
Abstractions for Security Protocol Verification

Binh Thanh Nguyen∗†1, Christoph Sprenger2, and Cas Cremers3

1Institute of Networks and Security, Johannes Kepler University, Linz, Austria
2Institute of Information Security, Department of Computer Science, ETH Zurich, Switzerland

3Department of Computer Science, University of Oxford, United Kingdom

May 24, 2018

Abstract

We present a large class of security protocol abstractions with the aim of improving the
scope and efficiency of verification tools. We propose abstractions that transform a term’s
structure based on its type as well as abstractions that remove atomic messages, variables,
and redundant terms. Our theory improves on previous work by supporting rewrite theories
with the finite-variant property, user-defined types, and untyped variables to cover type flaw
attacks. We prove soundness results for an expressive property language that includes secrecy
and authentication. Applying our abstractions to realistic IETF protocol models, we achieve
dramatic speedups and extend the scope of several modern security protocol analyzers.

1 Introduction

Security protocols play a central role in today’s networked applications. Past experience has amply
shown that informal arguments justifying the security of such protocols are insufficient. This makes
security protocols prime candidates for formal verification. In the last two decades, research in
formal security protocol verification has made enormous progress, which is reflected in many
state-of-the-art tools including AVANTSSAR [5], ProVerif [9], Maude-NPA [21], Scyther [14], and
Tamarin [34]. These tools can verify small to medium-sized protocols in a few seconds or less,
sometimes for an unbounded number of sessions. Despite this success, they can still be challenged
when verifying real-world protocols such as those defined in standards and deployed on the internet
(e.g., TLS, IKE, and ISO/IEC 9798). Such protocols typically have messages with numerous fields,
support many alternatives (e.g., cryptographic setups), and may be composed from more basic
protocols (e.g., IKEv2-EAP).

Abstraction [10] is a standard technique to over-approximate complex systems by simpler
ones to make verification more efficient or feasible. Sound abstractions preserve counterexamples
(or attacks in security terms) from concrete to abstracted systems. In the context of security
protocols, abstractions are extensively used. Here, we only mention a few examples. First, the
Dolev-Yao model [19] is a standard (but not necessarily sound) abstraction of cryptography. Second,
many tools encode the verification problem in the formalism of an efficient solver or reasoner.
These encodings often involve abstraction as well. Therefore, we call these back-end abstractions.
For example, ProVerif [9] translates models in the applied pi calculus to a set of Horn clauses,
∗Corresponding author. Email: binh@ins.jku.at.
†Most of this work was done while this author was working at ETH Zurich, Switzerland.

1

mailto:binh@ins.jku.at

SATMC [6] reduces protocol verification to SAT solving, and Paulson [39] models protocols as
inductively defined trace sets. Finally, some abstractions aim at speeding up automated analysis by
simplifying protocols within a given protocol model before feeding them to verifiers [28, 37]. Our
work belongs to this class of front-end abstractions.

Extending Hui and Lowe’s work [28], we proposed in [37] a rich class of protocol abstractions
and proved its soundness for a wide range of security properties. We used a type system to uniformly
transform all terms of a given type (e.g., a pattern in a protocol role and its instances during
execution) whereas [28] only covers ground terms. Our work [37] exhibits several limitations: (1)
the theory is limited to the free algebra over a fixed signature; (2) all variables have strict (possibly
structured) types, hence we cannot precisely model ticket forwarding or Diffie-Hellman exchanges.
While the type system enables fine-grained control over abstractions (e.g., by discerning different
nonces), it may eliminate realistic attacks such as type flaw attacks; (3) some soundness conditions
involving quantifiers are hard to check in practice; and (4) it only presents experimental results for
a single tool (SATMC) using abstractions that are crafted manually.

In this work, we address all the limitations above. First, we work with rewrite theories with
the finite-variant property modulo a set of axioms to model cryptographic operations. Second,
we support untyped variables, user-defined types, and subtyping. User-defined types enable the
grouping of similar atomic types (e.g., session keys) and adjusting the granularity of matching in
message abstraction. Furthermore, we have separated the removal of variables, atomic messages,
and redundancies, from the transformation of the message structure. This separation simplifies the
specifications and soundness proof of the abstractions that transform the message structure. Third,
we provide effectively checkable syntactic criteria for the conditions of the soundness theorems.
Finally, we extended Scyther [14] with fully automated support for our abstraction methodology.
The resulting tool is available online [36]. We validated our approach on an extensive set of realistic
case studies drawn from the IKEv1, IKEv2, ISO/IEC 9798, and PANA-AKA standard proposals.
Our abstractions result in very substantial performance gains. We have also obtained positive results
for several other state-of-the-art verifiers (ProVerif, CL-Atse, OFMC, and SATMC) with manually
produced abstractions.

This article is based on the conference paper [38] from which it differs mainly as follows. On
the theoretical side, we have generalized the class of supported rewrite systems from a subclass
of shallow subterm-convergent ones to all those with the finite-variant property. Using the finite-
variant property, we have significantly simplified the condition needed for equality preservation
(Theorem 4.23). On the practical side, we provide additional details of the abstraction heuristics and
the implementation. We have also extended the Scyther implementation with a check for spurious
attacks. Moreover, we have performed several additional case studies.

Due to space constraints, most proofs are moved to the appendix. The following table gives an
overview of the rest of the paper as well as the corresponding parts of the appendix.

Topic Main description Proofs / details

Motivating example: IKE Section 2
Modeling security protocols Section 3
Abstraction theory Section 4 Appendix A
Abstraction generation algorithm Section 5 Appendix B
Algorithm implementation in Scyther Section 6.1
Experimental results Section 6.2 Appendix C

2

2 Motivating example: an IKE protocol

The Internet Key Exchange (IKE) family of protocols is part of the IPsec protocol suite for securing
Internet Protocol (IP) communication. IKE establishes a shared key, which is later used for securing
IP packets, realizes mutual authentication, and offers identity protection as an option. Its first
version (IKEv1) dates back to 1998 [27]. The second version (IKEv2) [30] significantly simplifies
the first one. However, the protocols in this family are still complex and contain a large number of
fields.

Concrete protocol. As our running example, we present a member of the IKEv2 family, called
IKEv2-mac (or IKEm for short), which sets up a session key using a Diffie-Hellman (DH) key
exchange, provides mutual authentication based on MACs, and also offers identity protection. We
use Cremers’ models of IKE [15] as a basis for our presentation and experiments (see Section 6.2).
Our starting point is the following concrete IKEm protocol between an initiatorA and a responderB,
where we write {|m|}k to denote the symmetric encryption of m with key k.

IKEm(1). A→ B : SPIa, o, sA1 , gx ,Na
IKEm(2). B → A : SPIa,SPIb, sA1 , gy ,Nb
IKEm(3). A→ B : SPIa,SPIb, {|A,B,AUTHa, sA2 , tSa, tSb|}SK
IKEm(4). B → A : SPIa,SPIb, {|B,AUTHb, sA2 , tSa, tSb|}SK

Here, SPIa and SPIb denote the Security Parameter Indices (two unique values that together
identify a connection), o is a constant number, sA1 and sA2 are Security Associations (a group
of security parameters that the parties will agree on, such as the used cryptographic algorithms),
g is the DH group generator, x and y are secret DH exponents, Na and Nb are nonces, and tSa
and tSb denote Traffic Selectors specifying certain IP parameters. AUTHa and AUTHb denote
the authenticators of A and B and SK the session key derived from the DH key gxy . These are
defined as follows.

SK = kdf(Na,Nb, gxy ,SPIa,SPIb)
AUTHa = mac(sh(A,B),SPIa, o, sA1 , gx ,Na,Nb, prf(SK , A))
AUTHb = mac(sh(B,A),SPIa,SPIb, sA1 , gy ,Nb,Na, prf(SK , B))

We model the functions mac, kdf, and prf as hash functions and use sh(A,B) and sh(B,A) to
refer to the (single) long-term symmetric key shared by A and B as part of the cryptographic setup.

We consider the following security properties:

(P1) the secrecy of the DH key gxy , and

(P2) mutual non-injective agreement on the nonces Na and Nb and the DH half-keys gx and gy .

The DH key serves as the master secret for SK . We could also consider the secrecy of SK , but for
the running example we only consider the simpler property.

Abstraction. Our theory supports the construction of abstract models by removing inessential
fields and operations using a range of abstractions. Typically, we use abstractions in a first step to
remove selected cryptographic operations, remove fields under hashes, and to pull fields outside
other cryptographic operations like encryptions or signatures. The types enable a fine-grained
selection of the messages to be abstracted. In a second step, we remove inessential top-level (i.e.,
unprotected) fields and redundancies.

Let us apply these two steps to the IKEm protocol. In the first step, we remove: (i) the symmetric
encryptions with the session key SK (providing identity protection), (ii) from the session key: all

3

fields under kdf except the DH key gxy , and (iii) from the authenticators: the fields SPIa , SPIb,
and sA1 and the application of prf including the agent names underneath. Here is the resulting
protocol, which we call IKE1

m.

IKE1
m(1). A→ B : SPIa, o, sA1 , gx ,Na

IKE1
m(2). B → A : SPIa,SPIb, sA1 , gy ,Nb

IKE1
m(3). A→ B : SPIa,SPIb, A,B,AUTHa ′, sA2 , tSa, tSb

IKE1
m(4). B → A : SPIa,SPIb, B,AUTHb ′, sA2 , tSa, tSb

where SK ′ = kdf(gxy) and

AUTHa ′ = mac(sh(A,B), o, gx ,Na,Nb,SK ′)
AUTHb ′ = mac(sh(B,A), gy ,Nb,Na,SK ′).

Note that we keep the field o in AUTHa ′ to prevent its unifiability with AUTHb ′ and hence the
potential introduction of spurious attacks. Here, the type system plays an essential role in that it
allows us to distinguish AUTHa (with constant o as its third field under the mac) from AUTHb
(where SPIb is the third field under the mac, which we model as a nonce) and transform them in
different ways resulting in AUTHa ′ and AUTHb ′.

In a second step, we use abstractions to remove the fields o, A, B, SPIa , SPIb, sA1 , sA2 ,
tSa , and tSb in unprotected positions. The resulting protocol is IKE2

m:

IKE2
m(1). A→ B : gx ,Na

IKE2
m(2). B → A : gy ,Nb

IKE2
m(3). A→ B : AUTHa ′

IKE2
m(4). B → A : AUTHb ′

Scyther verifies the properties (P1) and (P2) in 8.7s on the concrete and in 1.7s on an auto-
matically generated abstract protocol (which differs somewhat from the one presented here). Our
soundness results imply that the original protocol IKEm also enjoys these properties. We chose the
protocol IKEm as running example for its relative simplicity compared to the other protocols in our
case studies. In many of our experiments (Section 6.2), our abstractions (i) result in much more
substantial speedups, or (ii) enable the successful unbounded verification of a protocol where it
times out or exhausts memory on the original protocol.

3 Security protocol model

We define a term algebra TΣ(V) over a signature Σ and a set of variables V in the standard way.
Let Σn denote the symbols of arity n. We call the elements of Σ0 atoms and write Σ≥1 for the
set of proper function symbols. For a fixed Σ≥1, we will vary Σ0 to generate different sets of
terms, denoted by T (V,Σ0), including terms in protocol roles, network messages, and types. We
write subterm(t) for the set of subterms of t. We also define vars(t) = subterm(t) ∩ V and
atoms(t) = subterm(t) ∩ Σ0. If vars(t) = ∅ then t is called ground. We denote the top-level
symbol of a (non-variable) term t by topsym(t) and the set of its function symbols in Σ≥1 by
funsym(t). We call a term t composed if funsym(t) is non-empty. A position is a sequence of
positive natural numbers denoting a path in the tree representation of a term. The size of a term t,
denoted by |t|, is the cardinality of its set of positions. We denote the subterm of t at position p with
t|p and write t[u]p for the term obtained by replacing t|p at position p by u. We also partition Σ into
sets of public and private symbols, denoted by Σpub and Σpri. We assume Σpub includes pairing
〈·, ·〉 which associates to the right, e.g., 〈t, u, v〉 = 〈t, 〈u, v〉〉. We usually write, e.g., {|t, u, v|}k
rather than {|〈t, u, v〉|}k. We take the liberty to lift functions on terms to functions on sets of terms

4

T , e.g., funsym(T) =
⋃
t∈T funsym(t). We denote by dom(g) and ran(g) the domain and range

of a function g. For n ∈ N, ñ denotes {1, . . . , n}.
The set of message terms isM = T (V,A∪F ∪C), where V ,A, F , and C are pairwise disjoint

infinite sets of variables, agents, fresh values, and constants. We use terms inM to model messages
in protocol definitions which we present in Section 3.4. We partition A into sets of honest and
compromised agents: A = AH ∪AC . The set fresh(t) = subterm(t)∩F denotes the fresh values
in t. By convention, we use identifiers starting with upper-case and lower-case letters to denote
variables and atoms, respectively.

3.1 Type system

We introduce a type system akin to [2] and extend it with subtyping. This type system is very
fine-grained. For example, there are different types for different fresh values. We will subsequently
restrict some abstractions to apply only to arguments of a specific type. Thus, the purpose of this
fine-grained type system is to control when those abstractions are used. The subtyping allows us
to adapt to different setups and tools by making types more coarse-grained. For example, we can
define a type nonce as a supertype for all fresh values.

We define the set of atomic types by Yat = Y0 ∪ {α,msg} ∪ {βn | n ∈ F} ∪ {γc | c ∈ C},
where α, βn, and γc are the types of agents, the fresh value n, and the constant c, respectively.
Moreover, msg is the type of all messages and Y0 is a disjoint set of user-defined types. The set of
all types is then defined by Y = T (∅,Yat).

We assume that all variables have an atomic type, i.e., V = {Vτ}τ∈Yat is a family of disjoint
infinite sets of variables. Define Γ: V → Yat by Γ(X) = τ if and only if X ∈ Vτ . We extend Γ to
atoms by defining Γ(a) = α, Γ(n) = βn, and Γ(c) = γc for a ∈ A, n ∈ F , and c ∈ C, and then
homomorphically to all terms t ∈ M. Note that Γ is unique. We call τ = Γ(t) the type of t and
sometimes also write t : τ .

The subtyping relation 4 on types is defined by the following inference rules and by two
additional rules (not shown) defining its reflexivity and transitivity.

τ ∈ Y
τ 4 msg

S(msg)
τ1 40 τ2

τ1 4 τ2
S(40)

τ1 4 τ ′1 · · · τn 4 τ ′n
c(τ1, . . . , τn) 4 c(τ ′1, . . . , τ ′n)

S(c ∈ Σn)

Every type is a subtype of msg by the first rule. The second rule embeds a user-defined atomic
subtyping relation 40 ⊆ (Yat \ {msg})× Y0, which relates atomic types (except msg) to user-
defined atomic types in Y0. For simplicity, we require that 40 is a partial function. The third rule
ensures that subtyping is preserved by all symbols. The set of subtypes of τ is τ↓ = {τ ′ ∈ Y |
τ ′ 4 τ}.

3.2 Equational theories

An equation over a signature Σ is an unordered pair {s, t}, written s ' t, where s, t ∈ TΣ(Vmsg).
An equation presentation E = (Σ, E) consists of a signature Σ and a set E of equations over
Σ. The equational theory induced by E is the smallest Σ-congruence, written =E , containing all
instances of equations in E. We often identify E with the induced equational theory.

A rewrite rule is an oriented pair l→ r, where vars(r) ⊆ vars(l) ⊆ Vmsg . A rewrite theory is a
tripleR = (Σ, Ax,R) where Σ is a signature, Ax a set of Σ-equations such that vars(s) = vars(t)
for all s ' t ∈ Ax, and R a set of rewrite rules. The rewriting relation→R,Ax on TΣ(V) is defined
by t→R,Ax t

′ iff there exists a non-variable position p in t, a rule l→ r ∈ R, and a substitution σ
such that t|p =Ax lσ and t′ = t[rσ]p. If t→∗R,Ax t′ and t′ is irreducible under→R,Ax, we call t′

R,Ax-normal and also say that t′ is a normal form of t. A substitution σ is called R,Ax-normal if
all terms in ran(σ) are.

5

Provided that Ax has a finitary and complete unification algorithm and under suitable termi-
nation, confluence, and coherence conditions (see [29] for definitions), one can decompose an
equational theory (Σ, E) into a rewrite theory (Σ, Ax,R) where E = Ax∪R (reading R here as a
set of equations) and, for all terms t, u ∈ TΣ(V), we have t =E u if and only if t↓R,Ax =Ax u↓R,Ax.
Here, t↓R,Ax denotes any normal form of t. Well-formed rewrite theories, defined below, satisfy a
few additional mild assumptions.

Definition 3.1. A rewrite theory (Σ, Ax,R) is well-formed if for all s ' t ∈ Ax and all l→ r ∈ R,
we have (i) vars(s) = vars(t) and vars(r) ⊆ vars(l), (ii) topsym(s) = topsym(t), (iii) s, t, and
l are composed and neither of them is a pair, and (iv) s, t, l, and r do not contain any fresh values.

The equality vars(s) = vars(t) in point (i) of this definition is a standard assumption made
for rewrite theories known as regularity [22]. Such rewrite theories are adequate to model many
well-known cryptographic primitives as illustrated by the examples below.

Example 3.2. We model the protocols of our case studies (see Section 2 and Section 6.2) in the
rewrite theoryRcs = (Σcs, Axcs, Rcs) where

Σcs = {sh, pk, pri, prf, kdf,mac, exp, 〈·, ·〉, π1, π2, {| · |}·, {| · |}−1
· , {·}·, {·}−1

· , [·]·, ver} ∪ Σ0
cs

contains function symbols for: shared, public, and private long-term keys (where Σpri = {sh, pri});
hash functions prf, kdf, and mac; exponentiation exp; pairs and projections; symmetric and
asymmetric encryption and decryption; and signing and verification. The set of atoms Σ0

cs is
specified later. The set Rcs consists of rewrite rules for projections, decryption, and signature
verification (with message recovery):

π1(〈X,Y 〉)→ X {|{|X|}K |}−1
K → X ver([X]pri(Y), pk(Y))→ X

π2(〈X,Y 〉)→ Y {{X}pk(Y)}−1
pri(Y) → Y

We have two equations in Axcs, namely, exp(exp(g,X), Y) ' exp(exp(g, Y), X) to model Diffie-
Hellman key exchange and sh(X,Y) ' sh(Y,X). Note that the rewrite rule for signature verifica-
tion models signatures with message recovery (as, e.g., for RSA signatures). In contrast, MACs do
not provide message recovery, so they have to be reconstructed for verification.

Example 3.3. The theory of XOR is given by the following rewrite system. The rightmost rule is
redundant but required to ensure coherence [29].

X ⊕ Y ' Y ⊕ X X ⊕ 0→ X X ⊕ X ⊕ Y → Y
(X ⊕ Y) ⊕ Z ' X ⊕ (Y ⊕ Z) X ⊕ X → 0

We have used the AProVE termination tool [23] and Maude’s Church-Rosser and coherence
checker [20] to verify the termination, confluence, and coherence properties that are required for
decomposing the equational theories of our case studies.

Finally, we define well-typed substitutions, which are substitutions that respect subtyping.

Definition 3.4 (Well-typed substitutions). A substitution θ is well-typed if Γ((Xθ)↓R,Ax) 4 Γ(X)
for all X ∈ dom(θ).

Since the type of any variable is atomic, this definition is independent of the representative of
the Ax-equivalence class chosen for the normalized term. Hence, it is well-defined.

6

3.3 The finite variant property

The finite variant property simplifies equality checking and unification in equational theories.
Given an equational theory E = (Σ, E) and a term t, an E-variant of t is a pair (t′, θ) such that
tθ =E t′. A decomposition R = (Σ, Ax,R) of E (and hence E) has the finite variant property
if for all terms t ∈ TΣ(V), there is a finite set {(t1, θ1), . . . , (tn, θn)} of E-variants of t such that
ti is R,Ax-normal and dom(θi) ⊆ vars(t) for all i ∈ ñ, and for all substitutions σ, there are a
substitution η and i ∈ ñ such that

(i) (tσ)↓R,Ax =Ax tiη,

(ii) Xσ↓R,Ax =Ax (Xθi)η for all X ∈ vars(t).

We also callR a finite-variant decomposition of E . Given a such a decomposition, the algorithm
in [22], based on the folding-variant narrowing strategy, computes a finite, complete, and minimal
set of R,Ax-variants of a given term t, denoted by JtKR,Ax. This set is unique up to =Ax-equality.

Example 3.5. Consider the XOR theory from Example 3.3 and the terms s = X ⊕ Y ⊕ X and
t = X ⊕ Y . Then, with id denoting the identity substitution, the complete and minimal sets of
R,Ax-variants of these terms are JsKR,Ax = {(Y, id)} and

JtKR,Ax = { (X ⊕ Y, id),
(Z, {X 7→ 0, Y 7→ Z}),
(Z, {X 7→ Z, Y 7→ 0}),
(Z, {X 7→ Z ⊕ U, Y 7→ U}),
(Z, {X 7→ U, Y 7→ Z ⊕ U}),
(0, {X 7→ U, Y 7→ U}),
(Z1 ⊕ Z2, {X 7→ U ⊕ Z1, Y 7→ U ⊕ Z2}) }.

Assumption 3.6. For our theoretical development, we consider an arbitrary but fixed equational
theory E = (Σ, E) with a well-formed finite-variant decomposition R = (Σ, Ax,R). We also
assume thatR includes function symbols and rewrite rules for pairing and projections.

3.4 Protocols

We specify a security protocol as a partial function from agent variables to roles. A role is a
sequence of events. We distinguish three types of events: send events, receive events, and signal
events. A send event send(t) indicates the transmission of a message that is an instance of the
term t. Likewise, a receive event recv(t) indicates the reception of a message that matches t. We
assume a fixed set Sig of signal events disjoint from {send, recv}. A signal event sig ∈ Sig marks
a progressive stage of an agent playing a role, i.e., it tells how far the agent has been executing. We
use signal events to specify security properties. Past research has also employed signal events to
express various authentication properties [42, 43].

Given a set of terms T , we define the set of events Evt(T) = {send(t), recv(t) | t ∈ T} ∪ Sig .
We also define term(ev(t)) = t for event ev ∈ {send, recv} and leave it undefined for signals.
A role is a sequence of events from Evt(M). We lift term(·) in the obvious way to sets and
sequences of events.

Definition 3.7 (Protocol). A protocol is a partial function P : Vα ⇀ Evt(M)∗ mapping agent
variables to roles. LetMP = term(ran(P)) be the set of protocol terms appearing in the roles of
P , and let VP , AP , FP , and CP denote the sets of variables, agents, fresh values, and constants in
MP .

7

u ∈ T
T `E u

Ax
T `E t′ t′ =E t

T `E t
Eq

T `E t1 · · · T `E tn
T `E f(t1, . . . , tn)

Comp (f ∈ Σ≥1
pub)

Figure 1: Intruder deduction rules (where Σ≥1
pub = Σ≥1 ∩ Σpub)

Example 3.8 (IKEm protocol). We formalize the IKEm protocol from Section 2 in the rewrite theory
of Example 3.2 as follows. The atoms Σ0

cs are composed of constantsC = {g, o, sA1 , sA2 , tSa, tSb}
and fresh values F = {na,nb, x, y, sPIa, sPIb}. The variables and their types are A,B : α,
Ga,Gb : msg , SPIa,SPIb,Na,Nb : nonce where nonce is a user-defined type that satisfies
βn 40 nonce for all n ∈ F . We model mac, kdf, and prf as hash functions. We also assume
a set of signal events Sig = {Running,Commit, Secret}. We later use Running and Commit to
specify authentication properties and Secret to specify secrecy properties (see Example 3.11). We
formulate the initiator role A and the responder role B as follows.

IKEm(A) = send(sPIa, o, sA1 , exp(g, x),na) · recv(sPIa,SPIb, sA1 ,Gb,Nb) · Running ·
send(sPIa,SPIb, {|A,B,AUTHaa, sA2 , tSa, tSb|}SKa) ·
recv(sPIa,SPIb, {|B,AUTHba, sA2 , tSa, tSb|}SKa) · Secret · Commit

IKEm(B) = recv(SPIa, o, sA1 ,Ga,Na) · send(SPIa, sPIb, sA1 , exp(g, y),nb) ·
recv(SPIa, sPIb, {|A,B,AUTHab, sA2 , tSa, tSb|}SKb) · Running ·
send(SPIa, sPIb, {|B,AUTHbb, sA2 , tSa, tSb|}SKb) · Secret · Commit

where the terms

SKa = kdf(na,Nb, exp(Gb, x), sPIa,SPIb)
SKb = kdf(Na,nb, exp(Ga, y),SPIa, sPIb)

AUTHaa = mac(sh(A,B), sPIa, o, sA1 , exp(g, x),na,Nb, prf(SKa, A))
AUTHab = mac(sh(B,A),SPIa, o, sA1 ,Ga,Na,nb, prf(SKb, A))

AUTHba = mac(sh(A,B), sPIa,SPIb, sA1 ,Gb,Nb,na, prf(SKa, B))
AUTHbb = mac(sh(B,A),SPIa, sPIb, sA1 , exp(g, y),nb,Na, prf(SKb, B))

respectively represent the initiator A and the responder B’s view of the session key SK and of the
authenticators AUTHa and AUTHb.

3.5 Operational semantics

In this section, we introduce an operational semantics for security protocols. This semantics
specifies the dynamic behaviour of the protocol roles when their events are executed. The protocol
messages are sent to and received from the adversary, whom we identify with the network as usual.

We use a Dolev-Yao adversary model parametrized by an equational theory E. Its judgements
are of the form T `E t meaning that the intruder can derive term t from the set of terms T . The
derivable judgements are defined in a standard way by the three deduction rules in Figure 1.

When a protocol is executed, each of its roles can be executed an arbitrary number of times
by possibly different agents in parallel. Such a single execution of a role is called a thread. We
distinguish between different threads by associating each thread with a unique thread identifier. We
index variables and fresh values with the thread identifier i to syntactically distinguish them from
those of other threads. This ensures the uniqueness of fresh values.

Let TID be a countably infinite set of thread identifiers. We define the indexing of a term t with
i ∈ TID as the term ti where every variable or fresh value u is replaced by ui. Constants and agents

8

th(i) = (R, send(t) · tl)
(tr, th, σ)→ (tr · (i, send(t)), th[i 7→ (R, tl)], σ)

SEND

th(i) = (R, recv(t) · tl) IK (tr)σ ∪ IK0 `E tiσ
(tr, th, σ)→ (tr · (i, recv(t)), th[i 7→ (R, tl)], σ)

RECV

th(i) = (R, s · tl) s ∈ Sig

(tr, th, σ)→ (tr · (i, s), th[i 7→ (R, tl)], σ)
SIGNAL

Figure 2: Operational semantics

remain unchanged. For a set of messagesM ⊆M, we define byMTID = {ti | t ∈M ∧i ∈ TID}
the corresponding set of indexed terms. We assume that V ∩ VTID = ∅ and F ∩ FTID = ∅.
For variables and fresh values u, we define Γ(ui) = Γ(u). Hence, indexing a term does not
affect its type, i.e., we have Γ(ti) = Γ(t). We extend indexing to (send and receive) events by
applying it to the terms they contain. We also define the set of intruder-generated fresh values as
F• = {n•k | n ∈ F ∧ k ∈ N} with types Γ(n•k) = Γ(n) = βn.

For example, suppose that thread i plays role A and is owned by alice. Hence, the agent
variable Ai is bound to alice. Suppose thread i contains a receive event recv({na,Nb}pk(A)),
meaning that it expects a message of the form {nai,m}pk(alice) for some message m, which is
bound to the variable Nbi. Such a message might originate from some thread j (e.g., with m = nbj

a nonce generated by thread j) or from the adversary (e.g., with m = n•0 a nonce generated by the
adversary).

We thus define the set of network messages exchanged during protocol executions by

N = T (VTID ,A ∪ C ∪ FTID ∪ F•),

Note thatMTID ⊆ N .
Given a protocol P , we define a transition system with states (tr, th, σ), where

• tr ∈ (TID × Evt(MP))∗ is a trace consisting of a sequence of pairs of thread identifiers
and events,

• th : TID ⇀ dom(P)× Evt(MP)∗ are threads, each executing some protocol role, and

• σ : VTID ⇀ N is a well-typed ground substitution mapping instantiated protocol variables
to network messages.

The trace tr as well as the executing role are symbolic (with terms inMP). The substitution σ
instantiates these messages to (ground) network messages as follows. The ground trace trσ ∈
Evt(N) associated with such a state is recursively defined by

εσ = ε and ((i, e) · tr)σ = (i, eiσ) · trσ.

where ε denotes the empty sequence. The set InitP of initial states is defined by

InitP = {(ε, th, σ) | ∀i ∈ dom(th). ∃R ∈ dom(P). th(i) = (R,P (R)) ∧ VTID
P ⊆ dom(σ)}.

The rules in Figure 2 define the transitions. The first premise of each rule respectively states
that a send, receive, or signal event heads thread i’s role. This event is removed and added together

9

with the thread identifier i to the trace tr. The second premise of RECV requires that the network
message tiσ matching the term t in the receive event is derivable from the intruder’s (ground)
knowledge IK (tr)σ ∪ IK0. Here, IK (tr) denotes the (symbolic) intruder knowledge derived from
a trace tr as the set of terms in the send events on tr, instantiated with the respective thread id, i.e.,

IK (tr) = {ti | (i, send(t)) ∈ tr}

and IK0 denotes the intruder’s (ground) initial knowledge. Note that the SEND rule thus implicitly
updates the intruder knowledge. The rule SIGNAL expresses that the signal events’ only effect is
to record a signal s ∈ Sig in the trace. Note that transitions do not change the substitution σ; it is
fixed with the (non-deterministic) choice of the initial state.

Finally, we define the semantics of a protocol P with respect to the intruder’s initial knowledge
IK0 as the set of states reachable from the initial states:

reach(P, IK0) = {(tr, th, σ) | ∃s0 ∈ InitP . s0 →∗ (tr, th, σ)}

where→∗ is the reflexive-transitive closure of the transition relation→. Note that these relations
depend on IK0 due to the rule RECV . Later, we will use several sets representing the intruder’s
initial knowledge for which we state the following global assumption.

Assumption 3.9 (Intruder’s initial knowledge). We assume that the intruder’s initial knowledge
IK0 is a set of R,Ax-normal ground network messages that contains all constants, agents, and
intruder-generated fresh values, but no fresh values generated by the protocol, i.e., C∪A∪F• ⊆ IK0

and FTID ∩ IK0 = ∅.
This assumption specifies the minimal requirements. The attacker usually also knows the

long-term shared and private keys of the compromised agents and the public keys of all agents, i.e.,
the keys in sh(AC ,A), sh(A,AC), pri(AC), and pk(A). However, since our proofs do not rely on
these keys being included in IK0, they do not appear in our assumption.

Example 3.10 (Example trace). We provide an example trace of a partial honest execution. In this
trace, Alice performs a partial session with Bob, up to the point of Bob’s Secret. Consider the
initial state s0 = (ε, th, σ) where th at least contains

th(1) = (A,P (A))
th(2) = (B,P (B))

and where σ meets the condition

σ ⊇ { A1 7→ alice , A2 7→ alice,
B1 7→ bob , B2 7→ bob,
Gb1 7→ exp(g, y2) ,Ga2 7→ exp(g, x 1),
SPIb1 7→ sPIb2 ,SPIa2 7→ sPIa1,
Nb1 7→ nb2 ,Na2 7→ na1 }

In this case, one reachable state (tr, th′, σ) has the trace:

tr = (1, send(sPIa, o, sA1 , exp(g, x),na))·
(2, recv(SPIa, o, sA1 ,Ga,Na))·
(2, send(SPIa, sPIb, sA1 , exp(g, y),nb))·
(1, recv(sPIa,SPIb, sA1 ,Gb,Nb))·
(1,Running)·
(1, send(sPIa,SPIb, {|A,B,AUTHaa, sA2 , tSa, tSb|}SKa))·
(2, recv(SPIa, sPIb, {|A,B,AUTHab, sA2 , tSa, tSb|}SKb))·
(2,Running) ·
(2, send(SPIa, sPIb, {|B,AUTHbb, sA2 , tSa, tSb|}SKb))·
(2, Secret)

10

where th′ denotes the threads after executing these events and SKa , SKb, AUTHaa , AUTHab,
and AUTHbb are as defined in Example 3.8.

In this trace, the adversary does not interfere. There are also traces in which he does interfere,
e.g., traces in which the adversary sends the first message. In such traces, the first event could be a
responder receive, for a suitable choice of σ in the initial state.

3.6 Property language

Meier et al. [33] define a predicate-based security property language. In this language, many
security properties such as those from [32, 16, 13] can be specified. In this section, we introduce
a specification language for security properties based on [33]. Our language is similar to the
languages used in [1, 21, 26].

Syntax. Our property specification language is an instance of first-order logic with formulas in
negation normal form (i.e., only atomic formulas can be negated). Let X be a set of thread identifier
variables disjoint from V . The language consists of the following formulas over atomic predicates
Q defined below. Explicit quantification is allowed only over thread identifier variables.

φ ::= Q | ¬Q | φ1 ∧ φ2 | φ1 ∨ φ2 | ∀ι. φ′ | ∃ι. φ′

The atomic predicates and their informal meaning are as follows, where ι, κ ∈ X are thread-id
variables, t, u ∈M are messages, R ∈ Vα is a role name, and e, e′ ∈ Evt(M) are events.

Q ::= ι = κ thread ι and thread κ are equal
| eq(ι, κ, t, u) message t in thread ι’s view equals message u in thread κ’s view
| secret(ι, t) the intruder does not know message t as seen by thread ι
| honest(ι, R) the agent playing role R in thread ι’s view is honest
| role(ι, R) thread ι executes role R
| steps(ι, e) thread ι has executed event e
| (ι, e) ≺ (κ, e′) thread ι has executed event e before thread κ has executed event e′

We use some syntactic sugar and write t@ι = u@κ for eq(ι, κ, t, u). An atomic predicate or negated
atomic predicate is called literal. We say that an atomic predicateQ occurs positively (negatively) in
a formula φ if there is a non-negated (negated) occurrence of Q in φ. To achieve attack preservation,
we focus on the fragment of this logic where the predicate secret(ι, t) only occurs positively. We
call this language LP . A property is formula of LP where all thread-id variables appear in the scope
of a quantifier. In examples, we freely use standard abbreviations (e.g., for implication) in formulas
if there is an equivalent negation normal form in LP . We also write honest(ι, {A1, . . . , An}) as an
abbreviation for

∧n
k=1 honest(ι, Ak).

Semantics. We define the semantics of our language LP . Recall thatAH denotes the set of honest
agents. For a trace tr, we define a total ordering ≺tr over events occurring in tr such that a ≺tr b if
tr = tr1 · a · tr2 · b · tr3 for some tr1, tr2, and tr3. The relation ≺tr is crucial to express security
properties that impose strong ordering constraints between events such as synchronization [16] (see
also Section 6.1).

Let s = (tr, th, σ) be a state of the protocol P and let ϑ be a substitution interpreting thread-id
variables from X as thread identifiers in dom(th). Given an equational theoryE, we define formula

11

satisfaction, (s, ϑ) �E φ, as follows:

(s, ϑ) �E ι = κ iff ϑ(ι) = ϑ(κ)

(s, ϑ) �E t@ι = u@κ iff tϑ(ι)σ =E u
ϑ(κ)σ

(s, ϑ) �E secret(ι, t) iff IK (tr)σ ∪ IK0 `E tϑ(ι)σ is not derivable
(s, ϑ) �E honest(ι, R) iff Rϑ(ι)σ ∈ AH
(s, ϑ) �E role(ι, R) iff π1(th(ϑ(ι))) = R
(s, ϑ) �E steps(ι, e) iff (ϑ(ι), e) ∈ tr
(s, ϑ) �E (ι, e) ≺ (κ, e′) iff (ϑ(ι), e) ≺tr (ϑ(κ), e′)
(s, ϑ) �E ¬A iff not (s, ϑ) �E A
(s, ϑ) �E φ1 ∧ φ2 iff (s, ϑ) �E φ1 and (s, ϑ) �E φ2

(s, ϑ) �E φ1 ∨ φ2 iff (s, ϑ) �E φ1 or (s, ϑ) �E φ2

(s, ϑ) �E ∀ι. φ′ iff (s, ϑ[ι 7→ i]) �E φ′ for all i ∈ dom(th)
(s, ϑ) �E ∃ι. φ′ iff (s, ϑ[ι 7→ i]) �E φ′ for some i ∈ dom(th)

For properties φ, we write s �E φ instead of (s, ϑ) �E φ. A protocol P satisfies a property φ if
s �E φ holds for all reachable states s of P . We write s 2E φ if s �E φ does not hold. We call a
reachable state s of P an attack on φ if s 2E φ.

In the following example, we present our formalizations of secrecy and authentication properties
for the IKEm protocol. Additional examples of properties are given in Section 6.1.

Example 3.11 (Properties of IKEm). We express the secrecy of the Diffie-Hellman key exp(Gb, x)
for role A of the protocol IKEm of Example 3.8 as follows.

φsec = ∀ι. (role(ι, A) ∧ honest(ι, {A,B}) ∧ steps(ι, Secret)) ⇒ secret(ι, exp(Gb, x)).

Intuitively, φsec states that whenever an agent a playing role A completes his thread with another
agent b playing role B and both a and b are honest, the key exp(Gb, x) is secret. In this protocol,
the completion of the thread coincides with the presence of the Secret signal event in a trace.

We formalize non-injective agreement of A with B [32] on the nonces na and nb and the
Diffie-Hellman half-keys exp(g, x) and exp(g, y) by

φauth = ∀ι. (role(ι, A) ∧ honest(ι, {A,B}) ∧ steps(ι,Commit))
⇒ (∃κ. role(κ,B) ∧ steps(κ,Running)∧

〈A,B,na,Nb, exp(g, x),Gb〉@ι = 〈A,B,Na,nb,Ga, exp(g, y)〉@κ).

The formula φauth states that whenever an agent a playing role A completes his thread with another
agent b playing role B and both agents are honest, then b has previously been running the protocol
with a. Moreover, a and b agree on na and nb and the Diffie-Hellman half-keys exp(g, x) and
exp(g, y). The authentication on these values is formulated by the equality in the formula, which
also includes the agreement on the participating agents and their roles.

Note that our property language does not allow expressing the general notion of injective
agreements as defined by Lowe [32], which amounts to counting the numbers of Commit and
Running signals occurring in the trace. However, we can express a stronger version of injective
agreement as an agreement where there there is at most one Commit signals for a given message to
be agreed on. This trivially implies the injectiveness of the agreement. This property is suitable for
protocols where the role emitting the Commit signal contributes a fresh value to the message to
be agreed on, in which case the two definitions coincide. For instance, we formalize the injective
agreement of role A with role B on the Diffie-Hellman half-keys exp(g, x) and exp(g, y) by

φiauth = ∀ι. (role(ι, A) ∧ honest(ι, {A,B}) ∧ steps(ι,Commit))
⇒ (∃κ. role(κ,B) ∧ steps(κ,Running)∧

〈A,B, exp(g, x),Gb〉@ι = 〈A,B,Ga, exp(g, y)〉@κ) ∧
(∀λ. (role(λ,A) ∧ steps(λ,Commit) ∧
〈A,B, exp(g, x),Gb〉@λ = 〈A,B, exp(g, x),Gb〉@ι)⇒ λ = ι)

12

Remark 3.12. An alternative formulation of our protocol semantics and property language, sug-
gested by one of the reviewers, is obtained by viewing each variable and fresh value as an unary
function symbol and keeping the thread identifier variables as the only variables of the property lan-
guage. The set of network messages would thus becomeN alt = TΣ∪VP∪FP (X ,A∪C∪F•∪TID).
We briefly discuss how such a setup could look like and how it compares to ours.

The substitutions σ : VTID ⇀ N in the states would be replaced by first-order structures
σ : V → (TID ⇀ N alt) interpreting the function symbols associated with the protocol variables
as type-respecting functions mapping thread identifiers to network messages. We would leave the
function symbols inFP uninterpreted as a simple way to model the uniqueness of fresh values. More
precisely, the interpretation ‖t‖(σ,ϑ) of a network message t would be ‖V (ι)‖(σ,ϑ) = σ(V)(ϑ(ι))
for V ∈ VP , ‖n(ι)‖(σ,ϑ) = n(ϑ(ι)) for n ∈ FP and extended homomorphically to all terms. Note
that this interpretation is isomorphic to ours if we use thread variables and identifiers in N alt only
as arguments of the function symbols in VP and FP .

