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ABSTRACT

Existing probabilistic privacy enforcement approaches permit the

execution of a program that processes sensitive data only if the

information it leaks is within the bounds specified by a given policy.

Thus, to extract any information, users must manually design a

program that satisfies the policy.

In this work, we present a novel synthesis approach that auto-

matically transforms a program into one that complies with a given

policy. Our approach consists of two ingredients. First, we phrase

the problem of determining the amount of leaked information as

Bayesian inference, which enables us to leverage existing proba-

bilistic programming engines. Second, we present two synthesis

procedures that add uncertainty to the program’s outputs as a way

of reducing the amount of leaked information: an optimal one based

on SMT solving and a greedy one with quadratic running time.

We implemented and evaluated our approach on 10 representa-

tive programs from multiple application domains. We show that

our system can successfully synthesize a permissive enforcement

mechanism for all examples.

1 INTRODUCTION

Privacy enforcement systems, i.e. systems that protect the privacy

of sensitive data with respect to policies, must be both permissive
and secure. That is, users should be permitted to process sensitive

data while making sure they cannot learn too much information

about the sensitive data, thereby violating privacy policies. In the

context of genomic privacy, for instance, it is important to allow

medical researchers to process and aggregate genomic data as this

can be extremely valuable for their work; however, it is also critical

to preserve the privacy of the patients [3, 30]. This tension between

permissiveness and security of privacy enforcement permeates

many practical domains, including medical data protection [31],

location privacy in location-based services [29, 35, 58], and privacy

of personal data in social networks [39].

Existing Approaches. Existing access-control solutions [9, 52, 53]

can only enforce basic all-or-nothing policies for a particular piece

of sensitive data (hereafter called the secret). They are thus often

overly-restrictive in practice; see [37].
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Figure 1: The two ingredients of our approach: probabilis-

tic analysis to determine the information leaked by the

program about the secret, and enforcement synthesis that

bounds the leakage according to the policy bounds.

Recently, probabilistic privacy enforcement (PPE) approaches

(e.g. [37]) have been proposed as a promising step towards improv-

ing the permissiveness of privacy enforcement. PPE approaches

can enforce a wide range of privacy policies that bound how much

an attacker can learn about the secret. For example, “no medical re-
searcher can correctly guess that Alice has disease X with probability
higher than 0.9”. To enforce such policies, PPE systems explicitly

model the attacker’s belief as a distribution over the possible val-

ues the secret can take. The attacker asks the PPE system to run a

program (i.e., submits a query) that takes the secret as input. The

PPE system then reveals the program’s output to the attacker only

if this does not leak too much about the secret; otherwise, the PPE

system rejects the attacker’s program.

Existing PPE systems reject a program if the program would

leak information for some possible secret. As an example, suppose

a medical researcher asks for the number of patients who have a

particular disease. Further, suppose the PPE system must enforce

that researchers cannot correctly guess that Alice (who is among

the patients) has the disease with probability higher than 0.9. If the

program outputs the total number of patients, then the researcher

could potentially learn that all patients (including Alice), have the

disease. The PPE system thus rejects this program.

Problem Statement. Since existing PPE systems would reject any

program that leaks too much information, a user must manually

modify the program, e.g. by perturbing its output [19, 47]. Design-

ing a policy-compliant program is hard and requires nontrivial

probabilistic reasoning. This puts a significant burden on users who

would like to process sensitive data.

In this work, we explore the problem of automatically trans-

forming programs into policy-compliant ones. More formally, we

address the following synthesis problem: Given a program π , an

https://doi.org/10.1145/3133956.3134079


attacker belief δ , and a privacy policy Φ, transform π into a program
π ′ that is guaranteed to satisfy the privacy policy Φ for the given
attacker belief δ .

This Work. In this paper, we propose the first solution to the

problem of transforming a program into a policy-compliant one,

where the policy is defined as a set of probabilistic assertions on the

distribution over the program inputs (capturing the attacker belief).

Our approach consists of two key ingredients, depicted in Figure 1.

First, we phrase the problem of determining how much information

the program’s outputs leak about the secret as probabilistic analysis,
and check whether the leakage is within the bounds specified by

the policy; we depict the safe bounds in green in Figure 1. Second, to

enforce the policy and reduce the amount of leaked information, the

key idea is to synthesize an enforcement that transforms the program

by adding uncertainty to its outputs. We show that solving this

problem optimally isNP-equivalent and present an algorithm using

a reduction to linear optimization over SMT constraints.

Main Contributions. Our main contributions are:

• A formulation of the permissive privacy enforcement syn-

thesis problem (Section 4).

• An optimal synthesis algorithm based on a reduction to

linear optimization over SMT constraints (Section 5).

• A quadratic-time greedy synthesis algorithm that is sound

but not guaranteed to be optimal (Section 6).

• An end-to-end implementation of our approach in a system

called Spire
1
(Section 7).

• An evaluation of Spire on 10 representative programs from

multiple application domains.We show that our system can

successfully synthesize a permissive enforcement mecha-

nism for all examples (Section 8).

2 OVERVIEW

In this section, we first present a simple, but illustrative, example.

We then describe the probabilistic privacy model, which we borrow

from [37], and we illustrate our enforcement synthesis approach.

Finally, we present our attacker model.

2.1 Genomic Privacy Example

Genomic data is extremely valuable to medical researchers. Un-

fortunately, it also reveals sensitive personal information, such as

predisposition to various diseases [2].

In this example, we consider the position rs11200638 in the

HTRA1 gene [17]. At this position, each person has one of the fol-

lowing combinations of nucleotides:AA,AG , orGG , whereA stands

for adenine and G for guanine. A person who has the combination

AA is 10 times more likely to develop Age-Related Macular Degen-

eration (ARMD), a medical condition that may result in blurred

vision or blindness [41].

Patients can usually choose whether they want nucleotides at

sensitive positions to remain private while their data is processed.

Protecting the privacy of genomic data is, however, extremely chal-

lenging. A patient’s genomic data is correlated with that of the

patient’s relatives, which enables highly nontrivial probabilistic

inference attacks [3, 30, 31].

1
Available at: http://www.srl.inf.ethz.ch/probabilistic-security

In our example, we consider three patients—Alice, Bob, and their

child Carol—who have identified that their nucleotides at position

rs11200638 areGG ,AA, andAG , respectively. Carol’s nucleotides are
inherited by randomly selecting one from Alice and one from Bob.

The nucleotides of Alice, Bob, and Carol are therefore statistically

correlated. For instance, anyone who knows that the nucleotides

of Alice and Carol are GG and AG, respectively, can infer that Bob

must have at least one adenine nucleotide. Bob wants to ensure

that no one can correctly guess that his nucleotides are AA with a

probability higher than 0.75. Since Alice and Carol’s genomic data

reveal information about Bob, it is insufficient to protect Bob’s data

alone to enforce his policy.

2.2 Probabilistic Privacy Model

We adopt the probabilistic privacy model of [37], which can capture

numerous practical scenarios. We informally describe the compo-

nents of the model on our motivating example. We formally define

this model in Section 3.

Secret and Attacker Belief. The secret is a (sensitive) value that

must be protected from the attacker. The attacker belief about

the secret is then modeled as a probability distribution over all

possible values the secret can take. We remark that in many settings

it is realistic to precisely model the attacker belief; for example,

whenever the secret is drawn from a well-known distribution, such

as census data, genomic data, and so forth.

In our example, the secret consists of Alice, Bob, and Carol’s

nucleotides, and the attacker belief assigns a probability to each

possible assignment of nucleotides for Alice, Bob, and Carol. We

capture this distribution as a probabilistic program, given by the

function belief() in Figure 2(b). In the program, we encode the

nucleotides of Alice, Bob, and Carol with a two-dimensional array

nucl that consists of three pairs of random variables (one pair per pa-

tient). Each of these random variables takes the value 0 or 1, which

we interpret as the adenine and guanine nucleotides, respectively.

The random variables that capture Alice and Bob’s nucleotides

are initialized as Bernoulli random variables that take the value

1 with probability 0.77 and the value 0 with probability 0.23. The

value 0.77 captures the frequency of guanine at position rs11200638,

as reported in [1]. Lines 7-8 specify that Carol inherits her nu-

cleotides from Alice and Bob randomly.

According to the attacker belief, the probability that Bob’s nu-

cleotides are AA, which corresponds to the probability of the event

nucl[Bob] = [A,A], is 0.0529.

Program. The attacker asks the system to run a program (e.g. a

query) that takes the secret as input. Suppose the attacker asks to

run the program that returns the number of adenine nucleotides

found at the rs11200638 positions in the HTRA1 genes of Alice, Bob,

and Carol; see Figure 2(a). For our example, this program returns

the value 3 because the secret is nucl=[[A,A],[G,G],[A,G]].

Based on the observed output, the attacker revises her belief

about the secret using Bayesian inference. The posterior distribution

can be computed using state-of-the-art probabilistic solvers, such

as [22, 40, 46]. For example, we can compute that, according to the

attacker’s revised belief, the probability that Bob’s nucleotides are

AA is 0.25, which is higher compared to her prior belief of 0.0529.

http://www.srl.inf.ethz.ch/probabilistic-security


1 // Secret: nucl = [[A,A], [G,G], [A,G]]
2 def main(nucl: R[][]) {
3 A := 0; G := 1;
4 sum := 0;
5 for patient in [0..3) {
6 for position in [0..2) {
7 if (nucl[patient][position] == A) {
8 sum += 1;
9 } } }

10 // always outputs the exact sum
11 return sum;
12 }

(a) (Original) program

1 // Returns nucl[<Patient>][<Pos>] = <Nucl>
2 def belief() {
3 Alice := 0; Bob := 1; Carol := 2;
4 nucl := array[3][2];
5 nucl[Alice] = [flip(0.77), flip(0.77)];
6 nucl[Bob] = [flip(0.77), flip(0.77)];
7 C0 := nucl[Alice][flip(0.5)];
8 C1 := nucl[Bob][flip(0.5)];
9 nucl[Carol] = [C0, C1];

10 return nucl;
11 }

(b) Attacker belief

1 (nucl[Bob] == [A,A], [0,0.75])

(c) Privacy policy

Figure 2: Example program, attacker belief, and privacy pol-

icy, written in the Psi language, presented in Appendix B.

Privacy Policy. The privacy policy can be captured by a set of

probabilistic assertions over the attacker’s belief. We capture such

policies as predicates over the possible values of the secret together

with lower and upper-bounds on the probabilities of these predi-

cates; see Figure 2(c).

