over a socket. Thus, the state must not be stored in real-world. Yet,
it would be desirable to update it destructively, i.e., store it in the IO monad.
Therefore, we would have to thread another state through the interaction model.
Moreover, if the state is polymorphic, its type variable has to show up in the IO
type, but they must not in the generated code (Haskell’s IO type, e.g., takes only
one type argument for the result of the computation, and none for its actions).
Yet, HOL does not allow to hide type variables.

Third, functions for data processing are given the complete state and can thus
manipulate it at their will. Modularity mechanisms like information hiding do
not work in HOL, because HOL has no notion of computation or computability.
For example, description operators can be used to scrutinize and change values
even of polymorphic type. Clearly, this is no issue for code generation, as such
functions are outside of the executable fragment. Reasoning, however, has to deal
with this. For example, suppose that the state stores the bit string of randomness
(this would allow to get rid of the coin reader monad). Then, functions can peek
at randomness without consuming it. Hence, to reason about probabilities, we
would need additional well-formedness conditions on the processing functions
similar to Hurd [20].

6.2 Storing the cipher suite

The TLS connection state stores the security parameters, among others. They
specify the encryption algorithm and the cipher state (whose format depends
on the chosen algorithms). Recall that the CCS protocol dynamically changes
the encryption algorithm; and the cipher state is updated after every message
transmission. Here, we discuss three options for modelling the symmetric cipher
and its state; the other cryptographic algorithms are done similarly.

In the simplest approach, the different states of the encryption suites are
distinguished with different constructors of a datatype; the cryptographic func-
tions dispatch to the corresponding algorithm by pattern-matching. The follow-
ing sketch illustrates the idea (where rc4 and des model the state of the cipher
and des-iv the DES initialisation vector).

datatype cipher = RC4 rc4 | DES des des-iv | . . .



encrypt :: cipher⇒ string⇒ (cipher× string)
encrypt (RC4 s) m = apfst RC4 (encrypt-rc4 s m)
encrypt (DES s iv) m = apfst (uncurry DES) (encrypt-des s iv m)

This approach hard-codes the available ciphers in the datatype. When adding
a new cipher, one therefore has to change the datatype definition and adapt all
pattern-matching functions. Due to this restriction, we do not consider this a
good solution.

Haskell’s crypto library achieves this kind of extensibility by introducing
type classes for block and stream ciphers with the cryptographic operations as
parameters. Initially, we tried to mimic this in Isabelle/HOL and import it with
the FFI. However, existential type quantification would be needed to make this
work, which is not sound for HOL. The following explains the problem. Suppose
there are two classes with instances for the cipher states of RC4 and DES.

class block-cipher = . . .
class stream-cipher = . . .

typedecl des instance des :: block-cipher ..
typedecl rc4 instance rc4 :: stream-cipher ..

Clearly, to add a new cipher, it suffices to declare an instance of the appropriate
class. The difficulty lies in combining the type classes in one type, e.g., as follows
(where β iv is the type of initialisation vectors for the block cipher β):

datatype cipher = Stream (α :: stream-cipher) | Block (β :: block-cipher) (β iv)

This declaration is not valid, because the datatype cipher must mention all type
variables on which it depends. If one does so, the cipher suite shows up statically
in the type. Hence, the CCS protocol cannot change it dynamically any more.
We would need existential types to make the representation abstract [31].10

The third approach inlines the type class as a dictionary and eliminates
the existential quantification by representing the existentially quantified type
by its possible observations (as discussed on the OCaml mailing list in post
7fb6359bea374fe7#1d9c3931ec3e72ab). Now, state and operations changes roles.
There is only a small fixed set of operations which TLS needs, namely the op-
erations of the type classes stream-cipher and block-cipher. Hence, instead of
modeling the state, the cipher state type models the behaviour of the cipher
suites as a codatatype. The codatatype makes it possible to apply the cipher
any number of times, because each application returns an updated cipher.11

10 The type variables α and β represent the state of the encryption algorithms, which
cipher is supposed to hide. They are not just type tokens to select the algorithm—
otherwise, we could encode the type with typerep. As cipher states are typically
first-order values, a universal domain similar to [8] could work in this case.