We see two possibilities for dealing with protocol specifications in such an approach. The
first possibility is to keep protocol specifications unchanged, i.e., using messages fromM, but
replace the indexing of variables and fresh values in network messages by function application,
i.e., we would have V ι = V (ι) and nι = n(ι) for variables and fresh values and extend this to
all terms as expected. One could keep the syntax of the property language, but would adapt its
interpretation. For example, term equations would still be written t@ι = u@κ for t, u ∈M, but the
semantics would become ‖tι‖(σ,ϑ) =E ‖uκ‖(σ,ϑ). While remaining very close to our formulation,
the disadvantage of this approach is the non-uniform treatment of messages in specifications (with
variables and substitutions as before) and network messages (with the new interpretation). This
would complicate the development of our abstraction theory, as it applies abstractions to both
protocol messages in specifications and network messages in traces.

The second possibility is to also use messages from N alt in protocol specifications. In this
approach, every protocol role would be parametrized by a thread-id variable ι, which is used as an
argument of all function symbols in VP and FP in the role. This variable would be instantiated
with some i ∈ TID to create the actual thread i (cf. definition of initial state). Indexing would no
longer be needed. We could adapt the property language accordingly. For example, term equations
would be written as t = u for t, u ∈ N alt and interpreted as ‖t‖(σ,ϑ) =E ‖u‖(σ,ϑ). This would
yield a more uniform picture again at the price of cluttering all variables and fresh values in protocol
specifications with thread-id variables.

In both cases, the operational semantics and numerous details would have to be carefully
adapted. We believe that our setup strikes a good balance between an economic notation for
protocol specifications and a uniform treatment of different kinds of messages in our abstraction
theory.

4 Security protocols abstractions

In this section, we present two kinds of protocol abstractions:

Typed abstractions transform a term’s structure by removing or reordering fields and by removing
or splitting cryptographic operations. The types enable a fine-grained selection of the
transformation to apply. The same transformation is applied to all terms of a given type and
its subtypes.

Untyped abstractions complement typed ones with two additional kinds of simplifications: atom-
/variable removal abstractions and redundancy removal abstractions. The former remove
unprotected atoms or variables while the latter remove terms that the intruder can derive.

13

Typically, we will use typed abstractions to simplify the cryptographic structure of terms followed
by untyped abstractions to remove atoms and variables as well as redundancies.

In Section 4.1, we give an overview of the different kinds of abstractions and their combined
use. We then proceed with the formal definitions and results for our protocol abstractions that
we will apply in the following chapters. Our main results are soundness theorems for the typed
and untyped abstractions. They ensure that any attack on a given property of the original protocol
translates to an attack on the abstracted protocol. Similar to [28], we follow a modular approach for
proving this property. We first define a general notion of protocol abstraction for which we prove a
general soundness theorem under certain conditions (Section 4.2). These conditions concern the
preservation of intruder deducibility as well as of equalities and disequalities. We then go on to
define each concrete kind of abstraction and prove its soundness (Sections 4.3–4.5). We illustrate
the usefulness of our definitions on our running example. For the soundness proofs it then suffices
to establish the conditions of the general soundness theorem. As we will see, each such soundness
result in turn imposes certain conditions, which we will introduce and motivate by examples.

Upon first reading, readers may choose to skip the remainder of this section after reading the
following overview and proceed to the next sections to get an impression of how we will use the
abstractions.

4.1 Overview

Typed abstractions are our main mechanism to simplify the cryptographic structure of terms by
removing protections that are not required to achieve a given property. We specify typed abstractions
by a list of recursive equations. The following example illustrates a range of typical forms of
defining equations. Messages are transformed according to the first matching pattern. If no pattern
matches then the the top-level symbol is transformed homomorphically. Typed abstractions leave
atoms and variables untouched.

Example 4.1 (Typed abstractions). Consider a simplified variant of the IKEm protocol from
Section 2 and Example 3.8, where in the first two messages each role sends the constant sA1 , its
Diffie-Hellman half-key, and a nonce and we authenticate the final two messages using signatures
instead of MACs. We focus here on the final two events of the initiator A:

send({|A,B, sA2 , [m3 , sA1 ,na,Nb, exp(g, x),SKa]pri(A)|}SKa) ·
recv({|B, sA2 , [m4 , sA1 ,na,Nb,Gb,SKa]pri(B)|}SKa)

where SKa = kdf(exp(Gb, x),na,Nb) and m3 and m4 are tagging constants distinguishing the
two messages. Suppose our goal is to verify that the initiator non-injectively agrees with the
responder on na , exp(g, x), and Gb. For this purpose, we aim at simplifying these events as
follows:

send([m3 , exp(g, x), kdf(exp(Gb, x))]pri(A)) ·
recv([m4 ,na,Gb, kdf(exp(Gb, x))]pri(B))

Note that we drop na and Nb from the third message and Nb from the fourth. To achieve this, we
first specify a typed abstraction using the following four equations:

f({|X|}Y) = f(X)
f(kdf(X,Y)) = kdf(f(X))

f([T3, S,N1, N2, Y]pri(Z)) = 〈[f(T3), f(Y)]pri(f(Z)), f(S), f(N1), f(N2)〉
f([T4, S,N1, N2, Y]pri(Z)) = 〈[f(T4), f(N1), f(Y)]pri(f(Z)), f(S), f(N2)〉

where all variables have type msg except for T3 : γm3 and T4 : γm4 . The equation for symmetric
encryption simply drops the encryption and the one for the key derivation function kdf drops the

14

second component of the pair underneath it. There are also two equations for signatures. They
both pull the tuple components S and N2 out of the signature. The first equation additionally pulls
out N1. Note that, when transforming the protocol’s events, the variable Y will match the pair of
messages consisting of the Diffie-Hellman half-key and the session key. Note also that the patterns
on the left-hand side of these two equations are identical except for the types of the variables T3 and
T4, which respectively match the tags m3 and m4 . Only the types allow us to distinguish the third
and the fourth protocol messages and to transform them in different ways. Sound typed abstractions
cannot remove arbitrary fields: while the equation for kdf removes Y , those for the signatures pull
some tuple components out of the signature instead of removing them (as we would like to).

Let us now apply this typed abstraction to the fourth message in A’s role. We elide the
application of f to atoms and variables (where f is the identity) and on pairs, pri and exp (where f
behaves homomorphically).

f({|B, sA2 , [m4 , sA1 ,na,Nb,Gb,SKa]pri(B)|}SKa)

= 〈B, sA2 , f([m4 , sA1 ,na,Nb,Gb,SKa]pri(B))〉
= 〈B, sA2 , [m4 ,na,Gb, f(SKa)]pri(B), sA1 ,Nb〉
= 〈B, sA2 , [m4 ,na,Gb, f(kdf(exp(Gb, x),na,Nb))]pri(B), sA1 ,Nb〉
= 〈B, sA2 , [m4 ,na,Gb, kdf(exp(Gb, x))]pri(B), sA1 ,Nb〉

The third message abstracts to 〈A,B, sA2 , [m3 , exp(g, x), kdf(exp(Gb, x))]pri(B), sA1 ,na,Nb〉.

Generally speaking, in order to preserve the deducibility of messages, typed abstractions cannot
remove fields that are extractable (e.g., by projection, decryption, or signature verification), whereas
removing the non-extractable fields under a hash-type function such as kdf poses no problems. We
use untyped abstractions to remove redundant or unprotected message elements including those we
have pulled out of cryptographic operations using typed abstractions.

Example 4.2 (Atom-and-variable removal). Applying the typed abstraction above to the fourth
protocol message yielded t = 〈B, sA2 , [m4 ,na,Gb, kdf(exp(Gb, x))]pri(B), sA1 ,Nb〉. To obtain
the desired result t′ = [m4 ,na,Gb, kdf(exp(Gb, x))]pri(B), we want to remove the fields B, sA1 ,
sA2 , and Nb. The atom-and-variable removal abstraction remT is parametrized by a set T of
atoms and variables and removes all cryptographically unprotected occurrences of the elements of
T from a message (i.e., those visible within t without any decrypting). Soundness requires that the
transformed messages must not contain any protected occurrence of the elements of T . In our case,
we set T = {A,B, sA1 , sA2 ,nb,Nb} to obtain remT (t) = t′ and we observe that the soundness
condition is satisfied for this choice. Applying remT to the abstracted third protocol message yields
〈[m3 , exp(g, x), kdf(exp(Gb, x))]pri(B),na〉. The soundness condition forbids the inclusion of the
nonce na in T , since na also occurs protected by the signature in t′.

Example 4.3 (Redundancy removal). Since na is sent in the clear along with the Diffie-Helman
half-key in the first protocol message, we use a redundancy removal abstraction to remove the
redundant occurrence of na in the abstracted third message. Redundancy removal abstractions
are functions on messages that return a special value nil for removed messages. They can remove
message elements from a role that the intruder can deduce from his initial knowledge or from
elements that he has learned earlier from the same role. Since na and Na already occur in the first
message of the initiator or responder roles, this condition holds for the function that removes na
from 〈[m3 ,Gb, kdf(exp(Gb, x))]pri(B),na〉 and Na from role B’s third message while leaving all
other messages unchanged. As an alternative to the atom-and-variable removal in Example 4.2,
we could also remove the elements of T using a redundancy removal abstraction that removes all
occurrences of A, B, sA1 , and sA2 (we assume the intruder knows all agents and constants) and
all but the first occurrences of nb and Nb (similar to what we did with na and Na above).

15

We have chosen to factor out the removal of atoms and variables as well as redundancies from
the typed abstractions, since this substantially simplifies their definition and soundness proofs.

4.2 General soundness theorem for protocol abstractions

We start by defining a general form of protocol abstraction that encompasses all of our concrete
abstractions. We then prove a general soundness theorem for these abstractions, which we later
instantiate to obtain concrete soundness results.

4.2.1 General protocol abstractions

A general protocol abstraction consists of two functions. The first functions transforms the terms
in the protocol definition and in protocol executions, while the second one transforms properties.
For some but not all concrete abstractions these functions will coincide. We introduce the set
T = M ∪ N , which includes all terms that may occur in protocol specifications, properties,
symbolic traces, or ground traces. In the definition below, we use the special symbol nil to mark
messages that are removed.

Definition 4.4 (General protocol abstraction). A (general) protocol abstraction is a pair G =
(gprot, gprop) where gprot : T → T ∪ {nil} and gprop : T → T ∪ {nil}. We define the application
of G to events, traces, and protocols by applying the appropriate component of G to the terms they
contain as follows.

(i) For events: G(sig) = sig for sig ∈ Sig and, for ev ∈ {send, recv}, G(ev(t)) = nil if
G(t) = nil and G(ev(t)) = ev(gprot(t)) otherwise.

(ii) For event sequences: G(ε) = ε and G(e · tl) = G(tl) if G(e) = nil and G(e · tl) = G(e) · G(tl)
otherwise; this is extended to traces and threads in the expected way.

(iii) G(P) = {(R,G(P (R))) | R ∈ dom(P) ∧ G(P (R)) 6= ε} for protocols P .

(iv) For the atomic predicates of our property language:

G(ι = κ) = (ι = κ)
G(t@ι = u@κ) = (gprop(t)

@ι = gprop(u)@κ)
G(secret(ι, t)) = secret(ι, gprop(t))
G(honest(ι, A)) = honest(ι, A)
G(role(ι, A)) = role(ι, A)
G(steps(ι, e)) = steps(ι,G(e))

G((ι, e) ≺ (κ, e′)) = (ι,G(e)) ≺ (κ,G(e′))

We extend this mapping homomorphically to all formulas. Note that the terms in a formula’s
events are abstracted by gprot, while those in equations and secrecy predicates are abstracted
using gprop.

Although general protocol abstractions have two independent fields, our concrete typed and
untyped abstractions will use only special forms. For typed abstractions and atom-variable removal
abstraction, we will have gprot = gprop and for redundancy removal abstractions gprop = id (the
identity function).

16

4.2.2 Soundness of general protocol abstractions

To justify the soundness of our abstractions G, we show that any attack on a property φ of the
original protocol P is reflected as an attack on the property G(φ) of the abstracted protocol G(P).
We decompose this into reachability preservation (RP) and attack preservation (AP) as follows. We
require that, for all reachable states (tr, th, σ) of P , there is a substitution σ′ such that

(RP) (G(tr),G(th), σ′) is a reachable state of G(P), and

(AP) (tr, th, σ) 6|= φ implies (G(tr),G(th), σ′) 6|= G(φ).

We will define the substitution σ′ as g(σ) = g ◦ σ for some function g : N → N on network
messages. These two properties will require some assumptions about P , φ, and G. We start by
defining and explaining the conditions on formulas. We first introduce some auxiliary sets of
elements of a formula φ:

• Secφ be the set of all terms t that occur in formulas secret(ι, t) in φ,

• Eqφ be the set of tuples (ι, κ, t, u) such that the equation t@ι = u@κ occurs in φ and let
EqTermφ = {t, u | ∃ι, κ. (ι, κ, t, u) ∈ Eqφ} be the set of underlying terms, and

• Evtφ be the set of events occurring in φ.

Let Eq+
φ and Eq−φ respectively be the sets of tuples representing equations with a positive and

a negative occurrence in φ and let EqTerm+
φ and EqTerm−φ be the corresponding sets of terms.

Similarly, we define the subset Evt+
φ of elements of Evtφ with a positive occurrence in φ.

Definition 4.5 (Safe formulas). Let g : N → N be a function on network messages. We define φ
to be safe for P and (G, g) if, for all well-typed ground substitutions σ, the following conditions
hold:

(a) nil /∈ G(Secφ ∪ EqTermφ ∪ Evtφ),

(b) g is the identity function on A,

(c) for all (ι, κ, t, u) ∈ Eq−φ and thread-id interpretations ϑ, we have that

tϑ(ι)σ =E u
ϑ(κ)σ implies gprop(tϑ(ι))g(σ) =E gprop(u

ϑ(κ))g(σ),

(d) for all (ι, κ, t, u) ∈ Eq+
φ and thread-id interpretations ϑ, we have that

gprop(t
ϑ(ι))g(σ) =E gprop(u

ϑ(κ))g(σ) implies tϑ(ι)σ =E u
ϑ(κ)σ,

(e) for all e(t) ∈ Evt+
φ and e(u) ∈ Evt(MP), we have gprot(t) = gprot(u) implies t = u.

Condition (a) ensures that nil does not occur in the abstracted formula. Condition (b) ensures
that the two substitutions agree on agent variables. Condition (c) requires equality preservation for
negatively occurring equations. Condition (d) expresses the injectivity of the abstraction on the
terms in positively occurring equalities. This condition is required to preserve attacks on agreement
properties. In other words, it prevents abstractions from fixing attacks on agreement by identifying
two terms that differ in the original protocol. Finally, condition (e) is required for properties
involving event orderings and steps predicates. It states that the abstraction must not identify an
event occurring positively in the property with a distinct protocol event.

We now state the soundness theorem for the general abstractions.

17

Theorem 4.6 (General soundness theorem). Let P be a protocol, φ a property, G = (gprot, gprop)
a protocol abstraction, and g a function on network messages. Suppose the following conditions
hold:

(i) For all states (tr, th, σ) ∈ reach(P, IK0), thread id’s i, agent variables R, role suffixes tl,
and terms t such that th(i) = (R, recv(t) · tl) and gprot(t) 6= nil, we have

IK (tr)σ, IK0 `E tiσ implies IK (G(tr))g(σ), IK ′0 `E gprot(ti)g(σ),

(ii) For all states (tr, th, σ) ∈ reach(P, IK0), thread id’s i, and terms t ∈ Secφ such that
gprop(t) 6= nil we have

IK (tr)σ, IK0 `E tiσ implies IK (G(tr))g(σ), IK ′0 `E gprop(ti)g(σ), and

(iii) φ is safe for P and (G, g).

Then for all states (tr, th, σ) ∈ reach(P, IK0) we have

1. (G(tr),G(th), g(σ)) ∈ reach(G(P), IK ′0), and

2. (tr, th, σ) 2 φ implies (G(tr),G(th), g(σ)) 2 G(φ).

Condition (i) ensures that derivability is preserved for received messages. Similarly, condition
(ii) ensures the deducibility preservation for claimed secrets. Condition (i) is needed to establish
conclusion 1 and conditions (ii) and (iii) are required for conclusion 2. Below we sketch the proof
of this theorem. The full proof can be found in Appendix A.2.

Proof Sketch. To show point 1 (reachability preservation), let (tr, th, σ) ∈ reach(P, IK0). We
establish (G(t),G(th), g(σ)) ∈ reach(G(P), IK ′0) by induction on the number n of transitions lead-
ing to the state (tr, th, σ). The base case (n = 0) is straightforward. For the inductive case, assume
(tr′, th′, σ) is reachable in k steps and there is a transition (tr′, th′, σ)→ (tr, th, σ). By the induc-
tion hypothesis, we know that (G(tr′),G(th′), g(σ)) ∈ reach(G(P), IK ′0). If gprot(t) = nil then
we have G(tr) = G(tr′) and G(th) = G(th′) and hence (G(tr),G(th), g(σ)) ∈ reach(G(P), IK ′0).
Otherwise, we have gprot(t) 6= nil. We consider three cases according to the rule r that has been
applied in step k + 1. The cases for the rules SEND and SIGNAL are straightforward. For the
remaining case r = RECV , we know by the rule’s premises that th′(i) = (R, recv(t) · tl) and
IK (tr′)σ, IK0 `E tiσ for some r, t, and tl. Using assumption (i) with the induction hypoth-
esis, we establish the two premises of rule RECV required to obtain (G(tr′),G(th′), g(σ)) →
(G(tr),G(th), g(σ)). This implies the conclusion for this case. Hence, we have established point 1.

To show point 2 (attack preservation), we proceed by induction on the structure of φ and use
assumptions (ii) and (iii).

In the following subsections, we discuss each kind of protocol abstraction and the associated
soundness result. For these proofs, it suffices to define the function g and to establish the conditions
(i)-(iii) of the theorem above. In each case we introduce the assumptions that are needed for this
purpose and motivate them by examples.

4.3 Typed protocol abstractions

Our typed abstractions are specified by a list of recursive equations subject to some conditions on
their shape. We define their semantics in terms of a simple Haskell-style functional program. We
use both pattern matching on terms and subtyping on types to select the equation to be applied to a
given term. This ensures that terms of related types are transformed in a uniform manner.

18

4.3.1 Syntax and semantics

LetW = {Wτ}τ∈Y be a family of pattern variables disjoint from V . We define the set of patterns
by P = T (W, ∅). A pattern p ∈ P is called linear if each (pattern) variable occurs at most once in
p. We extend the typing function Γ to patterns by setting Γ(X) = τ if and only if X ∈ Wτ and
then lifting it homomorphically to all patterns. Our typed message abstractions are instances of the
following recursive function specifications.

Definition 4.7. A function specification Ff = (f,Ef) consists of an unary function symbol f /∈ Σ1

and a list of equations
Ef = [f(p1) = u1, . . . , f(pn) = un],

where each pi ∈ P is a linear pattern such that ui ∈ TΣ≥1∪{f}(vars(pi)) for all i ∈ ñ, i.e., ui
consists of variables from pi and function symbols from Σ≥1 ∪ {f}.

Definition 4.8. For c ∈ Σ≥1, an equation f(c(p1, . . . , pn)) = u of Ef is called a c-equation and it
is called homomorphic if u = c(f(Z1), . . . , f(Zn)) and pi = Zi are variables of type msg . We say
that Ff is homomorphic for c ∈ Σ≥1 if all c-equations in Ef are homomorphic.

The function specification F 0
f = (f,E0

f) consists of a homomorphic equation for each c ∈ Σ≥1

and the final equation f(Z) = Z with Z : msg .

We use vectors (lists) of terms t = [t1, . . . , tn] for n > 0. We define set(t) = {t1, . . . , tn}
and f̂(t) = 〈f(t1), . . . , f(tn)〉, the elementwise application of a function f to a vector where
the result is converted to a tuple (with the convention 〈t〉 = t). We define the splitting function
by split(〈t, u〉) = split(t) ∪ split(u) on pairs and split(t) = {t} on other terms t. We call the
elements of split(t) the fields of t. We extend split to vectors by split(t) = split(set(t)).

Definition 4.9 (Typed abstraction). A typed abstraction is a function specification of the form
Ff = (f,E+

f) where E+
f = Ef · E0

f and each equation in Ef has the form

f(c(p1, . . . , pn)) = 〈e1, . . . , ed〉 (?)

where for each i ∈ d̃ we have either

(a) ei = f(q) such that q ∈ split(pj) for some j ∈ ñ, or

(b) ei = c(f̂(q1), . . . , f̂(qn)) with c 6= 〈·, ·〉 such that, for all j ∈ ñ, we have set(qj) ⊆ split(pj)

and, whenever pi is not a pair, we have qi = [pi], i.e., f̂(qi) = f(pi).

The concatenation of Ef with E0
f ensures the totality of typed abstractions. The shape of the

terms ei in equation (?) ensures that the abstractions can only weaken the cryptographic protection
of terms but never strengthen it. Each defining equation maps a term with top-level symbol c to a
tuple whose components have the form (a) or (b). In both forms, we can only apply f recursively
on fields of the patterns pi. Form (a) allows us to pull fields out of the scope of c, hence removing
c’s protection. Using form (b) we can reorder, duplicate, or remove fields in each argument of c.
We cannot however turn a non-pair argument of c into a pair such as in f(c(x)) = c(〈f(x), f(x)〉).
Furthermore, for the case where c is pairing we have to use form (a) to obtain the simple shape
f(〈p1, p2〉) = f̂(q) with set(q) ⊆ split(〈p1, p2〉).

Example 4.10. We present a typed abstraction Ff = (f,Ef · E0
f) illustrating a representative

selection of the possible message transformations. Suppose X : γc, Y : nonce, and Z,U, V : msg
and let Ef consist of the following three equations:

f(kdf(X,U, V)) = kdf(f(X), f(U))
f([Y,Z]pri(U)) = 〈f(Y), f(Z)〉
f({|X,Y, Z|}U) = 〈{|f(X), f(Z)|}f(U), f(Y)〉

19

fun f(t) = case t of
‖ p1 | Γ(t) 4 Γ(p1)⇒ u1

...
‖ pk | Γ(t) 4 Γ(pk)⇒ uk

Program 1: Program f resulting from Ff = (f,Ef), where [f(p1) = u1, . . . , f(pk) = uk] = E+
f

The patterns’ types filter the matching terms: X and Y only match the constant c respectively a
nonce. The first equation removes the field V from a kdf hash. The second equation removes the
signature. The third one pulls the field Y out of an encryption. These are typical examples of typed
abstractions that are generated by our abstraction heuristics described in Section 5. Our theory also
supports other forms of typed abstractions such as the following two:

f(〈X,Y, Z〉) = 〈f(Y), f(X), f(Z)〉
f({|X,Y, Z|}U) = 〈{|f(X), f(Y)|}f(U), {|f(Z)|}f(U)〉

The first equation swaps the first two fields in n-tuples for n ≥ 3. In practice, such a re-ordering
abstraction is useful to avoid type confusions, which may lead to spurious attacks. The second one
splits an encryption: the pair 〈f(X), f(Y)〉 and f(Z) are encrypted separately with the key f(U).

The semantics of a typed abstraction Ff is given by the Haskell-style functional program f
(Program 1). We are overloading the symbol f here: we use it as a function symbol in E+

f as well
as the name of the functional program constructed from the equations in E+

f . The case statement
has a clause

p | Γ(t) 4 Γ(p)⇒ u

for each equation f(p) = u of E+
f . Note that occurrences of f in u correspond to recursive calls of

the program f . Such a clause is enabled if

(1) the term t matches the pattern p, i.e., t = pθ for some substitution θ, and

(2) its type Γ(t) is a subtype of Γ(p).

The first enabled clause is executed. Hence, the equations E0
f serve as fall-back clauses, which

cover the terms not handled by Ef . In particular, the last clause f(Z) = Z handles exactly the
atoms and variables.

We will often identify the typed abstraction Ff = (f,Ef) and the functional program f . The
corresponding general protocol abstraction according to Definition 4.4 is then simply G = (f, f).

Example 4.11. Consider the typed abstraction given by the first three equations from Example 4.10,
including the types of the variables. Suppose we would like to use the associated program f (as
specified in Program 1) to abstract the term t = {|c, n,W |}kdf(c,k,A), which is composed of the
constant c : γc, the nonces n, k : nonce , the message variable W : msg , and the agent variable A : α.
The resulting reduction sequence and the corresponding subtyping conditions are as follows:

f(t) = f({|c, n,W |}kdf(c,k,A)) {|γc, βn,msg |}kdf(γc,βk,α) 4 {|γc,nonce,msg |}msg

= 〈{|c,W |}f(kdf(c,k,A)), n〉 kdf(γc, βn,msg) 4 kdf(γc,msg ,msg)

= 〈{|c,W |}kdf(c,k), n〉
Note that we have elided the reduction steps for pairs and for atomic messages, which use the
corresponding fallback equations in E0

f . Both subtyping conditions clearly hold. However, for the
slightly different term u = {|n, c,W |}kdf(d,k,A) for d : γd we obtain f(u) = u, since in this case the
two corresponding subtyping conditions do not hold. Therefore, only the homomorphic fallback
equations in E0

f apply, which have trivial subtyping conditions.

20

4.3.2 Finding abstractions

Finding abstractions is fully automated by our tool using a heuristic that we will describe in
Section 5. To show a concrete application of typed abstractions to our running example while
giving a first idea of our heuristics, we use here the following simplified abstraction strategy: We
start by identifying the terms that appear in the secret(·, ·) predicates and equations of the desired
properties. Then we determine the cryptographic operations that are essential to achieve these
properties and try to remove all other terms and operations. In this process, we have to be careful
not to over-abstract the protocol, since this may easily introduce false negatives (i.e., spurious
attacks). Therefore, apart from preserving the necessary cryptographic operations, we also avoid
the introduction of new pairs of unifiable protocol terms.

Example 4.12 (from IKEm to IKE1
m). To preserve the secrecy of the DH key exp(exp(g, x), y) and

the agreement on na , nb, exp(g, x), and exp(g, y), we have to keep either the mac or the symmetric
encryption with SK (see Examples 3.8 and 3.11). We want to remove as many other fields and
operations as possible (e.g., prf). We choose to remove the encryption as this allows us to later
remove additional fields (e.g., sA2) using untyped abstractions. We keep o in AUTHa to prevent
unifiability with AUTHb and hence potential false negatives. This leads us to the typed abstraction
Ff1 = (f1, Ef1) where Ef1 is defined by the equations

f1({|X,Y |}Z) = 〈f1(X), f1(Y)〉 X : α

f1(mac(X1, . . . , X8)) = mac(f̂1([X1, X3, X5, X6, X7, X8])) X3 : γo
f1(mac(Y1, . . . , Y8)) = mac(f̂1([Y1, Y5, Y6, Y7, Y8])) Y3 : nonce
f1(kdf(Z1, . . . , Z5)) = kdf(f1(Z3))

f1(prf(U,Z)) = f1(U) U : kdf(msg)

where we omitted the homomorphic clauses for the symbols exp, sh, and 〈·, ·〉. The types of some
pattern variables are indicated on the right-hand side. All the remaining variables are of type msg .
Applying f1 to IKEm we obtain IKE1

m. Here is the abstracted initiator role.

SIKE1
m
(A) = send(sPIa, o, sA1 , exp(g, x),na)·

recv(sPIa,SPIb, sA1 ,Gb,Nb) · Running ·
send(sPIa,SPIb, A,B,AUTHaa ′, sA2 , tSa, tSb) ·
recv(sPIa,SPIb, B,AUTHba ′, sA2 , tSa, tSb) · Secret · Commit

where SKa ′ = kdf(exp(Gb, x)) is the session key and the authenticators are defined by AUTHaa ′ =
mac(sh(A,B), o, exp(g, x),na,Nb,SKa ′) and AUTHba ′ = mac(sh(A,B),Gb,Nb,na,SKa ′).
In a second step, we will remove most fields in the roles of IKE1

m using untyped abstractions.

4.3.3 Soundness of typed abstractions

We now turn to showing the soundness of the typed abstractions. We do this by establishing
conditions (i)-(iii) of our general soundness theorem (Theorem 4.6). The main ingredients that we
need for this purpose are the preservation of intruder deduction, equalities, and disequalities. These
properties will not hold without restrictions on the protocol, the property, and the typed abstraction.
We first formulate these properties, their scope, and introduce these restrictions informally. We
then state our soundness theorem. We defer the detailed motivation and formal definitions of the
restrictions to the subsequent subsections.

Remark 4.13. For the correct interpretation of the properties of typed abstractions, it is important to
remark that, given a term t ∈ T , the expression f(t) denotes the term in T obtained by evaluating
the functional program f on t. This is in contrast to a purely syntactical reading of f(t) such as in
the equations Ef . Note that the term f(t) itself is not an element of T , since f /∈ Σ.

21

Suppose σ is the substitution component of a concrete state, T ⊆MTID is a set of terms and
t, u ∈MTID be terms.

• Deducibility preservation. Here, we require that

Tσ `E tσ =⇒ f(T)f(σ) `E f(t)f(σ) (P1)

This is needed to simulate the execution of receive events in the abstract protocol (condition
(i) of Theorem 4.6) and for the preservation of secrecy (condition (ii) of Theorem 4.6).
This property holds for typed abstractions f that are compatible with the rewrite theory (or
R,Ax-compatible for short). This requires, for example, that f cannot remove fields that are
extractable from a constructor using a rewrite rule (such as in decryption). We will discuss
this property in more detail in Section 4.3.6.

• Equality preservation. This means that

tσ =E uσ =⇒ f(t)f(σ) =E f(u)f(σ) (P2)

This property is needed for proving deducibility preservation and for the preservation of
equalities in protocol properties (condition (c) of Definition 4.5 needed in condition (iii)
of Theorem 4.6). This property holds if f is compatible with the axioms Ax and with the
variants JtKR,Ax of the term t, i.e., f preserves axioms and the equality associated with each
variant of t. We denote by cdom(Ff) the set of terms for which f is variant-compatible.
Equality preservation is the topic of Section 4.3.5.

• Disequality preservation. This can be formulated as the reverse direction of equality preser-
vation:

f(t)f(σ) =E f(u)f(σ) =⇒ tσ =E uσ (P3)

Disequality preservation is needed to prevent that abstractions “fix” attacks on agreement
properties (condition (d) of Definition 4.5 needed in condition (iii) of Theorem 4.6). In
Section 4.3.7 and Appendix A.5, we present syntactic criteria for this property.

To establish these properties, we will use the following substitution property, which we will discuss
in detail in Section 4.3.4. For terms t and well-typed and R,Ax-normal substitutions θ:

f(tθ) = f(t)f(θ) (P4)

This property requires that t is in the uniform domain of f , written t ∈ udom(Ff). This ensures
that a term t and its instances tθ are uniformly transformed using the same equations of Ef .

Finally, we can state our soundness result for typed abstractions.

Theorem 4.14 (Soundness of typed abstractions). Let Ff be a R,Ax-compatible typed abstraction.
Assume further that

(i) f(IK0) ⊆ IK ′0,

(ii) MP ∪ Secφ ∪ EqTerm−φ ⊆ udom(Ff) ∩ cdom(Ff), and

(iii) f(tϑ(ι))f(σ) =E f(uϑ(κ))f(σ) implies tϑ(ι)σ =E u
ϑ(κ)σ for all (ι, κ, t, u) ∈ Eq+

φ , thread-id
interpretations ϑ, and R,Ax-normal well-typed ground substitutions σ, and

(iv) f(t) = f(u) implies t = u, for all e(t) ∈ Evt+
φ and e(u) ∈ Evt(MP).

Then for all states (tr, th, σ) ∈ reach(P, IK0), we have

22

1. (f(tr), f(th), f(σ)) ∈ reach(f(P), IK ′0), and

2. (tr, th, σ) 2 φ implies (f(tr), f(th), f(σ)) 2 f(φ).

Proof. It suffices to establish conditions (i)-(iii) of Theorem 4.6 for G = (f, f) and g = f . Let
(tr, th, σ) ∈ reach(P, IK0). We can assume without loss of generality that σ is R,Ax-normal.

Let t ∈MP ∪Secφ. Using assumptions (i)-(ii) and property (P1) (formalized in Corollary 4.33
below), we derive that IK (tr)σ, IK0 `E tiσ implies f(IK (tr))f(σ), IK ′0 `E f(ti)f(σ). Since
f(IK (tr)) = IK (f(tr)), conditions (i) and (ii) of Theorem 4.6 hold.

To prove that condition (iii) of Theorem 4.6 is satisfied, we have to establish conditions (a)-(e)
in Definition 4.5. We look at each of these conditions in turn.

• Condition (a): holds trivially since nil /∈ ran(f).

• Condition (b): clearly holds since σ is well-typed and f is the identity on atoms.

• Condition (c): Here, f(tϑ(ι))f(σ) =E f(uϑ(κ))f(σ) follows from tϑ(ι)σ =E uϑ(κ)σ by
assumption (iii) and properties (P2) and (P4) (formalized in Theorems 4.23 and 4.18 below).

• Condition (d): holds by assumption (iii).

• Condition (e): holds by assumption (iv).

This completes the proof of the theorem.

In the following, we discuss each of the properties (P1)-(P4) in more detail. We give examples
motivating the restrictions under which they hold and we formally define these restrictions. We
then establish that the properties hold under the respective restrictions. We start our discussion
with the substitution property. Readers who wish to first get an overview of our abstractions before
delving into the technical details may want to skip to Section 4.4.

4.3.4 Substitution Property (P4).

The following example shows that the substitution property does not hold unconditionally.

Example 4.15. Let Ff = (f,Ef) be a typed abstraction such that Ef consists of the two equations
f(h(X : γc)) = f(X) and f(h(Y : msg))) = h(f(Y)) where c is a constant and we have annotated
the variables X and Y with their types for convenience. Let t = h(Z) and θ = {Z 7→ c} where
Z : msg . Then we have f(tθ) = f(h(c)) = c 6= h(c) = h(Zθ) = f(t)f(θ).

The problem in this example is caused by the terms t and tθ being transformed by two distinct
clauses. To avoid this, we must ensure that t and all its instance tθ are transformed uniformly, i.e.,
match the same clauses of Ef . We therefore require that

(i) the patterns in Ef do not overlap (pattern disjointness), and

(ii) all recursive calls of f on composed terms during the transformation of t are handled by the
clauses of Ef , without recourse to the fall-back clauses in E0

f .

This is formalized in the following two definitions.

Definition 4.16. A function specification Ff = (f,Ef), where Ef = [f(p1) = u1, . . . , f(pn) =
un], is pattern-disjoint if the types in Πf are pairwise disjoint, i.e., Γ(pi)↓ ∩ Γ(pj)↓ = ∅ for all
i, j ∈ ñ such that i 6= j.

23

Note that the abstractions defined in Examples 4.10 and 4.12 are pattern-disjoint, while the one
in Example 4.15 is not. Let Πf = Π(Ef), where Π(L) = {Γ(p) | (f(p) = u) ∈ L} denotes the
set of pattern types of a list of equations L.

Definition 4.17 (Uniform domain). We define the uniform domain of Ff by

udom(Ff) = {t ∈ T | Γ(Rec(Ff , t)) ⊆ Πf↓ ∪ Yat}

where Rec(Ff , t) is the set of terms u such that f(u) is called in the computation of f(t).

We will require that the protocol terms t ∈MP belong to udom(Ff), which ensures that their
instances tθ with R,Ax-normal substitutions θ are transformed uniformly. Since our protocol and
property semantics do not distinguish states with =E-equal substitutions, we can assume without
loss of generality that σ is R,Ax-normal for all reachable states (tr, th, σ) of the protocol P .

Theorem 4.18 (Substitution property). Suppose that Ff is pattern-disjoint. Let t ∈ udom(Ff) and
θ be a well-typed and R,Ax-normal substitution. Then f(tθ) = f(t)f(θ).

We henceforth assume that Ff is pattern-disjoint. This concludes our discussion of (P4) and we
now turn our attention to equality preservation.

4.3.5 Equality preservation (P2).

Using the substitution property, we can reduce (P2) to the property stating that tσ =E uσ implies
f(tσ) =E f(uσ) for well-typed and R,Ax-normal substitutions σ. Using the decomposition of the
equational theory (Σ, E) into (Σ, R,Ax), we further reduce this to the following two properties:

(P2.a) If t =Ax u then f(t) =Ax f(u) for all terms t and u.

(P2.b) f(tσ) =E f((tσ)↓R,Ax) for all terms t and well-typed R,Ax-normal substitutions σ.

Neither of these properties holds in this generality (recall Remark 4.13). The following example
illustrates a violation of (P2.a).

Example 4.19. Let na and nb be nonces and let Ff = (f,Ef) be a typed abstraction such thatEf =
[f(h(X)) = f(X)] with X : exp(msg , βna). We consider two terms t = h(exp(exp(g,na),nb))
and u = h(exp(exp(g,nb),na)). Then we have f(t) = h(exp(exp(g,na),nb)) and f(u) =
exp(exp(g,nb),na). Hence, t =Ax u but f(t) 6=Ax f(u). The reason is that t and u are not
transformed uniformly. In particular, t is transformed by a clause in E0

f which keeps t unchanged,
while u is transformed by the clause in Ef which removes the hash function h.

To solve the problem described in Example 4.19, we introduce the notion of Ax-closedness,
which requires that Ff is homomorphic for the constructors in funsym(Ax) and that top-level
constructors of axioms must not occur strictly inside any patterns’ type. This is sufficient to prove
property (P2.a).

Definition 4.20 (Ax-closedness). Ff is Ax-closed if it is homomorphic for funsym(Ax) and, for
all equations f(p) = u of Ef , we have topsym(Γ(subterm(p) \ {p})) ∩ topsym(Ax) = ∅.

Note that the abstraction F1 from Example 4.12 is Axcs-closed, since it is homomorphic for
the only constructors exp and sh occurring in Axcs and these constructors occur at most in the top
position of any of F1’s pattern types. We henceforth assume that Ff is Ax-closed. The following
example exhibits a violation of (P2.b).

24

Example 4.21. Let Ff = (f,Ef) be a typed abstraction which drops all symmetric encryptions,
i.e., Ef = [f({|X|}K)) = f(X)], and let t = {|{|m|}k|}−1

k for atomic terms m and k. Then
f(t) = {|m|}−1

k , but f(t↓R,Ax) = f(m) = m. Clearly, we have that f(t) 6=E f(t↓R,Ax).

To establish (P2.b) for a term t, we make use of the finite variant property of our rewrite theory.

Definition 4.22 (Variant-compatibility). We say that Ff is variant-compatible for t if, for all
(t′, θ) ∈ JtKR,Ax, we have (i) t′, tθ ∈ udom(Ff) and (ii) f(tθ) =E f(t′). We denote by cdom(Ff)
the set of terms for which f is variant-compatible.

For terms t ∈ cdom(Ff), we can show (P2.b) using the substitution property. Note that variant-
compatibility for t is checkable since JtKR,Ax is finite due to the finite variant property. The theory
including Diffie-Hellman exponentiation from Example 3.2 and the XOR theory in Example 3.3
both have the finite variant property.

Theorem 4.23 (Equality preservation). Suppose that Ff is pattern-disjoint and Ax-closed. Let
t, u ∈ cdom(Ff) and σ be a well-typed R,Ax-normal substitution. Then tσ =E uσ implies
f(tσ) =E f(uσ).

This concludes our treatment of (P2). We proceed with deducibility preservation.

4.3.6 Deducibility preservation (P1).

To preserve reachability and secrecy properties, our typed protocol abstractions need to preserve
term deducibility, i.e., whenever a term t is deducible from a set of terms T then f(t) is also
deducible from f(T). The following series of examples illustrates the main issues involved in the
proof of deducibility preservation. The proof assumes T and t are R,Ax-normal and, without loss
of generality that terms derived using the composition rule are immediately normalized. Thus, the
interesting case is when a composition creates a term to which a rewrite rule l→ r is applicable.

Example 4.24 (Preserving decryption). Consider the composition rule Comp instantiated for
asymmetric decryption, which derives T `E {X}−1

K from T `E X and T `E K. We have to
make sure that, for all instances of this rule, we can preserve this deduction under f . The most
interesting instance is X = {u}pk(a) and K = pri(a), in which case the conclusion can be reduced
using the rewriting rule {{u}pk(a)}−1

pri(a) → u modeling decryption. In this case, we can produce
the following derived standard rule for asymmetric decryption, which we call Adec.

T `E {u}pk(a) T `E pri(a)

T `E {{u}pk(a)}−1
pri(a)

Comp
{{u}pk(a)}−1

pri(a) =E u

T `E u
Eq

To preserve this derived rule under f , we have to show that we can derive f(T) `E f(u) from
f(T) `E f({u}pk(a)) and f(T) `E f(pri(a)). This clearly works if Ff is homomorphic for all
four constructors on the left hand side of the decryption rewrite rule. Let us consider the more
interesting case where u = 〈u1, u2〉 and f pulls u2 outside the encryption:

f({u1, u2}pk(a)) = 〈{f(u1)}f(pk(a)), f(u2)〉.