Privacy Policy Enforcement. Existing enforcement systems, such

as [37], run the attacker’s program if for all possible outputs the

privacy policy is satisfied according to the attacker’s revised belief

and otherwise they reject the program. These approaches reject

the program because for the output 6 the probability that Bob’s

nucleotides areAA is 1, which is above the bound of 0.75. Note that

the existing enforcements reject the program although the program

would return 3 since the secret is nucl = [[GG],[AA],[AG]], and this

output does not result in a policy violation.

2.3 Synthesis of Permissive Privacy

Enforcement

We propose a novel synthesis approach for enforcing privacy poli-

cies in a more permissive way. The key idea is to synthesize an
enforcement for the given program which guarantees that the pri-

vacy policy is satisfied for the given attacker belief. To this end, the

enforcement modifies the program by conflating certain outputs

(e.g. outputs that result in policy violations) andmakes them equally

likely.We remark that this is a common approach to add uncertainty

to the program output in order to leak less information [37, 49], as

we discuss in Section 4. Below, we informally illustrate this idea on

1 def main(nucl: R[][]) {
2 A := 0; G := 1;
3 sum := 0;
4 for patient in [0..3) {
5 for position in [0..2) {
6 if (nucl[patient][position] == A) {
7 sum += 1;
8 } } }
9 if (sum == 5 || sum == 6) {
10 // outputs that the sum is either 5 or 6
11 return pick([5, 6]);
12 } else {
13 // outputs the exact sum
14 return sum;
15 }
16 }

Modified program

Figure 3: Modified program that satisfies the privacy policy

for the given attacker belief (see Figure 2). The unchanged

code is grayed out to highlight the synthesized enforcement

(Lines 9-15). The enforcement conflates outputs 5 and 6.

our motivating example. We formalize our notion of enforcement

in Section 4.3 and prove its completeness in Section 4.4.2.

Synthesized Enforcement. In our example, Bob’s privacy policy

is violated if the program given in Figure 2(a) returns the output 6.

To avoid this behavior, our Synthesis of PermissIve pRivacy En-

forcement (Spire) system synthesizes an enforcement that conflates

the outputs 5 and 6 and makes them equally likely for each input.

In Figure 3, we show the resulting program which is obtained by

modifying the return statement of the original program (given in

Figure 2(a)). Lines 9-15 in the new program illustrate the synthesized

enforcement. Note that whenever the sum of adenine nucleotides is

5 or 6, the new program’s output is 5 with probability 0.5 and 6 with

probability 0.5. This behavior is implemented using the expression

pick([5, 6]) at Line 11. For all remaining sums of adenine the new

program outputs the exact number.

The new modified program satisfies Bob’s privacy policy for

all outputs. In particular, for the output 6, the probability of the

event nucl[Bob] == [A,A] is 0.56, which is below the bound of 0.75

defined in the privacy policy. We remark that the synthesis step is

independent of the secret and therefore does not leak any additional

information about the secret.

Challenge. A trivial solution to enforcing the policy is to conflate

all outputs. All outputs then leak no information about the secret. A

key challenge is thus to synthesize an optimal enforcement, i.e. one

that conflates as few outputs as possible. In our example, outputs

0, . . . , 4 are not merged together with other outputs. We formal-

ize two notions of optimality, called permissiveness and answer-

precision, in Section 4.2 and discuss the complexity of finding an

optimally permissive enforcement with respect to these notions in

Section 4.4. We reduce the synthesis problem to a linear optimiza-

tion over SMT constraints in Section 5 and give an efficient greedy

heuristic that runs in quadratic time in Section 6.

Attacker Model. We consider an attacker who: (i) can select any

program (deterministic or probabilistic) that takes the secret as



input, and can ask the system to run it, (ii) can observe the output

returned by the system, (iii) knows the privacy policy and the

synthesis algorithm used to enforce it. Our synthesis algorithms

are deterministic, and so assumption (iii) implies that the attacker

knows that the system provides an output produced by running

the program in Figure 3.

We work with probabilistic programs, as queries often add ran-

dom noise to the output; e.g. see the examples in [47]. Furthermore,

the computation in many privacy-relevant settings is probabilistic.

Deterministic programs are a special case.

We assume that the attacker belief is known. This distribution

captures common knowledge about the secret and is usually pub-

licly available. For instance, the frequency of nucleotides in human

genes can be found in public databases [1]. We remark that having

an attacker belief (or a set of beliefs) is necessary when it comes

to enforcing privacy policies formulated as bounds on the attacker

belief [37]. This is because no enforcement can satisfy a non-trivial

policy (i.e. a policy that is not satisfied by all programs) for all

possible attacker beliefs.

The attacker can iteratively ask the system to run multiple pro-

grams against the secret. Enforcing the privacy policy in this setting

requires tracking the attacker belief as outputs are revealed. We

describe how the Spire system handles this iterative setting in Sec-

tion 7, and in Section 8.2.4 we present experiments to evaluate the

decrease in permissiveness of the synthesized enforcement after

each iteration.

Security Applications. Our synthesis approach can be used to

restrict how much attackers can learn about sensitive data in nu-

merous practical scenarios. It can be used, for instance, to enforce

security properties such as opacity [47], k-anonymity [45, 50], and

knowledge-based security [37]. Note that these are general secu-

rity properties that are employed to enforce privacy in numerous

relevant application domains. Examples include privacy in anony-

mous communication networks [49], genomic data privacy [2, 30],

and privacy of location-based services [34, 39, 51]. In Section 8, we

evaluate our implementation on examples related to genomic data,

location data, and personal information, that we adopted from the

literature. We discuss related work in Section 9.

3 PROBABILISTIC PRIVACY MODEL

In this section, we first introduce our notation and then present the

probabilistic privacy model.

Notation. Given two sets I and O, we writeMI×O to denote the

set of all matrices over R whose rows and columns are indexed by

I and O, respectively. For a matrixm ∈ MI×O , we writem(o | i ),
where i ∈ I and o ∈ O, to denote the element in row i and column o.

We denote the set of all probability distributions over a set S
by D (S ). A random variable X : Ω → X is a measurable function

associating to each outcome ω ∈ Ω a value X (ω) ∈ X, where X
is a measurable space. Given a random variable X : Ω → X and a

value x ∈ X, we denote the event {ω ∈ Ω | X (ω) = x } by X = x .
Given an equivalence relation ξ ⊆ S × S over a set S , we write

[s]ξ = {s
′ ∈ S | (s, s ′) ∈ ξ } for the equivalence class of an ele-

ment s ∈ S according to ξ , and we denote the quotient set of ξ by
S/ξ = {[s]ξ | s ∈ S }.

Probabilistic Programs. Let I and O be finite input and out-

put sets, respectively. Following [13, 48], we define a probabilistic
program as a stochastic matrix π ∈ MI×O where for each input

i ∈ I, we have
∑
o∈O π (o | i ) = 1. The element π (o | i ) denotes the

probability that the program outputs o ∈ O given the input i ∈ I.
That is, for each input i ∈ I, the program defines a distribution

over the outputs O.

Secret and Attacker Belief. A secret is a value i ∈ I from the

set of inputs. For example, if I is the set of all possible nucleotide

sequences in a given gene, then the secret is a particular nucleotide

sequence.

An attacker belief δ ∈ D (I) is a distribution over the inputsI [14,

37]. The attacker belief captures the attacker’s view on the likeli-

hood that a particular value i ∈ I is the secret; i.e., the attacker

belief of the secret i ∈ I is δ (i ).

Bayesian Inference. The attacker can ask the system to run a

program π that takes the secret as input. She observes the pro-

gram’s output and revises her belief about the secret based on the

observed output, as described in Section 2.3. We rely on Bayesian

conditioning to revise an attacker belief given the observed output.

We now capture the above notions with a probability space.

Given a probabilistic program π ∈ MI×O and an attacker belief δ ∈
D (I), we construct the probability space (Ω,F ,Pπδ ) with a sample

space Ω = I × O, a set of events F = P (Ω), and a probability

measure Pπδ (i,o) = δ (i ) · π (o | i ). In our overview example, the set

of inputs is I = {A, G}6, where each six-tuple identifies the pairs

of nucleotides of Alice, Bob, and Carol, and the set of outputs is

O = {0, . . . , 6}. We represent the program’s inputs and outputs

with the random variables I : Ω → I and O : Ω → O, respectively,
where I (i,o) = i and O (i,o) = o. Note that for a probabilistic

program π , we have Pπδ (O = o | I = i ) = π (o | i ). Furthermore, for

an attacker belief δ , we have Pπδ (I = i ) = δ (i ).

After observing an output o, the attacker revises her belief δ to

δ ′, where the revised belief δ ′ is given by the distribution δ ′(i |
o) = Pπδ (I = i | O = o). This distribution is computed using the

Bayes rule as follows:

Pπδ (I = i | O = o) =
Pπδ (O = o | I = i ) · P

π
δ (I = i )

Pπδ (O = o)

=
π (o | i ) · δ (i )∑
i ∈I π (o | i ) · δ (i )

Privacy Policies. A belief bound is a pair φ = (S, [a,b]) where
S ⊆ I is a subset of inputs I and [a,b] is an interval such that

a,b ∈ Q and 0 ≤ a ≤ b ≤ 1 [37]. Given a program π , an attacker

belief δ , and a belief bound φ = (S, [a,b]), we say that π satisfies φ
for δ , denoted by π ,δ |= φ, if for all outputs o ∈ O, we have

Pπδ (I ∈ S | O = o) ∈ [a,b]

That is, for any output o ∈ O the program may return, the revised

attacker belief (after observing o) about the predicate S must be

within the bounds a and b. We remark that the programmust satisfy
the security assertion for all program outputs in order to allow an

attacker to run the program. For further details, see [37]. Note that

the definition generalizes the notion of opacity to the probabilistic
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(c) Program EnfRnd(π , ξ )

Figure 4: The two kinds of enforcement Enf and EnfRnd illustrated on the motivating example program π and the enforce-

ment ξ with equivalence classes O/ξ = {{0}, {1}, {2}, {3}, {4}, {5, 6}}. The encodings of π and EnfRnd(π , ξ ) are in Figure 2(a) and

Figure 3, respectively. We highlight outputs that violate the policy in red and outputs that are fused together in green .

case and bounds the probability that the attacker can correctly

guess the secret [48].

A privacy policy is a set Φ = {φ1, . . . ,φn } of belief bounds. A
program π satisfies a privacy policy Φ for a given attacker belief δ ,
denoted by π ,δ |= Φ, if we have π ,δ |= φ for every φ ∈ Φ.