11 TLS processes outgoing and incoming messages with distinct ciphers, because the
CCS changes ciphers asynchronously. Thus, each cipher is used only for encryption
or only for decryption. Therefore, cipher has just one operation apply, which either
encrypts or decrypts.



codatatype cipher = Cipher (apply : string⇒ cipher× string)
primcorec mk-rc4-enc :: rc4⇒ cipher where

apply (mk-rc4-enc s) = map-pair mk-rc4-enc id ◦ encrypt-rc4 s
definition init-rc4-enc :: string⇒ cipher where

init-rc4-enc k = mk-rc4-enc (mk-key-rc4 k)

With this design, adding a new cipher suite becomes easy; one just defines an-
other wrapping function function like mk-rc4-enc. Conversely, new operations
on cipher suites are hard to add, as the constructor cipher would need another
field for the operation. (This is easy with the state model above.) However,
TLS requires only a fixed set of cryptographic operations, so new operations are
probably not necessary.

7 Comparison with functional protocol implementations

TLS has previously been implemented in F# [4] and complete network stacks in
SML [5] and OCaml [30]. They all use imperative features to store the mutable
state. In contrast, we have implemented TLS in a pure language, in which state
passing becomes explicit (see §6).

The network protocol stack implementations [5,30] demonstrate that func-
tional languages are adequate for such applications. Our case study shares this
goal, but does not go as far. It is much smaller, and efficiency played a minor
role in its design. To reach a comparable level, a lot more work and extensions
of Isabelle would be needed.

The TLS implementation in F# [4] has been proven secure with the F7
type checker. Security is expressed with assertions and dependent types, and the
verification relies on information hiding through interfaces and parametricity of
functions. We have not yet analysed the security of our implementation, but
the F7 approach seems unfeasible in HOL, as parametricity does not come for
free and hiding mechanisms are limited (see §6.1). Conversely, it is (in theory)
possible to prove the whole implementation correct in Isabelle/HOL, whereas
F7 analyses only the stubs of the cryptographic algorithms.

8 Insights and Future Directions

Our case study shows that it is feasible to implement a stateful, interactive appli-
cation in Isabelle/HOL, although Isabelle’s restrictive type system and its nature
as a theorem prover pose additional challenges over other (impure) functional
languages. Still, our TLS implementation is just a prototype. Strong crypto-
graphic algorithms are missing and certificates are not checked, so it cannot yet
provide the desired security guarantees. Also, some implementation bugs prevent
interoperability of our client and server with third-party TLS servers and clients.
Moreover, efficiency was of little concern during the implementation. There are
a lot of conversions, especially between string, String.literal and byte-string. A



larger set of operations on the latter (modelled in Isabelle/HOL) might make
many obsolete. Also, the server accepts only one connection at a time, as it is
single-threaded.

Below, we summarise our experience during the development and comment
on future directions for improvement.

Development support We implemented the prototype in the Isabelle/jedit
editor, which provides many conveniences of a modern IDE for programming.
Navigation with Ctrl-Click was particularly useful.
We found it crucial to regularly test the implementation; as we do not
prove theorems about our functions, this is the only way to find typos
and bugs. However, Isabelle does not support test automation natively. The
value [code] command can compile and execute test cases, but it does not
check whether the output matches the expectation. Moreover, value breaks
down with FFI imports from non-ML libraries, because it evaluates the func-
tions in Isabelle’s run-time in the special code target Eval, which does not
know about the imports. To automate the regression tests, we wrote test
scripts that generate Haskell code, compile and run it, and check the output.
We plan to develop this further into a test harness for the code generator,
because it seems useful also for testing adaptations, e.g. for types like native
machine words [28].

Foreign functions Adaptation in the code generator provides a minimalistic
foreign function interface. Exchanging data with imported functions, how-
ever, is complicated, as the Isabelle/HOL library formalises only few types
for that. First steps in this directions have been done (machine words [28],
IEEE floating point numbers [40], and arrays to some extent [25]). Yet, it is
still hard to exchange structured data or strings. More work in this area is
needed.

Interactive model Our model of interaction is still under development. The IO
type as the set of partial transformers of the environment appears as a sound
implementation model for PIVs which interact only by exchanging messages.
However, it is not adequate for modelling shared-memory concurrency as
would be needed for a multi-threaded TLS server. The semantics of Haskell’s
IO monad [35] looks like an interesting alternative. Moreover, we plan to
develop a reasoning infrastructure such that properties of PIVs can be stated
and proved formally. In particular, the present semantics fails to capture the
interaction part, as it executes every PIV in isolation. The challenge here is
that the environment determines the ways of interaction and its formalisation
therefore has to be tailored to the application.
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the presentation. This work was supported by the SNF.
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