By further assuming that f transforms decryptions, pairs, pk, and pri homomorphically, we obtain
the required derivation as follows.

f(T) `E f({u1, u2}pk(a))

f(T) `E {f(u1)}pk(f(a))
Proj1 f(T) `E pri(f(a))

f(T) `E f(u1)
Adec

f(T) `E f({u1, u2}pk(a))

f(T) `E f(u2)
Proj2

f(T) `E f(〈u1, u2〉)
Comp

25

Here, the derived rules Proji are used for projection. These are formed by applying the composition
rule (Comp) followed by a reduction (Eq).

Generally speaking, we have to ensure that if a composed term t = d(t1, . . . , tn) can be reduced
to a term u then (the fields of) f(u) can still be derived from f(t1), . . . , f(tn). The next examples
illustrate that we must impose on f further restrictions related to the rewrite theory (in addition to
Ax-closedness).

Example 4.25 (Dropping fields). Consider the derivation of rule Adec in Example 4.24 and
u = 〈u1, u2〉. Suppose f is now modified to drop u2 from the encryption, i.e., f({u1, u2}pk(a)) =
{f(u1)}f(pk(a)). Since f(u2) is lost, this clearly prevents us from deriving f(T) `E f(u) in
general.

This example shows that we cannot drop fields from argument positions of a constructor that
can be extracted by a rewrite rule (here decryption).

Example 4.26 (Transforming non-enclosing constructors). Suppose f transforms asymmetric
encryptions and pk homomorphically, but drops the private key constructor pri, i.e., f(pri(X)) =
f(X). Clearly, we cannot extract f(u) from {f(u)}pk(f(a)) using the key f(a), since {{f(u)}pk(f(a))}−1

f(a)
is irreducible.

The problem here is that the decryption rewrite rule is no longer applicable. This can be avoided
by requiring that f is homomorphic for the constructors of the left-hand side l of the rewrite rule
other than those enclosing the extracted term in l (here, the key constructors pk and pri).

Example 4.27 (Non-linear variables). This example illustrates another way to destroy the applica-
bility of a rewrite rule by abstraction. Consider the rule X ⊕ (X ⊕ Y)→ Y of the theory of XOR
from Example 3.3. Suppose that Ef includes the following ⊕-equation, which drops the second
component of a pair in the first argument of XOR if the second argument is also an XOR:

f(〈U, V 〉 ⊕ (W ⊕ X)) = f(U) ⊕ f(W ⊕ X).

Also suppose that f(X ⊕ Y) = f(X) ⊕ f(Y) for all other cases. Let t = 〈k1, k2〉 ⊕ (〈k1, k2〉 ⊕
m). Clearly, t is reducible to m, but this is not the case for f(t) = k1 ⊕ (〈k1, k2〉 ⊕ m).

In this case, the problem is that the two instances of X in the rewrite rule are transformed
differently, which destroys the matching. This suggests that if a constructor c enclosing the extracted
term in l has a non-linear variable at its ith argument position then the equations of f must not split
the ith argument of c.

The examples above (partly) motivate the following definitions.

Definition 4.28. We call a typed abstraction Ff = (f,Ef):

• field-preserving for position i of c if, for all equations of Ff of the form f(c(p1, . . . , pn)) =

〈e1, . . . , ed〉 and all q ∈ split(pi), there is a j ∈ d̃ such that either ej = f(q) or ej =

c(. . . , f̂(qi), . . .) and q ∈ set(qi).

• non-splitting for position i of c if pi is not a pair for all equations of Ff of the form
f(c(p1, . . . , pn)) = 〈e1, . . . , ed〉.

Note that if Ff is non-splitting for i of c then it is (trivially) field-preserving for position i of c.
Moreover, if Ff is homomorphic for c then it is non-splitting for all argument positions i of c.

Definition 4.29 (Extractable position). We say that a rewrite rule l → r ∈ R extracts position
i ∈ ñ of c ∈ Σn if there are terms t1, . . . , tn such that c(t1, . . . , tn) ∈ subterm(l) and r = ti. We
call i an extractable position of c if there is a rewrite rule l→ r ∈ R that extracts position i from c.

26

For example, the projection rewrite rule π1(〈X,Y 〉)→ X extracts position 1 of pairs.

Definition 4.30 (Compatibility with rewrite theory). A typed abstraction Ff is compatible with a
rewrite rule l→ r if one of the following conditions holds:

(C1) l = c(u1, . . . , un) and r = ui for some i ∈ ñ such that c /∈ topsym(Ax),

(C2) l = d(u1, . . . , uj−1, c(v1, . . . , vn), uj+1, . . . , um) and r = vi for some j ∈ m̃ and i ∈ ñ
such that c /∈ topsym(Ax), none of the vi’s is a pair, and the following conditions hold:

(a) Ff is field-preserving for the extracted position i of c,

(b) Ff is non-splitting for all positions i of c such that vi is a non-linear variable of l, and

(c) Ff is homomorphic for all c′ ∈ funsym({u1, . . . , uj−1, v1, . . . , vn, uj+1, . . . , um}).

(C3) l has an arbitrary shape and either

(a) r is a constant,

(b) l ∈ cdom(Ff) and Ff is homomorphic for topsym(l), or

(c) r ∈ cdom(Ff) and Ff is homomorphic for funsym(l, r).

We say that Ff is compatible with the rewrite theory (Σ, Ax,R), or R,Ax-compatible for short, if
Ff is pattern-disjoint, Ax-closed, and compatible with all rewrite rules in R.

We illustrate this definition with an example.

Example 4.31. Let us check that the typed abstraction Ff1 = (f1, Ef1) from Example 4.12
is compatible with the rewrite theory Rcs = (Σcs, Axcs, Rcs) from Example 3.2. As already
previously stated, Ff1 is pattern-disjoint and Axcs-closed. It remains to check that it is compatible
with all rewrite rules in Rcs.

Let us consider the symmetric decryption rule {|{|X|}K |}−1
K → X . We check that this rule

satisfies condition (C2). We have d = {| · |}−1
· , u1 = {|X|}K , u2 = K, c = {| · |}·, v1 = X , and

v2 = K. First, we confirm that there are no symmetric encryptions at the top-level of any axiom
and that none of v1 and v2 is a pair. Second, we check conditions (C2.a-c) in turn. Condition (C2.a)
holds, since the only relevant equation of Ff1 is f1({|X,Y |}Z) = 〈f1(X), f1(Y)〉, which is clearly
field-preserving for the cleartext position 1 extracted by the rewrite rule. Furthermore, the only
non-linear variable in l is K and F1 is non-splitting for the relevant key position 2 of symmetric
encryption. Hence, (C2.b) also holds. Condition (C2.c) holds vacuously, since the set of function
symbols funsym({v1, v2, u2}) is empty.

Next, we verify thatFf1 is compatible with the signature verification rule ver([X]pri(Y), pk(Y))→
X . Since Ff1 is homomorphic for all constructors occurring in this rule and its right-hand side is a
variable, it immediately follows that this rule satisfies condition (C3.c). Alternatively, we can show
that it satisfies (C2). The compatibility of Ff1 with the asymmetric decryption and projection rules
is justified similarly.

We first establish a version of deducibility preservation without substitutions.

Theorem 4.32 (Deducibility preservation). Let Ff be a R,Ax-compatible typed abstraction and
let T ∪ {t} be a set of R,Ax-normal terms such that T contains all constants, i.e., C ⊆ T . Then we
have T `E t implies f(T) `E f(t).

By combining this theorem with Theorems 4.23 and 4.18, we can now derive (P1) which we
formalize as the following corollary.

27

Corollary 4.33 (Deducibility preservation with substitutions). Let Ff be a R,Ax-compatible typed
abstraction. Suppose σ is a R,Ax-normal well-typed ground substitution and T ∪ {u} is a set of
terms such that (i) f(IK0) ⊆ IK ′0 and (ii) T ∪ {u} ⊆ udom(Ff) ∩ cdom(Ff). Then we have that
Tσ, IK0 `E uσ implies f(T)f(σ), IK ′0 `E f(u)f(σ).

This completes our discussion of (P1). Next, we discuss syntactic criteria for the disequality
preservation in condition (iii) of Theorem 4.14.

4.3.7 Syntactic criteria for disequality preservation (P3)

Condition (iii) of Theorem 4.14 requires that, for all (ι, κ, t, u) ∈ Eq+
φ , all thread-id interpretations

ϑ, and all R,Ax-normal well-typed ground substitutions σ, we have

f(tϑ(ι))f(σ) =E f(uϑ(κ))f(σ) =⇒ tϑ(ι)σ =E u
ϑ(κ)σ. (I)

Since the universal quantification over substitutions makes this condition hard to check in practice,
we propose syntactic criteria for its verification.

Here, we present such a criterion that is applicable if t and u do not contain any message
variables. Assuming that f(t) = t and f(u) = u, we can derive tϑ(ι)f(σ) =E uϑ(κ)f(σ) from
the premise of condition (I). Since we have that f(Xσ) = Xσ for all non-message variables
X ∈ dom(σ), we obtain tϑ(ι)σ =E u

ϑ(κ)σ as required. Hence, we have just proved the following
simple syntactic criterion.

Proposition 4.34. Let (ι, κ, t, u) ∈ Eq+
φ such that (i) (vars(t) ∪ vars(u)) ∩ Vmsg = ∅, and

(ii) f(t) = t and f(u) = u. Then, for all thread-id interpretations ϑ and well-typed ground
substitutions σ, we have that f(tϑ(ι))f(σ) =E f(uϑ(κ))f(σ) implies tϑ(ι)σ =E u

ϑ(κ)σ.

Note that for this criterion to be applicable, we require that f is the identity for the terms
in positively occurring equations. This is often the case, as these terms typically have a simple
structure, e.g., nonces or timestamps. However, this criterion cannot be used to justify the soundness
of the typed abstraction from Example 4.12 with respect to the property φauth from Example 3.11.
Although we can expand the equality of the two tuples in that example into a conjunction of six
simpler equations, we can only apply the criterion above to the first four of these. The last two
contain message variables and require a more general syntactic criterion for condition (I). In
Appendix A.5, we present such a criterion, which covers the case where message variables may
occur on one side of the equation.

4.4 Atom-and-variable removal abstractions

Typed abstractions offer a wide range of possibilities to transform cryptographic operations includ-
ing subterm removal, splitting, and pulling fields outside of such an operation. We complement
these abstractions with two kinds of untyped abstractions. The first type, discussed here, allows us
to remove unprotected atoms and variables of any type. The second type removes redundancy in
the form of intruder-derivable terms and is discussed in the next subsection.

4.4.1 Specification of atom-and-variable removal

We first present the formal definition of atom-and-variable removal abstractions, then we motivate
some restrictions needed for soundness, and finally we illustrate the application of atom-variable
removal on our running example.

An atom-and-variable removal abstraction does not remove all occurrences of an atom or a
variable from a given term t, but those that are fields of t. Intuitively, these unprotected atoms and

28

variables do not themselves provide any security properties and can therefore safely be removed.
This intuition is most obvious for atom removal: the intruder already knows all constants and
agent names and he can replace unprotected fresh values by his own ones of the same type. In
the following definition, we formulate atom-and-variable removal abstracions, where we use the
abbreviation av(t) = atoms(t) ∪ vars(t).

Definition 4.35. An atom-and-variable removal abstraction is a general abstraction G = (remT , remT),
where T ⊆ av(MP) is a parameter denoting the set of atoms and variables to be removed and
remT : T → T ∪ {nil} is defined by

(i) remT (u) = nil if u ∈ T ∪ TTID

(ii) remT (〈t1, t2〉) =

remT (t1) if remT (t2) = nil

remT (t2) if remT (t1) = nil

〈remT (t1), remT (t2)〉 otherwise

(iii) remT (t) = t for all other terms.

By point (i) any term in T ∪ TTID is removed. Note that this covers unindexed terms in
protocol specifications and security properties and indexed terms during execution. Point (ii)
allows us to remove pairs or their components. Point (iii) ensures that all other terms remain
unchanged. Note that, for all terms t, remT (t) either does not contain nil or equals nil. Hence by
Definition 4.4, nil does not occur in abstracted roles and traces and therefore remT (P) is a protocol
(see Definition 3.7).

Due to point (iii) of Definition 4.35, atom-and-variable removal abstractions cannot remove
an atom or variable from a non-pair term. It is even unclear how to define this in general. Let
us attempt to define a hypothetical variant rem ′T of remT . Consider a non-pair composed term
t = c(a1, . . . , an) and suppose rem ′T maps some but not all arguments of t to nil. One may think
of two possible definitions for rem ′T (t): (1) rem ′T (t) = nil or (2) rem ′T (t) is the tuple consisting
of the non-nil arguments of c. The following two examples consider each of the two definitions in
turn and show that neither of them preserves deducibility.

Example 4.36. Consider the terms t = 〈na, {|nb|}na〉 and u = nb containing the nonces na and
nb. Let T = {na}. Then, we have rem ′T (t) = nil and rem ′T (u) = nb. Moreover, we also have
t `E u, but rem ′T (t) `E rem ′T (u) does not hold, as nb is not deducible from nil.

Example 4.37. Suppose that h1, h2 ∈ Σ2 are binary hash functions and Ax contains the following
axiom:

h1(h2(X,Y), Z) ' h1(h2(X,Z), Y).

Consider the two terms t = h1(h2(n1, n2), n3) and u = h1(h2(n1, n3), n2) where n1, n2 and n3

are nonces and let T = {n3}. Then we have rem ′T (t) = h2(n1, n2), and rem ′T (u) = h1(n1, n2).
Moreover, we have t =Ax u, but rem ′T (t) =Ax rem ′T (u) fails to hold. Hence, t and u are derivable
from each other, while neither of rem ′T (t) and rem ′T (u) is derivable from the other.

Similar counterexamples can also be constructed if variable removal abstractions are considered.
This highlights the necessity of point (iii) in Definition 4.35.

The following example shows that the soundness of remT calls for a restriction of the occur-
rences of the removed atoms and variables. Namely, they may occur exclusively as fields of a term,
i.e., we cannot remove an atom or variable that also occurs under a cryptographic operation in the
same term.

29

Example 4.38. Consider terms t = 〈na, h1(na)〉 and u = h2(na), where h1 and h2 are hash
function symbols and na is a nonce. With T = {na} we have remT (t) = h1(na) and remT (u) =
h2(na). Moreover, we also have t `E u, but remT (t) `E remT (u) fails to hold.

This example motivates the following definition.

Definition 4.39 (Clear terms). A term u is clear in a term t if u /∈ subterm(split(t) \ {u}), i.e., u
occurs at most as a field in t. For sets of terms T and U , we say that T is clear in a term t if every
term in T is clear in t and that T is clear in a set of terms U if T is clear in every term in U .

Note that u is also clear in t if it does not appear at all in t. Our soundness result requires that
all variables and atoms in T are clear in the terms to which remT is applied. Moreover, it requires
that the elements of T do not appear in the properties of interest.

In the following example, we illustrate the use of atom-and-variable removal abstractions to
transform IKE1

m into IKE2
m.

Example 4.40 (IKE1
m to IKE2

m). We use atom-and-variable removal to simplify the protocol IKE1
m.

First, we recall the specification of (the initiator role of) IKE1
m.

SIKE1
m
(A) = send(sPIa, o, sA1 , exp(g, x),na)·

recv(sPIa,SPIb, sA1 ,Gb,Nb) · Running·
send(sPIa,SPIb, A,B,AUTHaa ′, sA2 , tSa, tSb)·
recv(sPIa,SPIb, B,AUTHba ′, sA2 , tSa, tSb) · Secret · Commit

To highlight the changes in this abstraction step, we have underlined the terms to be removed
from IKE1

m: the constants sA1 , sA2 , tSa , and tSb, the fresh values sPIa and sPIb, and the
variables SPIa and SPIb. We use the atom-and-variable removal abstraction remT with parameter
T = {sA1 , sA2 , tSa, tSb, sPIa, sPIb,SPIa,SPIb}. Note that we can neither remove the constant
o nor the variables A and B, since these terms are not clear in the authenticators AUTHaa ′ and
AUTHab′. Applying remT to IKE1

m, we obtain the (initiator role of the) protocol IKE2
m as given

below.

SIKE2
m
(A) = send(o, exp(g, x),na) · recv(Gb,Nb) · Running ·

send(A,B,AUTHaa ′) · recv(B,AUTHba ′) · Secret · Commit

Note that the session keys and the authenticators are non-pair composed terms and hence remain
untouched. We later use a redundancy removal to further simplify IKE2

m by removing intruder-
derivable occurrences of the constant o and the agent variables A and B from the role descriptions.

4.4.2 Soundness for atom-and-variable removal abstractions

We now turn our attention to the soundness result for atom-and-variable removal abstraction. This
result requires that we restrict our attention to well-formed protocols. To define this predicate on
protocols, we first introduce the notion of accessible variables.

Definition 4.41 (Accessible variables). We say that a variable X is accessible in a term t if either

(i) t = X or

(ii) t = c(t1, . . . , tn) for some c ∈ Σn, some position i ∈ ñ of c is extractable, and X is
accessible in ti.

30

Intuitively, a variable X is accessible in a term t if there is a path from t’s root to an occurrence
of X consisting of only extractable positions. This is to ensure that if X is accessible then it is
potentially deducible. For example, X is accessible in {|X|}k since an agent can derive X from
{|X|}k using the rewrite rule {|{|X|}K |}−1

K → X , of course provided it also knows k. In contrast, X
is not accessible in h(X) since there is no way to deduce X from h(X). However, X is accessible
in 〈X, h(X)〉 since it is accessible using the first projection. We now give the formal definition of
well-formed protocols.

Definition 4.42. A protocol P is well-formed if all non-agent variables first occur in receive events,
i.e., for all roles R ∈ dom(P) and all send and receive events ev(t) in role P (R) and all non-agent
variables X ∈ vars(t) \Vα, there is an event recv(u) in P (R) such that recv(u) equals or precedes
ev(t) in P (R) and X is accessible in u.

A well-formed protocol captures the intuition that an agent must know what he sends and the
elements that he receives into variables are accessible, e.g., by decrypting a ciphertext. Our notion
of well-formedness is a weaker form of executability, which would additionally require that the
agent also knows the relevant keying material. Hence, all practical protocols satisfy this condition.

Our soundness result for atom-and-variable removal abstractions is stated in the following
theorem.

Theorem 4.43 (Soundness for atom-and-variable removal abstractions). Let P be a well-formed
protocol, φ ∈ LP a property, T ⊆ av(MP) a set of atoms and variables such that

(i) T is clear inMP ,

(ii) T ∩ av(EqTermφ) = ∅,

(iii) nil /∈ remT (Secφ ∪ Evtφ), and

(iv) IK0 ⊆ IK ′0,

(v) for all e(t) ∈ Evt+
φ and e(u) ∈ Evt(MP), we have remT (t) = remT (u) implies t = u.

Then for all states (tr, th, σ) ∈ reach(P, IK0), there is a ground substitution σ′ such that

1. (remT (tr), remT (th), σ′) ∈ reach(remT (P), IK ′0),

2. (tr, th, σ) 2 φ implies (remT (tr), remT (th), σ′) 2 remT (φ).

To preserve attacks, condition (i) ensures that the removed atoms and variables are clear in all
protocol terms. Condition (ii) requires that no removed atom or variable occurs in the property’s
equalities. Together with condition (iii) it implies condition (a) of the definition of safe formulas
(Definition 4.5). Condition (iv) requires that the initial knowledge of the intruder in the abstract
protocol subsumes that in the original protocol. Finally, condition (v) reflects condition (e) of the
definition of safe formulas (Definition 4.5).

We prove Theorem 4.43 by composing two separate soundness results for atom removal and for
variable removal abstractions, respectively. Their statements and proofs appear in Appendix A.7.

4.5 Redundancy removal abstractions

The second kind of untyped abstractions are redundancy removal abstractions. A redundancy
removal abstraction rd enables the elimination of redundancies within each role of a protocol.
Intuitively, a protocol term t appearing in a role r can be abstracted to rd(t) if t and rd(t) are
derivable from each other under the intruder knowledge T containing the terms preceding t in

31

r and the initial knowledge IK0. For example, we can simplify r = send(t) · recv(〈t, u〉) to
send(t) · recv(u). In contrast to atom-and-variable removal, redundancy removal can also remove
composed terms. It is therefore a very effective ingredient for automatic abstraction, which we
describe in Section 6.

4.5.1 Specification of redundancy removal abstractions

We now formally define our class of redundancy removal abstractions.

Definition 4.44. A redundancy removal abstraction for a protocol P is a general abstraction
G = (rd , id) where id is the identity function on T and the function rd : T → T ∪ {nil} satisfies
two conditions:

(i) for all R ∈ dom(P), we have that RDrd (IK0, P (R)) holds, where the predicate RDrd (T, S)
is inductively defined by the following three rules:

RDrd (T, ε)

RDrd (T, r)

RDrd (T, s · r)
s ∈ Sig

RDrd (T ∪ {t}, r) T,Vα, rd(t) `E t T,Vα, t `E rd(t)

RDrd (T, ev(t) · r) ev ∈ {send, recv}

Note that in these rules, rd(t) is removed from the deducibility conditions if it equals nil. We
also define rd(ti) = rd(t)i for all i ∈ TID and t ∈MP .

(ii) for all terms t /∈MP ∪MTID
P , we have rd(t) = t.

Intuitively, the predicate RDrd (T, ev(t) · r) ensures for a protocol message t that the intruder is
able to derive t from rd(t) and his knowledge T , and vice versa. The first rule says that RDrd (T, ε)
always holds. This captures the intuition that any redundancy removal works for the empty role
description. The second rule allows us to ignore all the signals events as they do not affect the
intruder’s knowledge. In the last rule, the first premise requires that the predicate holds for T plus
the term t in the first element of the event sequence, and the tail r. By adding t to T , we capture
the fact that the intruder learns t after the event ev(t) has been executed. The second premise
ensures that t is derivable from T , Vα, and rd(t). The set of agent variables Vα is added to T to
symbolically represent the intruder knowledge of all agents. The third premise is the same as the
second one, except that the roles of t and rd(t) are swapped. We will usually identify the pair
(rd , id) with its first, non-trivial component rd .

In the following example, we illustrate the use of redundancy removal abstractions to further
simplify the protocol IKE2

m.

Example 4.45. First, we recall IKE2
m whose role descriptions are given below, where the authenti-

cator terms AUTHxx ′ correspond to abstractions of the corresponding AUTHxx terms, resulting
from the first abstraction step described in Example 4.12.

SIKE2
m
(A) = send(o, exp(g, x),na) · recv(Gb,Nb) · Running ·

send(A,B,AUTHaa ′) · recv(B,AUTHba ′) · Commit

SIKE2
m
(B) = recv(o,Ga,Na) · send(exp(g, y),nb) ·

recv(A,B,AUTHab ′) · Running · send(B,AUTHbb′) · Commit

32

A B

gx ,na

gy ,nb

mac(sh(A,B), o, gx ,na,nb, kdf(gyx))

mac(sh(B,A), gy ,nb,na, kdf(gxy))

Figure 3: The IKE3
m protocol.

To remove the underlined terms, we use the following redundancy removal abstraction rd :

rd(〈o, exp(g, x),na〉) = 〈exp(g, x),na〉
rd(〈o,Ga,Na〉) = 〈Ga,Na〉

rd(〈A,B,AUTHaa ′〉) = AUTHaa ′

rd(〈A,B,AUTHab′〉) = AUTHab′

rd(〈B,AUTHba ′〉) = AUTHba ′

rd(〈B,AUTHbb ′〉) = AUTHbb′

rd(t) = t for all other messages t

It is not difficult to see that rd satisfies the conditions of Definition 4.44. Applying rd to IKE2
m, we

obtain the protocol IKE3
m specified as follows.

SIKE3
m
(A) = send(exp(g, x),na) · recv(Gb,Nb) · Running ·

send(AUTHaa ′) · recv(AUTHba ′) · Commit

SIKE3
m
(B) = recv(Ga,Na) · send(exp(g, y),nb) ·

recv(AUTHab′) · Running · send(AUTHbb ′) · Commit

In Figure 3, we depict the message sequence chart of this protocol with all abbreviations expanded.

4.5.2 Soundness for redundancy removal abstractions

The soundness result for redundancy removal abstractions is stated in the following theorem.

Theorem 4.46 (Soundness for redundancy removal abstractions). Let P be a protocol, φ ∈ LP a
property, and rd ∈ RDP a redundancy removal abstraction. Suppose that

(i) IK0 ⊆ IK ′0,

(ii) nil /∈ rd(Evtφ),

(iii) for all e(t) ∈ Evt+
φ and e(u) ∈ Evt(MP), we have rd(t) = rd(u) implies t = u.

Then for all states (tr, th, σ) ∈ reach(P, IK0), we have

1. (rd(tr), rd(th), σ) ∈ reach(rd(P), IK ′0), and

2. (tr, th, σ) 2 φ implies (rd(tr), rd(th), σ) 2 φ.

33

Abstraction
generator

Protocols
(P, φ)

A stack of
abstract
models
(P ′, φ′)

Pop model
A model
(P ′, φ′)

The
verifier

Attack
found?

Spurious
attack?

P 2E φ P �E φ

Yes

NoNo

Yes

Figure 4: The abstraction workflow for the analysis of security protocols.

4.6 Well-formedness preservation for protocol abstractions

In this section, we present well-formedness preservation results for our three types of protocol
abstractions. These results are required for the composition of typed abstractions, atom-and-variable
removal abstractions, and redundancy removal abstractions to transform well-formed protocols.

Proposition 4.47. Let Ff = (f,Ef) be a typed abstraction. If P is well-formed then so is f(P).

Proposition 4.48. Let T be a set of atoms and variables such that T is clear in MP . If P is
well-formed, then so is remT (P).

Proposition 4.49. Let rd be a redundancy removal abstraction and P be a well-formed protocol.
Assume that for all non-agent variables X ∈ VP and all receive events recv(t) in which X first
occurs, we have that X is accessible in rd(t). Then rd(P) is well-formed.

The proofs of these propositions can be found in Appendix A.8.

5 Using protocol abstractions for efficient verification

Recall that our aim is to make protocol verification more efficient. Given a protocol and a property,
our high-level idea is to construct a simpler version of the protocol and the property that is easier
to verify. In particular, if the simpler version is a sound abstraction of the original, then we can
conclude that the original also satisfies its property.

In the previous section, we gave sufficient conditions for abstractions to be sound. However, not
all sound abstractions are useful for verification. In particular, if an abstraction is vulnerable to an
attack that does not apply to the original, then we might waste verification time to find this attack,
without being able to draw any conclusion about the original. Ideally, abstractions for verification
extract the “core” of the cryptographic protocol, i.e., those parts of the protocol that are instrumental
in achieving the property, and omit all other constructions. In this ideal case, the abstractions would
have exactly the same properties as the original.

In this section, we describe an algorithm for efficient protocol verification based on such
abstractions. Because we do not have a direct construction algorithm for sound abstractions, we use
heuristics to generate reasonable abstractions and then check if they meet the soundness conditions.
The workflow of our algorithm is described in Figure 4: we first generate a stack of successively
more abstract protocols and properties, with at the bottom the original, and at the top an abstract
protocol that we hope represents the core of the protocol required to establish the property.

We then verify the protocols and the properties in this stack top-down, based on the assumption
that it is more efficient to analyze a more abstract protocol. We provide empirical evidence for this

34

in the next section. If we can successfully verify a protocol from the stack, we know the original
protocol meets its property, and we can stop the analysis. If we find an attack, we try to reconstruct
the attack on the original. If this is possible, we know the original protocol does not satisfy the
property. If not, the attack is spurious, and we proceed to the next protocol on the stack, which is
less abstract than the previous one.

We describe in Section 5.1 how we generate abstractions and in Section 5.2 how we check for
spurious attacks.

5.1 Generating abstractions for verification

Our heuristics to generate abstractions uses three strategies, corresponding to our three types
of abstractions, which we apply in order. After applying a strategy, we check if the resulting
abstraction is sound. We discuss the three strategies in turn.

5.1.1 Simplifying or removing constructors that might not be needed to establish the prop-
erty

〈·, ·〉

{| · |}k

{| · |}sh(A,B)

〈·, ·〉

tA

{| · |}k

t

Figure 5: Structure of u

Many protocols use (cryptographic) constructors that are, at
most, needed to guarantee some (but not all) of its desired
properties. To see this, consider the following example.

Example 5.1 (The purpose of cryptographic constructors). Let
k be a session key and t an arbitrary term. Let u be defined
as ({|t|}k, {|{|A, t|}sh(A,B)|}k). In Figure 5 we give a graphical
representation of the structure of u.

If the security property encodes that t needs to be authenti-
cated, we look for the strongest mechanism that could guarantee
this. Within u, this would be the symmetric encryption with
the long-term key sh(A,B), since we do not need to rely on
the secrecy of the session key. Thus, within u, authentication
of t can be guaranteed by this constructor only. If we are only
interested in authentication of t, we can consider removing t
from the protection of all other constructors, which in this case are the encryptions with k.

If the security property encodes that t needs to be secret, the situation changes, since secrecy
needs to be guaranteed for all occurrences of t, and not just one. Thus, in the left branch, secrecy of
t is guaranteed on the basis of the session key k, whereas in the right branch, secrecy is guaranteed
on the basis of both constructors. Thus, within u, t’s secrecy depends on the secrecy of another
term, and not just the long-term key. When we want to abstract the term u sent in a protocol without
introducing new attacks, we need to ensure we do not make the situation worse. Thus, we would
not modify the left branch. However, in the right branch we could remove t from the protection of
either one of the constructors, since the overall guarantee within u would still be the same.

We will exploit this intuition by first determining which (sub)terms are relevant for establishing
the desired property. We represent this by assigning security labels to each of them. In a second
step, we give an algorithm that moves subterms out of their encapsulating constructor as long as
their security labels are not increased.

For the first step, we first define which constructors serve which purpose. For example, a hash
function does not authenticate its subterms, but it does not reveal its subterms either, and hence may
be used in the context of secrecy. We differentiate between two main objectives (authentication and
confidentiality) and assign one of three labels for each.

35

Confidentiality Authentication
Top-level constructor of t `c(t) `a(t)

symmetric encryptions or MACs with long-term keys YES YES
MACs with session keys YES MAYBE
symmetric encryptions with session keys MAYBE MAYBE
public-key encryptions or hashes YES NO
signatures NO YES
others NO NO

Table 1: Security labels for different cryptographic operations, encoding what they might achieve
for their strict subterms.

Security labels. We define the set of (security) labels Label = {NO,MAYBE,YES}, with a total
order ≤lb such that NO ≤lb MAYBE ≤lb YES. The lowest label NO encodes that the property is
not met, the highest label YES that it can be met, and the middle label MAYBE that it depends on
the properties of another term (e.g., a session key).

The labels for constructors (i.e., the guarantees they establish for their subterms) are specified
by the functions `a and `c defined in Table 1. When extending these labels to a complete protocol,
the simplest case occurs for authentication, where we simply determine the label of the strongest
constructor that provides authenticity for the target term t. Intuitively, t needs to be authenticated
only once in the protocol.

We define an auxiliary function pathmax that takes a term x, a position p, and a labelling
function f , and returns the maximum of f applied to all subterms from the root along the path to p.
Formally, we define pathmax (x, p, f) = max

({
f(x|p1)

∣∣ ∃p2. p2 6= ε ∧ p1 · p2 = p
})

. We will
use pathmax to take the maximum of f over all constructors within x that might authenticate x|p
or keep it confidential.

Definition 5.2 (Protocol authentication label). Let P be a protocol, φ a property, and t a term. We
define the protocol authentication label authlabel(P, φ, t) as follows:

1. authlabel(P, φ, t) = NO, if IK0,Vα `E t or t 6∈ subterm(MP)∩ subterm(EqTermφ),
and

2. authlabel(P, φ, t) = max
({

pathmax (u, p, `a)
∣∣ u ∈MP ∧ u|p = t

})
, otherwise.

For confidentiality, we cannot take the maximum over all positions, since we need to ensure
that all occurrences of t are protected. Thus, we consider the labels of all paths on which t occurs,
and take the minimum.

Definition 5.3 (Protocol confidentiality label). Let P be a protocol, φ a property, and t a term. We
define the protocol authentication label conflabel(P, φ, t) as follows:

1. conflabel(P, φ, t) = NO, if IK0,Vα `E t or t 6∈ subterm(MP) ∩ subterm(Secφ), and

2. conflabel(P, φ, t) = min
({

pathmax (u, p, `c)
∣∣ u ∈MP ∧ u|p = t

})
, otherwise.

Example 5.4. Let us consider the terms u and t in Figure 5. Suppose that u ∈ MP , t ∈
subterm(Secφ ∩ EqTermφ), and IK0,Vα 0E t. Let P be a protocol such that (a) u occurs inMP

and (b) all occurrences of t inMP are within u. Then we have authlabel(P, φ, t) = YES and
conflabel(P, φ, t) = MAYBE.

36

We use the label definitions to construct an abstraction in the following way. First, we compute
the authentication and confidentiality labels for all terms in the protocol and property. Second,
we construct candidate abstractions in which we pull subterms out of their constructors (e.g.,
abstracting {|x1, x2, x3|}k to 〈x2, {|x1, x3|}k〉). For each candidate, we compute the new labels. Our
main criterion for applying an abstraction is that,

for each term, the labels in the candidate abstraction are not lower than those of the
corresponding terms in the original.

Additionally, we can remove a constructor entirely, if all its arguments can be pulled out. To prevent
the introduction of spurious attacks, we do not perform abstractions that turn two non-unifiable
subterms into unifiable ones. In Appendix B.1.2, we discuss in more detail how to generate an
abstraction based on security labels.

5.1.2 Removing atoms or variables that might not be needed to establish the property

In many cases, there are atoms or variables that occur in the protocol messages but that do not
occur in the security property φ. They might therefore be redundant and we generate an abstraction
in which they are removed from the protocol messages. Such simplifications can be achieved by
atom-and-variable removal abstractions. In Appendix B.1.3, we present an algorithm that identifies
unnecessary atoms and variables, and removes them from the protocol messages.

5.1.3 Removing redundant terms based on preceding intruder knowledge

A somewhat related case occurs for terms in a protocol message m that the intruder can derive
from his previous knowledge. A sufficient condition for this is that they can be derived from the
combination of the initial intruder knowledge and the messages sent before m in the same role. As
before, they might be redundant and we generate an abstraction in which they are removed from
the protocol messages. In Appendix B.1.4, we explain how to eliminate such redundancies using
redundancy removal abstractions.

5.2 Checking for spurious attacks

Our abstractions are sound, but not complete. Therefore, we may encounter false negatives,
i.e., spurious attacks. To check whether an attack on a security property φ in an abstract model
corresponds to a real attack in the original one, we perform the following steps. First, for each thread
in the attack trace, we construct a (symbolic) trace whose events correspond to those occurring in
the abstract thread. Then, we ask the verifier to search for an attack in the original protocol such
that this attack contains only threads that are computed in the previous step. Formally, let (tr, th, σ)
be the state that is corresponding to the attack found in the abstract model and ID ⊆ TID be the
set of thread identifiers in tr. For each i ∈ ID , let ei be the last event of thread i in tr, e′i be the
corresponding event in the original protocol description, and let tr i be the symbolic trace such
that tr i = (i, ev1) · (i, ev2) · · · (i, evm), where evj is the j-th event in the role P (π1(th(i))) of the
original protocol P and evm = e′i. Intuitively, tr i is the original symbolic trace corresponding to
the abstract trace obtained by projecting the attack trace tr to thread i’s events. The verifier checks
whether there exists a concrete attack consisting only of the events in the traces tr i for i ∈ ID .

6 Implementation and case studies

In this section, we explain how we have implemented our abstraction mechanism for the Scyther
tool. The resulting tool is available online [36]. We then validate the effectiveness of our method

37

on a large number of real-world case studies.

6.1 Implementation for the Scyther tool

Scyther [14] is a leading automated security protocol verification tool. It supports verification for
both a bounded and an unbounded number of threads. It also supports multi-protocol analysis, i.e.,
verifying a composition of multiple protocols. Scyther takes as input a security protocol description
specified by a set of linear role scripts, which include the intended security properties. The tool
supports both user-defined types and hash functions. These features match our setting very well.

In this section, we first present the correspondence between claim events in Scyther and our
security property formulas. Then, we describe an extension of the labeling mechanism and the
abstraction heuristics. In Appendix B.2, we demonstrate the application of our abstraction heuristics
on an example.

6.1.1 Claim events and security properties

In Scyther, security properties are specified by means of claim events, which are integrated into
protocol role specifications. Intuitively, claim events express the intended security goal that an
agent executing a given protocol role expects to achieve. For our implementation, we consider the
following types of claim events that are used to express secrecy and various forms of authentication
properties. We adopt the definitions of these properties from [32, 14, 13]. All these properties
include the additional premise that both the agent owning the thread executing the claim and its
(intended) communication partner are honest, which we do not repeat below.

1. claim(A, Secret, t) expresses the secrecy of a term t for role A, i.e., whenever an agent a
executes a role A thread up to the claim event, term t cannot be derived by the adversary.

2. claim(A,Alive) expresses the aliveness property for roleA, i.e., whenever an agent a executes
a role A thread up to the claim event, apparently with an agent b, then b has previously been
running a protocol thread.

Note that this property still holds even when b was running the protocol with someone else
(not a). Strengthening aliveness leads us to the notion of weak agreement property.

3. claim(A,Weakagree) expresses weak agreement property for role A, i.e., whenever an agent
a executes a roleA thread to the claim event, apparently with an agent b, then b has previously
been running a protocol thread, apparently with a.

Neither aliveness nor weak agreement guarantee that agents agree on their respective roles or
on any data exchanged. This additional requirement is captured by non-injective agreement.

4. claim(A,Commit, B,m) and claim(B,Running, A,m′) are used to formalize non-injective
agreement as defined by Lowe [32]. We say that a protocol guarantees non-injective agree-
ment for role A with role B on a message m if, whenever a executes a role A thread up to the
Commit claim event, apparently with b in role B, then b has previously run a role B thread
(at least) up to the Running claim, apparently with a in role A, and the instances of m and
m′ agree according to the local views of these two agents’ threads.

5. claim(A,Niagree) expresses another form of non-injective agreement stating that role A
satisfies non-injective agreement if for each role A thread reaching the claim in some trace,
there exist threads for all other roles of the protocol, such that all events causally preceding
the claim (according to the protocol specification) must have occurred before the claim (in
the trace) and each pair of matching send and receive events agree on the messages they
contain.

38

6. claim(A,Nisynch) expresses the non-injective synchronization property. This claim strength-
ens claim(A,Niagree) by additionally requiring that the order of the events preceding
claim(A,Nisynch) must be correct as found in the protocol description, i.e., the send events
occur before the corresponding receive events.

Note that non-injective agreement specified by claim(A,Niagree) is different from that specified
by the Running and Commit signals. The property does not require agreement on a specified set of
data values. Instead, it requires agreement on the messages exchanged between the agents, which
implies agreement on the data contained in those messages.

We now explain how to formalize these properties in our security property language using an
example.

Example 6.1. Consider the Needham-Schroeder public-key (NSPK) protocol from [35]. We mimic
the claim events by introducing the corresponding signal events with the following set of signals:

Sig = {Create, Secret,Alive,Weakagree,Commit,Running,Niagree,Nisynch}.

The signal event Create models the creation of a new protocol thread, which mimics the semantics
of the Create event defined in [13, page 27]. The remaining signals represent the corresponding
claim events. Our formalization of the Needham-Schroeder public-key protocol is now given as
follows.

NS (A) = Create · send({A,na}pk(B)) · recv({na,Nb}pk(A)) · Running · send({Nb}pk(B))·
Commit · Secret · Alive ·Weakagree · Niagree · Nisynch

NS (B) = Create · recv({A,Na}pk(B)) · Running · send({Na,nb}pk(A)) · recv({nb}pk(B))·
Commit · Secret · Alive ·Weakagree · Niagree · Nisynch

We formalize the secrecy, aliveness, weak agreement, non-injective agreement, and non-injective
synchronization properties for role A as follows.