4 PERMISSIVE PRIVACY ENFORCEMENT

In this section, we present our notion of enforcement. We consider

a common type of privacy enforcement where outputs that leak too

much information are replaced by more ambiguous answers (e.g. by

a set of outputs). The idea to enforce a policy by conflating outputs

generalizes many existing privacy enforcement mechanisms from

the literature. In [37], for example, programs with binary output

are secured by conflating the outputs "Yes" and "No" into a "Deny

answer" output whenever one of the outputs violates the policy. In

the area of anonymous communication networks [49], researchers

have explored the idea of conflating real traffic with fake traffic to

leak less information to the attacker, hence effectively enforcing

the policy. Finally, in database privacy, k-anonymity [45] is a key

concept guaranteeing that any record of a released anonymized

data set can not be tied to any less than at least k records in the

original private data set. A common technique for achieving k-
anonymity is generalization [50]: instead of releasing an exact

value of an attribute (say, age of a patient is 47 years old), the value

is generalized to a range (e.g. age is said to be in the range 40–49).

In the following, we first define what we mean by optimal en-

forcement. Afterwards, we formulate our enforcement synthesis

problem and discuss its complexity.

4.1 Enforcement

If a program π violates a privacy policy Φ for an attacker belief δ ,
then we cannot permit the attacker to observe π ’s output because,
for some outputs, the revised attacker belief violates one or more

belief bounds in Φ. That is, there is an output o ∈ O and a belief

bound (S, [a,b]) ∈ Φ for which Pπδ (I ∈ S | O = o) < [a,b].

To satisfy the policy Φ for the given attacker belief δ , we need
to modify the program π . We introduce the notion of enforcement

to delimit the space of possible modifications that can be applied

to the program π . An enforcement modifies the program π by

conflating certain outputs and making them equally likely. In the

overview example, the enforcement conflates the outputs 5 and 6:

if the original program (given in Figure 2(a)) returns 5 or 6 with

different probabilities for a given input, then the modified program

(given in Figure 3) returns 5 with probability 0.5 and 6 also with

probability 0.5 for the given input. This notion of enforcement can

be implemented syntactically by modifying the return statement(s)

of the original program (Line 11 in Figure 2(a)). At the semantic

level, the sets of outputs fused together by the enforcement can be

formalized as an equivalence relation over the outputs.

Let π ∈ MI×O be a probabilistic program. An enforcement for π
is an equivalence relation ξ ⊆ O × O. A program π together with

an enforcement ξ gives us the program π ′ ∈ MI×(O/ξ ) that re-

turns equivalence classes from O/ξ . The program π ′ ∈ MI×(O/ξ ) ,

denoted by Enf(π , ξ ), is defined as follows:

Enf(π , ξ ) (E | i ) =
∑
o∈E

π (o | i )

That is, given an input i ∈ I, the probability that the program

Enf(π , ξ ) outputs the equivalence class E is the sum of the proba-

bilities that π returns an output o ∈ E.
To illustrate, in Figure 4(a) we depict the semantics of the pro-

gram π given in Figure 2(a), and in Figures 4(b) the semantics of

the program Enf(π , ξ ).
The program Enf(π , ξ ) has a different signature than π , since

the outputs of Enf(π , ξ ) are the set of equivalence classes O/ξ ,
while the outputs of π are O. We can, however, also enforce ξ
without changing the signature of π . For instance, if for an input i
the program Enf(π , ξ ) outputs the equivalence class E, instead of

returning the set E we can return an outputo ∈ E selected uniformly

at random. We define this enforcement as follows:

EnfRnd(π , ξ ) (o | i ) =
1

|[o]ξ |
Enf(π , ξ ) ([o]ξ | i )

We illustrate EnfRnd(π , ξ ) for the program π and enforcement ξ
of our motivating example in Figure 4(c).

We remark that both ways of enforcing ξ are equivalent from

a security point of view: for any program π , enforcement ξ for π ,
attacker belief δ , and privacy policy Φ, we have Enf(π , ξ ),δ |= Φ if

and only if EnfRnd(π , ξ ),δ |= Φ.
We say that ξ enforces a privacy policy Φ for a program π and

attacker belief δ if Enf(π , ξ ),δ |= Φ. Note that for any program π ,
attacker belief δ , and privacy policy Φ, if π ,δ |= Φ then for any

enforcement ξ for π we have Enf(π , ξ ),δ |= Φ.



Finally, we remark that our notion of enforcement is complete.

Suppose we have a program π , an attacker belief δ , and a privacy

policy Φ such that π ,δ ̸ |= Φ. Then, there exists a program π ′ such
that π ′,δ |= Φ if and only if there exists an enforcement ξ for π such

that Enf(π , ξ ),δ |= Φ. This means that if no equivalence relation

enforces the privacy policy for the given program and attacker

belief, then no program satisfies the policy for the given attacker.

We prove this statement in Section 4.4.2.

4.2 Optimality of enforcement

Whenever there exists some enforcement ξ for a program and a

policy, then the enforcement ξ⊥ which conflates all outputs into

one is also a valid one. Hence we define the notion of enforcement

optimality to be able to synthesize the best feasible enforcement.

Formally, an optimality order is a total preorder on the set of en-

forcements, i.e. (E (O ), ≤), where by E (O ), we denote the set of

equivalence relations overO and ≤ is a total preorder on E (O ) (the
relation ≤ has to be reflexive, transitive, and total).

4.2.1 Permissiveness. A prime instance of an optimality order

is the permissiveness. For an enforcement ξ , we define its permis-

siveness as |O/ξ |, i.e. the number of equivalence classes of ξ . For
a program π , we obtain a total preorder on the permissiveness of

the enforcements for π , where is ξ at least as permissive as ξ ′ if
|O/ξ | ≥ |O/ξ ′ |. The least-permissive enforcement for a program π
is the relation ξ⊥ = O × O. The program Enf(π , ξ⊥) can be seen as

the program that always returns a deny decision. This is because

Enf(π , ξ⊥) always returnsO and the attacker’s revised belief equals

her prior belief. Conversely, the most-permissive enforcement for π
is ξ⊤ = {(o,o) | o ∈ O}. The program Enf(π , ξ⊤) can be seen as

identical to π as it always outputs singleton equivalence classes

that contain the output returned by π . In fact, using the semantics

of EnfRnd, we get EnfRnd(π , ξ⊤) = π .

4.2.2 Answer precision. Another useful example of optimality

is answer precision, i.e. the number of singletons in an equivalence

relation, given by Sing(ξ ) = |{o ∈ O | |[o]ξ | = 1}|. We define ξ ≥ ξ ′

iff Sing(ξ ) ≥ Sing(ξ ′), i.e. ξ has at least as many singleton classes

as ξ ′. The set of least elements is given by [ξ⊥]≤ and it contains all

the equivalence classes having zero singletons. By answer precision,

all these enforcements are considered equally imprecise, since for

all of them there is never an exact answer (a singleton class). On

the other hand, the enforcement ξ⊤ is the unique most-precise

enforcement, since it is the only one that always gives an exact

answer.

Optimal Enforcement. An enforcement ξ is optimal for a pro-

gram π , an attacker belief δ , and a privacy policy Φ with respect

to an order ≤ if Enf(π , ξ ),δ |= Φ and for any enforcement ξ ′ such
that Enf(π , ξ ′),δ |= Φ we have ξ ′ ≤ ξ .

To synthesize an optimal enforcement with regard to a partial

order (a more general notion), we can use the total preorder given

by the height of each element in the said poset. When we compute

an optimal enforcement with regard to the height total preorder,

the enforcement is also optimal with regard to the preorder. For

example, the permissiveness objective also guarantees optimality

with regard to the partial order given by set inclusion (i.e. E1 is
above E2 iff E1 ⊆ E2).

4.3 Synthesis Problem

We now define optimal privacy enforcement synthesis:

Definition 4.1. The optimal privacy enforcement synthesis prob-
lem is defined as follows:

Input. A probabilistic program π , an attacker belief δ , a pri-
vacy policy Φ, and an optimality order ≤.

Output. An optimal enforcement ξ for π , δ , Φ, and ≤ if such

an enforcement exists; otherwise return unsat.

We remark on several key points. First, our synthesis problem is

decidable since (i) there are finitely many enforcements ξ for any
program with finitely many inputs I and outputs O and (ii) check-
ing Enf(π , ξ ),δ |= Φ is decidable. For some notions of optimality,

like permissiveness, the synthesis problem is, however, NP-hard, as
we prove in Section 4.4. Second, we can check whether the synthe-

sis problem returns an enforcement ξ or unsat by checking whether
the attacker belief δ about the predicates in Φ are within their

corresponding bounds. Finally, for both the permissiveness and

answer precision, if π ,δ |= Φ, then the synthesis problem returns

the most-permissive enforcement ξ⊤ = {(o,o) | o ∈ O} for π . The
synthesized enforcement thus does not unnecessarily change the

semantics of π whenever π already satisfies the policy for the given

attacker belief.

We remark that a solution to the synthesis problem can be used

to provide guarantees for a set of attacker beliefs {δ1, ..,δn }. First,
we synthesize an enforcement ξi for each attacker belief δi . Then,
we take the union of the enforcements ξ = ξ1 ∪ .. ∪ ξn and return

the transitive closure ξ ∗ of ξ . The synthesized enforcement ξ ∗ is
guaranteed to satisfy the policy for all attacker beliefs δ1, ...,δn .

4.4 Complexity and Completeness

In this subsection, we give the results on the complexity of optimal

privacy enforcement synthesis problem and show that our notion

of enforcement is complete.

4.4.1 Complexity. For the case of permissiveness optimality,

the optimal enforcement problem is NP-equivalent, as stated in the

following theorem.

Theorem 4.2. The optimal privacy enforcement synthesis problem
is NP-equivalent (NP-hard and NP-easy) for permissiveness.

As the theorem states, for the case of permissiveness, the problem

is NP-hard even for synthesis instances with singleton policies, i.e.

policies that contain only one security assertion. In Appendix A,

we prove that the problem is NP-hard by reducing the partition

problem to it, and we show that it isNP-easy by giving anNP-oracle
polynomial Turing machine that solves it.

For the case of answer precision, the synthesis problem can be

solved in polynomial time for instances with singleton policies (i.e.,

having one security assertion).

Theorem 4.3. For instances with singleton policies, the optimal
privacy enforcement synthesis problem is in PTIME for answer preci-
sion optimality.

The proof of this theorem can be found in Appendix A.4, where

we give a polynomial-time algorithm that produces optimal answer-

precision enforcements for singleton policies. It is an open problem



Algorithm 1: The algorithm SynSMT(π ,δ ,Φ)

Input: A probabilistic program π with outputs O, an

attacker belief δ , a privacy policy Φ, and an objective

function Ψ
obj

.

Output: An optimal enforcement mechanism ξ such that

Enf(π , ξ ),δ |= Φ if one exists, otherwise unsat.
1 begin

2 ψassert ← Assert(π ,δ ,Φ)

3 if IsSat(ψassert) then
4 M ← Max(ψassert,ψobj)

5 return ker(M)

6 else

7 return unsat

whether for answer precision the synthesis problem is solvable in

polynomial time for the general case (i.e., for policies with multi-

ple security assertions). We conjecture that it is, since our greedy

algorithm SynGrd, presented in Section 6, produces optimal en-

forcements for all our benchmarks.

4.4.2 Completeness. Our notion of enforcement is complete: for

a program π , a prior belief δ , and a policy Φ, there exists a valid
enforcement ξ (ξ is valid if δ ,Enf(π , ξ ) |= Φ) if and only if there

exists some arbitrary program π ′ satisfying the policy Φ for δ , i.e.
π ′,δ |= Φ. In other words, in the case no valid enforcement exists,

it is not by a shortage of enforcement equivalent relations, but

because of the attacker’s prior belief δ and the policy Φ that cannot

be satisfied by any program.

Theorem 4.4. Let I be a set of inputs and O a set of outputs,
δ ∈ D (I) an attacker belief, and Φ a privacy policy. There exists a
program π ∈ MI,O such that π ,δ |= Φ if and only if for any program
π ′ ∈ MI,O we have that Enf(π ′, ξ⊥) |= Φ.

The proof of this is in Appendix A.

5 SMT-BASED SYNTHESIS ALGORITHM

We now present our synthesis algorithm SynSMT.

High-level Idea. SynSMT takes as input a probabilistic program

π ∈ MI×O defined over inputs I and outputs O, an attacker belief

δ ∈ D (I), and a privacy policy Φ. It is based on two key insights.

First, we represent the search space of possible enforcements ξ ∈
O × O with integer variables C1, . . . ,C |O | , and then encode the

satisfaction of Enf(π , ξ ),δ |= Φ into SMT constraints over these

variables. The encoding guarantees that any model of the SMT

constraints identifies an enforcement ξ such that Enf(π , ξ ) |= Φ.
Second, we encode the optimality ordering over enforcements as

an objective function that returns the rank of an enforcement (e.g.

the number of equivalence classes, or the number of singletons)

and use this function as an optimization goal.

Key Steps. We introduce an integer variableCi for each outputoi ∈
O to encode all possible enforcements. Each Ci is assigned a value

from {1, . . . , |O|} that represents the equivalence class to which oi
belongs; e.g., if only Ci and Cj are set to k , then the equivalence

class Ek is {oi ,oj }. A model is a mappingM : {C1, . . . ,C |O | } →

Assert(π ,δ ,Φ) := ψrange ∧ψbounds

ψrange ≡

|O |∧
i=1

Ci ≥ 1 ∧Ci ≤ |O|

ψ
bounds

≡

|Φ |∧
ℓ=1

|O |∧
j=1

ψ
j
non-empty

⇒ p
j
ℓ
∈ [aℓ ,bℓ]

ψ
j
non-empty

≡

|O |∨
i=1

Ci = j

p
j
ℓ
=

∑ |O |
i=1[Ci = j] · Pπδ (I ∈ Sℓ | O = oi ) · P

π
δ (O = oi )∑ |O |

i=1[Ci = j] · Pπδ (O = oi )

Obj
cls
(n) := maximize

∑ |O |
j=1

[
ψ
j
non-empty

]

Obj
sing

(n) := maximize
∑ |O |
j=1

[(∑ |O |
i=1[Cj = i]

)
= 1

]

Figure 5: SMT constraints Assert(π ,b,Φ) and two objective

functions (Obj
cls

(n) for permissiveness and Obj
sing

(n) for
answer precision) for a synthesis instance with a program π ,
with outputs O = {o1, . . . ,on }, attacker belief δ , and privacy

policy Φ = {(S1, [a1,b1]), . . . , (Sk , [ak ,bk ])}. The variables in

the constraints are {C1, . . . ,Cn } of type integer.

{1, . . . , |O|} that assigns an integer value between 1 and |O| to

each variable Ci . The kernel of a modelM is defined as the set

ker(M) = {(oi ,oj ) ∈ O × O | M (Ci ) = M (Cj )}. Hence a model

M identifies the enforcement ξ = ker(M).
We show the main steps of SynSMT in Algorithm 1. At Line 2,

the algorithm generates the SMT constraint ψassert using the for-

mula Assert(π ,δ ,Φ), as defined in Figure 5. The two probabilities

P
p
δ (I ∈ Sℓ | O = oi ) and P

p
δ (O = oi ) that appear in the SMT con-

straints are constants that are computed from the program π and

attacker belief δ beforehand using a probabilistic solver. We detail

this step in Section 7. The constraint ψassert conjoins ψrange and
ψ
bounds

. The constraintψrange encodes that the range of all variables
Ci is {1, . . . , |O|}, and ψbounds encodes that for each belief bound

(Sℓ , [aℓ ,bℓ]) ∈ Φ, we have Enf(π , ξ ),δ |= (Sℓ , [aℓ ,bℓ]), where ξ is

the enforcement identified by the variables C1, . . . ,C |O | .

We use p
j
ℓ
to denote the attacker belief about predicate Sℓ after

observing the equivalence class Ej = {oi ∈ O | Ci = j}. This is

defined as p
j
ℓ
= P

p
δ (I ∈ Sℓ | O ∈ Ej ) and is computed by summing

over all outputs that belong to Ej . We use Iverson bracket notation

[ψ ] to denote the function that returns 1 ifψ holds, and 0 otherwise.

For any non-empty equivalence class Ej , the value of p
j
ℓ
must be

within [aℓ ,bℓ] as defined by the belief bound (Sℓ , [aℓ ,bℓ]). The

disjunctionψ
j
non-empty

encodes whether Ej is non-empty.

SynSMT receives the objective function ψ
obj

as an input. Ex-

amples of objective functions are given in Figure 5. The func-

tion Obj
cls
(n) maximizes the sum of all non-empty equivalence

classes, i.e. it maximizes the permissiveness of the enforcement.



Probabilistic program π :
1 def main(nucl: R[][]) {
2 A := 0;
3 sum := 0;
4 for pat in [0..3) {
5 if (nucl[pat] == [A,A]) {sum++;}
6 }
7 if (sum > 0 && flip(1/2)) {sum--;}
8 if (sum < 3 && flip(1/2)) {sum++;}
9 return sum;
10 }

Attacker belief δ :
1 def belief() {
2 Alice := 0; Bob := 1; Carol := 2;
3 nucl := array(3);
4 nucl[Alice] := [flip(0.5), flip(0.5)];
5 nucl[Bob] := [flip(0.5), flip(0.5)];
6 C0 := nucl[Alice][flip(0.5)];
7 C1 := nucl[Bob][flip(0.5)];
8 nucl[Carol] := [C0, C1];
9 return nucl;
10 }

Privacy policy Φ:

1 (nucl[Bob] == [A,A], [0.1, 0.5])
2 (nucl[Alice][0] == G
3 || nucl[Alice][1] == G, [0.5, 0.9])

Probabilities Pπδ (O = ·) and Pπδ (I ∈ Si | O = ·):
Pπδ (O = 0) = 29

64
Pπδ (I ∈ S1 | O = 0) = 2

29
Pπδ (I ∈ S2 | O = 0) = 28

29

Pπδ (O = 1) = 5

16
Pπδ (I ∈ S1 | O = 1) = 1

4
Pπδ (I ∈ S2 | O = 1) = 4

5

Pπδ (O = 2) = 11

64
Pπδ (I ∈ S1 | O = 2) = 6

11
Pπδ (I ∈ S2 | O = 2) = 4

11

Pπδ (O = 3) = 1

16
Pπδ (I ∈ S1 | O = 3) = 3

4
Pπδ (I ∈ S2 | O = 3) = 0

ψassert := Assert(π , b, Φ)
ψ
obj

:= Obj(4)

SMT constraints / Objective function:

ψassert ≡ ψrange ∧ψbounds

ψrange ≡
∧

4

i=1Ci ≥ 1 ∧Ci ≤ 4

ψ
bounds

≡ (
∧

4

i=1 p
i
1
∈ [0.1, 0.5]) ∧ (

∧
4

i=1 p
i
2
∈ [0.5, 0.9])

pi
1
=

[C1 = i] · 1

32
+ [C2 = i] · 5

64
+ [C3 = i] · 3

32
+ [C4 = i] · 3

64

[C1 = i] · 29
64
+ [C2 = i] · 5

64
+ [C3 = i] · 11

64
+ [C4 = i] · 1

16

pi
2
=

[C1 = i] · 7

16
+ [C2 = i] · 1

4
+ [C3 = i] · 1

16
+ [C4 = i] · 0

[C1 = i] · 29
64
+ [C2 = i] · 5

64
+ [C3 = i] · 11

64
+ [C4 = i] · 1

16

ψ
obj
= maximize([C1 = 1 ∨C2 = 1 ∨C3 = 1 ∨C4 = 1]

+ · · · + [C1 = 4 ∨C2 = 4 ∨C3 = 4 ∨C4 = 4])

M := Max(ψassert, ψobj
)

Model: M = {C1 7→ 1, C2 7→ 2, C3 7→ 1, C4 7→ 2}

ξ := ker(M)

Equivalence classes: O/ξ = { {0, 2}, {1, 3} }

Figure 6: Steps of the algorithm SynSMT for Example 1: The left box depicts the input, the bottom right the output, and the

gray boxes depict intermediate computation steps of the algorithm.

The function Obj
sing

(n)maximizes the count of all singleton classes,

i.e. it maximizes the answer precision.

To check whether there exists an enforcement ξ such that we

have Enf(π , ξ ),b |= Φ, the algorithm calls IsSat(ψassert), which
returns whetherψassert is satisfiable. Ifψassert is unsatisfiable, then
it simply returns unsat. Otherwise, SynSMT calls the procedure

Max(ψassert,ψobj), which returns a modelM of the SMT constraint

ψassert that maximizes the objective function ψ
obj

. Finally, it re-

turns ker(M) which defines the enforcement identified by the

variables C1, . . . ,C |O | .

Example 5.1. We consider the same scenario as the one in our

motivating example; see Section 2.1. The input to SynSMT is given

in Figure 6 (left). The program π returns the number of patients

with two adenine (A) nucleotides and randomly adds ±1 to the

result. Since there are three patients, the set of outputs for π is

O = {0, 1, 2, 3}.

The attacker belief is defined by belief(). In contrast to the belief

of Figure 2(b), here we assume that the frequency of guanine is 0.5

to simplify the fractions in our example.