1. Secrecy of na:

φNS
sec = ∀ι. (role(ι, A) ∧ honest(ι, {A,B}) ∧ steps(ι,Secret))

⇒ secret(ι,na)

2. Aliveness:

φNS
alive = ∀ι. (role(ι, A) ∧ honest(ι, {A,B}) ∧ steps(ι,Alive))

⇒ (∃κ. steps(κ,Create) ∧
((role(κ,A) ∧A@κ = B@ι) ∨
(role(κ,B) ∧B@κ = B@ι)))

3. Weak agreement:

φNS
wagree = ∀ι. (role(ι, A) ∧ honest(ι, {A,B}) ∧ steps(ι,Weakagree))

⇒ (∃κ. steps(κ,Create) ∧
((role(κ,A) ∧A@κ = B@ι ∧B@κ = A@ι) ∨
(role(κ,B) ∧B@κ = B@ι ∧A@κ = A@ι)))

4. Non-injective agreement (on na and nb) based on Running and Commit claims:

φNS
cm = ∀ι. (role(ι, A) ∧ honest(ι, {A,B}) ∧ steps(ι,Commit))

⇒ (∃κ. role(κ,B) ∧ steps(κ,Running) ∧
〈A,B,na,Nb〉@ι = 〈A,B,Na,nb〉@κ)

39

5. Non-injective agreement specified by claim(A,Niagree):

φNS
niagree = ∀ι. (role(ι, A) ∧ honest(ι, {A,B}) ∧ steps(ι,Niagree))

⇒(∃κ. role(κ,B) ∧
steps(κ, recv({A,Na}pk(A))) ≺ steps(ι,Niagree) ∧
steps(κ, send({Na,nb}pk(A))) ≺ steps(ι,Niagree) ∧
〈A,B〉@ι = 〈A,B〉@κ ∧
({A,na}pk(B))

@ι = ({A,Na}pk(B))
@κ ∧

({na,Nb}pk(A))
@ι = ({Na,nb}pk(A))

@κ)

6. Non-injective synchronization:

φNS
nisyn = ∀ι. (role(ι, A) ∧ honest(ι, {A,B}) ∧ steps(ι,Nisynch))

⇒(∃κ. role(κ,B) ∧
steps(ι, send({A,na}pk(B))) ≺ steps(κ, recv({A,Na}pk(B))) ∧
steps(κ, send({Na,nb}pk(A))) ≺ steps(ι, recv({na,Nb}pk(A))) ∧
〈A,B〉@ι = 〈A,B〉@κ ∧
({A,na}pk(B))

@ι = ({A,Na}pk(B))
@κ ∧

({na,Nb}pk(A))
@ι = ({Na,nb}pk(A))

@κ)

The last two properties are obtained by instantiating the general definitions from [13] for the A role
of the Needham-Schroeder public-key protocol. To see that φNS

nisyn strengthens φNS
niagree, note that

the event ordering predicates in the latter formula are implied by those in the former together with
event orderings within roles A and B, which always hold.

6.1.2 An extension of the labeling mechanism and the abstraction heuristics

In practice, it turns out that the labeling mechanism previously described is not sufficient to
achieve good abstractions. There are protocols that employ cryptographic primitives in particular
ways to achieve certain security goals, even though these primitives do not provide the desired
properties themselves. In such cases, the heuristic may assign security labels to terms incorrectly,
or accidentally remove elements that are important to achieve these properties.

Example 6.2. Let us come back to the NSPK protocol, specified (without signals) as:

NS (A) = send({A,na}pk(B)) · recv({na,Nb}pk(A)) · send({Nb}pk(B))

NS (B) = recv({A,Na}pk(B)) · send({Na,nb}pk(A)) · recv({nb}pk(B))

Suppose that we are interested in non-injective agreement for an agent in role A with an agent in
role B on the nonce na . The agent variable A in the first sent message is crucial to achieve this
property. However, our heuristic may pull A out of the messages {A,na}pk(B) and {A,Na}pk(B),
as this abstraction preserves the label NO for authentication and confidentiality of A. It is not hard
to see that the resulting abstracted protocol no longer provides the desired property. Furthermore,
the heuristic incorrectly decides that na has authentication label NO. Thus, we may also pull na
out of the encryptions in the first two events of role A, as this abstraction clearly preserves the
security label of na . However, no authentication is guaranteed for the abstracted protocol.

To deal with this issue, we enable the heuristic to detect such a pattern, i.e., an asymmetric
encryption that includes an agent identity which is different from the one indicated in the encryption
key. In this case, at least one occurrence of the identity must be kept, and the encryption is
associated with authentication label YES. Similarly, we must also keep agent identities that occur
in symmetric encryptions.

40

6.2 Experimental results

We have validated the effectiveness of our abstractions on a total of 24 members of the IKE
and ISO/IEC 9798 protocol families and on the PANA-AKA protocol [4] and the KSL protocol.
We verify these protocols using five tools based on four different techniques: Scyther [14], CL-
Atse [46], OFMC [8], SATMC [6], and ProVerif [9]. Only Scyther and ProVerif support verification
of an unbounded number of threads. In Table 2, we present a selection of the experimental results
for Scyther and refer to Appendix C for a complete account, including results for the other tools
for which we used hand-crafted abstractions. While our execution model closely fits Scyther’s,
there are subtle differences with the execution models and specification languages of the other tools.
However, our initial results suggest that our techniques can be formally adapted to increase the
efficiency of those tools as well. Our models of the IKE and ISO/IEC 9798 protocols are based on
Cremers’ [11, 12]. Since Scyther uses a fixed signature with standard cryptographic primitives and
no equational theories, the IKE models approximate the DH equational theory by oracle roles.

For our case studies, we verify several security properties including secrecy, aliveness, weak
agreement, and non-injective agreement. We mark verified properties byX and falsified ones by
×. An entryX/× means the property holds for one role but not for the other. Each row consists
of two lines, corresponding to the analysis time without (line 1) and with (line 2) abstraction for
3-8 or unboundedly many (∞) threads. The times were measured on a cluster of 12-core AMD
Opteron 6174 processors with 64 GB RAM each. They include computing the abstractions (4-20
ms) and the verification itself.

Verification For 13 of the 19 original protocols that are analyzed, an unbounded verification
attempt results in a timeout (TO = 8h cpu time) or memory exhaustion (ME). In 7 of these, our
abstractions enabled the verification of all properties in less than 0.4 seconds and in one case in 78
seconds. However, for the first three protocols, we still get a timeout. For the large majority of the
bounded verification tasks, we significantly push the bound on the number of threads and achieve
massive speedups. For example, our abstractions enable the verification of the complex nested
protocols IKEv2-eap and PANA-AKA. Scyther verifies an abstraction of IKEv2-eap for up to 6
threads and, more strikingly, completes the unbounded verification of the simplified PANA-AKA
in under 0.3 seconds whereas it can handle only 4 threads of the original version.

For these protocols, our tool aggressively simplifies the original models by removing unnec-
essary cryptographic protections and redundant fields. The IKEv2-eap protocol consists of two
roles exchanging 8 messages. The messages are large and contain up to 5 layers of cryptographic
operations (such as encryptions, signatures, and hashes). However, the most abstract model gener-
ated by our tool only exchanges 5 messages (i.e., 3 messages are completely removed by untyped
abstractions). The most deeply nested messages contain only 3 layers of cryptographic operations.
The PANA-AKA protocol exhibits a similar complexity. It employs up to 6 layers of cryptographic
operations. Even though the most abstract model for PANA-AKA still exchanges 7 messages,
the messages are substantially smaller than those of the original model and use at most 3 layers
of cryptographic operations. We also achieve dramatic speedups for many other protocols, most
notably for IKEv1-pk-a22, ISO/IEC 9798-2-6, and ISO/IEC 9798-3-6-2. This shows that our
abstractions work particularly well for protocols that have complex message structures or large
numbers of exchanged messages, as these features can significantly deteriorate the performance of
protocol verifiers.

More interestingly, our abstractions also perform very well on another class of protocols which
have simple message structures but still render verification challenging. For example, the ISO/IEC
9798-3-6-1, ISO/IEC 9798-3-7-1 and KSL protocols contain relatively small messages with at most
one layer of encryption. However, the verification attempts for the original versions of the ISO/IEC
9798-3-6-1 and ISO/IEC 9798-3-7-1 protocols both result in memory exhaustion after 7 threads.

41

Protocol No
Properties Number of threads

S A W N 3 4 5 6 7 8 ∞
IKE

IKEv1-pk2-a2 1 X X 40.25 302.21 1679.69 9947.75 TO TO TO
6.12 26.40 154.26 959.02 6412.25 TO TO

IKEv1-pk-a22 1 X X 15.14 80.80 244.45 530.94 979.88 1677.69 TO
0.95 1.44 2.36 4.00 7.54 10.37 TO

IKEv2-eap 5 X X TO TO TO TO TO TO TO
78.94 773.49 4345.58 18572.70 TO TO TO

IKEv2-mac 4 X X 1.82 5.13 6.21 7.52 8.30 8.59 8.69
0.70 1.58 1.72 1.72 1.72 1.71 1.72

IKEv2-mactosig 6 X X 13.29 135.64 1076.56 7389.01 TO TO TO
2.68 12.38 24.54 38.68 53.36 65.07 77.68

IKEv2-sigtomac 6 X X 6.11 26.18 65.61 137.53 165.84 206.29 238.28
1.70 7.78 28.44 44.44 55.11 66.97 67.15

IKEv1-pk-m 2 × 48.62 269.92 507.40 869.23 16254.80 TO TO
0.16 0.22 0.37 0.66 1.19 2.05 TO

IKEv1-pk-m2 2 X/× 12.94 178.49 2198.81 TO TO TO TO
0.21 0.30 0.26 0.28 0.30 0.35 TO

IKEv1-sig-m 2 × 0.35 0.45 0.45 0.45 0.45 0.46 0.45
0.35 0.33 0.34 0.34 0.34 0.35 0.39

IKEv1-sig-m-perlman 2 × 3.55 14.11 47.16 67.61 72.20 72.15 73.83
17.59 17.61 17.53 17.53 17.59 17.53 17.58

IKEv2-sig-child 6 X X X/× 235.11 11274.66 TO TO TO TO TO
38.04 462.53 874.21 17713.06 TO TO TO

ISO/IEC

ISO/IEC 9798-2-5 1 X 0.79 9.12 72.75 557.77 4260.57 TO TO
0.07 0.11 0.12 0.11 0.11 0.11 0.11

ISO/IEC 9798-2-6 1 X 0.59 3.82 18.84 67.38 197.42 575.42 21254.67
0.05 0.04 0.05 0.05 0.05 0.05 0.05

ISO/IEC 9798-3-6-1 2 X X 42.68 795.11 8915.40 ME ME ME ME
0.14 0.20 0.21 0.21 0.21 0.21 0.21

ISO/IEC 9798-3-6-2 1 X X 2.47 8.66 19.48 33.94 48.26 60.05 70.81
0.12 0.15 0.15 0.15 0.15 0.15 0.15

ISO/IEC 9798-3-7-1 2 X X 41.63 752.82 7769.87 15863.97 ME ME ME
0.15 0.20 0.21 0.21 0.21 0.21 0.21

ISO/IEC 9798-3-7-2 1 X X 2.46 7.97 16.93 26.41 34.67 50.30 TO
0.21 0.30 0.31 0.31 0.31 0.31 0.31

Others

PANA-AKA 7 X X X X 5762.53 TO TO TO TO TO TO
0.23 0.22 0.23 0.23 0.23 0.23 0.23

KSL 1 X 17.81 1272.50 TO TO TO TO TO
0.03 0.03 0.03 0.03 0.03 0.03 0.03

Table 2: Experimental results for Scyther. The time is in seconds. No: Number of abstractions.
Properties: Secrecy, Aliveness, Weak agreement, and Non-injective agreement.

Similarly, the verification of KSL already times out for 5 threads. We attribute this difficulty to
the presence of untyped variables, i.e., variables of type msg in our type system, in clear texts. As
there is no constraint on the shapes of the messages that can be used to instantiate these variables,
protocol verifiers typically need to consider all possible forms of instantiations, which potentially
results in performance degradation. By removing unnecessary occurrences of untyped variables
with respect to the security properties of interest, our abstractions enable the verification of KSL for
an unbounded number of threads in only 0.03 seconds. Analogously, the tool successfully verifies
ISO/IEC 9798-3-6-1 and ISO/IEC 9798-3-7-1 for an unbounded number of threads in 0.21 seconds.

Apart from enormous performance gains, the speedup is more modest for a few protocols, e.g.,
IKEv1-pk2-a2, IKEv2-sigtomac, and IKEv2-mac. These protocols have simple message structures,
e.g., using at most 3 layers of cryptographic operations and only up to 4 exchanged messages.
Moreover, they use untyped variables only in protected positions, i.e., as arguments of a hash

42

or an encryption. They therefore do not leave much room for abstractions. In fact, although the
generated abstract models for these protocols have smaller message sizes, they have similar message
structures compared to the original ones. Nevertheless, our abstractions enable the reduction of the
verification time by an order of magnitude in some cases, e.g., for the IKEv1-pk2-a2 protocol.

Additionally, we observe that the verification time for many abstracted protocols increases
much more slowly than for their originals as the number of threads increases. We obtain almost
constant verification times for the six ISO/IEC 9798 protocols, whereas the time significantly
increases on some originals, e.g., for the ISO/IEC 9798-3-6-1 protocol.

Falsification For rows marked by ×, the second line corresponds to falsification time for the
most abstract model, which is much faster than on the original one. For example, for 8 threads of
the IKEv1-pk-m protocol, we reduce falsification time from a timeout to 2.05 seconds. Note that for
falsification, a check for spurious attacks is needed. This subroutine renders the performance gains
less substantial than that for verification. For instance, in the unbounded case, the speedup factors
are 1.15 for IKEv1-sig-m and 4.19 for IKEv1-sig-m-perlman. Note that our tool automatically
checks for spurious attacks. Interestingly, all attacks found in the most abstract protocols are real,
suggesting that our measures to prevent spurious attacks are effective.

Combination For the IKEv1-pk-m2 and IKEv2-sig-child protocols, the tool verifies non-injective
agreement for one role and falsifies it for the other one. Analogous to other case studies, we obtain
a remarkable speedup for these protocols. Our abstractions raise the feasibility bound by 2 to 3
additional threads.

7 Related work

Hui and Lowe [28] define several kinds of abstractions similar to ours with the aim of improving
the performance of the CASPER/FDR verifier. They establish soundness only for ground messages
and encryption with atomic keys. We work in a more general model, cover additional properties,
and treat the non-trivial issue of abstracting the open terms in protocol specifications. Other
works [40, 18, 17] also propose a set of syntactic transformations, however without formally
establishing their soundness. Using our results, we can, for instance, justify the soundness of the
refinements in [18, Section 3.3].

Backes et al. [7] study the abstraction of authentication protocols formalized in the ρ-spi
calculus. They propose a static analysis for authentication protocols by abstracting challenge-
response messages into non-cryptographic versions expressed in a different language, called the
CR calculus. Their abstraction method is based on non-increasing security labels similar to those
of our heuristics. However, there are several differences with our work. First, since their sound
abstractions map protocol specifications to a different language, the abstract protocols cannot be
further abstracted. In our setting, protocol specifications and abstract protocols are expressed in
the same language and abstractions can be composed. Second, the construction of the abstractions
requires the identification of challenge-response components of a protocol, for which they do not
give an algorithm. Third, since they designed a specialized technique for proving authentication
properties, they cannot employ existing protocol verification tools to verify the abstract protocols.
In contrast, our abstractions are composable, computed automatically by our tool, and can be
verified using standard protocol verifiers. Finally, their method is restricted to agreement properties,
while ours supports an expressive property specification language, which covers secrecy and a
variety of authentication properties.

Guttman [25, 24] studies the preservation of security properties for a rich class of protocol
transformations in the strand space model. His approach to property preservation is based on

43

the simulation of protocol analysis steps instead of execution steps. Each such analysis step
explains the origin of a message. Apart from this different approach to soundness, there are
other differences with our work. First, instead of working at the level of protocol messages, his
protocol transformations are applied to strand space nodes and then lifted to protocol specifications
and security properties. In contrast to our work, his approach does not restrict the shape of the
transformed protocol message with respect to the original message. In his theory, one can, for
instance, transform a hash of a message X and a key K into an encryption of X with K. We do not
support such general transformations. Second, his protocol transformations are required to preserve
the origination of values and the plaintext subterms of messages. The former condition means
that if a value x first occurs in a transmission node then it also occurs first in the corresponding
transformed node. Our soundness results do not require such conditions. For example, we can
completely remove fresh values that are in clear or fields in a hash. Third, since his primary focus
was to set up a general framework to express and justify security protocol transformations, he does
not provide syntactic soundness conditions, guidance for the choice of appropriate abstractions, or
automated verification. It might be possible to identify a subset of his transformations for which this
is possible, but this would require additional work. In contrast, our tool automatically determines
suitable abstractions and checks their soundness.

Refinement is abstraction viewed in the reverse direction, i.e., from abstract to concrete.
Sprenger et al. [44, 45, 31] have proposed a hierarchical development method for security protocols
based on stepwise refinement that spans several levels of abstraction. Each development starts
from abstract models of security properties and proceeds down to cryptographic protocols secure
against a Dolev-Yao intruder. The development process traverses intermediate levels of abstraction
based on message-less protocols and communication channels with authenticity and confidentiality
properties. Security properties, once proved for a given model, are preserved by further refinements.
They have applied their method to develop families of authentication and key transport protocols.
The abstractions in the present paper belong to their most concrete level of cryptographic protocols.
They have embedded their approach in the Isabelle/HOL theorem prover, but each refinement step
essentially requires a separate soundness proof.

8 Conclusions

In this work, we propose a set of syntactic protocol transformations that allows us to abstract
realistic protocols and capture a large class of attacks. Unlike previous work [37, 28], our theory
and soundness results accommodate equational theories and a fine-grained type system that supports
untyped variables, user-defined types, and subtyping. These features allow us to accurately model
protocols, capture type-flaw attacks, and adapt to different verification tools, e.g., those supporting
equational theories such as ProVerif and CL-Atse. We have extended Scyther with an abstraction
module, which we validated on various IKE and ISO/IEC 9798 protocols and others. We also
tested our technique (with manually produced abstractions) on ProVerif, CL-Atse, OFMC, and
SATMC. Our experiments show that modern protocol verifiers can substantially benefit from our
abstractions, which often either enable previously infeasible verification tasks or lead to dramatic
speedups. Our abstraction tool supports checking for spurious attacks, which allows us to not only
verify but also falsify security protocols efficiently.

As for future work, we plan to extend our soundness results to more expressive security protocol
models such as multiset rewriting. This would allow us to cover more security protocols, for
instance, protocols involving loops such as the TESLA protocol [41] or non-monotonic states such
as contract signing protocols [3], as well as more security properties and adversary capabilities such
as perfect forward secrecy, key compromise impersonation, and adversaries capable of revealing
the local state of agents. We believe that our soundness results can also be extended to support

44

else-branches in such theories by additionally establishing preservation theorems for disequality
tests. Another direction for future research could be to generalize the tool and support more
protocol verifiers. Possible improvements might be gained from applying techniques from the field
of counter-example guided refinement: when a spurious attack is found, it might be possible to
extract information from it to guide the exploration of the generated abstractions.

Acknowledgements

We thank Mathieu Turuani and Michael Rusinowitch for our fruitful technical discussions on
the topic of this paper. We are also grateful to David Basin, Ognjen Maric, Ralf Sasse, and the
anonymous reviewers for their careful proof-reading and helpful suggestions. This work was
partially supported by the Air Force Office of Scientific Research, grant number FA9550-17-1-0206,
and the EU FP7-ICT-2009 Project No. 256980, NESSoS: Network of Excellence on Engineering
Secure Future Internet Software Services and Systems.

References

[1] O. Almousa, S. A. Mödersheim, P. Modesti, and L. Viganò. Typing and compositionality for
security protocols: A generalization to the geometric fragment. In ESORICS, Lecture Notes
in Computer Science. Springer, Sept. 2015.

[2] M. Arapinis and M. Duflot. Bounding messages for free in security protocols. In V. Arvind
and S. Prasad, editors, FSTTCS, volume 4855 of Lecture Notes in Computer Science, pages
376–387. Springer, 2007.

[3] M. Arapinis, E. Ritter, and M. D. Ryan. Statverif: Verification of stateful processes. In
Proceedings of the 24th IEEE Computer Security Foundations Symposium, CSF 2011, Cernay-
la-Ville, France, 27-29 June, 2011, pages 33–47. IEEE Computer Society, 2011.

[4] J. Arkko and H. Haverinen. RFC 4187: Extensible Authentication Protocol Method for 3rd
Generation Authentication and Key Agreement (EAP-AKA), 2006. http://www.ietf.
org/rfc/rfc4187.

[5] A. Armando, W. Arsac, T. Avanesov, M. Barletta, A. Calvi, A. Cappai, R. Carbone, Y. Cheva-
lier, L. Compagna, J. Cuéllar, G. Erzse, S. Frau, M. Minea, S. Mödersheim, D. von Oheimb,
G. Pellegrino, S. E. Ponta, M. Rocchetto, M. Rusinowitch, M. T. Dashti, M. Turuani, and
L. Viganò. The AVANTSSAR platform for the automated validation of trust and security of
service-oriented architectures. In C. Flanagan and B. König, editors, TACAS, volume 7214 of
Lecture Notes in Computer Science, pages 267–282. Springer, 2012.

[6] A. Armando and L. Compagna. SAT-based model-checking for security protocols analysis.
International Journal of Information Security, 7(1):3–32, 2008.

[7] M. Backes, A. Cortesi, R. Focardi, and M. Maffei. A calculus of challenges and responses. In
Proceedings of the 2007 ACM Workshop on Formal Methods in Security Engineering, FMSE
’07, pages 51–60, New York, NY, USA, 2007. ACM.

[8] D. A. Basin, S. Mödersheim, and L. Viganò. OFMC: A symbolic model checker for security
protocols. Int. J. Inf. Sec., 4(3):181–208, 2005.

[9] B. Blanchet. An efficient cryptographic protocol verifier based on prolog rules. In 14th IEEE
Computer Security Foundations Workshop (CSFW-14 2001), 11-13 June 2001, Cape Breton,
Nova Scotia, Canada, pages 82–96. IEEE Computer Society, 2001.

45

http://www.ietf.org/rfc/rfc4187
http://www.ietf.org/rfc/rfc4187

[10] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In R. M. Graham, M. A. Harrison,
and R. Sethi, editors, POPL, pages 238–252. ACM, 1977.

[11] C. Cremers. IKEv1 and IKEv2 protocol suites, 2011. https://github.com/
cascremers/scyther/tree/master/gui/Protocols/IKE.

[12] C. Cremers. ISO/IEC 9798 authentication protocols, 2012. https://github.com/
cascremers/scyther/tree/master/gui/Protocols/ISO-9798.

[13] C. Cremers and S. Mauw. Operational Semantics and Verification of Security Protocols.
Information Security and Cryptography. Springer, 2012.

[14] C. J. F. Cremers. The Scyther tool: Verification, falsification, and analysis of security protocols.
In A. Gupta and S. Malik, editors, CAV, volume 5123 of Lecture Notes in Computer Science,
pages 414–418. Springer, 2008.

[15] C. J. F. Cremers. Key exchange in IPsec revisited: Formal analysis of IKEv1 and IKEv2. In
V. Atluri and C. Díaz, editors, ESORICS, volume 6879 of Lecture Notes in Computer Science,
pages 315–334. Springer, 2011.

[16] C. J. F. Cremers, S. Mauw, and E. P. de Vink. Injective synchronisation: An extension of the
authentication hierarchy. Theor. Comput. Sci., 367(1-2):139–161, 2006.

[17] A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic. Abstraction and refinement in protocol
derivation. In Proc. 17th IEEE Computer Security Foundations Workshop (CSFW), 2004.

[18] A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic. A derivation system and compositionl
logic for security protocols. Journal of Computer Security, 13:423–482, 2005.

[19] D. Dolev and A. C. Yao. On the security of public key protocols. IEEE Transactions on
Information Theory, 29(2):198–207, 1983.

[20] F. Durán and J. Meseguer. A church-rosser checker tool for conditional order-sorted equational
maude specifications. In P. C. Ölveczky, editor, Rewriting Logic and Its Applications - 8th
International Workshop, WRLA 2010, Held as a Satellite Event of ETAPS 2010, Paphos,
Cyprus, March 20-21, 2010, Revised Selected Papers, volume 6381 of Lecture Notes in
Computer Science, pages 69–85. Springer, 2010.

[21] S. Escobar, C. Meadows, and J. Meseguer. Maude-NPA: Cryptographic protocol analysis
modulo equational properties. In A. Aldini, G. Barthe, and R. Gorrieri, editors, FOSAD,
volume 5705 of Lecture Notes in Computer Science, pages 1–50. Springer, 2007.

[22] S. Escobar, R. Sasse, and J. Meseguer. Folding variant narrowing and optimal variant
termination. J. Log. Algebr. Program., 81(7-8):898–928, 2012.

[23] J. Giesl, P. Schneider-Kamp, and R. Thiemann. Automatic termination proofs in the de-
pendency pair framework. In U. Furbach and N. Shankar, editors, Automated Reasoning,
Third International Joint Conference, IJCAR 2006, Seattle, WA, USA, August 17-20, 2006,
Proceedings, volume 4130 of Lecture Notes in Computer Science, pages 281–286. Springer,
2006.

[24] J. D. Guttman. Transformations between cryptographic protocols. In P. Degano and L. Viganò,
editors, ARSPA-WITS, volume 5511 of LNCS, pages 107–123. Springer, 2009.

46

https://github.com/cascremers/scyther/tree/master/gui/Protocols/IKE
https://github.com/cascremers/scyther/tree/master/gui/Protocols/IKE
https://github.com/cascremers/scyther/tree/master/gui/Protocols/ISO-9798
https://github.com/cascremers/scyther/tree/master/gui/Protocols/ISO-9798

[25] J. D. Guttman. Security goals and protocol transformations. In Theory of Security and
Applications (TOSCA), an ETAPS associated event, volume 6993 of LNCS. Springer, 2011.

[26] J. D. Guttman. Establishing and preserving protocol security goals. Journal of Computer
Security, 22(2):203–268, 2014.

[27] D. Harkins and D. Carrel. The Internet Key Exchange (IKE). IETF RFC 2409 (Proposed
Standard), November 1998. Obsoleted by RFC 4306, updated by RFC 4109.

[28] M. L. Hui and G. Lowe. Fault-preserving simplifying transformations for security protocols.
Journal of Computer Security, 9(1/2):3–46, 2001.

[29] J.-P. Jouannaud and H. Kirchner. Completion of a set of rules modulo a set of equations.
SIAM J. Comput., 15(4):1155–1194, 1986.

[30] C. Kaufman, P. Hoffman, Y. Nir, and P. Eronen. Internet Key Exchange Protocol Version 2
(IKEv2). IETF RFC 5996, September 2010.

[31] J. Lallemand, D. A. Basin, and C. Sprenger. Refining authenticated key agreement with strong
adversaries. In 2017 IEEE European Symposium on Security and Privacy, EuroS&P
2017, Paris, France, April 26-28, 2017, pages 92–107, 2017.

[32] G. Lowe. A hierarchy of authentication specifications. In IEEE Computer Security Founda-
tions Workshop, pages 31–43, Los Alamitos, CA, USA, 1997. IEEE Computer Society.

[33] S. Meier, C. J. F. Cremers, and D. A. Basin. Strong invariants for the efficient construction
of machine-checked protocol security proofs. In Proceedings of the 23rd IEEE Computer
Security Foundations Symposium, CSF 2010, Edinburgh, United Kingdom, July 17-19, 2010,
pages 231–245. IEEE Computer Society, 2010.

[34] S. Meier, B. Schmidt, C. Cremers, and D. A. Basin. The TAMARIN prover for the symbolic
analysis of security protocols. In N. Sharygina and H. Veith, editors, CAV, volume 8044 of
Lecture Notes in Computer Science, pages 696–701. Springer, 2013.

[35] R. M. Needham and M. D. Schroeder. Using encryption for authentication in large networks
of computers. Commun. ACM, 21(12):993–999, 1978.

[36] B. T. Nguyen. The Scyther-Abstraction tool, 2018. https://github.com/
binhnguyen1984/scyther-abstraction.

[37] B. T. Nguyen and C. Sprenger. Sound security protocol transformations. In D. A. Basin and
J. C. Mitchell, editors, POST, volume 7796 of Lecture Notes in Computer Science, pages
83–104. Springer, 2013.

[38] B. T. Nguyen and C. Sprenger. Abstractions for security protocol verification. In R. Focardi
and A. C. Myers, editors, Principles of Security and Trust - 4th International Conference,
POST 2015, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2015, London, UK, April 11-18, 2015, Proceedings, volume 9036 of Lecture
Notes in Computer Science, pages 196–215. Springer, 2015.

[39] L. Paulson. The inductive approach to verifying cryptographic protocols. J. Computer
Security, 6:85–128, 1998.

[40] D. Pavlovic and C. Meadows. Deriving secrecy in key establishment protocols. In Proc. 11th
European Symposium on Research in Computer Security (ESORICS), pages 384–403, 2006.

47

https://github.com/binhnguyen1984/scyther-abstraction
https://github.com/binhnguyen1984/scyther-abstraction

[41] A. Perrig, J. D. Tygar, D. Song, and R. Canetti. Efficient authentication and signing of
multicast streams over lossy channels. In Proceedings of the 2000 IEEE Symposium on
Security and Privacy, SP ’00, pages 56–, Washington, DC, USA, 2000. IEEE Computer
Society.

[42] S. Schneider. Verifying authentication protocols with CSP. In 10th Computer Security
Foundations Workshop (CSFW ’97), June 10-12, 1997, Rockport, Massachusetts, USA, pages
3–17. IEEE Computer Society, 1997.

[43] S. A. Shaikh, V. J. Bush, and S. A. Schneider. Specifying authentication using signal events
in csp. Computers & Security, 28(5):310–324, 2009.

[44] C. Sprenger and D. Basin. Developing security protocols by refinement. In Proc. 17th ACM
Conference on Computer and Communications Security (CCS), pages 361–374, 2010.

[45] C. Sprenger and D. Basin. Refining key establishment. In Proc. 25th IEEE Computer Security
Foundations Symposium (CSF), pages 230–246, 2012.

[46] M. Turuani. The CL-Atse protocol analyser. In F. Pfenning, editor, RTA, volume 4098 of
Lecture Notes in Computer Science, pages 277–286. Springer, 2006.

48

A Proofs for Section 4: Abstraction theory

A.1 Basic lemmas about the auxiliary functions and the type system

A.1.1 Lemma about splitting

Lemma A.1. For all t, u ∈ T (V,Σ0) and all substitutions θ, split(t) ⊆ split(u) implies that
split(tθ) ⊆ split(uθ)

Proof. Suppose that split(t) ⊆ split(u) and v ∈ split(tθ). To show that v ∈ split(uθ) we
distinguish two cases:

1. There is some t′ ∈ split(t) that is not a variable and v = t′θ. Then t′ ∈ split(u) and thus t′

is not a pair. Since t′ is neither a variable nor a pair, we have v ∈ split(uθ).

2. There is a variable X ∈ split(t) such that v ∈ split(Xθ). Then X ∈ split(u) and thus
v ∈ split(uθ).

This completes the proof of the lemma.

A.1.2 Lemmas about the type system

The subtyping relation respects the types’ structures.

Lemma A.2. Let τ, τ ′ ∈ Y be such that τ 4 τ ′ and τ ′ 6= msg . Then either

(i) τ and τ ′ are atomic and τ 6= msg , or

(ii) τ and τ ′ are composed and there are n ≥ 1 and g ∈ Σn such that τ = g(τ1, . . . , τn),
τ ′ = g(τ ′1, . . . , τ

′
n), and τi 4 τ ′i for i ∈ ñ.

Proof. We prove this lemma by rule induction on the derivation of τ 4 τ ′, depending on the last
rule R that has been applied.

• R = S(msg): we have τ ∈ Y and τ ′ = msg , contradicting our assumption.

• R = S(40): we have τ 40 τ
′. Then it is clear that both τ and τ ′ are atomic and τ 6= msg by

the definition of 40.

• R = S(refl): we have τ = τ ′ and thus the conclusion holds trivially.

• R = S(trans): here, there is a τ ′′ such that τ 4 τ ′′ and τ ′′ 4 τ ′. Since τ ′ 6= msg , we derive
(i) or (ii) from the induction hypothesis for τ ′′ 4 τ ′ to for τ ′′ and τ . In both cases, we have
τ ′′ 6= msg . Therefore, we can also apply the induction hypothesis to τ 4 τ ′′. Hence, we
either have that τ , τ ′′, and τ ′ are all atomic and τ 6= msg or they all have the same top-level
constructor g and the arguments of τ and τ ′′ and of τ ′′ and τ ′ are in the subtyping relation
and we conclude by applying S(trans) on the argument types.

• R = S(Σn): In this case, the conclusion (ii) follows directly from the rules’ premises and
conclusions.

The following lemma states that well-typed substitutions respect types.

Lemma A.3. Let θ be an R,Ax-normal substitution that is well-typed. Then for all terms t ∈ T ,
we have Γ(tθ) 4 Γ(t).

49

Proof. The proof is proceeded by induction on t.

• If t is an atom then tθ = t and thus the lemma holds trivially.

• If t is a variable X then we distinguish two cases. If X /∈ dom(θ) then we have Xθ = X
and this case holds trivially. Otherwise, we have Γ(Xθ) 4 Γ(X), since θ is well-typed and
R,Ax-normal.

• If t = c(t1, . . . , tn) for some c ∈ Σn and n ≥ 1 then we have tθ = c(t1θ, . . . , tnθ).
Moreover, by induction hypothesis, we have Γ(tiθ) 4 Γ(ti) for all i ∈ ñ. This yields
Γ(tθ) 4 Γ(t) as required.

A.2 General soundness result

Our soundness result for general protocol abstractions (Theorem 4.6) follows from the following
two propositions, which respectively establish reachability and attack preservation.

Proposition A.4 (Reachability preservation). Let G = (gprot, gprop) be a protocol abstraction and
g : N → N a function on network messages. Suppose, for all states (tr, th, σ) ∈ reach(P, IK0),
thread id’s i, agent variables R, role suffixes tl, and terms t such that th(i) = (R, recv(t) · tl) and
gprot(t) 6= nil, we have

IK (tr)σ, IK0 `E tiσ implies IK (G(tr))g(σ), IK ′0 `E gprot(ti)g(σ).

Then, for all states (tr, th, σ) ∈ reach(P, IK0), we have that

(G(tr),G(th), g(σ)) ∈ reach(G(P), IK ′0).

Proof. Let (tr, th, σ) ∈ reach(P, IK0). We establish (G(t),G(th), g(σ)) ∈ reach(G(P), IK ′0) by
induction on the number n of transitions leading to the state (tr, th, σ).

• Base case (n = 0): For all i ∈ dom(th), there exists R ∈ dom(P) such that th(i) =
(R,P (R)). Hence we have

G(th)(i) = (R,G(P (R))) = (R,G(P)(R)) (1)

Since (ε, th, σ) is reachable, for all v ∈ dom(P) and i ∈ TID we have viσ ∈ A. Moreover,
we have vif(σ) = viσ, we also have

vif(σ) ∈ A (2)

By (1), (2) and G(ε) = ε, it is obvious that (G(ε),G(th), g(σ)) ∈ reach(G(P), IK ′0).

• Inductive case (n = k + 1): Suppose (tr′, th′, σ) is reachable in k steps and there is a
transition (tr′, th′, σ)→ (tr, th, σ). By the induction hypothesis, we know that

(G(tr′),G(th′), g(σ)) ∈ reach(G(P), IK ′0) (3)

Then there exists i ∈ TID and R ∈ dom(P) such that

th′(i) = (R, ev(t).tl)
tr = tr′ · (i, ev(t))
th = th′[i 7→ (R, tl)]

(4)

50

If gprot(t) = nil then we have
G(tr) = G(tr′),
G(th) = G(th′).

In this case, we conclude that (G(tr),G(th), g(σ)) ∈ reach(G(P), IK ′0) by (3). Otherwise,
we have gprot(t) 6= nil. We consider three cases according to the rule r that has been applied
in step k + 1.

– If r = SEND then By (4) we have

G(tr) = G(tr′) · (i, send(gprot(t)))
G(th) = G(th′)[i 7→ (R,G(tl))]

(5)

By (4) we have
G(th′)(i) = (R, send(gprot(t)) · G(tl)) (6)

By (6), (4), (5) and rule SEND , we have

(G(tr′),G(th′), g(σ))→ (G(tr),G(th), g(σ))

Together with (3) this implies that (G(tr),G(th), g(σ)) ∈ reach(G(P), IK ′0).

– If r = RECV then we have

th′(i) = (R, recv(t) · tl)
IK (tr′)σ, IK0 `E tiσ

(7)

and
tr = tr′ · (i, recv(t))
th = th′[i 7→ (R, tl)]

(8)

By (7) and (8) we have

G(tr) = G(tr′) · (i, recv(gprot(t)))
G(th) = G(th′)[i 7→ (R,G(tl))]

To justify (G(tr′),G(th′), g(σ))→ (G(tr),G(th), g(σ)), it is sufficient to establish the
following two premises of rule RECV :

1. G(th′)(i) = (R, recv(gprot(t)) · G(tl)), which follows from (7),
2. IK (G(tr′))g(σ), IK ′0 `E gprot(t

i)g(σ). This follows from (7) and our assump-
tion.

Together with (3), we conclude that (G(tr),G(th), g(σ)) ∈ reach(G(P), IK ′0).

– If r = SIGNAL then the conclusion immediately follows from the induction hypothe-
sis.

This completes the proof of the proposition.

Proposition A.5 (Attack preservation). Let G = (gprot, gprop) be a protocol abstraction and
g : N → N . Suppose the following conditions hold:

(i) For all states (tr, th, σ) ∈ reach(P, IK0), terms t ∈ Secφ such that gprop(t) 6= nil and thread
id’s i we have

IK (tr)σ, IK0 `E tiσ implies IK (G(tr))g(σ), IK ′0 `E gprop(ti)g(σ),

51

(ii) φ is safe for P and (G, g).

Then, for all states (tr, th, σ) ∈ reach(P, IK0), we have

(tr, th, σ) 2 φ implies (G(tr),G(th), g(σ)) 2 G(φ).

Proof. Let (tr, th, σ) ∈ reach(P, IK0). We proceed by proving the following generalized state-
ment by induction on the structure of φ (which may now contain free thread-id variables).

∀ϑ. ((tr, th, σ), ϑ) 2 φ⇒ ((G(tr),G(th), g(σ)), ϑ) 2 G(φ).

Note that a formula is safe if and only if all its subformulas are safe. The literals form the base
cases of the induction. We cover all atoms and their negations (except for secret(ι, t)) in a single
equivalence-based argument, where the right-to-left direction covers the positive literal and the
other direction the corresponding negative literal. We remark that (tr, th, σ, ϑ) 2 A is equivalent to
(tr, th, σ, ϑ) � ¬A for all atoms A (but not for all formulas, since LP is not closed under negation).

• φ ≡ ι = κ or φ ≡ ¬(ι = κ).

((tr, th, σ), ϑ) � ι = κ
⇔ ϑ(ι) = ϑ(κ)
⇔ ((G(tr),G(th), g(σ)), ϑ) � G(ι = κ)

• φ ≡ t@ι = u@κ or φ ≡ ¬(t@ι = u@κ).

((tr, th, σ), ϑ) � t@ι = u@κ

⇔ tϑ(ι)σ =E u
ϑ(κ)σ

⇔ gprop(t
ϑ(ι))g(σ) =E gprop(u

ϑ(κ))g(σ) by assumption (ii)
⇔ ((G(tr),G(th), g(σ)), ϑ) � G(t@ι = u@κ)

• φ ≡ role(ι, R) or φ ≡ ¬role(ι, R).

((tr, th, σ), ϑ) � role(ι, R)
⇔ ∃seq ∈ Evt∗. th(ϑ(ι)) = (R, seq)
⇔ ∃seq ∈ Evt∗. G(th)(ϑ(ι)) = (R,G(seq))
⇔ ((G(tr),G(th), g(σ)), ϑ) � G(role(ι, R))

• φ ≡ honest(ι, R) or φ ≡ ¬honest(ι, R).

((tr, th, σ), ϑ) � honest(ι, R)

⇔ Rϑ(ι)σ ∈ AH
⇔ Rϑ(ι)g(σ) ∈ AH by assumption (ii)
⇔ ((G(tr),G(th), g(σ)), ϑ) � G(honest(ι, R))

• φ ≡ steps(ι, s(t)) or φ ≡ ¬steps(ι, s(t)), where s ∈ {send, recv}. We have

((tr, th, σ), ϑ) � steps(ι, s(t))
⇔ (ϑ(ι), s(t)) ∈ tr
⇔ (ϑ(ι), s(gprot(t))) ∈ G(tr) justified below
⇔ ((G(tr),G(th), g(σ)), ϑ) � G(steps(ι, s(t)))

52

We show the second equivalence. The left-to-right implication holds, since nil /∈ G(Evtphi)
holds by assumption (ii). For the inverse direction (covering the positive literal φ ≡
steps(ι, s(t))), suppose that

(ϑ(ι), s(gprot(t))) ∈ G(tr).

Then there exists s(t′) ∈ Evt(MP) such that (ϑ(ι), s(t′)) ∈ tr and gprot(t′) = gprot(t). By
assumption (ii), we derive that t = t′ and therefore (ϑ(ι), s(t)) ∈ tr.

• φ ≡ (ι, s(t)) ≺ (κ, s′(u)) or φ ≡ ¬((ι, s(t)) ≺ (κ, s′(u))), where s, s′ ∈ {send, recv}.

((tr, th, σ), ϑ) � (ι, s(t)) ≺ (κ, s′(u))
⇔ (ϑ(ι), s(t)) ≺tr (ϑ(κ), s′(u))
⇔ (ϑ(ι), s(gprot(t))) ≺G(tr) (ϑ(κ), s′(gprot(u))) justified below
⇔ ((G(tr),G(th), g(σ)), ϑ) � G((ι, s(t)) ≺ (κ, s′(u)))

We show the second equivalence. Note that, the if-direction immediately follows assumption
(ii) and the fact that G is order-preserving for events.

For the only-if direction (covering the case that φ ≡ (ι, s(t)) ≺ (κ, s′(u))), suppose that
(ϑ(ι), s(gprot(t))) ≺G(tr) (ϑ(κ), s′(gprot(u))). Since G is order-preserving for events, there
are events s(v), s′(w) ∈ Evt(MP) such that

(ϑ(ι), s(v)) ≺tr (ϑ(κ), s′(w))

with gprot(v) = gprot(t) and gprot(w) = gprot(u). By assumption (ii), we derive that v = t
and w = u and thus complete the proof of this direction.

• φ ≡ secret(ι, t)

((tr, th, σ), ϑ) 2 secret(ι, t)

⇔ IK (tr)σ, IK0 `E tϑ(ι)σ

⇒ IK (G(tr))g(σ), IK ′0 `E gprop(tϑ(ι))g(σ) by assumptions (i) and (ii) (gprop(t) 6= nil)
⇔ ((G(tr),G(th), g(σ)), ϑ) 2 G(secret(ι, t))

The inductive cases are routines. This concludes the proof of the proposition.

A.3 Basic properties of typed abstractions

In this section, we prove several properties of typed abstractions. First, we show that two terms
whose types are in a subtyping relation must be transformed by the same clause. Second, we
describe the shapes of transformed terms in different cases. At the end, we prove that type inference
is preserved under abstractions.

A.3.1 Uniform matching

The following lemma states that a term t matches a linear pattern p whenever t’s type is a subtype
of p’s type.

Lemma A.6. Let p ∈ P be a linear pattern. Then, for all t ∈ T such that Γ(t) 4 Γ(p) there exists
a substitution σ : vars(p)→ T such that pσ = t.

Proof. We prove the lemma by induction on the structure of p. Below we use the abbreviations
τ = Γ(t) and π = Γ(p).

53

• If p is a pattern variable, then we define σ = {t/p}, hence pσ = t.

• If p = g(p1, . . . , pn) for g ∈ Σn, n ≥ 1 then since Γ(p) = π, there exists π1, . . . , πn such
that

π = g(π1, . . . , πn) and Γ(pi) = πi for i ∈ ñ.

Since τ 4 π, by Lemma A.2, we have

τ = g(τ1, . . . , τn) and τi 4 πi for i ∈ ñ.

Since Γ(t) = τ and τ is composed, t is not a variable. Therefore, we have

t = g(t1, . . . , tn) and Γ(ti) = τi for i ∈ ñ.

Hence, by induction hypothesis, there are σi : vars(pi)→ T such that ti = piσi for i ∈ ñ.
Since p is linear, we can thus define σ : vars(p) → T by σ =

⋃n
i=1 σi. Hence, we obtain

pσ = t.

This completes the proof of the lemma.

Lemma A.7 (Uniform matching). Let Ef = [f(p1) = u1, . . . , f(pn) = un] and

matches(t) = {i ∈ ñ | ∃θ. t = piθ ∧ Γ(t) 4 Γ(pi)}.

Then, for all t, t′ ∈ T with Γ(t′) 4 Γ(t), we have

(i) matches(t) ⊆ matches(t′),

(ii) matches(t) = matches(t′) = {i} for some i ∈ ñ if Γ(t) ∈ Πf↓.

In particular, matches(t) = matches(Γ(t)) for all terms t ∈ T .

Proof. Let t, t′ ∈ T , t : τ , t′ : τ ′, and τ ′ 4 τ . To see (i), suppose i ∈ matches(t), i.e., t = piθ
and Γ(t) 4 Γ(pi) for some substitution θ. Since Γ(t′) 4 Γ(t), we also have Γ(t′) 4 Γ(pi) and
hence i ∈ matches(t′). This shows (i).

To see (ii), we first derive τ ′ ∈ Πf↓ from the assumptions τ ∈ Πf↓ and τ ′ 4 τ . Therefore,
there are i, j ∈ ñ and {πi, πj} ⊆ Πf such that τ 4 πi and τ ′ 4 πj . Moreover, i and j are unique
since Ff is pattern-disjoint. By Lemma A.6 there are substitutions θ and θ′ (with domains vars(pi)
and vars(pj)) such that t = piθ and t′ = pjθ

′. Hence, matches(t) = {i} and matches(t′) = {j}.
Using the result in (i) derive i = j as required.

A.3.2 Shape lemma and termination

Lemma A.8 (Shape lemma). If t ∈ T then the following holds

(i) If t is a variable or an atom, then f(t) = t.

(ii) If t = c(t1, . . . , tn) and c ∈ Σ≥1 then we have

f(c(t1, . . . , tn)) = 〈u1, . . . , ud〉

for some d > 0 and for all i ∈ d̃, ui is one of the following forms:

(a) ui = f(w) such that w ∈ subterm(t) \ {t} and split(w) ⊆ split(tj) for some j ∈ ñ, or

(b) ui = c(f̂(v1), . . . , f̂(vn)) with c 6= 〈·, ·〉 such that set(vj) ⊆ subterm(t) \ {t} and
split(vj) ⊆ split(tj) for all j ∈ ñ and whenever ti is not a pair, we have f̂(vi) = f(ti).

54

Proof. We prove this lemma by case distinction on the shape of the term t ∈ T . We know that
there exists the first equation f(p) = u in the list E+

f such that Γ(t) 4 Γ(p). By Lemma A.6, there
is a substitution θ such that pθ = t. Hence, by Program 1, we have

f(t) = uθ. (9)

Case (i) where t is a variable or an atom follows immediately from Program 1 and the definition of
E0
f . Suppose t is composed, i.e., t = c(t1, . . . , tn) for c ∈ Σ≥1. Since p is not a pattern variable

and t = pθ, we must have p = c(p1, . . . , pn) for some terms p1, . . . , pn. Hence, we have ti = piθ
for all i ∈ ñ. Moreover, by Definition 4.9, we have f(p) = 〈e1, . . . , ed〉 for some d > 0. Let
ui = eiθ for i ∈ d̃. We know that for all i ∈ d̃, ei is one of the following forms:

(a) ei = f(q) such that q ∈ split(pj) for some j ∈ ñ. In this case, we have qθ ∈ split(pj)θ.
Hence, we derive that

qθ ∈ subterm(pjθ) ⊆ subterm(t) \ {t},
split(qθ) ⊆ split(pjθ).

Therefore (ii.a) holds.

(b) ei = c(f̂(q1), . . . , f̂(qn)) with c 6= 〈·, ·〉 such that set(qj) ⊆ split(pj) for all j ∈ ñ and
whenever pi is not a pair, we have qi = [pi], i.e., f̂(qi) = f(pi).

Let j ∈ ñ and vj = qjθ. Since set(qj) ⊆ split(pj), we derive that

set(qjθ) ⊆ subterm(pjθ) ⊆ subterm(t) \ {t},
split(qjθ) ⊆ split(pjθ).

This implies split(vj) ⊆ split(tj). Moreover, if tj is not a pair then since tj = pjθ, we derive
that pj is not a pair. This implies f̂(qj) = f(pj) and thus we have f̂(vj) = f(pjθ) = f(tj).
Therefore point (ii.b) also holds.

This completes the proof of the lemma.

Proposition A.9 (Termination). The function f defined by Program 1 terminates on all terms
t ∈ T .

Proof. We prove this by induction on the size of t. If Γ(t) is an atom then the termination of f(t)
is immediate. If Γ(t) is composed then from Lemma A.8 we know that that f is called recursively
on subterms of t. Hence, these calls terminate by the induction hypothesis. Therefore, f(t) also
terminates. This completes the proof of the proposition.

Next, we prove that all abstracted protocols are protocols. This result enables chaining different
abstractions to obtain more complex one.

Proposition A.10. f(P) is also a protocol.

Proof. Note that f maps roles to roles and is an identity on variables. Hence by Definition 3.7, it is
clear that f(t) is a protocol.

55

A.3.3 Lemma about abstracted types

Lemma A.11. Let σ be an R,Ax-normal ground substitution that is well-typed. Then f(σ) is
well-typed.

Proof. Let X ∈ dom(f(σ)). Then we have X ∈ dom(σ) and f(X) = X . Since σ is
R,Ax-normal, so is Xσ. Let t be a term such that t =Ax (Xf(θ)) ↓R,Ax. We need to show
that Γ(t) 4 Γ(X). We consider two cases.

• If Γ(X) = msg then it is trivial that Γ(t) 4 Γ(X).

• If Γ(X) = τ for an atomic type τ , then since σ is well-typed and Xσ is R,Ax-normal, it
follows that Xσ is an atom. Thus, we have f(Xσ) = Xf(σ) = Xσ. Hence t = Xσ. This
implies Γ(t) 4 Γ(X) as required.

This completes the proof of the lemma.

A.3.4 Lemma about splitting and intruder deducibility

Lemma A.12. Let t, u ∈ T such that split(u) ⊆ split(t). Then we have

split(f(u)) ⊆ split(f(t)).

Proof. We proceed by induction on |u|+ |t|.

• If |split(u)| + |split(t)| = 2 then split(u) ⊆ split(t) implies that u = t. Thus the lemma
holds for this case.

• Now we assume that |split(u)|+ |split(t)| > 2. There are two cases.

– If u is not a pair then split(u) = {u}. Hence we have

u ∈ split(t) (10)

Since |split(u)| + |split(t)| > 2, we have t = 〈u1, u2〉. Hence by Lemma A.8, we
have f(t) = f̂(v) for some vector v such that split(t) = split(v). By (10), there is
t′ ∈ set(v) such that u ∈ split(t′). Moreover, we have |t′| < |t|. Thus by induction
hypothesis, we have

split(f(u)) ⊆ split(f(t′)).

Since split(f(t′)) ⊆ split(f(t)), this implies that

split(f(u)) ⊆ split(f(t)).

– If u = 〈u1, u2〉 then by Lemma A.8, we have that f(u) = f̂(r) for some vector
r of length m such that split(u) = split(r). Since split(u) ⊆ split(t), we have
split(ri) ⊆ split(t) for all i ∈ m̃. Moreover, we also have that |ri| < |u|. Hence
by induction hypothesis, we have split(f(ri)) ⊆ split(f(t)). Therefore, we obtain
split(f(u)) ⊆ split(f(t)) as required.

This completes the proof of the lemma.

The following lemma is an immediate corollary of Lemma A.12.

Lemma A.13. Let t ∈ T and u ∈ split(t). Then we have

f(t) `E f(u)

56

The following lemma shows that if the intruder learns all the transformed components of a term,
he can also learn the transformed term.

Lemma A.14. Let T ∪ {u} ⊆ T . Suppose T `E f(t) for all t ∈ split(u). Then T `E f(u).

Proof. We prove the lemma by induction on the size of u. If u is not a pair then split(u) = {u}
and T `E f(u) follows immediately from the assumption. Otherwise, u = 〈u1, u2〉. Then, by
Lemma A.8, we derive that

f(u) = f̂(r)

for some vector r = [r1, . . . , rm] such that split(r) = split(u) and set(r) ⊆ subterm(u) \ {u}.
Since u is R,Ax-normal, so are the ri. Let i ∈ m̃. By assumption and since split(ri) ⊆ split(u),
we have T `E f(t) for all t ∈ split(ri). Since ri ∈ subterm(u) \ {u}, we obtain T `E f(ri)
from the induction hypothesis. Hence, the desired T `E f(u) follows from T `E f(ri) for all
i ∈ m̃.

The following lemma is a consequence of the two previous lemmas.

Lemma A.15. For all terms t, u ∈ T , we have split(t) ⊆ split(u) implies that f(u) `E f(t).

Proof. By Lemma A.13, we have f(u) `E f(p) for all p ∈ split(u). Moreover, since split(t) ⊆
split(u), we have f(u) `E f(q) for all q ∈ split(t). Hence, by Lemma A.14, we have f(u) `E
f(t).

A.4 Soundness of typed abstractions

In this section, we first prove the soundness of typed abstractions in several steps. First, we prove
the substitution property for typed abstractions. Second, we establish preservation results for
reduction and equality. Third, we show deducibility preservation. Finally, we prove the soundness
theorem for typed abstractions.

Notation. For the sake of a lighter notation, we will omit set braces in intruder derivations and
write, e.g., T, t `E u instead of T ∪{t} `E u for a set of terms T and individual terms t and u. We
also write T `E U for a set of terms U to mean that all terms in U are derivable from those in T .

The following proposition shows that the semantics does not distinguish between states with
equivalent substitutions. We can therefore work with R,Ax-normal substitutions without loss of
generality.

Proposition A.16. Let φ ∈ LP and let σ, σ′ be substitutions such that dom(σ′) = dom(σ) and,
for all X ∈ dom(σ), we have and Xσ =E Xσ

′. Then

(i) (tr, th, σ) ∈ reach(P, IK0) if and only if (tr, th, σ′) ∈ reach(P, IK0) and

(ii) (tr, th, σ) � φ if and only if (tr, th, σ′) � φ.

Proof Sketch. To show point (i), we proceed by induction on the number n of transitions leading
to the state (tr, th, σ) and perform a case distinction on the last rule that has been applied. The
non-trivial case is when the RECV rule is applied. In this case, as the intruder deducibility does
not distinguish terms from the same equivalence class, it follows that (tr, th, σ′) is reachable in P .
To show point (ii), we proceed by a routine induction on φ.

57

A.4.1 Substitution property

Theorem (Substitution property; Justification of Theorem 4.18). Suppose that Ff is pattern-disjoint.
Let t ∈ udom(Ff) and θ be a well-typed and R,Ax-normal substitution. Then f(tθ) = f(t)f(θ).

Proof. We prove the theorem by induction on the size of t. SupposeEf = [f(p1) = u1, . . . , f(pn) =
un] and let t be a term such that t ∈ udom(Ff). We distinguish two cases. If Γ(t) = msg then
t is a variable and thus f(t) = t using the final identity fall-back clause of E0

f . It follows that
f(t)f(θ) = tf(θ) = f(tθ) as required. Otherwise, we have Γ(t) 6= msg . Let t : τ and tθ : τ ′.
Then, we have τ ′ 4 τ by Lemma A.3. Since t ∈ udom(Ff), we have τ ∈ Πf↓. Hence, by
Lemma A.7, t and tθ are abstracted in the same way.

Since t ∈ udom(Ff), we derive that there exists a unique clause (f(p) = u) ∈ Ef and
substitutions θ′ and θ′′ such that pθ′ = t and pθ′′ = tθ. Thus, we also have tθ = pθ′′ = pθ′θ. By
Program 1 (modulo renamings), we have

f(t) = u[f/f0]θ′ and f(tθ) = u[f/f0]θ′θ.

We distinguish two base cases.

• u = p and t = a is an atom. Then we obtain that f(aθ) = f(a) = a = af(θ) = f(a)f(θ)
as required.

• u = p and t = X is a variable. Then we have f(X) = X . Let us consider two cases:

– X ∈ dom(θ). In this case, we have

f(Xθ) = Xf(θ) = f(X)f(θ).

– X /∈ dom(θ). Since dom(f(θ)) = dom(θ), we have X /∈ dom(f(θ)). Hence, we
obtain

f(Xθ) = X = Xf(θ) = f(X)f(θ).

For the inductive cases, note that recursive calls of f have subterms of t as arguments by
Lemma A.8. Moreover, since t ∈ udom(Ff), we also have t′ ∈ udom(Ff) for each term t′

occurring as the argument of a recursive call of f in the computation of f(t). This enables the
application of the induction hypotheses (IH) below. We distinguish the following cases.

• p = c(p1, . . . , pn) for c ∈ Σn and n ≥ 1. By Definition 4.9, we have

f(c(p1, . . . , pn)) = 〈e1, . . . , ed〉.

Therefore, we obtain
f(t) = 〈e1θ

′, . . . , edθ
′〉,

f(tθ) = 〈e1θ
′θ, . . . , edθ

′θ)〉.

This implies f(t)f(θ) = 〈e1θ
′f(θ), . . . , edθ

′f(θ)〉. To see that f(tθ) = f(t)f(θ), it is
sufficient to show that eiθ′θ = eiθ

′f(θ) for all i ∈ d̃. Let i ∈ d̃, we distinguish two cases.

– If ei = f(q) such that q ∈ split(pj) for some j ∈ ñ then we have eiθ′θ = f(qθ′θ).
Let j ∈ ñ such that q ∈ split(pj). This implies qθ′ ∈ subterm(pjθ

′). Moreover,
since t = pθ′, we derive that pjθ′ ∈ subterm(t) \ {t}. Therefore, we have qθ′ ∈
subterm(t) \ {t}. Hence by the induction hypothesis, we have f(qθ′θ) = f(qθ′)f(θ).
This yields eiθ′θ = eiθ

′f(θ) as required.

58

– If ei = c(f̂(q1), . . . , f̂(qn)) then we have

eiθ
′θ = c(f̂(q1θ

′θ), . . . , f̂(qnθ
′θ))

Since set(qj) ⊆ split(pj) for all j ∈ ñ, we derive that set(qjθ
′) ⊆ subterm(pjθ

′)
for all j ∈ ñ. Moreover, we have pjθ′ ∈ subterm(t) \ {t}. Therefore, by induction
hypothesis, we derive that f̂(qjθ

′θ) = f̂(qjθ
′)f(θ) for all j ∈ ñ. Note that for all

j ∈ ñ, we have f̂(qjθ
′) = f̂(qj)θ

′. Hence, we conclude that eiθ′θ = eiθ
′f(θ) as

desired.

This completes the proof of the theorem.

A.4.2 Preservation results for equality and reduction

We also assume a standard derivation system for equational logic with an axiom rule including
substitution as well as reflexivity, transitivity, and congruence rules.

Lemma A.17. Let u and v be terms such that u =Ax v. Let τ ∈ Π(E+
f) such that Γ(u) 4 τ . Then

we have Γ(v) 4 τ .

Proof. We proceed by induction on the derivation u =Ax v depending on the last rule that has been
applied.

• Reflexivity: In this case, we have u = v. Hence it is clear that Γ(v) 4 τ .

• Axiom: In this case, there is a pair {s, t} ∈ Ax and a substitution σ such that u = sσ and
v = tσ. Since Γ(u) 4 τ , we have Γ(sσ) 4 τ . If τ = msg then we immediately have
Γ(v) 4 τ . Otherwise, we have topsym(τ) = topsym(s) = c. By Definition 4.20, we derive
that τ = c(msg , . . . ,msg). Since topsym(t) = topsym(s) = c, we obtain that Γ(tσ) 4 τ .
This means Γ(v) 4 τ as required.

• Congruence: Suppose that u = g(u1, . . . , un) for some n ≥ 1 and g ∈ Σn. We have
v = g(v1, . . . , vn) and ui =Ax vi. Since Γ(u) 4 τ , either τ = msg or τ = g(τ1, . . . , τn)
and Γ(ui) 4 τi for all i ∈ ñ. In the first case, i.e., τ = msg , it is obvious that Γ(v) 4 τ . In
the latter case, by induction hypothesis, we know that Γ(vi) 4 τi for all i ∈ ñ. This implies
Γ(v) 4 τ as required.

• Transitivity: In this case, there is a term w such that t =Ax w and w =Ax u. By induction
hypothesis, we have Γ(w) 4 τ and Γ(u) 4 τ which concludes this case.

This completes the proof of the lemma.

Proposition A.18 (Ax-equality preservation). Suppose that Ff is pattern-disjoint and Ax-closed.
Let t, u ∈ T . Then t =Ax u implies f(t) =Ax f(u).

Proof. By induction on the derivation of t =Ax u. The cases are:

• Axiom: In this case, there are a pair {s1, s2} ∈ Ax and a substitution σ such that t = s1σ
and u = s2σ. Since Ff is Ax-closed, we know that f is homomorphic for funsym(s1) ∪
funsym(s2). Therefore, we derive

f(t) = f(s1)f(σ) = s1f(σ)
f(u) = f(s2)f(σ) = s2f(σ)

Thus by rule Axiom, we obtain that s1f(σ) =Ax s2f(σ). Therefore, we have f(t) =Ax f(u).

59

• Reflexivity: This case holds trivially, since we have t = u (syntactic identity).

• Transitivity: Suppose there is a term t′ such that t =Ax t
′ and t′ =Ax u. By the induction

hypothesis, we have f(t) =Ax f(t′) and f(t′) =Ax f(u). Hence, f(t) =Ax f(u) as
required.

• Congruence: Suppose that t = c(t1, . . . , tn) and u = c(u1, . . . , un) for some c ∈ Σn and,
for all i ∈ ñ, terms ti and ui such that

ti =Ax ui. (11)

Moreover, by Lemma A.17, we know that t and u match the same clause f(p) = q in
E+
f . Hence there are substitutions θ, θ′ such that t = pθ and u = pθ′. Then there are terms
p1, . . . , pn such that p = c(p1, . . . , pn). By Definition 4.9, we know that f(p) = 〈e1, . . . , ed〉.
Hence, we have

f(t) = 〈e1θ, . . . , edθ〉,
f(u) = 〈e1θ

′, . . . , edθ
′〉.

To see that f(t) =Ax f(u), it is sufficient to show that eiθ =Ax eiθ
′ for all i ∈ d̃. Let i ∈ d̃.

We distinguish two cases depending on the shape of ei.

– If ei = f(q) where q ∈ split(pj) for some j ∈ ñ, then by (11), we derive that there
is a sub-derivation qθ =Ax qθ

′. By induction hypothesis, we have f(qθ) =Ax f(qθ′)
which implies eiθ =Ax eiθ

′ as desired.

– If ei = c(f̂(q1), . . . , f̂(qn)) then by (11), we derive that there is a sub-derivation
eθ =Ax eθ′, for all j ∈ ñ and all e ∈ set(qj). Hence, by induction hypothesis,
we know that f(eθ) =Ax f(eθ′) for all j ∈ d̃ and all e ∈ set(qj). This implies
eiθ =Ax eiθ

′ as desired.

This completes the proof of the lemma.

Lemma A.19. Suppose that Ff is pattern-disjoint and Ax-closed. Let t ∈ cdom(Ff) and σ be a
well-typed R,Ax-normal substitution. Then we have f(tσ) =E f((tσ)↓R,Ax).

Proof. From the finite variant property, we know that there is (t′, θ) ∈ JtKR,Ax and a substitution η
such that

(a) (tσ)↓R,Ax= t′η,

(b) Xσ =Ax (Xθ)η for all X ∈ vars(t).

Hence, we have f((tσ)↓R,Ax) = f(t′η). By Definition 4.22(i) and Theorem 4.18, we derive that
f(t′η) = f(t′)f(η). Moreover, by Definition 4.22(ii), we have f(t′) =E f(tθ). Therefore, we
obtain

f((tσ)↓R,Ax) =E f(tθ)f(η).

By Definition 4.22(i) and Theorem 4.18, we have f(tθ)f(η) = f((tθ)η). Moreover, by (b) we
derive that f((tθ)η) = f(tσ). This yields f(tσ) =E f((tσ)↓R,Ax) as required.

Theorem (Equality preservation; Justification of Theorem 4.23). Suppose that Ff is pattern-
disjoint and Ax-closed. Let t, u ∈ cdom(Ff) and σ be a well-typed R,Ax-normal substitution.
Then tσ =E uσ implies f(tσ) =E f(uσ).

60

t ∈ T
T `R,Ax t↓R,Ax Ax′

T `R,Ax t t =Ax u

T `R,Ax u
Eq′

T `R,Ax t1 · · · T `R,Ax tn
T `R,Ax g(t1, . . . , tn)↓R,Ax

Comp′ (g ∈ Σ≥1
pub)

Figure 6: Rules for normalized intruder deduction (where Σ≥1
pub = Σ≥1 ∩ Σpub)

Proof. Since tσ =E uσ, we derive that (tσ)↓R,Ax =Ax (uσ)↓R,Ax. By Proposition A.18, we have
f((tσ)↓R,Ax) =Ax f((uσ)↓R,Ax). From Lemma A.19 we have

f(tσ) =E f((tσ)↓R,Ax)
f(uσ) =E f((uσ)↓R,Ax).

Hence, we obtain that f(tσ) =E f(uσ) as required.

A.4.3 Deducibility preservation

For the purpose of proving deducibility preservation, we introduce an alternative proof system
where all derived terms are R,Ax-normal. The derivation rules of this proof system are displayed
in Figure 6. Note that by the coherence property we do not need to normalize the term u derived in
the Eq′ rule if t is normal, which is indeed the case in all derivations using this system. We show
that this system derives the same (R,Ax-normal) terms as the original one from Figure 1.

Lemma A.20 (Equivalence of intruder deduction).

(i) T `E t implies T `R,Ax t↓R,Ax.

(ii) T `R,Ax t implies T `E t.

Proof.

(i) Suppose that T `E t. We show T `R,Ax t ↓R,Ax by induction on the rules applied in the
derivation of T `E t↓R,Ax.

• Rule Ax: Then t ∈ T . Hence, T `R,Ax t↓R,Ax by rule Ax′.

• Rule Eq: Here, T `E u is derived from T `E t and t =E u. The latter is equivalent to
t↓R,Ax =Ax u↓R,Ax. We combine this with the induction hypothesis T `R,Ax t↓R,Ax to
derive, as required, T `R,Ax u↓R,Ax using rule Ax′.

• Rule Comp: Then t = g(t1, . . . , tn) for some g ∈ Σ≥1
pub and T `E t1, . . . , T `E tn. By

induction hypothesis, we have T `R,Ax ti ↓R,Ax for all i ∈ ñ. Using rule Comp′, we
derive T `R,Ax g(t1 ↓R,Ax, . . . , tn ↓R,Ax)↓R,Ax. Since convergence ensures

g(t1 ↓R,Ax, . . . , tn ↓R,Ax)↓R,Ax =Ax g(t1, . . . , tn)↓R,Ax,

we can use rule Eq′ to derive T `R,Ax g(t1, . . . , tn)↓R,Ax as required.

(ii) Follows from the fact that the normal proof rules are derivable using the original rules.

This concludes the proof of the lemma.

Lemma A.21. T `E f(uθ) if and only if, for all t ∈ split(u), T `E f(tθ).

Proof.

61

(i) ⇒: Suppose T `E f(uθ) and t ∈ split(u). Since split(t) = {t} we have split(tθ) ⊆
split(uθ) by Lemma A.1. Hence, T `E f(tθ) by Lemma A.15, as required.

(ii) ⇐: Suppose T `E f(tθ) for all t ∈ split(u). By Lemma A.14, we derive that T `E f(w) for
all w ∈ split(tθ). Let v ∈ split(uθ). Then there exists t ∈ split(u) such that v ∈ split(tθ).
Therefore, T `E f(v). We have shown that T `E f(v) for all v ∈ split(uθ). Hence, we
obtain T `E f(uθ) using Lemma A.13.

Theorem (Deducibility preservation; Justification of Theorem 4.32). Let Ff be aR,Ax-compatible
typed abstraction and let T ∪{t} be a set of R,Ax-normal terms such that T contains all constants,
i.e., C ⊆ T . Then we have T `E t implies f(T) `E f(t).

Proof. Using Lemma A.20, it is sufficient to show that T `R,Ax t implies f(T) `E f(t). We
proceed by induction on the derivation of T `R,Ax t.

• Rule Ax′. Since T isR,Ax-normal, there is a u ∈ T such that t =Ax u. Hence, f(u) ∈ f(T)
and f(t) =Ax f(u) by Proposition A.18. Using rules Ax and Eq, we derive f(T) `E f(t)
as required.

• Rule Eq′. Here, T `R,Ax t is derived from T `R,Ax u and u =Ax t for some u. By
Proposition A.18, we have f(u) =Ax f(t). Hence, we derive the required conclusion
f(T) `E f(t) from the induction hypothesis f(T) `E f(u) using rule Eq.

• Rule Comp′. In this case, t = t′ ↓R,Ax where t′ = g(t1, . . . , tn) for some g ∈ Σn and the
rule’s premises are T `R,Ax ti for all i ∈ ñ. The induction hypotheses are f(T) `E f(ti)
for each i ∈ ñ. We distinguish two cases depending on whether or not t′ is R,Ax-normal.

Case 1: t′ is not R,Ax-normal. Since the ti are R,Ax-normal for all i ∈ ñ, some rewrite
rule l → r ∈ R can be applied at the root position of t′, i.e., there is a substitution σ such
that t′ =Ax lσ. From the well-formedness of the rewrite theory, follows that topsym(t′) =
g = topsym(l). Hence, there are terms u1, . . . , un such that l = g(u1, . . . , un) and t′ =Ax

g(u1σ, . . . , unσ).

Since Ff is compatible with the rewrite theory, we reason by case distinction on the condition
of Definition 4.30 that applies to the rewrite rule l→ r.

(C1) In this case, we have r = uj for some j ∈ ñ and g /∈ funsym(Ax). Hence, we have
ti =Ax uiσ for all i ∈ ñ. Since ujσ is R,Ax-normal, we have ujσ =Ax t. Using
Proposition A.18, we derive f(tj) =Ax f(ujσ) =Ax f(t). By the induction hypothesis,
we have f(T) `E f(tj). Hence, derive f(T) `E f(t) using rule Eq.

(C2) In this case, we have g /∈ funsym(Ax), uj = c(v1, . . . , vm) where none of the vi’s is
a pair, and r = vk for some k ∈ m̃. Since vkσ is R,Ax-normal, we have vkσ =Ax t.
Using Proposition A.18, we reduce the required conclusion f(T) `E f(t) to showing
that f(T) `E f(vkσ). Since g /∈ funsym(Ax), we have ti =Ax uiσ for all i ∈ ñ. The
induction hypotheses are f(T) `E f(ti) for all i ∈ ñ. Thus, we have f(T) `E f(uiσ)
for all i ∈ ñ by Proposition A.18 and rule Eq.

Consider f(ujσ). By the general form of the equations in Definition 4.9, we have

f(ujσ) = f(c(v1σ, . . . , vmσ)) = f(c(p1θ, . . . , pmθ)) = 〈e1θ, . . . , edθ〉.

62

with viσ = piθ for all i ∈ m̃.1 Hence, we have to show that f(T) `E f(pkθ). By
Lemma A.21, it is sufficient to establish f(T) `E f(qθ) for all q ∈ split(pk).
Let q ∈ split(pk). By condition (C2.a), f is field-preserving for position k of c. There-
fore, there is a k′ ∈ d̃ such that ek′θ = f(qθ) or ek′θ = c(f̂(q1θ), . . . , f̂(qkθ), . . . , f̂(qmθ))
and qθ ∈ set(qkθ). In both cases, we can derive f(T) `E ek′θ from f(T) `E f(ujσ).
In the former case, this yields f(T) `E f(qθ) as required. The latter case requires a bit
more work. Since we have

f(T) `E c(f̂(q1θ), . . . , f̂(qkθ), . . . , f̂(qmθ)),

and qθ ∈ set(qkθ), it is sufficient to show that f(T) `E f̂(qkθ) to draw the required
conclusion f(T) `E f(qθ). We achieve this by applying the composition rule Comp
for constructor g and then applying the same rewrite rule to extract f̂(qkθ) from ek′θ.

By condition (C2.c), for all i ∈ ñ \ {j}, f is homomorphic for all constructors in ui
and therefore, we have f(uiσ) = uif(σ) and f(T) `E uif(σ). We can then derive
f(T) `E w where

w = g(u1f(σ), . . . , uj−1f(σ), c(f̂(q1θ), . . . , f̂(qkθ), . . . , f̂(qmθ)), uj+1f(σ), . . . , unf(σ)).

To apply the rewrite rule l→ r to w, we have to ensure that f̂(qiθ) matches vi for each
i ∈ m̃. By condition (C2.c), we have f(viσ) = vif(σ) for all i ∈ m̃. Recall that we
assume that none of the vi’s is a pair. We reason by case analysis on the possible forms
of vi.

If vi is not a variable then it is either an atom or a composed term other than a pair.
It follows that pi is not a pair and therefore f̂(qiθ) = f(piθ) = f(viσ) = vif(σ).
If vi is a non-linear variable of l then we can apply a similar reasoning to derive
f̂(qiθ) = vif(σ), since by condition (C2.b), f is non-splitting for position i of c.
Let V = {vi | i ∈ m̃ and vi is a linear variable of l}. We construct the following
substitution, which updates f(σ) with new assignments for the variable in V :

ξ = {(vi, f̂(qiθ)) | vi ∈ V } ∪ {(X, f(Xσ)) | X ∈ vars(l) \ V }

Then we have w = lξ and rξ = vkξ = f̂(qkθ). Hence, we have f(T) `E w and
w =E f̂(qkθ) from which we derive f(T) `E f̂(qkθ) using rule Eq as required.

(C3) The subcase (a) where r is a constant is straightforward. Since C ⊆ T and f(C) = C,
we also have C ⊆ f(T). Hence, f(T) `E c for all c ∈ C.

It remains to show cases (b) and (c). The initial reasoning is the same for both cases,
based on the shared assumption that Ff is homomorphic for topsym(l) = g. Using this
assumption, we know that g(f(t1), . . . , f(tn)) = f(g(t1, . . . , tn)) = f(t′). Therefore,
we can derive f(T) `E f(t′) using the induction hypotheses, f(T) `E f(ti) for
i ∈ ñ, and rule Comp. We also have t′ = g(t1, . . . , tn) =Ax g(u1σ, . . . , unσ) = lσ.
Therefore, using Proposition A.18, we derive f(t′) =Ax f(lσ) and using rule Eq, we
derive f(T) `E f(lσ). We now complete each of the subcases (b) and (c) in turn.

– Case (b): Here, from l ∈ cdom(Ff) and Lemma A.19, we obtain f(lσ) =E

f((lσ)↓R,Ax). The desired result f(T) `E (lσ)↓R,Ax then follows using rule Eq.
– Case (c): Here, we assume r ∈ cdom(Ff) andFf is homomorphic for funsym(l, r).

From the latter assumption, we obtain f(lσ) = lf(σ) and f(rσ) = rf(σ) and
hence f(lσ) → f(rσ). Since r ∈ cdom(Ff), we use Lemma A.19 to infer
f(lσ) =E f((rσ)↓R,Ax) . Finally, we obtain f(T) `E (rσ)↓R,Ax using rule Eq.

1Assuming w.l.o.g. disjoint variables, η = σ ∪ θ is a unifier for {(ui, pi) | i ∈ m̃}.

63

Case 2: t′ is R,Ax-normal. Here, we have t =Ax t
′ = g(t1, . . . , tn). Let

f(g(p1, . . . , pn)) = 〈e1, . . . , ed〉

be the clause of Ff that matches t′ with substitution θ, i.e., ti = piθ for i ∈ ñ. Clearly,
using Proposition A.18, the required conclusion f(T) `E f(t) can be reduced to showing
f(T) `E f(t′), which can in turn be reduced to showing f(T) `E eiθ for all i ∈ d̃.

Let i ∈ d̃ and consider eiθ. We distinguish two forms of ei:

(a) ei = f(q) such that q ∈ split(pj) for some j ∈ n. Here, eiθ = f(qθ) and we can derive
f(T) `E f(qθ) from the induction hypothesis f(T) `E f(pjθ) using Lemma A.21.

(b) ei = c(f̂(q1), . . . , f̂(qn)) such that, for all j ∈ ñ, we have set(qj) ⊆ split(pj). Here,
eiθ = c(f̂(q1θ), . . . , f̂(qnθ)) and f(T) `E eiθ follows if we can establish f(T) `E
f̂(qjθ) for each j ∈ ñ. This can be further reduced to showing f(T) `E f(qθ) for
all q ∈ set(qj). Let q ∈ set(qj). Hence, q ∈ split(pj) and we can again invoke
Lemma A.21 to derive f(T) `E f(qθ) from the induction hypothesis f(T) `E f(pjθ)
as required.

This concludes the proof of the theorem.

Corollary (Deducibility preservation with substitution, Justification of Corollary 4.33). Let Ff be a
R,Ax-compatible typed abstraction. Suppose σ is a R,Ax-normal well-typed ground substitution
and T ∪{u} is a set of terms such that (i) f(IK0) ⊆ IK ′0 and (ii) T ∪{u} ⊆ udom(Ff)∩cdom(Ff).
Then Tσ, IK0 `E uσ implies f(T)f(σ), IK ′0 `E f(u)f(σ).

Proof. We present all the derivation steps as follows.

Tσ, IK0 `E uσ by assumption
⇒ (Tσ)↓R,Ax, IK0 `E (uσ)↓R,Ax by rule Eq
⇒ f((Tσ)↓R,Ax), f(IK0) `E f((uσ)↓R,Ax) by Theorem 4.32 and Assumption 3.9
⇒ f((Tσ)↓R,Ax), IK ′0 `E f((uσ)↓R,Ax) by assumption (i)
⇒ f(Tσ), IK ′0 `E f(uσ) by assumption (ii), Theorem 4.23, and rule Eq
⇒ f(T)f(σ), IK ′0 `E f(u)f(σ) by assumption (ii) and Theorem 4.18

This completes the proof of the corollary.

A.5 Additional criterion for condition I

In this subsection, we present a syntactic criterion to justify the satisfaction of Definition 4.5(d)
where message variables are involved. More generally, we want to solve the following problem.

Problem A.1. Suppose Ff is Ax-closed and pattern-disjoint. Let t, u ∈ M be terms such that
t, u ∈ udom(Ff) and ι, κ ∈ X . Under which conditions does f(tϑ(ι))f(σ) =E f(uϑ(κ))f(σ)
imply tϑ(ι)σ =E u

ϑ(κ)σ for all R,Ax-normal well-typed ground substitutions σ and all thread-id
interpretations ϑ?

We assume arbitrary but fixed terms t and u such that t, u ∈M∩ udom(Ff), a R,Ax-normal
well-typed ground substitution σ, and a thread-id interpretation ϑ. We intend to look for sufficient
conditions under which f(tϑ(ι))f(σ) =E f(uϑ(κ))f(σ) implies tϑ(ι)σ =E u

ϑ(κ)σ. We also require
that these conditions do not depend on σ and ϑ. This is to ensure that our conditions work for all
such substitutions σ and thread-id interpretations ϑ.

64

Here, we consider the case where either t or u contain message variables. Without loss of
generality, we assume that message variables occur only in t. Suppose f(t) = t and f(u) = u. We
want to show that

f(σ)|vars(tϑ(ι))∪vars(uϑ(κ)) = σ|vars(tϑ(ι))∪vars(uϑ(κ)). (12)

Equivalently, we need to be able to show that Xf(σ) = Xσ for every variable X ∈ vars(tϑ(ι)) ∪
vars(uϑ(κ)). If X ∈ vars(uϑ(κ)) then X is not a message variable. It follows that Xf(σ) =
f(Xσ) = Xσ. To prove thatXf(σ) = Xσ for each message variableX ∈ vars(tϑ(ι)), we need to
ensure that f(σ) is R,Ax-normal. Otherwise, equality (12) and injectivity property of Problem A.1
may fail as illustrated in the following example.

Example A.22. We consider the case that t = X is a message variable, u = a is an atom and Ef
contains the following equations:

f({|X1|}Y1) = {|f(X1)|}f(Y1)

f({|X2|}−1
Y2

) = {|f(X2)|}−1
f(Y2)

f(h(X2)) = f(X2)

where all pattern variables are of type msg . Intuitively, f is homomorphic for {| · |}· and
{| · |}−1

· and removes the hash function symbol h from terms. We define the substitution σ =
{{|{|a|}h(a)|}−1

a /Xϑ(ι)}. Then we have tϑ(ι)f(σ) =E u
ϑ(κ)f(σ) because uϑ(κ)f(σ) = a and

tϑ(ι)f(σ) = f(Xϑ(ι)σ) = f({|{|a|}h(a)|}−1
a) = {|{|a|}a|}−1

a =E a.