The policy Φ states that according to the attacker belief: (S1) the
probability that Bob’s nucleotides areAA is between 0.1 and 0.5, (S2)
the probability that Alice has a guanine nucleotide is between 0.5

and 0.9.

We now describe the intermediate steps of SynSMT, depicted

in the gray boxes in Figure 6. First, we compute the probabilities

Pπδ (O = o) and Pπδ (I ∈ Si | O = o) for each output o ∈ {0, . . . , 3}
and belief bound i ∈ {1, 2}.

Next, SynSMT generates the SMT constraintψassert and the ob-

jective function ψ
obj

(chosen as Obj
cls
(n) for this example to op-

timize permissiveness), over the integer variables C1, C2, C3, and

C4. The constraints ψrange restricts the range of all the variables
to {1, 2, 3, 4}, andψ

bounds
restricts the probability of the predicates

S1 and S2 in all equivalence classes to be in [0.1, 0.5] and [0.5, 0.9],

respectively. The formulas pi
1
and pi

2
are symbolically defined as

described in Figure 5.

A model of ψassert that maximizes the objective ψ
obj

is M =

{C1 7→ 1,C2 7→ 2,C3 7→ 1,C4 7→ 2}. Hence, the synthesized en-

forcement is O/ ker(M) = {{0, 2}, {1, 3}}. ■

Finally, we state the correctness of our algorithm.

Theorem 5.2. Let π be a probabilistic program, δ an attacker
belief, and Φ a privacy policy. If there is no enforcement ξ such
that Enf(π , ξ ),δ |= Φ, then SynSMT(π ,δ ,Φ) = unsat. Otherwise,
SynSMT(π ,δ ,Φ) = ξ such that ξ is an optimally permissive enforce-
ment for π , δ , and Φ.

The proof of this theorem is in Appendix A.



6 EFFICIENT GREEDY SYNTHESIS

ALGORITHM

We present our algorithm SynGrd, which produces correct enforce-

ments but does not guarantee that they are optimal.

High-level Idea. When optimizing for permissiveness, SynGrd

starts with the most refined equivalence relation ξ⊤, which has one

equivalence class per output, and then iteratively joins equivalence

classes until the relation enforces the policy for the given attacker.

When optimizing for answer precision, we start with an equivalence

relation that joins all the outputs that violate the policy. Then, in

each step, the algorithm selects an equivalence class E that, if output

to the attacker, would violate the policy. The class E is then joined

with another equivalence class E ′ such that the revised attacker

belief about the predicates defined in the policy after observing the

new equivalence class E ∪ E ′ is closer to the bounds defined in the

policy. We detail these steps below.

Notation. We use the following notation. Let the policy be Φ =
{(S1, [a1,b1]), . . . , (Sk , [ak ,bk ])} with k = |Φ|. Given an equiva-

lence class X ⊆ O, we define the k-dimensional vector p⃗ δ,πX =

(Pπδ (I ∈ Si | O ∈ X ))ki=1, where the i-th element is the attacker

belief about the predicate Si given that the program returns equiv-

alence class X . Further, we define the k-dimensional box α⃗Φ =
([ai ,bi ])

k
i=1, where [ai ,bi ] are the bounds defined by the belief

bound (Si , [ai ,bi ]) ∈ Φ. Wewrite p⃗ δ,πX ∈ α⃗Φ to denote that for each

belief bound (Si , [ai ,bi ]), we have P
π
δ (I ∈ Si | O ∈ X ) ∈ [ai ,bi ].

An equivalence relation ξ enforces the privacy policy Φ for the

given π and δ if for each equivalence class E ∈ O/ξ , we have

p⃗ δ,πE ∈ α⃗Φ.
In Figure 7, we depict the 2-dimensional box defined by the

privacy policy of Example 5.1. The X -axis shows the probability of

the predicate S1 and the Y -axis that of S2. The gray area depicts the
box α⃗Φ, i.e. all vectors that lie within the two belief bounds in Φ.

We depict the vectors p⃗ δ,πX for all singleton equivalence classes

X ∈ ξ⊤, as well as those for classes {0, 2} and {1, 3}, which are

produced by the algorithm. We have p⃗ δ,π
{0}
< α⃗Φ, as this vector lies

outside the box α⃗Φ, and thus violates at least one belief bound in Φ.

In contrast, we have p⃗ δ,π
{0,2}

∈ α⃗Φ, and so the class {0, 2} satisfies all

belief bounds.

Key Steps. The main steps of SynGrd are given in Algorithm 2. At

Line 2, the algorithm checks whether the condition

∨k
i=1 P

π
δ (I ∈

Si ) < [ai ,bi ] holds. The satisfaction of this condition implies the

non-existence of an equivalence relation that enforces Φ for the

given π and δ . If no such enforcement exists, the algorithm re-

turns unsat.
At Line 5, the algorithm constructs the initial equivalence re-

lation. For the permissiveness goal, the most refined equivalence

relation is used. For the answer precision goal, the equivalence re-

lation joining all the violating outputs into one classC and keeping

the rest of outputs, that do not violate the policy, as singletons is

used. The rationale is that these outputs would never be singletons

in a valid enforcement.

The algorithm then iteratively performs the following steps until

the constructed equivalence relation ξ enforces the policy (checked

at Line 9):

Algorithm 2: The algorithm SynGrd(π ,δ ,Φ)

Input: A probabilistic program π , an attacker belief δ , a policy
Φ = {(S1, [a1,b1]), . . . , (Sk , [ak ,bk ]), and an

optimization goal

goal ∈ {”permissiveness”, ”precision”}
Output: An equivalence relation ξ enforcing the policy.

1 begin

2 if

∨k
i=1 P

π
δ (I ∈ Si ) < [ai ,bi ] then

3 return unsat

4 if goal = ”permissiveness” then
5 ξ ← {(o,o) | o ∈ O }

6 else if goal = ”precision” then

7 C ← {o ∈ O | p⃗ δ,π
{o } < α⃗Φ}

8 ξ ← {(o,o) | o ∈ O } ∪C ×C

9 while ∃E ∈ O/ξ : p⃗ δ,πE < α⃗Φ do

10 E ← argmaxE∈O/ξ Dist(p⃗
δ,π
E , α⃗Φ)

11 if ∃E ′ ∈ O/ξ : p⃗ δ,πE∪E′ ∈ α⃗Φ then

12 E ′ ← argminE′∈O/ξ ∥p⃗
δ,π
E∪E′ − ( ai+bi

2
)ki=1∥

13 else

14 E ′ ← argminE′∈O/ξ Dist(p⃗
δ,π
E∪E′ , α⃗Φ)

15 ξ ← ξ ∪ {(e, e ′) | e ∈ E ∧ e ′ ∈ E ′}

16 return ξ

Pick Most Violating Class. At Line 10, the algorithm picks the

class E with the greatest distance between the vector p⃗ δ,πE and the

box α⃗Φ, which is defined as the distance between the point p⃗ δ,πX
and the closest point q⃗ inside the box α⃗Φ:

Dist(p⃗ δ,πX , α⃗Φ) = min

q⃗∈α⃗Φ
∥p⃗ δ,πX − q⃗∥

Pick Merge Candidate. At Line 11, SynGrd checks if there is a

class E ′ such that if merged with E, the resulting vector p⃗ δ,πE∪E′ is in

the box α⃗Φ. If this is the case, then SynGrd picks the class E ′ that

has the point p⃗ δ,πE∪E′ closest to the center of α⃗Φ (Line 12). Otherwise,

SynGrd picks the class E ′ that has the point p⃗ δ,πE∪E′ closest to the

box α⃗Φ. (Line 14)
Note that SynGrd prefers to pick a class E ′ such that the merged

class E ∪ E ′ is in box α⃗Φ, as this implies that the merged class need

not be further merged with other classes.

Merge. At Line 15, the algorithm combines the class E and the

picked class E ′.
The loop terminates when the equivalence relation ξ enforces

the policy for the given program and attacker belief. At this point

SynGrd returns ξ .

Example 6.1. In Figure 7, we graphically illustrate the steps of

SynGrd on Example 5.1 for the permissiveness goal. The vectors

p⃗ {0}, p⃗ {1}, p⃗ {2}, p⃗ {3} denote the probabilities of the predicates S1
and S2 for all four singleton equivalence classes. The while loop’s

condition evaluates to true since the vectors p⃗ δ,π
{0}

, p⃗ δ,π
{2}

, and p⃗ δ,π
{3}



α⃗Φ

0
1

1

a1 b1

a2

b2

p⃗ δ,π
{0}

p⃗ δ,π
{1}

p⃗ δ,π
{2}

p⃗ δ,π
{3}

p⃗ δ,π
{0,2}

p⃗ δ,π
{1,3}

Figure 7: Equivalence classes computed by the greedy syn-

thesis algorithm SynGrd for our Example 5.1 for the per-

missiveness goal.

lie outside the box α⃗Φ. At Line 10, SynGrd selects {3} since p⃗ δ,π
{3}

is

the most distant vector from α⃗Φ. SynGrd merges {3} with {1} as the

vector p⃗ δ,π
{1,3}

is closest to the center of α⃗Φ. In the second iteration

of the while loop, SynGrd merges the equivalence classes {0} and

{2}. The algorithm returns the equivalence classes {{0, 2}, {1, 3}}. ■

Running Time. The running time of SynGrd is O ( |O|2). The
while loop is executed at most |O| times, since initially we have

|O/ξ | = |O|, and each iteration it decreases by 1. When it reaches 1,

the while loop’s condition must be satisfied. All expressions in the

while loop’s body can be evaluated in O ( |O|) when ξ is represented
as O/ξ .

Theorem 6.2. Let π be an arbitrary probabilistic program, δ
an arbitrary attacker belief, and Φ an arbitrary privacy policy. If
there is no equivalence relation ξ such that Enf(π , ξ ),δ |= Φ, then
SynGrd(π ,δ ,Φ) = unsat. Otherwise, we have SynGrd(π ,δ ,Φ) = ξ
and Enf(π , ξ ),δ |= Φ.

The proof of this theorem is in Appendix A.

7 IMPLEMENTATION

We now describe the Spire system, an end-to-end implementation

of our enforcement synthesis approach.

Inputs. Spire takes three files as input: (i) a probabilistic program,

(ii) a probabilistic program that encodes an attacker belief, and (iii) a
text file that defines a privacy policy. Inputs (i) and (ii) are specified
in the Psi language [22]. The Psi language, presented in Appendix

B, is an imperative probabilistic language that operates on real-

valued scalar and array data, and supports probabilistic assignments,

observe statements, as well as the standard sequence, conditional,

and bounded loop statements. For more details on the Psi language

see [22]. Input (iii) is in the format (Expr,a,b) where Expr is a

Psi expression and a and b are bounds. In addition, a parameter is

passed defining whether to optimize for permissiveness or answer

precision. Note that other notions of optimality can be easily added

by specifying a custom objective function.