But Xϑ(ι)σ = {|{|a|}h(a)|}−1
a 6=E a = uϑ(κ)σ.

This example also highlights the difficulty of achieving R,Ax-normality for f(σ) without
substantial restrictions. We therefore take the following approach. We show that for each
R,Ax-normal attack σ on a property φ in P , there is an R,Ax-normal attack σ′ on φ such
that funsym(ran(σ′)) ∩ topsym(lhs(R)) = ∅. Intuitively, ran(σ′) does not contain destruc-
tors. We construct σ′ from σ by replacing each term v ∈ subterm(ran(σ)) such that topsym(v) ∈
topsym(lhs(R)) with a new constant a. By applying this replacement exhaustively, we eliminate
all subterms in the range of σ whose corresponding abstracted terms are potentially redexes. The
resulting substitution σ′ satisfies that f(σ′) is R,Ax-normal. The notion of term replacement is
introduced in the following definition.

Definition A.23 (Term replacement). For terms v and v′, we use [v′/v]'Ax to denote the mapping
that replaces each term t′ such that t′ =Ax v by v′. We also define the domain of [v′/v]'Ax by

dom([v′/v]'Ax) = {t ∈ T | t =Ax v}.

Analogous to the soundness conditions for protocol abstractions, we need to establish two
properties:

(P1) for all terms t and u, we have that t =E u if and only if t[a/v]'Ax =E u[a/v]'Ax , and

(P2) for a set of terms T and a term t such that Tσ∪IK0 `E tσ, we have T (σ[a/v]'Ax)∪IK0 `E
t(σ[a/v]'Ax).

Property P1 is required for preserving attacks on authentication-like properties while property
P2 ensures reachability preservation and attack preservation for secrecy in particular. Before
establishing these properties, we introduce some auxiliary definitions. We overload notation and
define the following sets:

subterm(Ax) =
⋃
{s,t}∈Ax subterm(s) ∪ subterm(t),

subterm(R) =
⋃
l→r∈R subterm(l) ∪ subterm(r).

The following proposition allows us to treat [v′/v]'Ax as a substitution.

65

Proposition A.24. Suppose that for all {s, s′} ∈ Ax, we have that |s| = |s′| and s, s′ are linear.
Then for all terms t and u such that t =Ax u, it holds that u is not a strict subterm of t.

Proof. Let {s, s′} ∈ Ax and σ be a substitution. For a given set of variables V , we define
JσKV =

∑
X∈V ∩dom(σ) |Xσ|. By assumption, we derive that

|sσ| = |s| − |dom(σ) ∩ vars(s)|+ JσKvars(s),

|s′σ| = |s′| − |dom(σ) ∩ vars(s′)|+ JσKvars(s′).

Since vars(s) = vars(s′) and |s| = |s′|, we have |sσ| = |s′σ|. This together with t =Ax u implies
that |t| = |u|. Hence u cannot be a strict subterm of t.

For the remainder of this paragraph, we assume that |s| = |s′| and s, s′ are linear for all pairs
{s, s′} ∈ Ax. Given a substitution σ, we denote by σ[v′/v]'Ax the substitution such that

dom(σ[v′/v]'Ax) = dom(σ),
σ[v′/v]'Ax(X) = (Xσ)[v′/v]'Ax .

We also use Pos(t) to denote the set of all positions in a term t. We now look for sufficient
conditions under which property P1 holds. Note that the only-if direction in P1 does not hold in
general as illustrated in the following example.

Example A.25. Let Ax = {k(X, d(Y)) ' k(X, g(Y))} and R = ∅ where k ∈ Σ2 and d, g ∈ Σ1.
We consider two terms t = k(b, d(c)) and u = k(b, g(c)) where b, c ∈ C and let v = d(c). Then
t =E u, but

t[a/v]'Ax = k(b, a) 6=Ax k(b, d(c)) = u[a/v]'Ax .

We therefore need to restrict the interference of replacement [a/v]'Ax with the axioms. We
achieve it by requiring that topsym(v) /∈ funsym(Ax) = ∅. Intuitively, this means that no axiom
contains v’s top function symbol. Similarly, we must also restrict the interference of the replacement
with rewrite rules as the following counterexample shows.

Example A.26. Let R = {k(d(X)) → X} and Ax = ∅. Let us consider t = k(d(c)) for c ∈ C
and v = d(c). Then, we have k(d(c))→ c and therefore t =E c. However, we obtain

t[a/v]'Ax = k(a) 6=E c = c[a/v]'Ax .

We therefore require that topsym(v) 6= topsym(l|p) for all rewrite rules l → r ∈ R and
non-variable positions p ∈ Pos(l) \ {ε}. Intuitively, this means that no rewrite rule contains v’s
top function symbol except at the root.

Under these restrictions, we are able to establish P1 in the following proposition.

Proposition A.27. Let {t, u, a, v} be ground terms and let a be an atom such that

(i) a /∈ subterm(t) ∪ subterm(u) ∪ subterm(v) ∪ subterm(Ax) ∪ subterm(R),

(ii) topsym(v) /∈ funsym(Ax), and

(iii) for all rewrite rules l → r ∈ R and all non-variable terms w ∈ (subterm(l) \ {l}) ∪
subterm(r), we have that topsym(v) 6= topsym(w).

Then t =E u if and only if that t[a/v]'Ax =E u[a/v]'Ax .

To establish Proposition A.27, we first prove some auxiliary results.

66

Lemma A.28. Let u, t, v be ground terms and a be an atom such that a /∈ subterm(u) ∪
subterm(t). Suppose that u[a/v]'Ax =Ax t[a/v]'Ax . Then u ∈ dom([a/v]'Ax) if and only
if t ∈ dom([a/v]'Ax).

Proof. By symmetry, it is sufficient to show that u ∈ dom([a/v]'Ax) implies that t ∈ dom([a/v]'Ax).
Suppose that u ∈ dom([a/v]'Ax). Then we have u[a/v]'Ax = a. Hence, we obtain t[a/v]'Ax =Ax

a. If t ∈ dom([a/v]'Ax) then we are done. Otherwise, since a /∈ subterm(t) ∪ subterm(Ax),
there must be a strict subterm t′ of t such that t′ ∈ dom([a/v]'Ax). This implies a is a strict
subterm of t[a/v]'Ax . But from a =Ax t[a/v]'Ax and the assumption that |s| = |s′| and s, s′ are
linear for all {s, s′} ∈ Ax, we derive that t[a/v]'Ax must not be composed. This is a contradiction
and thus completes the proof of the lemma.

Lemma A.29. Let u, t, v be ground terms and a be an atom such that a /∈ subterm(u) ∪
subterm(t) ∪ subterm(Ax). Then u[a/v]'Ax = t[a/v]'Ax implies u =Ax t.

Proof. We show this lemma by induction on u.

• If u is an atom we consider two cases.

– If u ∈ dom([a/v]'Ax) then by Lemma A.28, we have that t ∈ dom([a/v]'Ax). This
implies u =Ax v and t =Ax v. Hence, we obtain u =Ax t.

– If u /∈ dom([a/v]'Ax) then by Lemma A.28, we have that t /∈ dom([a/v]'Ax). Thus,
we have u[a/v]'Ax = u and t[a/v]'Ax = t. Therefore, we obtain u = t and hence
u =Ax t.

• If u = g(u1, . . . , un) for some g ∈ Σn then we consider two cases.

– If u ∈ dom([a/v]'Ax) then by Lemma A.28, we have t ∈ dom([a/v]'Ax). It follows
that t[a/v]'Ax = a. Together with the assumption that a /∈ subterm(t), this yields
t ∈ dom([a/v]'Ax). Hence, we have u =Ax t as required.

– If u /∈ dom([a/v]'Ax) then by Lemma A.28, we also have t /∈ dom([a/v]'Ax). Since
topsym(t[a/v]'Ax) = g and t /∈ dom([a/v]'Ax), we must have topsym(t) = g.
Therefore, we have t = g(t1, . . . , tn). We derive that

u[a/v]'Ax = g(u1[a/v]'Ax , . . . , un[a/v]'Ax),
t[a/v]'Ax = g(t1[a/v]'Ax , . . . , tn[a/v]'Ax).

Since u[a/v]'Ax = t[a/v]'Ax , we have ui[a/v]'Ax = ti[a/v]'Ax for all i ∈ ñ. By
induction hypothesis, we know that ui =Ax ti. Therefore, by the Congruence rule, we
conclude that u =Ax t as required.

This completes the proof of the lemma.

Lemma A.30. Let t, u, v be terms and a be an atom such that t, v are ground and a /∈ subterm(t)∪
subterm(u) ∪ subterm(Ax). Let σ be a ground substitution such that dom(σ) = vars(u) and
t[a/v]'Ax = uσ. Then there is a ground substitution σ′ such that the following holds.

(i) dom(σ′) = vars(u),

(ii) a /∈ subterm(ran(σ′)),

(iii) uσ′ =Ax t, and

(iv) σ′[a/v]'Ax = σ.

67

Proof. We prove this lemma by induction on u.

• If u is an atom then we have uσ = u and thus t[a/v]'Ax = u. Since a /∈ subterm(u), we
must have t[a/v]'Ax = t = u. Thus we set σ′ to the empty substitution and obtain uσ′ = t.
Moreover, we also have dom(σ′) = ∅ = dom(σ). Hence, it is clear that σ′[a/v]'Ax = σ.

• If u = X is a variable then let σ′ be such that dom(σ′) = {X} and Xσ′ = t. Then we have
uσ′ = t. By assumption, we have

a /∈ subterm(Xσ) = subterm(ran(σ)).

Moreover, since t[a/v]'Ax = Xσ, it follows that (Xσ′)[a/v]'Ax = Xσ. Thus, we also
have σ′[a/v]'Ax = σ.

• If u = g(u1, . . . , un) for some g ∈ Σn then since t[a/v]'Ax = uσ and a is an atom, there
must be terms t1, . . . , tn such that

t = g(t1, . . . , tn),
t[a/v]'Ax = g(t1[a/v]'Ax , . . . , tn[a/v]'Ax).

Therefore, we have ti[a/v]'Ax = uiσ for all i ∈ ñ. By induction hypothesis, there are
ground substitutions σ1, . . . , σn such that for all i ∈ ñ, we have

a /∈ subterm(ran(σi)),
dom(σi) = vars(ui),
σi[a/v]'Ax = σ|vars(ui), and
uiσi =Ax ti.

We define σ′ such that dom(σ′) = vars(u) and for all X ∈ dom(σ′), Xσ′ = Xσi where
i ∈ ñ is the smallest index such that X ∈ dom(σi). It is clear that σ′[a/v]'Ax = σ and
a /∈ subterm(ran(σ′)). To see that uσ′ =Ax t, it is sufficient to show that for all i, j ∈ ñ
and all X ∈ dom(σi) ∩ dom(σj), it holds that Xσi =Ax Xσj . Let i, j ∈ ñ and X ∈
dom(σi) ∩ dom(σj). From the induction hypothesis, we know that (Xσi)[a/v]'Ax = Xσ
and (Xσj)[a/v]'Ax = Xσ. Thus, we have (Xσi)[a/v]'Ax = (Xσj)[a/v]'Ax . This by
Lemma A.29 implies that Xσi =Ax Xσj . We therefore conclude this case.

Lemma A.31. Let t, u, v be terms and let a be an atom such that t, v are ground and a /∈
subterm(t) ∪ subterm(u) ∪ subterm(Ax). Suppose that

(i) t[a/v]'Ax =Ax u, and

(ii) topsym(v) /∈ funsym(Ax).

Then there is a ground term t′ such that t =Ax t
′ and t′[a/v]'Ax = u.

Proof. We prove this lemma by induction on the derivation of t[a/v]'Ax =Ax u depending on the
last rule that has been applied.

• Reflexivity: We have t[a/v]'Ax = u. Thus, we can pick t′ = t.

68

• Axiom: In this case, there are {s, s′} ∈ Ax and a ground substitution σ such that t[a/v]'Ax =
sσ and u = s′σ. By Lemma A.30, there exists a ground substitutions σ′ such that

dom(σ′) = vars(s),
a /∈ subterm(ran(σ′)),
sσ′ =Ax t, and
σ′[a/v]'Ax = σ.

We pick t′ = s′σ′. Since vars(s) = vars(s′), we have s′σ′ is ground. Moreover, we have
t′ =Ax t. By assumption (ii), we derive that s′σ = s′(σ′[a/v]'Ax) = (s′σ′)[a/v]'Ax =
t′[a/v]'Ax . Hence, we have u = t′[a/v]'Ax as required.

• Congruence: In this case, there are c ∈ Σn and terms t1, . . . , tn, u1, . . . , un such that

t = c(t1, . . . , tn),
u = c(u1, . . . , un),
ti[a/v]'Ax =Ax ui for all i ∈ ñ.

By induction hypothesis, there is a term t′i such that ti =Ax t
′
i and ui = t′i[a/v]'Ax for all

i ∈ ñ. We define t′ = c(t′1, . . . , t
′
n) and derive that t′ =Ax t and u = t′[a/v]'Ax as required.

• Transitivity: In this case, there is a term w such that t[a/v]'Ax =Ax w and w =Ax u. By
induction hypothesis, there is a term w′ such that t =Ax w

′ and w = w′[a/v]'Ax . Thus, we
have w′[a/v]'Ax =Ax u. Using the induction hypothesis, we derive that there exists a term
t′ such that w′ =Ax t

′ and u = t′[a/v]'Ax . It follows that t =Ax t
′ which concludes this

case.

Lemma A.32. Let u, t, v be ground terms and a is an atom. Suppose that topsym(v) /∈ funsym(Ax).
Then u =Ax t implies u[a/v]'Ax =Ax t[a/v]'Ax .

Proof. We prove this lemma by induction on the derivation u =Ax t depending on the last rule that
has been applied.

• Reflexivity: In this case, we have u = t. Thus it is obvious that u[a/v]'Ax = t[a/v]'Ax .

• Axiom: In this case, then there are a pair {s, s′} ∈ Ax and a substitution σ such that u = sσ
and t = s′σ. Let σ′ = σ[a/v]'Ax . Since topsym(v) /∈ funsym(Ax), we have

u[a/v]'Ax = (sσ)[a/v]'Ax = sσ′,
t[a/v]'Ax = (s′σ)[a/v]'Ax = s′σ′.

Using the Axiom rule, we derive that u[a/v]'Ax =Ax t[a/v]'Ax as required.

• Congruence: In this case, we have that u = g(u1, . . . , un) and t = g(t1, . . . , tn) for some
g ∈ Σn, n ≥ 1. Moreover, we have ui =Ax ti for all i ∈ ñ. Since u =Ax t, it is clear that
u ∈ dom([a/v]'Ax) if and only if t ∈ dom([a/v]'Ax). We consider two cases.

– If u ∈ dom([a/v]'Ax) then t ∈ dom([a/v]'Ax). Thus, we have u[a/v]'Ax = a =
t[a/v]'Ax .

– If u /∈ dom([a/v]'Ax) then t /∈ dom([a/v]'Ax). Therefore, we have

u[a/v]'Ax = g(u1[a/v]'Ax , . . . , un[a/v]'Ax),
t[a/v]'Ax = g(t1[a/v]'Ax , . . . , tn[a/v]'Ax).

Moreover, by induction hypothesis, we know that ui[a/v]'Ax =Ax ti[a/v]'Ax for all
i ∈ ñ. Hence, we obtain u[a/v]'Ax =Ax t[a/v]'Ax as required.

69

• Transitivity: In this case, there is a term w such that u =Ax w and w =Ax t. By induction
hypothesis, we have

u[a/v]'Ax =Ax w[a/v]'Ax ,
w[a/v]'Ax =Ax t[a/v]'Ax .

It follows that u[a/v]'Ax =Ax t[a/v]'Ax as required.

This completes the proof of the lemma.

Lemma A.33. Let u, t, v be ground terms and a is an atom such that

(i) a /∈ subterm(u) ∪ subterm(t) ∪ subterm(Ax),

(ii) topsym(v) /∈ funsym(Ax).

Then u[a/v]'Ax =Ax t[a/v]'Ax implies u =Ax t.

Proof. We prove this lemma by induction on the derivation u[a/v]'Ax =Ax t[a/v]'Ax .

• Reflexivity: In this case, we have u[a/v]'Ax = t[a/v]'Ax . By Lemma A.29, we have
u =Ax t as required.

• Axiom: In this case, there are a pair {s, s′} ∈ Ax and a ground substitution σ such that
dom(σ) = vars(s), u[a/v]'Ax = sσ, and t[a/v]'Ax = s′σ. Moreover, by Lemma A.30,
there is a ground substitution σ′ such that dom(σ′) = vars(s), u =Ax σ

′, and σ′[a/v]'Ax =
σ|vars(s). Since vars(s) = vars(s′), we derive that σ|vars(s) = σ. Hence, we have

s′σ = s′(σ′[a/v]'Ax).

By assumption, for all termsw ∈ dom([a/v]'Ax)∩subterm(s′σ), we havew ∈ subterm(ran(σ)).
Therefore, we must have s′σ = (s′σ′)[a/v]'Ax . Hence, we obtain t[a/v]'Ax = (s′σ′)[a/v]'Ax .
By Lemma A.29, we derive that t =Ax s

′σ′. Together with u =Ax sσ
′, we have u =Ax t as

required.

• Congruence: In this case, there is g ∈ Σn such that

u[a/v]'Ax = g(u1, . . . , un),
t[a/v]'Ax = g(t1, . . . , tn).

Moreover, we have ui =Ax ti for all i ∈ ñ. We consider two cases.

– If u ∈ dom([a/v]'Ax) then by Lemma A.28, we have t ∈ dom([a/v]'Ax). Therefore,
we have u =Ax t as required.

– If u /∈ dom([a/v]'Ax) then by Lemma A.28, we also have t /∈ dom([a/v]'Ax). Thus,
there must be terms u′1, . . . , u

′
n and terms t′1, . . . , t

′
n such that

u = g(u′1, . . . , u
′
n),

t = g(t′1, . . . , t
′
n),

u′i[a/v]'Ax = ui for all i ∈ ñ,
t′i[a/v]'Ax = ti for all i ∈ ñ.

Hence, we have u′i[a/v]'Ax =Ax t
′
i[a/v]'Ax for all i ∈ ñ. By induction hypothesis,

we know that u′i =Ax t
′
i for all i ∈ ñ. This implies u =Ax t as required.

• Transitivity: In this case, there is a term w such that u[a/v]'Ax =Ax w and w =Ax

t[a/v]'Ax . We consider two cases.

70

– If a ∈ subterm(u[a/v]'Ax) ∪ subterm(t[a/v]'Ax) then since a /∈ subterm(Ax), we
derive that a ∈ subterm(w). Hence, there is a term w′ such that w = w′[a/v]'Ax .
By induction hypothesis, we have u =Ax w

′ and w′ =Ax t. This implies u =Ax t as
required.

– If a /∈ subterm(u[a/v]'Ax) ∪ subterm(t[a/v]'Ax) then we have u[a/v]'Ax = u and
t[a/v]'Ax = t. Thus, we obtain u =Ax t as required.

This completes the proof of the lemma.

Lemma A.34. Let t, u, v be terms and a is an atom such that t, v are ground such that

(i) a /∈ subterm(t) ∪ subterm(u) ∪ subterm(Ax),

(ii) topsym(v) /∈ funsym(Ax).

Let σ be a ground substitution such that dom(σ) = vars(u) and t[a/v]'Ax =Ax uσ. Then there is
a ground substitution σ′ such that the following holds.

• dom(σ′) = vars(u),

• a /∈ subterm(ran(σ′)),

• uσ′ =Ax t, and

• σ′[a/v]'Ax = σ.

Proof. We prove this lemma by induction on the derivation t[a/v]'Ax =Ax uσ.

• Reflexivity: We have t[a/v]'Ax = uσ and thus the conclusion follows immediately from
Lemma A.30.

• Axiom: Suppose that there are a pair {s, s′} ∈ Ax and a ground substitution θ such that
dom(θ) = vars(s) ∪ vars(s′) and

t[a/v]'Ax = sθ,
uσ = s′θ.

By Lemma A.30, there is a ground substitution σ′′ such that

dom(σ′′) = vars(s),
a /∈ subterm(ran(σ′′)),
σ′′[a/v]'Ax = θ|vars(s), and
t =Ax sσ

′′.

Since vars(s) = vars(s′), we have θ|vars(s) = θ. Hence, we derive that s′θ = s′(σ′′[a/v]'Ax).
This by assumption implies that s′θ = (s′σ′′)[a/v]'Ax . Since a /∈ subterm(ran(σ′′)),
from assumption (ii), we have a /∈ subterm(s′σ′′). Moreover, we have uσ = s′θ =
(s′σ′′)[a/v]'Ax . By Lemma A.30, there is a ground substitution σ′ such that

dom(σ′) = vars(u),
a /∈ subterm(ran(σ′)),
σ′[a/v]'Ax = σ, and
s′σ′′ =Ax uσ

′.

Together with t =Ax sσ
′′, we derive that uσ′ =Ax t.

71

• Congruence: We have t = c(t1, . . . , tn) and u = c(u1, . . . , un) for c ∈ Σn. Moreover,
we have ti[a/v]'Ax =Ax uiσ for all i ∈ ñ. By induction hypothesis, there are ground
substitutions σi for all i ∈ ñ such that

dom(σi) = vars(ui),
a /∈ subterm(ran(σi)),
uiσi =Ax ti, and
σi[a/v]'Ax = σ.

We can pick σ′ =
⋃n
i=1 σi that satisfies the desired properties.

• Transitivity: In this case, there is a term w such that t[a/v]'Ax =Ax w and w =Ax uσ. By
Lemma A.31, there is a ground term t′ such that t =Ax t

′ and w = t′[a/v]'Ax . Hence, we
have t′[a/v]'Ax =Ax uσ. By induction hypothesis, there exists a ground substitution σ′ such
that

dom(σ′) = vars(u),
a /∈ subterm(ran(σ′)),
uσi =Ax t

′, and
σ′[a/v]'Ax = σ.

Since t′ =Ax t, we derive that σ′ satisfies the desired properties.

This completes the proof of the lemma.

Lemma A.35. Let t, v be ground terms and a is an atom. Suppose that

(i) t is R,Ax-normal,

(ii) a /∈ subterm(Ax) ∪ subterm(R) ∪ subterm(t), and

(iii) topsym(v) /∈ funsym(Ax).

Then t[a/v]'Ax is R,Ax-normal.

Proof. We prove this lemma by induction on t.

• If t is an atom then we have t[a/v]'Ax = t and thus t[a/v]'Ax is R,Ax-normal.

• If t = g(t1, . . . , tn) for some g ∈ Σn then we consider two cases.

– If t ∈ dom([a/v]'Ax) then we have t[a/v]'Ax = a and thus t[a/v]'Ax isR,Ax-normal.

– If t /∈ dom([a/v]'Ax) then we have

t[a/v]'Ax = g(t1[a/v]'Ax , . . . , tn[a/v]'Ax)

Since t is R,Ax-normal, so is ti for all i ∈ ñ. By induction hypothesis, we have
ti[a/v]'Ax is R,Ax-normal for all i ∈ ñ. There are two sub-cases.

∗ If there is no rule l → r ∈ R that is applicable to t[a/v]'Ax at the root, then
since ti[a/v]'Ax is R,Ax-normal for all i ∈ ñ, we derive that t[a/v]'Ax is
R,Ax-normal.
∗ If there is a rule l→ r ∈ R that is applicable to t[a/v]'Ax at the root, then there is

a ground substitution σ such that dom(σ) = vars(l) and t[a/v]'Ax =Ax lσ. By
Lemma A.34, there is a ground substitution σ′ such that t =Ax lσ

′. This means t
is not R,Ax-normal which is a contradiction.

72

This completes the proof of the lemma.

Lemma A.36. Let t, v be ground terms such that v is R,Ax-normal and a is an atom. Suppose
that

(i) a /∈ subterm(t) ∪ subterm(v) ∪ subterm(Ax) ∪ subterm(R),

(ii) topsym(v) /∈ funsym(Ax), and

(iii) for all rewrite rules l → r ∈ R and all non-variable terms w ∈ (subterm(l) \ {l}) ∪
subterm(r), we have that topsym(v) 6= topsym(w).

Then (t[a/v]'Ax)↓R,Ax=Ax t↓R,Ax [a/v]'Ax .

Proof. We prove this lemma by induction on the length ` of the derivation t →R,Ax t1 →R,Ax

· · · →R,Ax t`−1 →R,Ax t↓R,Ax.

• If ` = 0 then t is R,Ax-normal. By Lemma A.35, t[a/v]'Ax is R,Ax-normal. There-
fore, we have t[a/v]'Ax =Ax (t[a/v]'Ax) ↓R,Ax. Moreover, by Lemma A.32, we have
t[a/v]'Ax =Ax t↓R,Ax [a/v]'Ax . Hence (t[a/v]'Ax)↓R,Ax=Ax t↓R,Ax [a/v]'Ax .

• If ` > 0 then there are a position k, a rule l → r ∈ R, and a substitution σ such that
t|k =Ax lσ and (t[rσ]k)↓R,Ax=Ax t↓R,Ax. We will show that

t[a/v]'Ax → (t[rσ]k)[a/v]'Ax .

By Lemma A.32, we have t|k[a/v]'Ax =Ax (lσ)[a/v]'Ax . Let σ′ = σ[a/v]'Ax and k′ is an
arbitrary prefix of k in t. We show that

t|k′ /∈ dom([a/v]'Ax). (13)

Suppose that it is not the case, then we have t|k′ =Ax v. Since t|k ∈ subterm(t|k′),
t|k →R,Ax rσ, and the fact that→R,Ax is coherent, we derive that v is not R,Ax-normal.
This however contradicts our assumption. Therefore, we have established (13). In particular,
we have lσ /∈ dom([a/v]'Ax). Moreover, for all non-variable terms u ∈ (subterm(l) \
{l}) ∪ subterm(r), we have

uσ 6=Ax v. (14)

Let us by contradiction assume that uσ =Ax v for some u ∈ (subterm(l)\{l})∪subterm(r).
Then by point (ii) in Definition 3.1, we know that uσ =Ax v implies topsym(uσ) =
topsym(v). This means topsym(u) = topsym(v) which contradicts assumption (iii). There-
fore, we have (lσ)[a/v]'Ax = l(σ[a/v]'Ax) = lσ′. It follows that t|k[a/v]'Ax =Ax lσ

′.
Hence, we obtain t[t|k[a/v]'Ax]k =Ax t[lσ

′]k. This yields

t[a/v]'Ax = (t[t|k[a/v]'Ax]k)[a/v]'Ax by (13)
=Ax (t[lσ′]k)[a/v]'Ax by Lemma A.32.

By assumption (i) and (14), we know that subterm(lσ′)∩dom([a/v]'Ax) = ∅. Hence, we de-
rive that (t[lσ′]k)[a/v]'Ax →R,Ax (t[rσ′]k)[a/v]'Ax . Thus, we have (t[a/v]'Ax)↓R,Ax=Ax

((t[rσ′]k)[a/v]'Ax)↓R,Ax. Note that from (14), we derive that

rσ′ = r(σ[a/v]'Ax) = (rσ)[a/v]'Ax .

Therefore, we have

(t[rσ′]k)[a/v]'Ax = (t[(rσ)[a/v]'Ax]k)[a/v]'Ax
= (t[rσ]k)[a/v]'Ax .

73

Hence, we obtain t[a/v]'Ax → (t[rσ]k)[a/v]'Ax and therefore

(t[a/v]'Ax)↓R,Ax=Ax ((t[rσ]k)[a/v]'Ax)↓R,Ax (15)

Since (t[rσ]k)↓R,Ax=Ax t↓R,Ax, by Lemma A.32, we have

(t[rσ]k)↓R,Ax [a/v]'Ax =Ax t↓R,Ax [a/v]'Ax . (16)

By induction hypothesis, we have

((t[rσ]k)[a/v]'Ax)↓R,Ax=Ax (t[rσ]k)↓R,Ax [a/v]'Ax .

This by (15) and (16) yields (t[a/v]'Ax)↓R,Ax=Ax t↓R,Ax [a/v]'Ax as required.

This completes the proof of the lemma.

We are now ready to prove Proposition A.27.

Proposition (Justification of Proposition A.27). Let {t, u, a, v} be ground terms such that

(i) a is an atom and a /∈ subterm(t)∪subterm(u)∪subterm(v)∪subterm(Ax)∪subterm(R),

(ii) v is R,Ax-normal and topsym(v) /∈ funsym(Ax) and v is R,Ax-stable, and

(iii) for all rewrite rules l → r ∈ R and all non-variable terms w ∈ (subterm(l) \ {l}) ∪
subterm(r), we have that topsym(v) 6= topsym(w).

Then t =E u if and only if t[a/v]'Ax =E u[a/v]'Ax .

Proof. We present all the derivation steps as follows.

t =E u
⇔ t↓R,Ax =Ax u↓R,Ax
⇔ t↓R,Ax [a/v]'Ax =Ax u↓R,Ax [a/v]'Ax by Lemmas A.32, A.33
⇔ t[a/v]'Ax ↓R,Ax =Ax u[a/v]'Ax ↓R,Ax by Lemma A.36
⇔ t[a/v]'Ax =E u[a/v]'Ax .

This completes the proof of the proposition.

Next, we establish sufficient conditions for P2. Note that P2 fails to hold if the replacement is
applicable to IK0 as shown in the following example.

Example A.37. Let T = ∅, IK0 = A∪ C ∪F• ∪ {h(〈d(b),na〉)} where h, d ∈ Σ1 and na /∈ IK0

is a nonce. Let us consider t = h(〈d(b),na〉) and v = d(b) and suppose that R = Ax = ∅. Then,
we have IK0 `E t. But IK0 0E t[a/v]'Ax = h(〈a,na〉) since na does not occur in IK0.

Hence, in order to achieve P2, we ensure that topsym(v) /∈ funsym(IK0). This allows us to
establish P2 in the following proposition.

Proposition A.38. Let T ∪ {t, v, a} be terms such that v is ground, a is a constant, and a /∈
subterm(t). Let σ be a ground R,Ax-normal well-typed substitution. Suppose that the following
holds.

(i) a /∈ subterm(t) ∪ subterm(v) ∪ subterm(Ax) ∪ subterm(R),

(ii) topsym(v) /∈ funsym(Ax),

74

(iii) for all rewrite rules l → r ∈ R and all non-variable terms w ∈ (subterm(l) \ {l}) ∪
subterm(r), we have that topsym(v) 6= topsym(w),

(iv) there is no u ∈ subterm(T) ∪ subterm(t) such that uσ =Ax v, and

(v) topsym(v) /∈ funsym(IK0).

Then Tσ, IK0 `E tσ implies T (σ[a/v]'Ax), IK0 `E t(σ[a/v]'Ax).

The proof of Proposition A.38 requires the following lemma.

Lemma A.39. Let T ∪ {t, v} be a set of ground terms such that v is R,Ax-normal and a is an
atom. Suppose that

(i) a /∈ subterm(t) ∪ subterm(v) ∪ subterm(Ax) ∪ subterm(R),

(ii) topsym(v) /∈ funsym(Ax), and

(iii) for all rewrite rules l → r ∈ R and all non-variable terms w ∈ (subterm(l) \ {l}) ∪
subterm(r), we have that topsym(v) 6= topsym(w).

Then T `E t implies T [a/v]'Ax , a `E t[a/v]'Ax .

Proof. We prove this lemma induction on the derivation of T `E t depending on the last rule that
has been applied.

• Ax: We have t ∈ T and thus t[a/v]'Ax ∈ T [a/v]'Ax . Therefore, we have that T [a/v]'Ax , a `E
t[a/v]'Ax .

• Comp: We have t = g(u1, . . . , tn) and T `E ui for i ∈ ñ. There are two cases.

– If t =Ax v then we have t[a/v]'Ax = a. Hence, we obtain that

T [a/v]'Ax , a `E t[a/v]'Ax .

– If t 6=Ax v then we have

t[a/v]'Ax = g(u1[a/v]'Ax , . . . , un[a/v]'Ax).

Moreover, by induction hypothesis, for all i ∈ ñ we have

T [a/v]'Ax , a `E ui[a/v]'Ax .

Hence, we obtain T [a/v]'Ax , a `E t[a/v]'Ax as required.

• Eq: In this case, there is a term t′ such that T `E t′ and t′ =E t. From assumption (i),
we derive that a /∈ subterm(t′). Hence, we can apply the induction hypothesis and obtain
T [a/v]'Ax `E t′[a/v]'Ax . By Proposition A.27, we have that t′[a/v]'Ax =E t[a/v]'Ax .
Thus, we obtain T [a/v]'Ax , a `E t[a/v]'Ax as desired.

This completes the proof of the lemma.

Proposition (Justification of Proposition A.38). Let T ∪ {t, v, a} be terms such that v is ground
and R,Ax-normal and a is a constant. Let σ be a ground R,Ax-normal well-typed substitution.
Suppose that the following holds.

(i) a /∈ subterm(t) ∪ subterm(v) ∪ subterm(Ax) ∪ subterm(R),

75

(ii) topsym(v) /∈ funsym(Ax),

(iii) for all rewrite rules l → r ∈ R and all non-variable terms w ∈ (subterm(l) \ {l}) ∪
subterm(r), we have that topsym(v) 6= topsym(w),

(iv) there is no u ∈ subterm(T) ∪ subterm(t) such that uσ =Ax v, and

(v) topsym(v) /∈ funsym(IK0).

Then Tσ, IK0 `E tσ implies T (σ[a/v]'Ax), IK0 `E t(σ[a/v]'Ax).

Proof. Suppose that Tσ, IK0 `E tσ. By Lemma A.39, we have

(Tσ)[a/v]'Ax , IK0[a/v]'Ax , a `E (tσ)[a/v]'Ax .

By assumption (iv), this implies

(Tσ)[a/v]'Ax = T (σ[a/v]'Ax),
(tσ)[a/v]'Ax = t(σ[a/v]'Ax).

Moreover, by assumption (v), we derive that IK0 = IK0[a/v]'Ax . Together with the fact that
a ∈ IK0, we obtain T (σ[a/v]'Ax), IK0 `E t(σ[a/v]'Ax). This completes the proof of the
proposition.

Lemma A.40. Let t, v be ground term, and a is an atom. Assume that

(i) t is R,Ax-normal,

(ii) v is composed and not a pair,

(iii) for all τ ∈ Π(E+
f) and all types τ ′ ∈ subterm(τ) \ {τ}, we have

(a) topsym(τ ′) 6= topsym(v),

(b) if γa 4 τ ′ then τ ′ = msg .

(iv) for all terms u ∈ Rec(Ff , t), u 6=Ax v,

(v) a /∈ subterm(Ax) ∪ subterm(R),

(vi) topsym(v) /∈ funsym(Ax).

Then f(t) = f(t[a/v]'Ax).

Proof. We show that f(t) = f(t[a/v]'Ax) by induction on the size of t.

• If t is an atom then since v is composed, we have t[a/v]'Ax = t. Thus we obtain f(t) =
f(t[a/v]'Ax).

• If t = c(t1, . . . , tn) for some c ∈ Σn and n ≥ 1, then let f(p) = q be the pattern in E+
f that

is chosen for t. Let p : τ . Then we have Γ(t) 4 τ . We show that Γ(t[a/v]'Ax) 4 τ .

Suppose there is a position k such that t|k =Ax v. It is sufficient to show that Γ(t[a]k) 4 τ .
Let us consider two cases.

76

– If k ∈ Pos(τ) then we have Γ(t|k) 4 τ|k. Since t|k =Ax v and v is composed, we
derive that t|k is composed and

topsym(t|k) = topsym(v). (17)

Note that t ∈ Rec(Ff , t). By assumption (iv), we have t 6=Ax v. Since t|k =Ax v and
t 6=Ax v, we know that k is not the root of t. This means τ|k is a strict subterm of τ .
Hence, by assumption (iii.a), we derive that topsym(τ|k) 6= topsym(v). This by (17)
implies that topsym(τ|k) 6= topsym(t|k). Moreover, we know that t|k is composed
and Γ(t|k) 4 τ|k. Therefore, we must have that τ|k = msg and obtain Γ(t[a]k) 4 τ as
desired.

– If k /∈ Pos(τ) then there must be a strict prefix k′ of k such that τ|k′ = msg . This also
yields Γ(t[a]k) 4 τ .

Hence, we have shown that Γ(t[a/v]'Ax) 4 τ . Similarly, we show that whenever a pattern
p′ matches t[a/v]'Ax , it also matches t. Indeed, suppose that Γ(t[a/v]'Ax) 4 τ and there is
a position k ∈ Pos(t[a/v]'Ax) such that t[a/v]'Ax|k = a. We consider two cases.

– If k ∈ Pos(τ) then we have γa 4 τ|k. This by assumption (iii.b) implies τ|k = msg .
Hence, we obtain that Γ(t[v]k) 4 τ .

– If k /∈ Pos(τ) then by a similar reasoning as before, we conclude that Γ(t[v]k) 4 τ .

Hence, we derive that Γ(t) 4 τ . Therefore t and t[a/v]'Ax are abstracted under f by the
same equation f(p) = p′. Let θ and θ′ be substitutions such that t = pθ and t[a/v]'Ax = pθ′.
Suppose that p = c(p1, . . . , pn) for some terms p1, . . . , pn and n ≥ 1. By Definition 4.9, we
have

f(c(p1, . . . , pn)) = 〈e1, . . . , ed〉

for some d > 0. Hence, we have

f(t) = 〈e1θ, . . . , edθ〉,
f(t[a/v]'Ax) = 〈e1θ

′, . . . , edθ
′〉.

To see that f(t[a/v]'Ax) = f(t), it is sufficient to show that eiθ = eiθ
′ for all i ∈ d̃. Let

i ∈ d̃. We consider two cases.

– ei = f(q) with q ∈ split(pj) for some j ∈ ñ. Since (pθ)[a/v]'Ax = pθ′, we derive that
qθ′ = (qθ)[a/v]'Ax . Moreover, q ∈ split(pj) implies that qθ ∈ subterm(t) \ {t}. By
induction hypothesis, we know that f(qθ′) = f(qθ). Therefore, we obtain eiθ = eiθ

′

as required.

– ei = c(f̂(q1), . . . , f̂(qn)) with c 6= 〈·, ·〉 such that, for all j ∈ ñ, we have set(qj) ⊆
split(pj) and, whenever pi is not a pair, we have qj = [pi], i.e., f̂(qi) = f(pi). To
show that eiθ = eiθ

′, it is sufficient to show that f̂(qjθ) = f̂(qjθ
′) for all j′ ∈ ñ.

Let j ∈ ñ. Since v is not a pair and the fact that (pθ)[a/v]'Ax = pθ′, we have
(wθ)[a/v]'Ax = wθ′ for all w ∈ set(qj). Moreover, by assumption (iv), we have
wθ 6=Ax v. Note that wθ ∈ subterm(t) \ {t}. Hence, by induction hypothesis, we
have f(wθ′) = f(wθ). This yields f̂(qjθ) = f̂(qjθ

′) as desired.

This completes the proof of the lemma.

Next, we show that under certain conditions, we can without loss of generality assume that
every reachable state (tr, th, σ) satisfies that ran(σ) does not contain reducible function symbols.
First, we introduce some auxiliary definitions.

77

Definition A.41 (Composite-preserving function specifications). Let Ff = (f,Ef) be a function
specification. We say that f is composite-preserving if for all clauses (f(p) = u) ∈ Ef such
that topsym(p) ∈ Σn with n ≥ 1, we have either (i) topsym(q) ∈ Σm \ {f} with m ≥ 1, or (ii)
q = f(q′) for some term q′ such that Γ(q′) is composed.

Intuitively, f is composite-preserving if it cannot produce a non-composed term from a com-
posed one. We also define the set of terms Dec(σ) for a given substitution σ as follows.

Dec(σ) = {t | t ∈ subterm(ran(σ)) ∧ topsym(t) ∈ topsym(lhs(R))}.

Intuitively, Dec(σ) is the set of subterms of terms in ran(σ) whose top function symbols are
reducible.

Lemma A.42. Let φ ∈ LP and (tr, th, σ) ∈ reach(P, IK0). Suppose that

(i) f is composite-preserving and homomorphic for topsym(lhs(R)),

(ii) for all τ ∈ Π(E+
f) and all types τ ′ ∈ subterm(τ) \ {τ}, we have

(a) topsym(τ ′) /∈ topsym(lhs(R)),

(b) for all constants c /∈ subterm(MP), if γc 4 τ ′ then τ ′ = msg ,

(iii) for all non-variable terms v ∈ subterm(MP ∪ Secφ ∪ EqTermφ) and all l ∈ lhs(R), there
is no Ax-unifier of f(v) and l,

(iv) subterm(MP ∪ Secφ ∪ EqTermφ) ⊆ udom(Ff),

(v) topsym(lhs(R)) ∩ (funsym(IK0) ∪ funsym(Ax)) = ∅, and

(vi) for all rewrite rules l → r ∈ R and all non-variable terms w ∈ (subterm(l) \ {l}) ∪
subterm(r), we have that topsym(w) /∈ topsym(lhs(R)).

Suppose that Dec(σ) 6= ∅ and let v0 ∈ Dec(σ), a0 be a constant that does not occur inMP , φ,
ran(σ), R, and Ax, and σ0 = σ[a0/v0]'Ax . Then the following holds:

1. |Dec(σ0)| < |Dec(σ)|,

2. (tr, th, σ0) ∈ reach(P, IK0), and

3. if (tr, th, σ) 2 φ then (tr, th, σ0) 2 φ.

Proof. First, we show that topsym(v0) /∈ funsym(Ax). Since f(v0) is a redex, there exists a
rewrite rule l → r ∈ R and a substitution θ such that f(v0) =Ax lθ. By assumption (i), we
have topsym(v0) = topsym(f(v0)). Since all equations s ' s′ in Ax satisfy that topsym(s) =
topsym(s′), we derive that topsym(f(v0)) = topsym(lθ). As l is not a variable, we also have
topsym(l) = topsym(lθ). Therefore, we obtain that topsym(v0) = topsym(l). By assumption
(v), we derive that topsym(v0) /∈ funsym(Ax).

Second, we define σ0 = σ[a0/v0]'Ax and show that σ0 is well-typed. Note that σ is well-typed
by assumption. Let X ∈ dom(σ0) and suppose that subterm(Xσ) ∩ dom([a0/v0]'Ax) 6= ∅.
Then Xσ is composed. Since σ is well-typed, we must have X : msg . Therefore, we have
Γ((Xσ0)↓R,Ax) 4 Γ(X). Hence σ0 is well-typed.

Third, we show that σ0 is R,Ax-normal. Let X ∈ dom(σ0). Since σ is R,Ax-normal, so is
Xσ. By Lemma A.35, we have (Xσ)[a0/v0]'Ax is R,Ax-normal. Thus Xσ0 is R,Ax-normal.
Hence σ0 is R,Ax-normal.

78

We now show that |Dec(σ0)| < |Dec(σ)|. For this purpose, it is sufficient to show that for
all terms t ∈ subterm(ran(σ)) such that f(t) is R,Ax-normal, we also have f(t[a0/v0]'Ax) is
R,Ax-normal. Let t ∈ subterm(ran(σ)) such that f(t) is R,Ax-normal. We claim that for all
u ∈ Rec(Ff , t), it holds that u 6=Ax v0. To see that, let us pick an arbitrary term u ∈ Rec(Ff , t).
Since f(t) is R,Ax-normal, so is f(u). Suppose that u =Ax v0. By Proposition A.18, we know
that f(u) =Ax f(v0). Since f(v0) is not R,Ax-normal, neither is f(u). This, together with
u ∈ Rec(Ff , t), implies that f(t) is not R,Ax-normal which is a contradiction. Therefore, we must
have u 6=Ax v0. Hence, we have established that u 6=Ax v0 for all u ∈ Rec(Ff , t). Note that for
all τ ∈ Π(E+

f) and all types τ ′ ∈ subterm(τ) \ {τ}, we derive that topsym(τ ′) 6= topsym(v0)
from assumption (ii.a). Moreover, we also have that γa0 4 τ ′ implies τ ′ = msg from assumption
(ii.b). Thus by Lemma A.40, we have f(t) = f(t[a0/v0]'Ax). Since f(t) is R,Ax-normal, so is
f(t[a0/v0]'Ax). Hence, we have just proved that

|Dec(σ0)| < |Dec(σ)|. (18)

To see points 2 and 3, it is sufficient to we show that conditions (i)-(iii) in Theorem 4.6 for
G = (id, id, [a0/v0]'Ax). We define the set of terms S = subterm(MTID

P) ∪ subterm(Secφ ∪
EqTermφ)TID . We show the following result:

∀v ∈ S \ vars(S). vσ0 6=Ax v0. (19)

Suppose that it is not the case, then there is a term v ∈ S \ vars(S) such that vσ =Ax v0. By
Proposition A.18, we have f(vσ0) =Ax f(v0). By assumption (iv), we can apply Theorem 4.18
and obtain f(vσ0) = f(v)f(σ0). Note that f(v0) = lθ. Hence, we obtain that f(v)f(σ0) =Ax lθ.
Without loss of generality, we can assume that vars(l) ∩ dom(σ0) = ∅. Thus, we derive that
f(v)η =Ax lη, where η = f(σ0)]θ. This contradicts assumption (iii). Hence, we have shown (19).
Let T ⊆MTID

P and t ∈MTID
P ∪ SecTID

φ . By (19) and Proposition A.38, we derive that

Tσ, IK0 `E tσ implies Tσ0, IK0 `E tσ0.

Hence conditions (i)-(ii) in Theorem 4.6 hold. It remains to check conditions (a)-(e) in Definition 4.5.
It is clear that conditions (a) and (e) hold. Let (ι, κ, t, u) ∈ Eqφ and ϑ be an arbitrary thread-id
interpretation. Then we have

tϑ(ι)σ =E u
ϑ(κ)σ

⇔ (tϑ(ι)σ)[a0/v0]'Ax =E (uϑ(κ)σ)[a0/v0]'Ax by Proposition A.27
⇔ tϑ(ι)(σ[a0/v0]'Ax) =E u

ϑ(κ)(σ[a0/v0]'Ax) by (19)
⇔ tϑ(ι)σ0 =E u

ϑ(κ)σ0

Thus conditions (c) and (d) also hold. Finally, condition (b) follows from the definition of σ0. This
completes the proof of the lemma.

Lemma A.43. Let φ ∈ LP and (tr, th, σ) ∈ reach(P, IK0). Suppose that

(i) f is composite-preserving and homomorphic for topsym(lhs(R)),

(ii) for all τ ∈ Π(E+
f) and all types τ ′ ∈ subterm(τ) \ {τ}, we have

(a) topsym(τ ′) /∈ topsym(lhs(R)),

(b) for all constants c /∈ subterm(MP), if γc 4 τ ′ then τ ′ = msg ,

(iii) for all non-variable terms v ∈ subterm(MP ∪ Secφ ∪ EqTermφ) and all l ∈ lhs(R), there
is no Ax-unifier of f(v) and l,

79

(iv) subterm(MP ∪ Secφ ∪ EqTermφ) ⊆ udom(Ff),

(v) topsym(lhs(R)) ∩ (funsym(IK0) ∪ funsym(Ax)) = ∅, and

(vi) for all rewrite rules l → r ∈ R and all non-variable terms w ∈ (subterm(l) \ {l}) ∪
subterm(r), we have that topsym(w) /∈ topsym(lhs(R)).

Then there is an R,Ax-normal well-typed ground substitution σ′ such that f(σ′) is R,Ax-normal
and the following holds:

• (tr, th, σ′) ∈ reach(P, IK0), and

• if (tr, th, σ) 2 φ then (tr, th, σ′) 2 φ.

Proof. By Lemma A.42, we know that there is an R,Ax-normal well-typed ground substitution σ0

such that |Dec(σ)| > |Dec(σ0)| and

• (tr, th, σ0) ∈ reach(P, IK0), and

• if (tr, th, σ) 2 φ then (tr, th, σ0) 2 φ.

We keep applying Lemma A.42 to construct a sequence of R,Ax-normal well-typed ground
substitution σ0, σ1, . . . , σn for some n ≥ 0 such that |Dec(σn)| = 0 and

• (tr, th, σn) ∈ reach(P, IK0), and

• if (tr, th, σ) 2 φ then (tr, th, σn) 2 φ.

Since |Dec(σn)| = 0, we have that funsym(ran(σ)) ∩ topsym(lhs(R)) = ∅. By setting σ′ = σn,
we complete the proof of the lemma.

Thanks to Lemma A.43, it is sufficient to consider problem A.1 under the assumptions (i)-(vi) in
Lemma A.43 and the assumption that f(σ) is R,Ax-normal. Now, provided that these assumptions
hold, we attempt to establish (12). In order to show this, we need to restrict the shape of the terms
in ran(f(σ)). This requires us to stabilize both tϑ(ι)f(σ) and uϑ(κ)f(σ). We therefore prevent
rewrite rules and axioms from being applicable to these terms. For this purpose, we introduce the
following definitions.

Definition A.44 (R,Ax-stable terms). We say that a term t is R,Ax-stable if tσ is R,Ax-normal
whenever σ is R,Ax-normal and well-typed. A set of terms is R,Ax-stable if all its elements are.

Intuitively, an R,Ax-stable term is irreducible under substitutions. We also define the notion of
Ax-stability which is stronger than R,Ax-stability.

Definition A.45 (Ax-stable terms). We say that a term t is Ax-stable if no non-variable subterm
of t is unifiable modulo Ax with an axiom term, i.e., for all equations {s, s′} ∈ Ax and all
non-variable subterms t|p, there is no well-typed substitution σ such that sσ = t|pσ.

To ensure that tϑ(ι)f(σ) and uϑ(κ)f(σ) are both R,Ax-normal and Ax-stable, we require the
following conditions:

(a) t and u are R,Ax-stable,

(b) u is Ax-stable.

80

By condition (a), the equality tϑ(ι)f(σ) =E u
ϑ(κ)f(σ) is equivalent to tϑ(ι)f(σ) =Ax u

ϑ(κ)f(σ).
This, together with (b), further implies that tϑ(ι)f(σ) =Ax u

ϑ(κ)f(σ) is equivalent to tϑ(ι)f(σ) =
uϑ(κ)f(σ).

It remains to establish Xf(σ) = Xσ for all X ∈ vars(tϑ(ι)) and X : msg . Essentially, this
requires to show that

f(v) = v′ implies v = v′ (20)

for v = Xσ and some term v′. Clearly, v = v′ implies topsym(v) = topsym(v′). Therefore, we at
least must be able to show that only terms with the same top-level constructor as v’s can be mapped
to v under f . This leads us to the notions of constructor-exclusive typed abstractions.

Definition A.46 (Constructor-exclusiveness). We say that f is constructor-exclusive for a function
symbol c ∈ Σ≥1 if for all (f(p) = q) ∈ Ef we have topsym(q) = c implies topsym(p) = c.

In the following lemma, we prove that every ground abstracted term with top-level constructor
c can only be obtained by transforming a term of the same form provided that f is composite-
preserving and constructor-exclusive for c.

Lemma A.47. Let t be an R,Ax-normal ground term and c ∈ Σ≥1 is a function symbol. Suppose
that

(i) f is composite-preserving,

(ii) f constructor-exclusive for c.

Then topsym(f(t)) = c implies topsym(t) = c.

Proof. Suppose that topsym(f(t)) = c. It follows that t is composed. Then there exists the first
pattern (f(p) = q) ∈ E+

f such that Γ(t) 4 Γ(p) and pθ = t for some substitution θ. We distinguish
two cases:

• If (f(p) = q) ∈ E0
f then we have that topsym(q) = topsym(p) = topsym(t) = g′. We

also have c = topsym(f(t)) = topsym(qθ) = topsym(t). This yields topsym(t) = c as
required.

• If (f(p) = q) ∈ Ef then we have

topsym(t) = topsym(p),
topsym(f(t)) = topsym(q).

By assumption (i), f(t) is composed, and assumption (ii), we derive that topsym(t) =
topsym(p) = topsym(q) = c.

This completes the proof of the lemma.

Lemma A.48. Let t, u be ground terms and suppose that

(i) f is composite-preserving,

(ii) f is constructor-exclusive for all c ∈ funsym(u), and

(iii) f is homomorphic for funsym(u).

Then f(t) = u implies t = u.

Proof. We prove this lemma by induction on u.

81

• If u is an atom then by f(t) = u and assumption (i), we derive that t must be an atom. Hence,
we have f(t) = t and thus obtain t = u as required.

• If u = c(u1, . . . , un) for c ∈ Σn and some terms u1, . . . , un, then since f(t) = u, we have
topsym(f(t)) = c. By Lemma A.47, we derive that there are terms t1, . . . , tn such that
t = c(t1, . . . , tn). Moreover, by assumption (iii), we have f(t) = c(f(t1), . . . , f(tn)). Since
f(t) = u, we obtain that f(ti) = ui for all i ∈ ñ. By induction hypothesis, we have that
ti = ui for all i ∈ ñ. Therefore, we derive that t = u as required.

This completes the proof of the lemma.

Using Lemma A.48, we are able to show (12).

Lemma A.49. Let t, u be terms such that msg /∈ Γ(vars(u)) and σ is anR,Ax-normal well-typed
ground substitution such that tf(σ) = uf(σ). Assume that the following holds:

(i) f is composite-preserving,

(ii) for all positions p ∈ Pos(t) ∩ Pos(u) such that t|p is a message variable, we have

(a) f is constructor-exclusive for all c ∈ funsym(u|p), and

(b) f is homomorphic for funsym(u|p).

Then we have f(σ)|vars(t) = σ|vars(t).

Proof. It is sufficient to show that Xf(σ) = Xσ for all X ∈ vars(t) such that X : msg . Let X be
a message variable at position p in t. Since tf(σ) = uf(σ), it is clear that p ∈ Pos(u). Moreover,
we have Xf(σ) = u|pf(σ). Note that Xf(σ) = f(Xσ). Hence, by Lemma A.48, we derive that
Xσ = u|pf(σ). This implies Xf(σ) = Xσ as required.

Finally, we are in a position to prove the soundness of our criterion. This result requires that
the rewrite theory satisfies certain compatibility conditions which are formulated in the following
definition.

Definition A.50 (Compatible rewrite theories). We say that a rewrite theory (Σ, Ax,R) is compat-
ible if the following conditions hold:

(i) topsym(lhs(R)) ∩ (funsym(IK0) ∪ funsym(Ax)) = ∅,

(ii) for all l ∈ lhs(R) and all non-variable positions p ∈ Pos(l)\{ε}, we have that topsym(l|p) /∈
topsym(lhs(R)).

Intuitively, condition (i) ensures that reducible function symbols do not occur in IK0. Condition
(ii) restricts the interference of rewrite rules with the axioms. Finally, condition (iii) forbid nested
occurrences of reducible function symbols in the left-hand sides of the corresponding rewrite rules.

Next, we define a compatibility condition for our typed abstractions, protocols, and security
properties.

Definition A.51 ((Ff , P, φ)-compatibility). Let Ff = (f,Ef) be a function specification and
φ ∈ LP . We say that (Ff , P, φ) is compatible with a rewrite theory R = (Σ, Ax,R) if the
following holds.

(i) f is composite-preserving and homomorphic for topsym(lhs(R)),

(ii) for all τ ∈ Π(E+
f) and all types τ ′ ∈ subterm(τ) \ {τ}, we have

82

(a) topsym(τ ′) /∈ topsym(lhs(R)),

(b) for all constants c /∈ subterm(MP), if γc 4 τ ′ then τ ′ = msg ,

(iii) for all non-variable terms v ∈ subterm(MP ∪ Secφ ∪ EqTermφ) and all l ∈ lhs(R), there
is no Ax-unifier of f(v) and l, and

(iv) subterm(MP ∪ Secφ ∪ EqTermφ) ⊆ udom(Ff).

In condition (i), the first conjunct allows us to derive the shape of a term whose abstraction
is an atom. The second conjunct forbids non-trivial abstractions for reducible function symbols.
Conditions (iii) and (iv) are needed to enable the use of Lemma A.42 and Theorem 4.18.

Proposition A.52. Let φ ∈ LP be a property formula, (ι, κ, t, u) ∈ Eqφ such that msg /∈
Γ(vars(u)), and (tr, th, σ) ∈ reach(P, IK0) such that σ is R,Ax-normal and (tr, th, σ) 2 φ.
Assume that the following holds:

(i) (Ff , P, φ) is compatible with (Σ, Ax,R),

(ii) f(t) = t and f(u) = u,

(iii) t and u are R,Ax-stable and u is Ax-stable,

(iv) for all positions p ∈ Pos(t) ∩ Pos(u) such that t|p is a message variable, we have

(a) f is constructor-exclusive for all c ∈ funsym(u|p),

(b) f is homomorphic for funsym(u|p),

(v) (Σ, Ax,R) is compatible.

Then there is an R,Ax-normal ground substitution σ′ such that (tr, th, σ′) 2 φ and f(σ′) is
R,Ax-normal. Furthermore, if f(tϑ(ι))f(σ′) =E f(uϑ(κ))f(σ′) then tϑ(ι)σ′ =E uϑ(κ)σ′ for all
thread-id interpretations ϑ.

Proof. By Lemma A.43, we know that there is a ground R,Ax-normal substitution σ′ such that
(tr, th, σ′) 2 φ and f(σ′) is R,Ax-normal. Let ϑ be a thread-id interpretation and suppose that
f(tϑ(ι))f(σ′) =E f(uϑ(κ))f(σ′). We need to show that tϑ(ι)σ′ =E uϑ(κ)σ′. By assumption (ii),
we derive that tϑ(ι)f(σ′) =E u

ϑ(κ)f(σ′). Therefore, we have

(tϑ(ι)f(σ′))↓R,Ax=Ax (uϑ(κ)f(σ′))↓R,Ax .

This by assumption (iii) and the R,Ax-normality of f(σ′) implies tϑ(ι)f(σ′) =Ax u
ϑ(κ)f(σ′). By

(iii), we know that uϑ(κ)f(σ′) is Ax-stable. Therefore, we derive that tϑ(ι)f(σ′) = uϑ(κ)f(σ′).
By Definition A.51(i), assumption (iv), and Lemma A.49, we have f(σ′)|vars(tϑ(ι)) = σ′|vars(tϑ(ι)).
Note that since msg /∈ Γ(vars(u)), we also have that f(σ′)|vars(uϑ(κ)) = σ′|vars(uϑ(κ)). Hence, we
obtain tϑ(ι)σ′ = uϑ(κ)σ′ which yields tϑ(ι)σ′ =E u

ϑ(κ)σ′.

In Proposition A.52, checking R,Ax-stability and Ax-stability (conditions (iii) in Defini-
tion A.51 and (iii) and (v) in Proposition A.52) requires that an Ax-unification algorithm exists.
The other conditions can be effectively checked. Note that the Diffie-Hellman theory in Example 3.2
is compatible and therefore satisfies condition (v) in Proposition A.52. Unfortunately, the XOR
theory in Example 3.3 is not compatible. Weaker conditions are therefore desirable to support such
a theory.

We now apply our criterion to justify condition I with respect to protocol IKEm and the typed
abstraction specified in Example 4.12, and the property φa formalized in Example 3.11.

83

Example A.53. First, we recall the typed abstraction Ff1 = (f1, Ef1) in Example 4.12, where E1

is defined by the equations:

f1({|X,Y |}Z) = 〈f1(X), f1(Y)〉
f1(mac(X1, . . . , X8)) = mac(f̂1([X1, X3, X5, X6, X7, X8]))

f1(mac(Y1, . . . , Y8)) = mac(f̂1([Y1, Y5, Y6, Y7, Y8]))
f1(kdf(Z1, . . . , Z5)) = kdf(f1(Z3))

f1(prf(U,Z)) = f1(U)
f1(exp(U1, U2)) = exp(f1(U1), f1(U2)),
f1(sh(U1, U2)) = sh(f1(U1), f1(U2)),
f1({|V1, V2|}Z) = 〈f1(V1), f1(V2)〉
f1(〈U3, U4〉) = 〈f1(U3), f1(U4)〉,

and V1 : α, X3 : γo, Y3 : nonce , U : kdf(msg), and all remaining pattern variables are of type msg .
We also recall the property φa as below.

φa = ∀ι. (role(ι, A) ∧ honest(ι, {A,B}) ∧ steps(ι,Commit))
⇒(∃κ. role(κ,B) ∧ steps(κ,Running)∧
〈A,B,na,Nb, exp(g, x),Gb〉@ι = 〈A,B,Na,nb,Ga, exp(g, y)〉@κ).

Second, we verify Condition I for the equations in φa. Note that the equation

〈A,B,na,Nb, exp(g, x),Gb〉@ι = 〈A,B,Na,nb,Ga, exp(g, y)〉@κ

can be decomposed into smaller ones, i.e.,

A@ι = A@κ, B@ι = B@κ,

na@ι = Na@κ, Nb@ι = nb@κ,

exp(g, x)@ι = Ga@κ, and Gb@ι = exp(g, y)@κ.

The first four equations do not contain message variables. It is not hard to see that Condition I
holds for these equations by Proposition 4.34. We now justify Condition I for the fifth equation by
checking conditions in Proposition A.52. The last equation can be treated in a similar way. We
assume that IK0 does not contain function symbols from topsym(lhs(R)). Then condition (v) holds
for the considered equational theory. We now check conditions (i)-(iv) in Definition A.51. Note
that conditions (i), (ii), and (iv) immediately follow from the specification of Ef . Condition (iii) is
satisfied, since no term in the set subterm(MIKEm

∪Secφ ∪EqTermφ) contains a function symbol
from topsym(lhs(R)) and f is constructor-preserving. Hence condition (i) in Proposition A.52
holds. It remains to check conditions (ii)-(iv) in Proposition A.52. Since u = exp(g, x) and t = Ga
and x is a nonce, we have f1(t) = t and f1(u) = u. Therefore, condition (ii) is satisfied. Since t
and u are R,Ax-stable and u is Ax-stable, condition (iii) also holds. Moreover, note that t|p is a
variable if and only if p = ε. Since funsym(u|ε) = funsym(u) = {exp}. It is not hard to see that
f is constructor-exclusive and homomorphic for exp. Therefore, condition (iv) holds.

In practice, syntactic Criteria I (Proposition 4.34) and II (Proposition A.52) are sufficient for
many relevant verification problems, e.g., all case studies in this thesis including those in Section 6.2
can be justified using these criteria. For authentication properties that involve agreement on atoms
or variables of simple types such as nonces or timestamps, Criterion I is applicable. Compared to I,
Criterion II has a larger scope and can be applied for authentication properties that involves message
variables. The complexity of checking criterion II mostly contributes to computing Ax-unifiers.
Nevertheless, an Ax-unification algorithm required for this criterion needs not compute a complete
set of most general Ax-unifiers. Computing an Ax-unifier of two given terms in the case that such a
unifier exists is sufficient.

84

A.6 Justification of soundness conditions for IKEm-to-IKE1
m

Here, we establish the soundness conditions for the abstraction Ff1 = (f1, Ef1) in Example 4.12
with respect to the properties φs and φa expressed in Example 3.11. For simplicity, let φ represent
both φs and φa. We assume that IK0 = IK ′0 = A ∪ C ∪ F• ∪

⋃
a∈A,b∈AC sh(a, b). Note that we

have shown in Example 4.31 that F1 is compatible with the rewrite theoryRcs = (Σcs, Axcs, Rcs).
It remains to show that the conditions required for Theorem 4.14 hold. These conditions are:

(i) f1(IK0) ⊆ IK ′0,

(ii) MIKEm
∪ Secφ ∪ EqTerm−φ ⊆ udom(Ff1) ∩ rdom(Ff1),

(iii) f1(tϑ(ι))f1(σ) =E f1(uϑ(κ))f1(σ) implies tϑ(ι)σ =E uϑ(κ)σ for all (ι, κ, t, u) ∈ Eq+
φ ,

thread-id interpretations ϑ, and well-typed and R,Ax-normal ground substitutions σ, and

(iv) f1(t) = f1(u) implies t = u, for all e(t) ∈ Evt+
φ and e(u) ∈ Evt(MIKEm

).

To justify conditions (i)-(iv), we rely on the following observations.

(O1) f1(IK0) = IK0 = IK ′0.

(O2) All terms in subterm(MIKEm
∪ Secφ ∪ EqTerm−φ) are abstracted using only clauses in Ef1 .

(O3) No term in subterm(MIKEm
∪ Secφ ∪ EqTerm−φ) contains reducible function symbols.

(O4) for all terms t, u ∈MIKEm
such that t 6= u, we have f1(t) 6= f1(u).

Condition (i) follows from (O1). Condition (ii) holds by (O2) and (O3). Condition (iv) holds
by (O4). To justify condition (iii), note that we can rewrite the equality on the tuples in φa as a
conjunction of equalities on the tuples’ components. Since f1 is the identity on atoms and variables,
it suffices to check condition (iii) for the two equalities of the form X = exp(g, a) with X is of
type msg and a is an atom. We have formally justified these cases in Example A.53.

A.7 Soundness of untyped protocol abstractions

Atom-and-variable removal abstractions allow us to eliminate atoms and variables in clear. This
cannot be achieved by typed abstractions. In order to prove the soundess of atom-and-variable
removal abstractions, we first show deducibility preservation results for variable removal and atom
removal abstractions separately.

For our development below, it is convenient to lift deducibility to sets of deduced terms:
T `E U means that T `E u for all u ∈ U .

A.7.1 Variable removal abstractions

In the following lemma, we abuse the notation and use vars(tr) to denote the set of variables
occurring in tr, each indexed with the thread id of the event in which it occurs on the trace.

Lemma A.54. Let P be a well-formed protocol and (tr, th, σ) ∈ reach(P, IK0). Let V ⊆ V be a
set of variables that are clear inMP . Then we have that

remV (IK (tr))σ, IK0 `E (IK (tr) ∪ (vars(tr) ∩ V TID))σ.

85

Proof. We proceed by induction on tr. For the base case, tr = ε, the lemma holds trivially. For
the inductive step, suppose (tr′, th′, σ) ∈ reach(P, IK0) and there is a transition (tr′, th′, σ) →
(tr, th, σ) such that tr = tr′ ·(i, ev(t)) for some i ∈ TID and some term t. By induction hypothesis,
we have

remV (IK (tr′))σ, IK0 `E (IK (tr′) ∪ (vars(tr′) ∩ V TID))σ.

and we have to show remV (IK (tr))σ, IK0 `E (IK (tr) ∪ (vars(tr) ∩ V TID))σ. We reason by a
case distinction on the rule r that has been applied in the last step.

• If r = RECV then we have that IK (tr′) = IK (tr). Thus by induction hypothesis, we have
remV (IK (tr))σ, IK0 `E IK (tr)σ. Therefore, it remains to show that remV (IK (tr))σ, IK0 `E
(vars(tr) ∩ V TID)σ.

Note that tr = tr′ · (i, recv(t)). If vars(ti) ∩ V TID ⊆ vars(tr′) then vars(tr) ∩ V TID =
vars(tr′) ∩ V TID and the conclusion follows directly from the induction hypothesis. Other-
wise, let Xi ∈ (vars(ti)∩V TID) \ vars(tr′). Given the induction hypothesis, it is sufficient
to establish remV (IK (tr))σ, IK0 `E Xiσ.

By the premises of the RECV rule, we know that IK (tr′)σ, IK0 `E tiσ. Since V is clear
in t, we also have

IK (tr′)σ, IK0 `E Xiσ (21)

Since V is clear in IK (tr′), we have

IK0, V
TID ∩ vars(IK (tr′)), remV (IK (tr′)) `E IK (tr′).

By instantiating this with σ and using the fact that vars(IK (tr′)) ⊆ vars(tr′), we obtain

IK0, (V
TID ∩ vars(tr′))σ, remV (IK (tr′))σ `E IK (tr′)σ

Together with the induction hypothesis and IK (tr) = IK (tr′), we derive

remV (IK (tr))σ, IK0 `E IK (tr′)σ.

Combining this with (21), we obtain remV (IK (tr))σ, IK0 `E Xiσ as required.

• If r = SEND then we have tr = tr′ · (i, send(t)). Thus, we have that IK (tr) = IK (tr′) ∪
{ti}. By the well-formedness of P , we have vars(tr) = vars(tr′). Hence, it follows from
the induction hypothesis that

remV (IK (tr))σ, IK0 `E (vars(tr) ∩ V TID)σ. (22)

We are left to show that remV (IK (tr))σ, IK0 `E IK (tr)σ. Since V is clear in t, we obtain

IK0, (V
TID ∩ vars(ti))σ, remV (ti)σ `E tiσ. (23)

Since vars(ti) ⊆ vars(tr). By (22), we have

remV (IK (tr))σ, IK0 `E (vars(ti) ∩ V TID)σ. (24)

Together with (24) and (23), we derive that

remV (IK (tr))σ, IK0, remV (t)σ `E tiσ.

Since ti ∈ IK (tr), we have that remV (ti)σ ∈ remV (IK (tr))σ. Hence, we obtain that

remV (IK (tr))σ, IK0 `E tiσ

By induction hypothesis, we have remV (IK (tr′)σ), IK0 `E IK (tr′)σ. Hence, we derive
that remV (IK (tr))σ, IK0 `E IK (tr)σ as required.

86

This completes the proof of the lemma.

Proposition A.55. Let P be a well-formed protocol, V be a set of variables such that V is clear in
MP , and u be a term such that remV (u) 6= nil. Suppose that (tr, th, σ) ∈ reach(P, IK0). Then

IK (tr)σ, IK0 `E uσ implies IK (remV (tr))σ, IK0 `E remV (u)σ.

Proof. We derive

IK (remV (tr))σ, IK0 `E remV (IK (tr))σ \ {nil}, IK0

`E IK (tr)σ, IK0 by Lemma A.54
`E uσ by assumption
`E remV (u)σ since split(remV (u)) ⊆ split(u)

Note that the first derivation follows from IK (remV (tr)) = remV (IK (tr)) \ {nil}.

A.7.2 Atom removal abstraction

The main idea for the proof of deducibility preservation of the atom removal abstractions is to
replace occurrences of the removed fresh values in the range of the substitution σ by intruder-
generated ones. In order to do this in a manner that preserves equalities, disequalities, and intruder
deducibility, we will need an unbounded supply of unused intruder-generated fresh values of type
βn for all n ∈ F . The following lemma provides this supply.

Lemma A.56. Let P be a protocol and suppose s = (tr, th, σ) is an attack state for the property
φ. Then there is an attack state s′ = (tr, th, σ′) for φ such that {n•k ∈ F• | k is odd} ∩
fresh(ran(σ′)) = ∅ for all n ∈ F .

Proof. We construct σ′ by replacing each nonce n•k in the range of σ by n•2k. Since properties
cannot distinguish between intruder-generated nonces with different indices, the resulting state s′ is
still an attack state.

Using this lemma, we can assume without loss of generality that, given a set of terms T ⊆M,
there exists an injective function

ρT : fresh(T)TID → F•

with the following additional properties:

• type preservation, i.e., Γ(ρT (ni)) = βn, for all ni ∈ fresh(T)TID , and

• freshness for σ, i.e., ran(ρT) ∩ fresh(ran(σ)) = ∅.

We homomorphically extend this function to a function ρT : N → N to all network messages. The
first condition ensures that ρT (σ) is well-typed whenever σ is. The second condition is to avoid
that any intruder-generated fresh value in the range of σ is identified with one in range of ρT .

Before proving deducibility preservation for atom removal abstractions, we introduce some
auxiliary notation and prove a lemma. Given a substitution σ and terms t and u, we define the
substitution σ[t/u] such that σ[t/u](X) = σ(X)[t/u] for all X ∈ dom(σ).

Lemma A.57. Let t, u be terms, a be an atom, and σ be a substitution such that vars(t)∩dom(σ) =
∅. Then (uσ)[t/a] = (u[t/a])(σ[t/a]).

Proof. We prove this lemma by induction on u.

87

• If u is an atom then (uσ)[t/a] = u[t/a]. By assumption, it follows that (u[t/a])(σ[t/a]) =
u[t/a]. Thus the lemma holds for this case.

• If u is a variable then we have u[t/a] = u. Therefore, we have (uσ)[t/a] = u(σ[t/a]) =
(u[t/a])(σ[t/a]).

• If u = g(u1, . . . , un) for g ∈ Σn, n ≥ 1, then we have

(uσ)[t/a] = g((u1σ)[t/a], . . . , (unσ)[t/a]) since a is an atom
= g((u1[t/a])(σ[t/a]), . . . , (un[t/a])(σ[t/a])) by IH
= (g(u1, . . . , un)[t/a])(σ[t/a]) since a is an atom
= (u[t/a])(σ[t/a])

This completes the proof of the lemma.

In the following lemma, we show that atom removal abstractions preserve deducibility.

Lemma A.58. Let T ⊆MTID be set of terms, t ∈ MTID a term, σ be a substitution, and At a
set of atoms such that AtTID is clear in T ∪ {t} and remAt(t) 6= nil. Then

Tσ, IK0 `E tσ implies remAt(T)ρAt(σ), IK0 `E remAt(t)ρAt(σ).

Proof. Suppose Tσ, IK0 `E tσ. We start by observing that, since AtTID is clear in T ∪ {t}, we
have, for all terms u ∈ T ,

remAt(u),F• `E uρAt and tρAt `E remAt(t).

Together with F• ⊆ IK0 (Assumption 3.9), we derive:

remAt(T)ρAt(σ), IK0 `E (TρAt)ρAt(σ) and (tρAt)ρAt(σ) `E remAt(t)ρAt(σ). (25)

We now show that remAt(T)ρAt(σ), IK0 `E remAt(t)ρAt(σ). Using Lemma A.39 we first
deduce (Tσ)ρAt, IK0 `E (tσ)ρAt from the lemma’s assumption Tσ, IK0 `E tσ and from FTID ∩
IK0 = ∅ (Assumption 3.9). Next, we use Lemma A.57 to derive

(TρAt)ρAt(σ), IK0 `E (tρAt)ρAt(σ).

Combining this with (25) yields the desired result remAt(T)ρAt(σ), IK0 `E remAt(t)ρAt(σ).

Theorem (Soundness for atom-and-variable removal abstractions; Justification of Theorem 4.43).
Let P be a well-formed protocol, φ ∈ LP a property, and T ⊆ av(MP) a set of atoms and
variables such that

(i) T is clear inMP ,

(ii) T ∩ av(EqTermφ) = ∅,

(iii) nil /∈ remT (Secφ ∪ Evtφ),

(iv) IK0 ⊆ IK ′0, and

(v) for all e(t) ∈ Evt+
φ and e(u) ∈ Evt(MP), we have remT (t) = remT (u) implies t = u.

Then for all states (tr, th, σ) ∈ reach(P, IK0), there is a ground substitution σ′ such that

1. (remT (tr), remT (th), σ′) ∈ reach(remT (P), IK ′0),

88

2. (tr, th, σ) 2 φ implies (remT (tr), remT (th), σ′) 2 remT (φ).

Proof. Let (tr, th, σ) ∈ reach(P, IK0) and ρT : N → N be the function defined above. We estab-
lish soundness by showing that the conditions (i)-(iii) of Theorem 4.6 hold for G = (remT , remT)
and g = ρT . Hence, the witnessing substitution is σ′ = ρT (σ).

We first prove the conditions (i) and (ii) of Theorem 4.6. Let t ∈ MP ∪ Secφ such that
remT (t) 6= nil and i ∈ TID . Suppose that (tr, th, σ) ∈ reach(P, IK0) and

IK (tr)σ, IK0 ` tiσ.

Let V = vars(T) and At = atoms(T). Since remT (t) 6= nil implies remV (t) 6= nil, we can
apply Proposition A.55 to derive

remV (IK (tr))σ, IK0 `E remV (ti)σ.

Since remT = remAt ◦ remV and remT (t) 6= nil, we can then use Lemma A.58 to deduce

remAt(remV (IK (tr)))ρAt(σ), IK0 `E remAt(remV (ti))ρAt(σ).

Since ρT = ρAt, this yields

remT (IK (tr))ρT (σ), IK0 `E remT (ti)ρT (σ).

By assumption (iv), we have that remT (IK (tr)) = IK (remT (tr)). Using assumption (iv) we
obtain

IK (remT (tr))ρT (σ), IK ′0 `E remT (ti)ρT (σ).

Therefore, conditions (i) and (ii) of Theorem 4.6 hold. It remains to show that φ is safe for
P and ((remT , remT), ρT), i.e., conditions (a)-(e) in Definition 4.5. Condition (a) holds by
assumptions (ii) and (iii). Condition (b) holds since ρT is the identity on agents. Conditions (c)
and (d) hold by assumption (ii), the properties of ρT , and the wellformedness of our rewrite theory
(Definition 3.1(iv)). Finally, condition (e) holds by assumption (v). This completes the proof of the
theorem.

A.7.3 Redundancy removal abstractions

We overload the notation and recursively define term(·) on traces as follows:

term(ε) = ∅
term((i, sig) · tr) = term(tr) for sig ∈ Sig

term((i, ev(t)) · tr) = {ti} ∪ term(tr) for ev ∈ {send, recv}.

In the following theorem, we show reachability preservation for redundancy removal abstrac-
tions.

Lemma A.59. Let P be a protocol and rd ∈ RDP . Then, for all states (tr, th, σ) ∈ reach(P, IK0),
we have IK (rd(tr))σ, IK0 `E term(tr)σ.

Proof. We proceed by induction on the number n of transitions leading to a state (tr, th, σ). The
theorem trivially holds for base case (n = 0) where tr is the empty trace.

For the inductive case (n = k + 1), we assume that (tr′, th′, σ) is reachable in k steps and
there is a transition (tr′, th′, σ)→ (tr, th, σ). Suppose that this transition is performed by thread i.
From the transition rules, we know that tr = tr′ · (i, ev(t)) for some ev ∈ {send, recv}. By the
induction hypothesis, we have

IK (rd(tr′))σ, IK0 `E term(tr′)σ. (26)

89

Since it follows from the induction hypothesis that

IK (rd(tr))σ, IK0 `E term(tr′)σ

Moreover, we have term(tr) = term(tr′) ∪ {ti}. Thus it is sufficient to show

IK (rd(tr))σ, IK0 `E tiσ. (27)

We do this by case analysis on the rule that justifies the transition k + 1.

• Rule SEND . We have rd(tr) = rd(tr′)·(i, send(rd(t))) and thus IK (rd(tr)) = IK (rd(tr′))∪
{rd(ti)} if rd(ti) 6= nil and rd(tr) = rd(tr′) otherwise. Hence, we can derive

IK (rd(tr))σ, IK0 `E IK (rd(tr′))σ, rd(ti)σ, IK0 by above
`E term(tr′)σ, rd(ti)σ, IK0 by induction hyp. (26)

Next, since the terms of all events preceding send(t) on P (R) are contained in term(tr′)
and rd ∈ RDP , we derive IK0, term(tr′),Vα, rd(ti) `E ti. Instantiating this with σ and
observing that (Vα)σ ⊆ A ⊆ IK0 yields

term(tr′)σ, rd(ti)σ, IK0 `E tiσ.

Combining this with the derivation above yields the desired conclusion (27).

• Rule RECV . In this case we can reason as follows.

IK (rd(tr))σ, IK0 `E term(tr′)σ, IK0 by induction hypothesis (26)
`E IK (tr′)σ, IK0 since IK (tr) ⊆ term(tr′)
`E tiσ by second premise of rule RECV

This establishes (27) as required.

This concludes the proof of the lemma.

Proposition A.60. Let P be a protocol and rd ∈ RDP . Suppose that IK0 ⊆ IK ′0. Then, for
all states (tr, th, σ) ∈ reach(P, IK0), thread identifiers i, agent variables R, terms t, and event
sequences tl such that th(i) = (R, recv(t) · tl) and rd(t) 6= nil, we have

IK (tr)σ, IK0 `E tiσ implies IK (rd(tr))σ, IK ′0 `E rd(ti)σ.

Proof. From Definition 4.44, we derive that

term(tr),Vα, ti `E rd(ti).

Since Vασ ⊆ A ⊆ IK0, we obtain

term(tr)σ, IK0, t
iσ `E rd(ti)σ.

Using the assumption IK (tr)σ, IK0 `E tiσ and the fact that IK (tr)σ ⊆ term(tr)σ, we derive

term(tr)σ, IK0 `E rd(ti)σ.

Moreover, from Lemma A.59, we have IK (rd(tr))σ, IK0 `E term(tr)σ. Combining with the
assumption that IK0 ⊆ IK ′0, we obtain that

IK (rd(tr))σ, IK ′0 `E rd(ti)σ.

This completes the proof of the proposition.

90

Theorem (Soundness for redundancy removal abstractions; Justification of Theorem 4.46). Let P
be a protocol, φ ∈ LP a property, and rd ∈ RDP a redundancy removal abstraction. Suppose that

(i) IK0 ⊆ IK ′0,

(ii) nil /∈ rd(Evtφ),

(iii) for all e(t) ∈ Evt+
φ and e(u) ∈ Evt(MP), we have rd(t) = rd(u) implies t = u.