Bayesian Inference. We use the Psi solver [22] to perform sym-

bolic inference. For each belief bound (S, [a,b]), Spire calls the Psi
solver to compute a symbolic expression that captures the probabil-

ity distribution Pπδ (I ∈ S | O = x ), where x is a symbolic variable.

This step is #P-complete [54]. Note that the symbolic expression

captures the probability of the predicate S for all possible outputs.

This expression is specified in the SMT-LIBv2 format [4]. We evalu-

ate this expression using off-the-shelf SMT solvers, for all possible

outputs, to obtain the probabilities used by the synthesis algorithms.

Similarly, we use the Psi solver to compute a symbolic expression

that captures the probability distribution Pπδ (O = y). These distri-
butions are sufficient to derive all necessary probabilities used by

the two synthesis algorithms.

Synthesis Algorithms. Spire implements the two synthesis algo-

rithms in C# (in roughly 2.5K LOC). In the implementation of the

SynSMT algorithm, Spire calls the Z3 SMT solver[8, 16] to solve

linear optimization problems over SMT constraints; see Line 4 of

Algorithm 1.

Spire supports an interactive mode, where the attacker may ask

to run a programmultiple times. In this mode, the initial attacker be-

lief is the one provided as input to Spire. For subsequent iterations,

Spire keeps track of the revised attacker belief using symbolic infer-

ence. Concretely, Spire uses Psi to compute a symbolic expression

over a variable x that captures the attacker belief Pπδ (I = x ).

Output. As output, Spire returns the equivalence classes com-

puted by the two synthesis algorithms. It also outputs the encoding

of the enforcement in the Psi language, as illustrated in Lines 9-15

in Figure 3.

8 EVALUATION

In this section, we evaluate our Spire system as follows: (i) we
compare the algorithms SynGrd and SynSMT, (ii) we evaluate

Spire’s performance, and (iii) we measure the permissiveness and

answer precision of the synthesized enforcements. We first describe

our experiments and then report and discuss our results.

8.1 Experiments

We perform experiments on instances of 10 different programs from

3 scenarios adopted from the literature. For each scenario, we have

both deterministic, and probabilistic programs. Here, we briefly

sketch the scenarios. Full details can be found in Appendix C.

Genomic Data. This scenario is the same as the one described in

Section 2, but here we scale the number of patients and the policy

size. We experiment with four programs: sum given in Figure 2(a),

noisy-sum which is like sum but randomly adds ±1 as in Figure 6,

read returns the nucleotides of a patient, and prevalence returns

the number of patients with AA nucleotides. We generate synthesis

instances (n,m) where n is the number of patients andm the size

of the privacy policy.

Social. This scenario, borrowed from [23], models a social network

where users express their political affiliations, which are correlated

based on the friendship relations [29, 35, 58]. We experiment with

three programs: sum returns the number of users affiliated with a
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Figure 8: Running times of Psi for Bayesian inference.

particular party, noisy-sum is like sum but randomly adds ±1, and

read returns the political affiliation of a user. We generate synthesis

instances (n,m) where n is the number of users andm the privacy

policy size. The policy bounds the attacker belief about a user’s

affiliation.

Location. This scenario models a user protecting his location [34,

51]. We borrow three programs from [47]: read returns the user’s

location, constant and random return a constant and, respectively,

random coordinate if the user is within a sensitive area. We gen-

erate synthesis instances (n,m) where n is the width and height

of a rectangular grid andm the size of the privacy policy. The pol-

icy bounds the attacker belief about the user being in a sensitive

location.

8.2 Results

We ran all synthesis instances with each algorithm SynSMT and

SynGrd, optimizing for permissiveness and answer precision with

both algorithms. We used a 32-core machine with four 2.13GHz

Xeon processors running Ubuntu Linux 16.04.We set a timeout of 60

minutes for the symbolic inference using Psi, SynSMT, and SynGrd,
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Figure 9: Running times of the synthesis algorithm SynSMT.

For both (a) and (b) we present two plots: the first shows run-

ning times of SynSMT optimizing for permissiveness and

the second SynSMT optimizing for answer precision.

separately for each. All numbers reported below are averaged over

10 runs.

8.2.1 SynSMT vs. SynGrd. To compare the two synthesis algo-

rithms, we measure: (i) the percentage of instances where SynGrd

produces an optimal enforcement with respect to the permissive-

ness and the answer precision optimality orders, and (ii) how close

to the optimal is the enforcement synthesized by SynGrd. We can

measure these whenever SynSMT terminates within the timeout,

since the synthesized enforcement is guaranteed to be optimal.

Permissiveness. The percentages of instances where SynGrd pro-

duces an optimal enforcement with respect to permissiveness mea-

sured across all instances of the medical and social scenarios are
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82.35% and 95%, respectively. We do not know this percentage for

the location scenario instances because SynSMT did not terminate.

To measure how close to the optimal enforcement the enforce-

ments synthesized by SynGrd are with respect to permissiveness,

we measured
|O/ξSynGrd |
|O/ξSynSMT |

for each instance, where ξSynGrd and

ξSynSMT are the enforcements synthesized by SynGrd and SynSMT,

respectively. This indicates the amount of classes given by SynGrd

as a fraction of the optimal enforcement. The average percentages

across all instances of the medical and social scenarios are 91.11%

and 98.33%, respectively. As before, we could not measure this num-

ber for the location scenario as SynSMT timed out for all location

instances.

Overall, these three metrics indicate that for our examples Syn-

Grd often produced an optimal enforcement with respect to per-

missiveness or an enforcement that is close to the optimum.

Answer precision. For all synthesis instances where SynSMT

produced an enforcement within the timeout, SynGrd produced

an optimal enforcement with respect to answer precision, i.e., with

the same amount of singletons.

8.2.2 Performance. The total running time of Spire for each

instance consists of: (i) Bayesian inference (done by Psi) and (ii)
synthesis time (done by either SynSMT or SynGrd). For each in-

stance we measured the running times of Psi and the synthesis

algorithms SynSMT and SynGrd.

Bayesian Inference. The running times of Psi are shown in Fig-

ure 8. We observe that Psi running times increase with the size

of the input set I. Our synthesis algorithms, however, are inde-

pendent of the inference engine and we can thus directly benefit

from any advances in this area. As an interesting item for future

work, we plan to experiment with sound probabilistic abstractions,

as in [37].

SynSMT. The size of the SMT constraints, stored in the SmtLib2

format, ranged up to 78KB for the medical scenario, up to 263KB for

social scenario, and up to 18MB for the location scenario. We plot

the performance of SynSMT in Figure 9, where the X -axis shows
the instance and the Y -axis the time in seconds. Each line in the

plots shows the times for a particular program.

The plots indicate that SynSMT is time-demanding, since its

running time increases roughly exponentially in the size of the

set of outputs. This explains the almost constant running times
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Figure 11: Permissiveness for Interactive Attackers

of SynSMT for the “read” programs in the medical and the social

scenario, where the output size is constant.

SynGrd. SynGrd always finishes well below one second, hence

the synthesis of permissive enforcements is feasible on large in-

stances. We do not explicitly plot SynGrd’s performance on our

benchmarks; instead, next we present results that demonstrate how

SynGrd scales to large synthesis instances.

Scaling to Large Synthesis Instances. To evaluate SynGrd’s

scalability, we randomly generated large instances. The distribution

of outputs Pπδ (O = o) was chosen by first assigning each output an

uniformly randomly chosen value from [0, 1] and then normalizing

the values to get a distribution. We used a policy with one secret,

and a security assertion with bounds [0.35, 0.65]. The probabilities

of secret for the individual outputs Pπδ (I ∈ S | O = o) ware chosen

uniformly randomly from [0, 1].

The running times are shown in Figure 10 in seconds. The figure

demonstrates that SynGrd runs in quadratic time in the number of

outputs |O|.

8.2.3 Comparison to Conservative Approaches. To evaluate the

general permissiveness of our approach, we compare Spire to the

conservative approach of [37], which rejects the attacker’s program

whenever it does not satisfy the policy. To evaluate this, for each



instance with a program π , an attacker belief δ , and privacy pol-

icy Φ, we checked whether π ,δ |= Φ. This indicates whether the
conservative approach rejects the attacker’s program.

The percentage of rejected programs by the conservative ap-

proach is 100% for the medical, 70.84% for the social, and 75% for

the location scenario.

8.2.4 Permissiveness for Interactive Attackers. To evaluate the

iterative mode of Spire, we iterated one representative program

from each scenario. In Figure 11a, we measured the relative permis-

siveness for each iteration and each program. The X-axis indicates

the iteration number, and the Y-axis the ratio of equivalence classes

of the enforcement to the number of outputs with non-zero prob-

ability, i.e.
|Oi /ξi |
|Oi |

, where Oi is the set of outputs with non-zero

probability in the i-th iteration and ξi is the enforcement synthe-

sized in the i-th iteration. In Figure 11b, we plot how the number

of outputs with a non-zero probability reduces as the attacker be-

lief evolves in each consecutive iteration, i.e.
|Oi |
|O1 |

, where Oi is the

number of outputs with non-zero probability in the i-th iteration.

Initially, the program form the medical scenario has 13 outputs in

the first iteration, social has 7, and location has 169.

9 RELATEDWORK

We survey the works that are most closely related to ours.

Probabilistic Privacy Enforcement. Mardizel et al. [37] investi-

gate the problem of enforcing privacy policies that are formalized

as thresholds on the attacker belief. In [37], the key contribution

is the probabilistic polyhedra abstract domain, which is used to

efficiently implement (based on abstract interpretation [15]) sound

approximate inference. In contrast to [37], we focus on synthesizing

an optimally permissive enforcement that enforces the given pri-

vacy policy. The focus of [37] is to efficiently check π ,δ |= Φ for a

program π , an attacker belief δ , and a policy Φ, while our focus is to
find an optimally permissive enforcement ξ with Enf(π , ξ ),δ , |= Φ.
An interesting direction for future work would be to combine our

approach with the abstractions of [37].

Guarnieri et al. [27] instantiates Mardziel et al.’s framework [37]

to the database setting, where programs consist of relational calcu-

lus queries and the attacker belief is formalized using probabilis-

tic logic programs. They develop a provably secure enforcement

mechanism that prevents information leakage in the presence of

probabilistic dependencies. Their mechanism leverages a dedicated

inference engine for a class of probabilistic logic programs to ensure

tractability.

Besson et al. [7] randomize the program’s inputs (while Spire ran-

domizes over outputs) to enforce privacy in the context of browser

fingerprinting by synthesizing a new program using linear pro-

gramming. The two approaches are non-comparable (even though

they both encode bounds on probabilities as linear programs): (i)
assertions: Spire supports arbitrary assertions over the attacker

belief, while [7] considers a specific one (related to browser fin-

gerprinting), (ii) reduction: Spire reduces to a linear optimization

problem over SMT, while the algorithm of [7] reduces to an LP

problem, and (iii) Spire offers a full end-to-end implementation

while [7] does not offer any implementation or a system.

Language-based Security. Standard non-interference notions

have been extended to support probabilities [42, 55] for concur-

rent programs. Our security notion, however, differs from non-

interference in that it allows leaks of sensitive information as long

as these do not violate the privacy policy.

Schoepe et al. [47] formalize opacity, a security property that

allows any leak except leaking whether a secret holds. Our privacy

policies extend opacity to the probabilistic setting. Moreover, since

we synthesize the most permissive secure enforcement, a program

secured by Spire returns meaningful results even if it is not opaque.

Recently, the language-based security community focused on

Quantitative Information Flow [10, 48], where the goal is to quantify

the amount of information leaked by a program. Our goal is not to

quantify the amount of leaked information. Instead, we synthesize

the enforcement that prevents only the information leaks that do

not conform to the privacy policy.

Opacity for Discrete Event Systems. There has been a growing

interest in opacity for Discrete Event Systems (DES) [32], where sys-

tems are usually formalized as Labelled Transition Systems (LTSs)

and secrets as predicates over runs. Many flavors of opacity have

been studied [12, 43] and recent approaches extend opacity to prob-

abilistic systems [5, 6, 44]. The DES community focused on (i)
verifying opacity [5, 28, 44], (ii) synthesis of mechanisms that en-

force opacity [18, 57], and (iii) runtime enforcement of opacity [21].

While verification techniques exist for both deterministic [28] and

probabilistic systems [5, 44], existing synthesis techniques support

only deterministic secrets [18, 21, 57].

Differential Privacy. Differential Privacy [20] has emerged as a

standard for protecting statistical databases and privacy-preserving

data analysis. A differentially private computation ensures that the

presence (or absence) of an individual’s data in the input has a little

(and bounded) impact on the output. Differential Privacy makes no

assumptions on the attacker belief. In contrast, we assume that the

attacker belief is known, and we synthesize the most permissive

enforcement relation that complies with the privacy policy.

Probabilistic Programming. Numerous probabilistic program-

ming languages have been developed in the past few years: Stan [24],

PSI [22], Fabular [11], Anglican [56], Church [25], Venture [36],

R2 [38]. These languages support different inference methods (e.g.

via translation to Bayesian Nets, sampling, exact). For a detailed sur-

vey see [26]. Abstractions for probabilistic programming have been

also developed; see [37]. In our work, we leverage existing infer-

ence engines to compute the amount of information leaked by the

program. The recent developments in probabilistic programming

languages are thus orthogonal and beneficial to our approach.

10 CONCLUSION

We introduced the problem of optimal privacy enforcement syn-

thesis. The goal is to automatically synthesize an enforcement that

transforms a program into a policy-compliant one. We showed that

determining the amount of leaked information by the program

can be done by probabilistic analysis using existing probabilistic

programming engines.

We proved that finding an optimally permissive enforcement is

NP-equivalent, and presented an algorithm that reduces the enforce-

ment synthesis problem to a linear optimization problem over SMT



constraints. We also presented a sound greedy synthesis algorithm

that runs in quadratic time.

We presented the Spire system, an end-to-end implementation

of our synthesis approach. We evaluated Spire on 10 relevant pro-

grams from different application domains. Our results demonstrate

that permissive privacy enforcement synthesis is feasible and that

Spire can handle nontrivial programs. Further, our greedy synthesis

performs well on all of our examples: it synthesizes an enforcement

in < 1s, the synthesized enforcements are optimal in 89% of the syn-

thesis instances, and overall the enforcements are 95% as permissive

as the optimal enforcements.

In the future, we plan to instantiate and optimize the core SPIRE

approach for specific application domains (e.g., network privacy), as

well as investigate a possible generalization of our permissiveness

theorems.
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A PROOFS OF THEOREMS

In this appendix, we give proofs for the theorems.

A.1 Complexity

To prove Theorem 4.2, we show that the permissive privacy enforce-

ment synthesis problem (i.e. the optimal enforcement problem with

permissiveness chosen as optimality) is both NP-easy and NP-hard.

Lemma A.1. The permissive privacy enforcement synthesis prob-
lem is NP-easy.

Proof. To prove that the problem is in FPNP, we first define a
decision version of the permissive policy enforcement synthesis

problem that we will then use as an oracle.

An instance of the decision problem is a tuple (I,O,δ ,π ,Φ,N ,α )
where I is the input set, O is the output set, π is the probabilis-

tic program over these sets, Φ = {φ1, . . . ,φℓ } is a privacy policy

where φi = (Si , [ai ,bi ]), N ∈ N, and α ⊆ O ×O. The problem then

asks whether there is an equivalence relation ξ over O such that

Enf(π , ξ ),δ |= Φ, |ξ | = N , and α ⊆ ξ .
This decision problem is in NP since a non-deterministic Turing

machine can non-deterministically guess a relation R over the set O,

and then check whether R is an equivalence relation, R enforces the

policy Φ, |R | = N , α ⊆ R, and accept only if all of these conditions

are met, which can be checked in polynomial time.

We now show that the functional problem is in FPNP by provid-

ing a polynomial algorithm with an oracle for the decision problem:

(1) We determine the maximum possible size of an equiva-

lence relation enforcing Φ. We use binary search on the

interval [0, |O|]. To determine if an equivalence relation

of size k exists, we query the oracle with an instance

(I,O,δ ,π ,Φ,k, ∅). Let the maximum size be K .
(2) We find an equivalence relation of size K enforcing the

policy Φ. To do this, we initialize ξ ← ∅ and ˆξ ← O × O

and iterate the following procedure until
ˆξ , ∅:

(a) Pick an arbitrary element (o,o′) from ˆξ . Query the

oracle with (I,O,δ ,π ,Φ,K , ξ ∪ {(o,o′)})
(b) If the answer is Yes, then ξ ← ξ ∪ {(o,o′)}. If the

answer is No, do nothing.

(c)
ˆξ ← ˆξ \ {(o,o′)}

(d) Iterate until
ˆξ , ∅.

After the iteration ends, we just output ξ .

□

Lemma A.2. The permissive privacy enforcement synthesis prob-
lem is NP-hard.

Proof. To prove the NP-hardness, we define a refined version

of the problem, then we show the refined problem is NP-hard by

reducing the partition problem to it. Finally, we reduce the refined

problem to the permissive privacy enforcement synthesis problem

and hence prove it to be NP-hard as well.

An instance of the refined problem is a set O , its subset S , a
distribution d overO (d ∈ D (O )) and a bound [a,b] where a,b ∈ Q
and 0 ≤ a ≤ b ≤ 1. The problem asks to find an equivalence relation

ξ over O such that for each class E ∈ ξ we have that:

Pr(O ∈ S | O ∈ E) =

∑
o∈E∩S d (o)∑
o∈E d (o)

∈ [a,b]

The refined problem is trivially reducible to the permissive pol-

icy enforcement problem. For an instance (O, S,d, [a,b]) of the
refined problem, we produce an instance of the permissive policy

enforcement problem:

(I = O,O = O,δ = d,π = IO ,Φ = {φ = (S, [a,b])})

where IO ∈ MO×O is the identity matrix.

Let us reduce the partition problem, which is known to be NP-
hard [33], to the refined problem. The partition problem is defined

as follows. Let A = {a1, . . . ,an } be a finite set of natural numbers.

The partition problem asks to decide whether there exists a subset

A′ ⊆ A such that ∑
a∈A′

a =
∑

a∈A\A′
a

We now construct an instance of the refined problem: we choose

the set O = {o1, . . . ,on ,p,q}, and S = {p,q}. We choose the prior

distribution as:

d (p) = d (q) = 0.25

d (oi ) =
ai

2 ·
∑
i ai

where ai ∈ A

And we choose the bound [0.5, 0.5].
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With this instance, it is possible to find the desired subset A′ of
A if and only if there exists an equivalence class over outputs with

exactly 2 equivalence classes. When ξ = {O1,O2} is an equivalence

relation solving the refined problem, we have that p ∈ O1 ∧ q ∈ O2,

or p ∈ O2∧q ∈ O1. We can get the solution to the partition problem

as A′ = {ai | oi ∈ O1}. □

A.2 Completeness

Proof of Theorem 4.4. Let (S, [a,b]) ∈ Φ be a belief bound.We

show that Enf(π ′, ξ⊥) |= (S, [a,b]). We have that π ,δ |= (S, [a,b]),
which is by definition Pπδ (I ∈ S | O = o) ∈ [a,b] for every o ∈ O.
The collection of events {O = o}o∈O is a partition of the sample

space. By the law of total probability, we have:

Pπδ (I ∈ S ) =
∑
o∈O

Pπδ (I ∈ S | O = o) · P
π
δ (O = o)

This gives us that Pπδ (I ∈ S ) is a convex combination of numbers

in the range [a,b] since
∑
o∈O P

π
δ (O = o) = 1. Hence, Pπδ (I ∈ S ) ∈

[a,b]. Finally,

Pπδ (I ∈ S ) =
∑
i ∈S

δ (i ) = Pπ
′

δ (I ∈ S | O ∈ O)

since {O ∈ O} = Ω, which proves the theorem. □

A.3 Algorithms

Proof of Theorem 5.2. ker(M) is an equivalence relation by

definition. The assertion of ψ
bounds

is equivalent to ker(M) en-
forcing Φ and maximizingψ

obj
is equivalent to ker(M) being opti-

mal. □

Proof of Theorem 6.2. Suppose there is no enforcement ξ such
that Enf(π , ξ ),δ |= Φ. Then, theremust be a belief bound (S, [a,b]) ∈
Φ such that Pπδ (I ∈ S ) < [a,b]. Otherwise, we would have that

Enf(π , ξ⊥),δ |= Φ. Hence, SynGrd returns unsat.
Now, suppose there is an equivalence relation enforcing the

policy. The while loop on line 5 joins two classes of the equivalence

relation ξ (declared on Line 5) in every iteration. After at most

|O| iterations, we have ξ = ξ⊥, for which the while condition on

Line 9 must be satisfied. Also, the while condition corresponds to

Enf(π , ξ ),δ ̸ |= Φ, so when the loop terminates, ξ satisfies the policy.
Hence, SynGrd terminates and returns an equivalence relation

enforcing the policy. □

A.4 Optimal Algorithm for Answer Precision

with Singleton Policies

Here, we present an algorithm that produces an optimal enforce-

ment with regard to answer precision for singleton policies (we

only enforce bounds on the probability of one secret).

The main idea of Algorithm 3 is to join all the outputs that violate

the policy into one class C , since these can never be singletons in

a correct enforcement. Then, if C satisfies the policy, we are done.

If not, we must add additional elements to the new class C . To
pick them correctly, we consider the following. To ensure that

Pπδ (I ∈ S | O ∈ C ) ∈ [a,b] means that:∑
o∈C P

π
δ (I ∈ S | O = o) · P

π
δ (O = o)∑

o∈C P
π
δ (O = o)

∈ [a,b]

Now, Pπδ (I ∈ S | O ∈ C ) ∈ [a,b] can be violated on at most one

side (i.e. it can be less that a or greater than b, but not both). Since
the cases are symmetrical, let us assume without a loss of generality

that Pπδ (I ∈ S | O ∈ C ) > b. Hence we need to ensure that:∑
o∈C P

π
δ (I ∈ S | O = o) · P

π
δ (O = o)∑

o∈C P
π
δ (O = o)

≤ b

which is equivalent to∑
o∈C

(Pπδ (I ∈ S | O = o) − b) · P
π
δ (O = o) ≤ 0

Hence, we can keep adding elements from O \C that minimize

the expression (Pπδ (I ∈ S | O = o) − b) · P
π
δ (O = o) until C satisfies

the belief bound. In the case that there is no enforcement satisfying

the policy, we find out after joining all the elements together.

Algorithm 3: The algorithm SynOpt(π ,δ ,Φ)

Input: A probabilistic program π , an attacker belief δ , and a

policy Φ = {(S, [a,b])}
Output: An equivalence relation ξ enforcing the policy.

1 begin

2 C ← {o ∈ O | Pπδ (I ∈ S | O = o) < [a,b]}

3 X ← O \C

4 while Pπδ (I ∈ S | O ∈ C ) < [a,b] ∧ X , ∅ do

5 if Pπδ (I ∈ S | O ∈ C ) < a then

6 o ← argmaxo∈X (Pπδ (I ∈ S | O =

o) − a) · Pπδ (O = o)

7 else

8 o ← argmino∈X (Pπδ (I ∈ S | O = o) − b) · P
π
δ (O =

o)

9 C ← C ∪ {o}

10 X ← X \ {o}

11 if Pπδ (I ∈ S | O ∈ C ) < [a,b] then

12 return unsat

13 return {C} ∪ {{o} | o ∈ X }

Running Time. The running time of Algorithm 3 is O (n log(n))
where n = |O |. This is because the elements of O can be sorted by

the value (Pπδ (I ∈ S | O = o) − b) · P
π
δ (O = o), and then picked one

by one in an increasing order.

Correctness. We now prove the following theorem.

Theorem A.3. Let π be a probabilistic program, δ an attacker be-
lief, and Φ = (S, [a,b]) a singleton privacy policy. If there is no equiv-
alence relation ξ such that Enf(π , ξ ),δ |= Φ, then SynOpt(π ,δ ,Φ) =
unsat. Otherwise, we have SynOpt(π ,δ ,Φ) = ξ , Enf(π , ξ ),δ |= Φ
and furthermore, we have that ξ has the greatest number of singleton
classes of all enforcements enforcing the policy Φ on π .

Proof of Theorem A.3. When no enforcement exists, the loop

on Line 4 will iterate until all the outputs are conflated. Then, the

condition on Line 11 will evaluate to true and an unsat result will
be returned.



1 def inherit(mother: R[], father: R[]): R[] {
2 return [mother[flip(1/2)], father[flip(1/2)]];
3 }
4 def prior() {
5 nucl := array(7, array(2, 0));
6 nucl[0] := [flip(1/2), flip(1/2)];
7 nucl[1] := [flip(1/2), flip(1/2)];
8 nucl[2] := [flip(1/2), flip(1/2)];
9 nucl[3] := [flip(1/2), flip(1/2)];
10 nucl[4] := inherit[nucl[0], nucl[1]];
11 nucl[5] := inherit[nucl[2], nucl[3]];
12 nucl[6] := inherit[nucl[4], nucl[5]];
13 return nucl;
14 }

(a) medical-belief.psi

1 def program(nucl: R[][]): R {
2 sum := 0;
3 for i := 0 .. 6 {
4 sum := nucl[i][0] + nucl[i][1];
5 }
6 return sum;
7 }

(b) medical-sum.psi

1 Pr[nucl[0][0] == 1 && nucl[0][1] == 1] in [0.1, 0.9]

(c) medical-policy.txt

Figure 12: (a) Attacker belief, (b) sum program, and (c) pri-

vacy policy for the medical scenario

1 def prior() {
2 affiliation := array(N, flip(1/2));
3 friends := [[0, 1, ..., 0],
4 [1, 0, ..., 0],
5 . . .
6 . . .
7 . . .
8 [0, 0, ..., 0]];
9 for i := 0 .. N-1 {
10 for j := i+1 .. N-1 {
11 if(friends[i][j] && flip(1/2)) {
12 observe(affiliation[i] == affiliation[j]);
13 }
14 }
15 }
16 return affiliation;
17 }

(a) social-attacker-belief.psi

1 def program(affiliation: R[]) {
2 sum := 0;
3 for i := 0 .. N-1 {
4 sum += affiliation[i];
5 }
6 return sum;
7 }

(b) social-sum.psi

1 Pr[affiliation[0] == 1] in [0.1, 0.9]

(c) social-policy.txt

Figure 13: (a) Attacker belief, (b) sum program, and (c) pri-

vacy policy for the social scenario

1 def prior() {
2 x := uniformInt(0,15);
3 y := uniformInt(0,15);
4 return (x, y);
5 }

(a) location-attacker-belief.psi

1 def program(x, y) {
2 return (x, y);
3 }

(b) location-identity.psi

1 Pr[(x >= 5) && (x <= 7) && (y >= 12) && (y <= 14)] in [0, 0.5]

(c) social-policy.txt

Figure 14: The programs for the location scenario with the

identity program.

For the case that an enforcement exists, let ξ ∗ be an optimal

enforcement for the program π , belief δ and policy Φ. Without a

loss of generality we can assume that ξ ∗ has only singleton classes

with the exception of a single class C∗ where all the other outputs
are located. Now, if SynOpt would give an enforcement with less

singletons than ξ ∗ has, it would be a contradiction, since it must

hold that ∑
o∈C∗

(Pπδ (I ∈ S | O = o) − b) · P
π
δ (O = o) ≤ 0

and SynOpt initializes C to be the subset of C∗ that violates the
policy and then picks the outputs to conjoin toC exactly by (Pπδ (I ∈

S | O = o) − b) · Pπδ (O = o). □

Since the running time of Algorithm 3 is polynomial, by The-

orem A.3, we conclude that the synthesis problem for singleton

policies is in PTIME for answer precision optimality. This immedi-

ately proves Theorem 4.3.

B PSI SYNTAX

We present the syntax of the Psi solver language in BNF:

x ∈ Vars a ∈ ArrayVars bop ∈ {+, −, ∗, /, ==, ,, <, ≤}

Expr ::= Q | x | a[Expr] | Expr bop Expr | flip(Expr)

Stmt ::= x := Expr | a := array(Expr) | x = Expr | a[Expr] = Expr

| skip | observe Expr | if Expr {Stmt} else {Stmt}

| for x in [Expr..Expr) {Stmt} | Stmt; Stmt

C EXPERIMENT DETAILS

We generated synthesis instances from three scenarios.

C.1 Genomic Data

The genomic data scenario is identical to the one described in

Section 2. We generated synthesis instances with different number

of patients and privacy policies. We denote the instance with n
patients andm privacy policies by (n,m).

Attacker Belief. For an instance (n,m), the set of inputs is I =
{A, G}2n . The relationships among patients form a complete binary

tree with n nodes. The belief δ ∈ D (I) is defined as described in

Figure 2(b).



Policy. For an instance (n,m), we generate a privacy policy with

m belief bounds of the form (I [i] = AA, [0.1, 0.9]), where I [i] returns
the pair of nucleotides of patient i according to the topological

order.

Programs. We consider four programs:

sum Returns the number of adenine nucleotides among the

patients.

noisy-sum Returns the number of adenine nucleotides among the

patients with noise, which adds 1 with probability 0.5 and

subtracts 1 with probability 0.5.

prevalence Returns the number of patients who have two adenine

nucleotides.

read Returns the pair of nucleotides of a patient.

C.2 Social

We model a social network where users express whether they favor

the Democratic or the Republican party. As before, we denote by

(n,m) a instance with n users andm policies.

Attacker Belief. For an instance (n,m), the set of inputs is I =
{D, R}n . We add a friendship between two users randomly with a

probability 0.5. The attacker belief is defined by a probabilistic

program that assigns a Bernoulli distribution to the affiliation to

each user i with the statement affi[i] := flip(0.5), and then for

any friendship between users i and j we add an observe statement

1 if (flip(0.5)) { observe(affi[i] == affi[j]); }

to correlate their affiliations.

Policy. For an instance (n,m) we generate a privacy policy withm
belief bounds of the form (affi[i] == R, [0.1, 0.9]), where i ranges
overm randomly selected users. A belief bound for a user imposes a

limit on howmuch the attacker can learn about the user’s affiliation.

Programs. We consider three programs:

sum Returns the number of Republicans among the users.

noisy-sum Returns the number of of Republicans among the users

with noise, which adds 1 with probability 0.5 and subtracts

1 with probability 0.5.

read Returns the affiliation of a user.

C.3 Location

In this scenario we consider location-based services that query the

user’s location [39]. We generate synthesis instances (n,m) with
area of size n × n andm protected areas of size 3 × 3, which are

placed at random positions.

Attacker Belief. For an instance (n,m), the set of inputs is I =
{1, . . . ,n} × {1, . . . ,n}. All positions in the grid are equally likely.

Policy. For an instance (n,m) we generate a privacy policy withm
bounds of the form (I ∈ A, [0.1, 0.9]) whereA is the set of positions

that define a protected area.

Program. We consider three programs:

read Returns the user’s location directly.

constant If the user is in a protected area, returns (0, 0), otherwise
returns the user’s location.

random If the user is in a protected area, returns a random location,

otherwise the user’s location.
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