Then for all states (tr, th, σ) ∈ reach(P, IK0), we have

1. (rd(tr), rd(th), σ) ∈ reach(rd(P), IK ′0) and

2. (tr, th, σ) 2 φ implies (rd(tr), rd(th), σ) 2 φ.

Proof. It is sufficient to check conditions (i)-(iii) of Theorem 4.6 for G = (rd , id) and g = id. Con-
dition (i) holds by Proposition A.60. For condition (ii), let t ∈ Secφ and assume IK (tr)σ, IK0 `E
tiσ. Then we deduce

IK (rd(tr))σ, IK0 `E term(tr)σ, IK0 by Lemma A.59
`E IK (tr)σ, IK0 since IK (tr) ⊆ term(tr)
`E tiσ by hypothesis

Since we have gprop = id, condition (ii) follows from assumption (i). Finally, by assumptions (ii)
and (iii), we derive that φ is safe for P and (G, g). This completes the proof of the theorem.

91

A.8 Proofs for Section 4.6: Well-formedness preservation

Lemma A.61. Let t be a term, X be a variable, and Ff = (f,Ef) be a typed abstraction such that
Ff is R,Ax-compatible and X is accessible in t. Then X is accessible in f(t).

Proof. We prove this lemma by induction on |t|.

• If t is not composed then f(t) = t and thus the lemma holds in this case.

• If t is composed then t = c(t1, . . . , tn) for some n ≥ 1 and terms t1, . . . , tn. Since X is
accessible in t, we know that there is an extractable position k ∈ ñ of c such that X is
accessible in tk. Let p = c(p1, . . . , pn) be the equation that transforms t and let θ be a
substitution such that t = pθ. By Definition 4.9, we know that f(p) = 〈e1, . . . , ed〉 for some
d > 0. We also have tj = pjθ for all j ∈ ñ and f(t) = 〈e1θ, . . . , edθ〉. SinceX is accessible
in tk and tk = pkθ, we know that there is q ∈ split(pk) such that X is accessible in qθ. Note
that qθ ∈ subterm(t) \ {t} and X is accessible in qθ. Hence, by induction hypothesis, we
derive that

X is accessible in f(qθ). (28)

Moreover, since k is an extractable position of c, we know that Ff is field-preserving for k.
Therefore, we derive that there is j ∈ d̃ such that (i) ej = f(q) or (ii) ej = c(..., f̂(qk), ...)
and q ∈ set(qk). In case (i), we have ejθ = f(qθ). This by (28) implies that X is accessible
in f(t) as required. In case (ii), we have that qθ ∈ set(qkθ). Hence by (28), we derive that
X is accessible in f̂(qkθ). This implies X is accessible in ejθ and therefore from f(t) as
desired.

This completes the proof of the lemma.

Proposition (Well-formedness preservation; Justification of Proposition 4.47). Let P be a well-
formed protocol and Ff = (f,Ef) be a typed abstraction. Then f(P) is well-formed.

Proof. Let e be an event in a role P (R) and X ∈ vars(term(f(e))) such that Γ(X) 6= α. Then,
we have X ∈ vars(term(e)). Since P is well-formed, there is an event recv(t) in P (R) such that
recv(t) equals or precedes e in P (R) andX is accessible in t. Then, we have that f(recv(t)) equals
or precedes f(e) in f(P)(R). Moreover, we also have that X is accessible in f(t) by Lemma A.61.
This completes the proof of the proposition.

Proposition (Justification of Proposition 4.48). Let T be a set of atoms and variables such that T
is clear inMP . If P is well-formed, so is remT (P).

Proof. It is sufficient to consider the case where T = V contains only variables. Since all variables
in V are clear inMP , all occurrences of these variables are removed from the roles of P and all
other variables are kept under remV . Let R ∈ dom(P) and e is an event in remV (P (R)). Suppose
that X ∈ vars(term(remV (e))) such that Γ(X) 6= α. Then we have X ∈ vars(term(e)) and
X /∈ V . As P is well-formed, we know that X must be present in a receive event recv(t) preceding
e. Since X /∈ V , we have that X is also present in remV (remV (t)). Moreover, we know that X is
accessible in t. Since X /∈ V , we have that X is also accessible in remV (t). That means remV (P)
is well-formed. This completes the proof of the proposition.

Proposition (Justification of Proposition 4.49). Let rd be a redundancy removal abstraction and P
be a well-formed protocol. Assume that for all non-agent variables X ∈ VP and all receive events
recv(t) in which X first occurs, we have that X is accessible in rd(t). Then rd(P) is well-formed.

92

Proof. Let R ∈ dom(P), X ∈ Vrd(P) be a non-agent variable, and an event ev(t) ∈ P (R) such
that X ∈ vars(rd(t)). Note that Vrd(P) = VP . Since P is well-formed, there must be a receive
event recv(t′) ∈ P (R) in which X first occurs and X is accessible in t′. We define a set of terms

T = {u | ev(u) ∈ P (R) ∧ ev(u) precedes or equals recv(t′)}.

We know that IK0, T,Vα, rd(t′) `E t′. Since recv(t′) is the first receive event in which X occurs,
we have X /∈ vars(T). Thus, we derive that X ∈ vars(rd(t′)). By assumption, X is accessible in
rd(t′). Moreover, recv(rd(t′)) precedes or equals ev(t) in rd(P)(R). Therefore, we conclude that
rd(P) is well-formed.

93

B Details for Section 5: Algorithm

B.1 Abstraction algorithms

B.1.1 Computing abstract models

Algorithm 1 captures the idea of how to generate successive abstract models from an original
security protocol specification. This algorithm takes as an input a protocol specification P and a

Algorithm 1 Algorithm for computing abstract models.
Input: a protocol specification P and a property formula φ.
Output: a stack S of abstract models of P .

1: S ← [(P, φ)]
2: repeat
3: (P ′, φ′)← topsym(S)
4: (P1, φ1)← typedAbstract(P ′, φ′)
5: (P2, φ2)← removeAV (P1 , φ1)
6: (P3, φ3)← removeRedundancy(P2 , φ2)
7: if P3 6= P
8: then push(S , (P3 , φ3))
9: endif

10: until P3 = P or |S| ≥ LIMIT
11: return S

property formula φ, and returns a stack that contains different abstract models of P . Initially, the
stack only contains the original protocol P and security properties φ (line 1). The loop (lines 2-10)
computes different abstractions of P and φ. The condition in line 7 checks whether the abstract
protocol is different from the considered original protocol. If it is the case then the abstract protocol
and the corresponding abstract security properties are pushed onto the stack (line 8). The loop
terminates when no simplification is produced or the number of abstract models exceeds a given
limit, e.g., LIMIT = 10.

B.1.2 Generating a typed abstraction

Algorithm 2 generates a typed abstraction specification for given protocol specification and security
formula, abstracts the protocol and property using this abstraction, and returns the corresponding
abstract model. In Algorithm 3, we describe how to determine a transformation for a given term

Algorithm 2 Implementation of typedAbstract .
Input: a protocol specification P and property formula φ.
Output: abstract protocol P ′ and property φ′.

1: Ef ← []
2: for all t ∈ split(MP)
3: Ef ← genClauses(t ,P ,Ef , φ)
4: endfor
5: completeClauses(Ef)
6: if safeTypedAbstraction(P, φ,Ef)
7: then return (f(P), f(φ))
8: else return (P, φ)
9: endif

94

t and to generate a clause that transforms the term accordingly. In this algorithm, we represent
a clause (f(p) = q) by (p, q). Additionally, we introduce functions removeElem , protAbstract ,
propAbstract , termAbstract , genOneClause, and updateClause whose purposes are given as
follows.

removeElem(l , i) returns the list that is obtained by removing the i-th element from the list l.

protAbstract(P , p, q), propAbstract(φ, p, q), and termAbstract(t , p, q) transform the proto-
col P , the property φ, and the term t using Ef = [f(p) = q], respectively.

genOneClause(t , pull , keep) generates a clause (p, q) that transforms the composed term t of
the form c(t1, . . . , tn). List pull contains fields of ti for all i ∈ ñ that should be pulled out
of t’s top function symbol. Array keep maps an index i ∈ ñ to the list of fields of ti that
should be kept. The fields that are neither pulled out or kept will be removed. Note that if
all the fields are pulled out then the constructor c is dropped. In Example B.1, we illustrate
how to generate such clauses.

updateClause(Ef , p, q) adds the clause (p, q) to list Ef and returns the resulting list. Note
that whenever a clause is added to Ef , we need to ensure that the clause does not create
a violation of pattern-disjointness. Therefore in the implementation of updateClause,
we check whether the clause overlaps with some other clauses in Ef or not. If it is
the case, we merge any two clauses that violate the pattern-disjointness into a new one
as follows. Suppose that there are two clauses f(p1) = q1 and f(p2) = q2 such that
Γ(p1)↓ ∩ Γ(p2)↓ 6= ∅. Let τ be the least supertype of Γ(p1) and Γ(p2). We select one
of these clauses, i.e., f(pk) = qk for some k ∈ {1, 2} and adapt the type of pk to τ .
This ensures that any term that can be transformed by one of these clauses will also be
transformed by the new clause. We must be careful because not any k will work. For
example, if p1 = h(g(X)) and p2 = h(Y) for X,Y : nonce then k = 1 does not work,
because p1 is deeper than p2 and thus we cannot update the type of h(g(X)) to h(msg).
Our selection is therefore defined as follows.

(i) If a pattern is strictly shallower than the other then the clause corresponding to the
shallower pattern is selected.

(ii) Otherwise, if one of these clauses is defined by users then that clause is selected. Here,
we assume that user-defined clauses are pattern-disjoint. Note that this is also checked
by our abstraction generator.

(iii) Otherwise, the clause that makes less changes on terms than the other is selected. We
define the amount of changes a clause makes as the ratio of the number of fields the
clause removes or pulls out to the size of the clause. The intuition behind this rule is
that the selected clause has less chance of oversimplifying the protocol.

If p1 and p2 are comparable with respect to shallowness then updating the type of pk to τ
can always be done by adapting the types of the variables of pk accordingly. This is because
τ is always deeper than pk in this case. Otherwise, the type updating fails and no abstraction
is produced.

In order to determine a transformation for a given term t, we first check whether t is a pair or not
(line 1). If t is a pair then we recursively call the procedure for its fields as we are not interested in
reordering pairs at this point. The outer loop (lines 6-32) iterates over each argument ti of c. Line
7 checks whether we are allowed to manipulate ti’s fields accordingly Definition 4.30(C2.b). If
this is the case then keep[i] initially contains all fields of ti (line 8). The inner loop (lines 9-29)
determines which fields of ti are pulled out, removed, or kept. In particular, lines 12-17 attempt

95

Algorithm 3 Implementation of genClauses .
Input: a term t, a protocol P , a list of clauses Ef , and a formula φ,

where t = c(t1, . . . , tn) for c ∈ Σn and ti = 〈ti,1, . . . , ti,ai〉.
Output: a list of clauses.

1: if c = 〈·, ·〉
2: then Ef ← genClauses(t1 ,P ,Ef , φ); Ef ← genClauses(t2 ,P ,Ef , φ)
3: return Ef
4: endif
5: pull← []
6: for i = 1 to n
7: if there is no c(u1, . . . , um)→ r ∈ R such that ui is a non-linear variable
8: then keep[i]← [ti,1, . . . , ti,ai]
9: for j = 1 to ai

10: let keep′[k] = keep[k] for all k ∈ ñ \ {i} and keep′[i] = removeElem(keep[i], j)
11: if i is not an extractable position of c
12: then (p, q)← genOneClause(t , pull , keep′)
13: P ′ ← protAbstract(P , p, q); φ′ ← propAbstract(φ, p, q)
14: if for all u ∈ subterm(Secφ ∪ EqTermφ) it holds that
15: authlabel(P, φ, u) ≤lb authlabel(P ′, φ′, termAbstract(u, p, q)) ∧
16: conflabel(P, φ, u) ≤lb conflabel(P ′, φ′, termAbstract(u, p, q))
17: then keep[i]← removeElem(keep[i], j)
18: endif
19: endif
20: if |keep[i]| = ai
21: then (p, q)← genOneClause(t , pull · [ti ,j], keep′)
22: P ′ ← protAbstract(P , p, q); φ′ ← propAbstract(φ, p, q)
23: if for all u ∈ subterm(Secφ ∪ EqTermφ) it holds that
24: authlabel(P, φ, u) ≤lb authlabel(P ′, φ′, termAbstract(u, p, q)) ∧
25: conflabel(P, φ, u) ≤lb conflabel(P ′, φ′, termAbstract(u, p, q))
26: then pull← pull · [ti,j]; keep[i]← removeElem(keep[i], j)
27: endif
28: endif
29: endfor
30: else keep[i]← [ti]
31: endif
32: endfor
33: if |keep[i]| = ai for all i ∈ ñ
34: then for i = 1 to n
35: Ef ← genClauses(ti ,P ,Ef , φ)
36: endfor
37: return Ef
38: endif
39: (p, q)← genOneClause(t , pull , keep)
40: return updateClause(Ef , p, q)

96

to remove the field ti,j if i is not an extractable position of c. The condition in lines 14-16 checks
whether the removal preserves protocol labels of each subterm u of the terms in the property. If no
removal is possible, lines 21-26 try to pull ti,j out the cryptographic operation. The condition in
lines 23-25 checks whether pulling out ti,j preserves protocol labels of terms. If it is the case then
ti,j is pulled out (line 26). Line 30 assigns keep[i] to the singleton list [ti], because in this case we
are not allowed to interfere with ti’s fields. Lines 34-36 recursively go into t’s immediate subterms
if the outermost constructor c cannot be simplified. When the abstraction is completely determined,
we generate the final clause (line 39) and add this clause to Ef using updateClause (line 40).

Example B.1. We compute the first abstraction for the IKEm protocol from Example 3.8. In this
abstraction, we consider the following messages for role A

M1 : {|A,B,AUTHaa, sA2 , tSa, tSb|}SKa

M2 : {|B,AUTHba, sA2 , tSa, tSb|}SKa

and the corresponding two messages for role B

M3 : {|A,B,AUTHab, sA2 , tSa, tSb|}SKb

M4 : {|B,AUTHbb, sA2 , tSa, tSb|}SKb

where the authenticators and session keys are recalled below.

SKa = kdf(na,Nb, exp(Gb, x), sPIa,SPIb),
SKb = kdf(Na,nb, exp(Ga, y),SPIa, sPIb),

AUTHaa = mac(sh(A,B), sPIa, o, sA1 , exp(g, x),na,Nb, prf(SKa, A)),
AUTHab = mac(sh(B,A),SPIa, o, sA1 ,Ga,Na,nb, prf(SKb, A)),
AUTHba = mac(sh(A,B), sPIa,SPIb, sA1 ,Gb,Nb,na, prf(SKa, B)),
AUTHbb = mac(sh(B,A),SPIa, sPIb, sA1 , exp(g, y),nb,Na, prf(SKb, B)).

We consider the security property φa specified in Example 3.11. The terms that occur in the security
property are underlined. In the first abstraction step, the algorithm removes encryptions from
M1-M4 since the protocol labels of underlined terms are preserved by the mac. We therefore obtain
the following transformation.

{|A,B,AUTHaa, sA2 , tSa, tSb|}SKa 7→ 〈A,B,AUTHaa, sA2 , tSa, tSb〉
{|B,AUTHba, sA2 , tSa, tSb|}SKa 7→ 〈B,AUTHba, sA2 , tSa, tSb〉

{|A,B,AUTHab, sA2 , tSa, tSb|}SKb 7→ 〈A,B,AUTHab, sA2 , tSa, tSb〉
{|B,AUTHbb, sA2 , tSa, tSb|}SKb 7→ 〈B,AUTHbb, sA2 , tSa, tSb〉

In order to generate a clause that corresponds to this transformation, we replace the session keys
and each field in the plaintexts of the encryptions with fresh variables. By applying this replacement
on both sides of the transformation above, we derive the desired clauses which are given by

f({|X1, X2, X3, X4, X5, X6|}X7) = 〈f(X1), f(X2), f(X3), f(X4), f(X5), f(X6)〉,
f({|Y1, Y2, X3, Y4, Y5|}Y6) = 〈f(Y1), f(Y2), f(Y3), f(Y4), f(Y5)〉,

f({|Z1, Z2, Z3, Z4, Z5, Z6|}Z7) = 〈f(Z1), f(Z2), f(Z3), f(Z4), f(Z5), f(Z6)〉,
f({|U1, U2, U3, U4, U5|}U6) = 〈f(U1), f(U2), f(U3), f(U4), f(U5)〉.

97

with variables and their corresponding types as follows.

X1, X2, Y1, Z1, Z2, U1 : α
X3 : mac(sh(α, α), βsPIa , γo, γsA1 , exp(γg, γx), βna ,nonce,

prf(kdf(βna ,nonce, exp(msg , βx), βsPIa ,nonce), α))
Z3 : mac(sh(α, α),nonce, γo, γsA1 ,msg ,nonce, βnb ,

prf(kdf(nonce, βnb , exp(msg , βy),nonce, βsPIb), α))
X4, Y3, Z4, U3 : γsA2

X5, Y4, Z5, U4 : γtSa
X6, Y5, Z6, U5 : γtSb
Y6, X7 : kdf(βna ,nonce, exp(msg , βx), βsPIa ,nonce)
U6, Z7 : kdf(nonce, βnb , exp(msg , βy),nonce, βsPIb)
Y2 : mac(sh(α, α), βsPIa ,nonce, γsA1 ,msg ,nonce, βna ,

prf(kdf(βna ,nonce, exp(msg , βx), βsPIa ,nonce), α))
U2 : mac(sh(α, α),nonce, βsPIb , γsA1 , exp(γg, y), βnb ,nonce,

prf(kdf(nonce, βnb , exp(msg , βy),nonce, βsPIb), α)).

Note that neither the first and the third clauses nor the second and the last clauses are pattern-disjoint.
As the clauses in each pair are similar and they are not user-defined, we can choose either one of
them. Let us choose the first clause in the first pair and the second clause in the second pair. We
therefore obtain the following clauses:

f({|X1, X2, X3, X4, X5, X6|}X7) = 〈f(X1), f(X2), f(X3), f(X4), f(X5), f(X6)〉,
f({|Y1, Y2, X3, Y4, Y5|}Y6) = 〈f(Y1), f(Y2), f(Y3), f(Y4), f(Y5)〉.

We also update the types of the patterns and obtain new types for X3 and Y2 as follows.

X3 : mac(sh(α, α),nonce, γo, γsA1 ,msg ,nonce,nonce,
prf(kdf(nonce,nonce, exp(msg ,nonce),nonce,nonce), α))

Y2 : mac(sh(α, α),nonce,nonce, γsA1 ,msg ,nonce,nonce,
prf(kdf(nonce,nonce, exp(msg ,nonce),nonce,nonce), α)).

We complete the typed abstraction by adding homomorphic clauses for all other protocol subterms
that need to be transformed. Since the macs only occur as the top-level fields, no such subterms
have types that overlap with the types of the macs. Therefore, pattern-disjointness is guaranteed.

B.1.3 Generating an atom-and-variable removal abstraction

An atom-and-variable removal simply eliminates atoms and variables that are unprotected and do
not occur in the properties of interest. In Algorithm 4, we show how to generate such abstractions
automatically. This algorithm takes as an input a protocol specification and a security formula.
It selects a subset of protocol terms that are in clear and removes these terms from the protocol
specification and the security property. In Algorithm 4, we describe how to generate this an atom-
and-variable removal abstraction. The loop in lines 3-11 attempts to remove an atom-and-variable
that is clear in the protocol messages. The condition in line 8 checks whether this atom-and-variable
removal satisfies the soundness conditions of Theorem 4.43. If these conditions are violated then
we keep the corresponding atom-and-variable. Otherwise, it is added to the removal set T . Once T
is completely computed, the algorithm abstracts P and φ and returns the result.

B.1.4 Generating a redundancy removal abstraction

A redundancy abstraction removes fields u from terms t in protocol events ev(t) whenever u is
deducible from the remaining fields of t and the terms occurring in the events preceding ev(t). This

98

Algorithm 4 Generating an atom-and-variable removal abstraction.
Input: a protocol specification P and property formula φ.
Output: abstract protocol P ′ and property φ′.

1: S ← av(MP) \ av(Secφ ∪ EqTermφ)
2: T ← ∅
3: for all t ∈ S such that t is clear inMP

4: T ← T ∪ {t}
5: P ′ ← protAVRemoval(P ,T)
6: φ′ ← propAVRemoval(φ,T)
7: safe ← safeAVRemovalAbstraction(P ′, φ′,T)
8: if not safe
9: then T ← T \ {t}

10: endif
11: endfor
12: return (remT (P), remT (φ))

is described in Algorithm 5. This algorithm takes as an input a protocol specification and a security
formula. It then removes redundant fields from each protocol term and returns the abstract protocol
and security property. Overloading notation, we denote by set(l) the set of the elements of the list
l. We introduce two auxiliary functions.

makeList(t) returns the list that contains all components of t. The resulting list also preserves
the order of these components in t, e.g.,

makeList(〈a, 〈a, b〉〉) = [a, a, b].

subtractList(l , l ′) returns the list obtained by subtracting l′ from l, e.g.,

subtractList([a, b], [a, c]) = [b].

makeTerm(l) turns the list l into a tuple, e.g.,

makeTerm([a, a, b]) = 〈a, a, b〉.

In line 1, the redundancy abstraction rd is initialized with the identity function. The nested
loop (lines 2-19) identifies redundancies in each protocol message and defines the corresponding
redundancy removal. The condition in line 9 checks if each field u of the considered protocol
message t is redundant, i.e., deducible from the initial knowledge of the intruder plus the messages
in preceding events and the other fields and agent variables of t. If it is the case then the condition
in line 12 checks whether the redundancy removal abstraction that removes u from t satisfies
the corresponding soundness conditions of Theorem 4.46 and the extractability condition of
Definition 4.44. If these conditions hold then u is added to the removal list (line 13). Finally,
the redundancy removal abstraction is completed and the resulting abstract protocol and security
properties are returned in line 20.

Note that by the algorithm, it is clear that split(rd(t)) ⊆ split(t) for all t ∈MP . Hence, the
condition in line 9 ensures that point (i) in Definition 4.44 holds. Moreover, the second conjunct of
the condition in line 12 ensures that point (ii) in Definition 4.44 also holds. Hence, the function rd
computed by the algorithm is a redundancy removal abstraction.

99

Algorithm 5 Generating an redundancy removal abstraction.
Input: a protocol specification P and property formula φ.
Output: abstract protocol P ′ and property φ′.

1: rd ← id
2: for all r ∈ dom(P)
3: for all ev(t) in P (r)
4: T ← IK0 ∪ {m | ev′(m) preceding ev(t) in P (r)} ∪ Vα
5: rem← []
6: S ← makeList(t)
7: for all u in S
8: l = subtractList(S , rem · [u])
9: if T ∪ set(l) `E u

10: then rd [t← makeTerm(l)]
11: safe ← safeRedundancyAbstraction(rd(P), rd(φ))
12: if safe ∧ condition (ii) of Definition 4.44 holds
13: then rem← rem · [u]
14: endif
15: endif
16: endfor
17: rd [t← makeTerm(subtractList(S , rem))]
18: endfor
19: endfor
20: return (rd(P), rd(φ))

B.2 Applying the abstraction mechanism to the Needham-Schroeder public-key
protocol

To illustrate how our abstraction mechanism works for the Scyther tool, we come back to the
Needham-Schroeder public-key (NSPK) protocol specified in Section 6.1.1. For simplicity, we
consider only one security property, namely the secrecy of the nonce na for the initiator role. We
specify this protocol as follows.

NS (A) = send({A,na}pk(B)) · recv({na,Nb}pk(A)) · send({Nb}pk(B)) · Secret
NS (B) = recv({A,Na}pk(B)) · send({Na,nb}pk(A)) · recv({nb}pk(B))

In order to verify this property, the following three steps are taken.

Step 1 The abstraction generator computes different more abstract protocols in two rounds.

• Abstraction 1: It starts with the original protocol. To generate a typed abstraction, it
first computes the labels of terms. For example, na occurs in the property and within
the protocol only in the first two events of role A. As {A,na}pk(B) is a public-key
encryption that contains an agent identity in plaintext, we have `c({A,na}pk(B)) =
YES and `a({A,na}pk(B)) = YES. Hence na receives confidentiality label YES and
authentication label YES from {na,Nb}pk(A). The message {na,Nb}pk(A) does not
contain essential agent identities and therefore `a({na,Nb}pk(A)) = NO. Therefore,
we have that conflabel(P, φ,na) = YES and authlabel(P, φ,na) = NO.
After computing the security labels of terms, the algorithm defines typed abstractions
for the topmost cryptographic operations, i.e., for terms {A,na}pk(B), {na,Nb}pk(A),
and {Nb}pk(B) from role A, and {A,Na}pk(B), {Na,nb}pk(A), and {nb}pk(B) from

100

role B. The list of clauses Ef is initially empty. It computes typed abstractions for the
terms in role A as follows.

– {A,na}pk(B): It keeps the agent variable A as this variable occurs in φ. Pulling
na out of the encryption does not preserve the secrecy label. Therefore, it also
keeps na . It defines a clause for this abstraction by

f({X1, Y1}Z1) = {f(X1), f(Y1)}f(Z1)

where X1 : α, Y1 : βna , and Z1 : pk(α).
– {na,Nb}pk(A): By the same reason as before, it keeps na . Since Nb does not

occur in φ, it is pulled out of the encryption. The corresponding clause is defined
by

f({X2, Y2}Z2) = 〈{f(X2)}f(Z2), f(Y2)〉

where X2 : βna , Y2 : nonce, and Z2 : pk(α).
– {Nb}pk(B): It removes the encryption by defining the clause

f({X3}Z3) = f(X3)

where X3 : nonce and Z3 : pk(α).

These clauses are added to Ef without creating any violation of pattern-disjointness.
Therefore no changes in Ef need to be done. The typed abstractions for role B are
defined as follows.

– {A,Na}pk(B): The only difference we observe here compared to the previous case
is that Na does not occur in φ. Therefore, Na is pulled out of the encryption by
defining the clause

f({X4, Y4}Z4) = 〈{f(X4)}f(Z4), f(Y4)〉

where X4 : α, Y4 : nonce, and Z1 : pk(α). Adding this clause to Ef violates the
pattern-disjointness since

Γ({X1, Y1}Z1) = {α, βna}pk(α),

Γ({X4, Y4}Z4) = {α,nonce}pk(α), and
{α, βna}pk(α) 4 {α,nonce}pk(α).

In this case, it chooses the first clause in Ef because it abstracts less than this one
does. The updated Ef consists of the following clauses:

(1) f({X1, Y1}Z1) = {f(X1), f(Y1)}f(Z1)

(2) f({X2, Y2}Z2) = 〈{f(X2)}f(Z2
, f(Y2)〉

(3) f({X3}Z3) = f(X3)

– {Na,nb}pk(A): Since neither Na nor nb is occurs in the property, it removes the
encryption and thus defines the clause

f({X5, Y5}Z5) = 〈f(X5), f(Y5)〉

where X5 : nonce, Y5 : βnb , and Z2 : pk(α). This clause and clause (2) in Ef
violate the pattern-disjointness. As these clauses have the same shape, we can keep
either of them and update types accordingly. The abstraction generator chooses to
keep clause (2) as it abstracts less and updates the type of X2 to nonce .

101

A B

{A,na}pk(B)

{na}pk(A)

Figure 7: An abstracted protocol of NSPK.

– {nb}pk(B): Since nb does not occur in φ, the encryption is removed by defining
the clause

f({X6}Z6) = f(X6)

where X6 : βnb and Z6 : pk(α). This clause and clause (3) in Ef violate the
pattern-disjointness. As before, clause (3) is chosen and no changes need to be
done.

Finally, the list Ef consists of the following clauses:

(1) f({X1, Y1}Z1) = {f(X1), f(Y1)}f(Z1)

(2) f({X2, Y2}Z2) = 〈{f(X2)}f(Z2
, f(Y2)〉

(3) f({X3}Z3) = f(X3)

where X4 : α, X2, X3, Y4, Y2 : nonce , and Z2, Z4 : pk(α).
The abstraction generator now checks whetherMNS ∪ {na} ⊆ udom(Ff). It realizes
that a clause for transforming public keys is missing. It therefore adds to Ef the
homomorphic clause f(pk(U)) = pk(f(U)) with U : α. It also checks that the
soundness conditions are satisfied. Applying this abstraction, it achieves the following
abstracted protocol.

NS (A) = send({A,na}pk(B)) · recv({na}pk(A),Nb) · send(Nb) · Secret
NS (B) = recv({A,Na}pk(B)) · send({Na}pk(A),nb) · recv(nb)

Next, it applies untyped abstractions to remove terms that do not occur in φ and
are unprotected. It first applies the atom-and-variable removal that eliminates all
occurrences of nb and Nb. As there are no redundancies, no further abstraction is
applied. Thus, it computes the final abstracted protocol in the first abstraction step as
follows.

NS (A) = send({A,na}pk(B)) · recv({na}pk(A)) · Secret
NS (B) = recv({A,Na}pk(B)) · send({Na}pk(A))

In Figure 7, we depict the description of this abstraction protocol.
• Abstraction 2: The abstraction module picks the abstracted protocol (depicted in

Figure 7) computed in the previous abstraction step and tries to simplify it. However,
no further simplification is produced.

Step 2 : It analyzes the protocol on the top of the stack. Scyther terminates and verifies the
property.

Step 3 : As there is no attack, it concludes that our original protocol provides the secrecy property.

102

C Details for Section 6.2: Experimental results

C.1 Scyther tool

The Scyther tool is based on symbolic backwards search and supports verification of both a bounded
and an unbounded number of threads. We have demonstrated our abstraction method on a variety
of protocols, mostly from the IKE and ISO/IEC 9798 families. Our results with the Scyther tool
(version 1.1.2) are summarized in Table 3. Our experiments show substantial performance gains.
The abstractions enable Scyther to verify 8 protocols (four from the ISO/IEC 9798, two from the
IKE families, the PANA-AKA protocol, and the KSL protocol) for an unbounded number of threads.
Remarkably, 6 of them were verified (at the most abstract levels) within 0.4 seconds whereas it fails
(TO) or runs out of memory (ME) on the original protocols.

For the IKE protocols, we approximate the Diffie-Hellman equations using oracle roles in
Scyther. This complicates the verification task and, as a consequence, the average performance gain
appears to be smaller than that for the other protocols. In particular, the unbounded verification
of (abstractions of) the first six IKE protocols in Table 3 still results in a timeout. However, we
are able to significantly push the bounds on the number of threads for these protocols, i.e., we
verify the IKEv2-eap and IKEv2-eap2 protocols up to 6 threads, while it timed out on the original
protocols for 3 threads.

Apart from the dramatic speedups we achieve in most cases, we also observe that for many
protocols the verification time increases much slower than their originals. For the last eight protocols
in the table, the verification times with respect to the most abstract protocols are almost constants
whereas they grow rapidly with respect to the original protocols, e.g., for ISO/IEC 9798-3-6-1,
PANA-AKA, and KSL. Furthermore, our abstractions greatly reduce memory consumption. In
particular, Scyther runs out of memory for ISO/IEC 9798-3-6-1 and ISO/IEC 9798-3-7-1 for more
than 6 threads. With our abstractions, Scyther is able to verify these protocols for an unbounded
number of threads.

Scyther find attacks on the most abstract models much faster it does on the originals. Concretely,
it falsifies the most abstract model of the IKEv1-pk-m protocol for 6 threads within 2.05 seconds,
while it timed out on the original protocol. This improvement is however less clear for the IKEv1-
sig-m protocol.

103

protocol/prop./#threads No S A W N 3 4 5 6 7 8 ∞

IKEv1-pk2-a2 1 X X 40.25 302.21 1679.69 9947.75 TO TO TO
6.12 26.40 154.26 959.02 6412.25 TO TO

IKEv1-pk2-a 1 X X 1103.63 27808.72 TO TO TO TO TO
133.65 3356.59 TO TO TO TO TO

IKEv1-pk-a2 1 X X 10.95 61.47 125.25 237.76 409.35 744.75 TO
0.84 1.79 2.43 3.63 6.01 9.61 TO

IKEv1-pk-a22 1 X X 15.14 80.80 244.45 530.94 979.88 1677.69 TO
0.95 1.44 2.36 4.00 7.54 10.37 TO

IKEv2-eap 5 X X TO TO TO TO TO TO TO
78.94 773.49 4345.58 18572.70 TO TO TO

IKEv2-eap2 5 X X TO TO TO TO TO TO TO
70.18 690.26 4169.87 20071.45 TO TO TO

IKEv2-mac 4 X X 1.82 5.13 6.21 7.52 8.30 8.59 8.69
0.70 1.58 1.72 1.72 1.72 1.71 1.72

IKEv2-mac2 5 X X 2.16 4.09 6.43 9.41 8.16 8.44 8.69
0.81 1.60 1.73 1.75 1.73 1.74 1.73

IKEv2-mactosig 6 X X 13.29 135.64 1076.56 7389.01 TO TO TO
2.68 12.38 24.54 38.68 53.36 65.07 77.68

IKEv2-mactosig2 4 X X 11.71 133.20 1064.30 7229.13 TO TO TO
2.85 11.81 24.14 38.22 53.25 64.51 77.03

IKEv2-sigtomac 6 X X 6.11 26.18 65.61 137.53 165.84 206.29 238.28
1.70 7.78 28.44 44.44 55.11 66.97 67.15

IKEv1-pk-m 2 × 48.62 269.92 507.40 869.23 16254.80 TO TO
0.16 0.22 0.37 0.66 1.19 2.05 TO

IKEv1-pk-m2 2 X/× 12.94 178.49 2198.81 TO TO TO TO
0.21 0.30 0.26 0.28 0.30 0.35 TO

IKEv1-sig-m 2 × 0.35 0.45 0.45 0.45 0.45 0.46 0.45
0.35 0.33 0.34 0.34 0.34 0.35 0.39

IKEv1-sig-m-perlman 2 × 3.55 14.11 47.16 67.61 72.20 72.15 73.83
17.59 17.61 17.53 17.53 17.59 17.53 17.58

IKEv2-sig-child 6 X X X/× 235.11 11274.66 TO TO TO TO TO
38.04 462.53 874.21 17713.06 TO TO TO

ISO/IEC 9798-2-5 1 X 0.79 9.12 72.75 557.77 4260.57 TO TO
0.07 0.11 0.12 0.11 0.11 0.11 0.11

ISO/IEC 9798-2-6 1 X 0.59 3.82 18.84 67.38 197.42 575.42 21254.67
0.05 0.04 0.05 0.05 0.05 0.05 0.05

ISO/IEC 9798-3-6-1 2 X X 42.68 795.11 8915.40 ME ME ME ME
0.14 0.20 0.21 0.21 0.21 0.21 0.21

ISO/IEC 9798-3-6-2 1 X X 2.47 8.66 19.48 33.94 48.26 60.05 70.81
0.12 0.15 0.15 0.15 0.15 0.15 0.15

ISO/IEC 9798-3-7-1 2 X X 41.63 752.82 7769.87 15863.97 ME ME ME
0.15 0.20 0.21 0.21 0.21 0.21 0.21

ISO/IEC 9798-3-7-2 1 X X 2.46 7.97 16.93 26.41 34.67 50.30 TO
0.21 0.30 0.31 0.31 0.31 0.31 0.31

PANA-AKA 7 X X X X 5762.53 TO TO TO TO TO TO
0.23 0.22 0.23 0.23 0.23 0.23 0.23

KSL 1 X 17.81 1272.50 TO TO TO TO TO
0.03 0.03 0.03 0.03 0.03 0.03 0.03

Table 3: Experimental results. The time is in seconds. No: Number of abstractions. Properties of
interest are Secrecy, Aliveness, Weak agreement, and Non-injective agreement.

104

C.2 Avantssar tools

The AVANTSSAR platform is an integrated toolset for the formal specification and Automated
VAlidatioN of Trust and Security of Service-oriented ARchitectures. It provides three validation
back-ends (CL-Atse, OFMC, and SATMC) which share the input languages for specifying protocols.
The validators are based on two different techniques. SATMC reduces protocol insecurity problems
to the satisfiability of propositional formulas which can then be checked by modern SAT solvers.
CL-Atse and OFMC both use constraint solving techniques to search for attacks. However, they
use different optimization strategies to reduce the search space. All these tools can verify protocols
only for a bounded number of threads.

We have experimented with CL-Atse (version 2.5-21), OFMC (version 2013b), and SATMC
(version 3.4) on several protocols from IKE and ISO/IEC 9798 families. Moreover, we have per-
formed experiments on variants of the TLS and basic Kerberos protocols. For TLS, we distinguish
two instances according to different security properties of interest. So far, we have not modelled
IKE protocols for SATMC, as this requires substantial effort to encode oracles for Diffie-Hellman
equations. We therefore defer extended experiments with SATMC to future work.

In our experiments, we measure the verification time for different numbers of sessions. Note
that a session in CL-Atse, SATMC, and OFMC differs from a thread in Scyther. CL-Atse and
SATMC specify a session as an instantiation of all protocol roles, not just a single role. For instance,
a session of a protocol with three different roles results in three role instances (or three threads in
Scyther) where a concrete agent is assigned to each role. In contrast, OFMC works with symbolic
sessions where the agents executing the roles are not concretely specified but kept as variables.

For the AVANTSSAR tools, our experimental results generally exhibit smaller speedups than
for Scyther. There is also a considerable variance between the different tools.

CL-Atse (Table 4) CL-Atse shows minor performance gains for the two IKEv1 protocols (pk2-a
and pk-a2). However, abstraction enables the verifications of first three IKEv2 protocols
(eap, eap2, and mac) for four sessions in less than 2 hours and dramatically speeds up
the verification of three sessions of the eap and eap2 variants by factors greater than 690
and 900, respectively. For the last two IKEv2 protocols, the performance gains are still
substantial: for four sessions we achieve a speedup factor of 7 for IKEv2-mactosig and of
107 for IKEv2-sigtomac. The best result in the ISO/IEC family is achieved for the ISO/IEC
9798-2-5 protocol where we can turn a timeout for 10 sessions into a time less than 0.2
seconds. The speedup for the 2-5 variant is less impressive and for the two 3-7 variants, we
even observe an increase in verification time as we do for the basic Kerberos protocol. For
TLS, the verification time of secrecy up to five sessions drops from 260 minutes to 6 minutes
(factor 42), whereas that of authentication is sped up by a factor of 1.5 for four sessions.

OFMC (Table 5) Surprisingly, the experimental results for OFMC are almost dual to those for
CL-Atse. In particular, for the two IKEv1 protocols, OFMC loses performance on the
abstracted protocols compared to the originals. Nevertheless, the abstractions save a lot of
effort for the remaining protocols. We are able to increase the number of tractable sessions
for 8 protocols: for 2 out of 7 from the IKE family, 5 out of 6 from the ISO/IEC 9798 family,
and for the basic Kerberos protocol. For TLS, the verification of authentication is 1.7 times
faster (up to 3 sessions). For secrecy, the tool achieves a 20-fold speedup (up to 4 sessions).
As a typical case, OFMC verifies an abstraction of ISO/IEC 9798-2-5 for 5 sessions within
less than 4 seconds whereas it times out on the original for more than 2 sessions.

SATMC (Table 6) The abstractions enable the verification of the Kerberos and TLS protocols for 5
and even 10 sessions. In particular, the tool takes less than 21 seconds to verify the abstracted

105

protocol/prop./#sessions S A W N 3 4 5 10

IKEv1-pk2-a X X 0.06 0.11 0.53 TO
0.05 0.08 0.32 TO

IKEv1-pk-a2 X X 0.05 0.09 1.79 TO
0.05 0.07 1.17 TO

IKEv2-eap X X 625.75 TO TO TO
23.17 TO TO TO

IKEv2-eap2 X X 1248.57 TO TO TO
37.93 TO TO TO

IKEv2-mac X X 2.78 TO TO TO
0.89 5830.38 TO TO

IKEv2-mactosig X X 0.24 1056.31 TO TO
0.12 149.19 TO TO

IKEv2-sigtomac X X 2.52 16710.31 TO TO
0.10 155.63 TO TO

ISO/IEC 9798-2-5 X 20.05 TO TO TO
0.52 4064.93 0.18 0.17

ISO/IEC 9798-2-6 X 1639.32 TO TO TO
703.55 TO TO TO

ISO/IEC 9798-3-7-1 X X 1.21 4495.43 TO TO
1973.78 TO TO TO

ISO/IEC 9798-3-7-2 X X 29.95 TO TO TO
TO TO TO TO

Kerb-basic X 0.30 0.29 22473.21 TO
0.18 0.18 TO TO

TLS-auth X 0.10 60.02 TO TO
0.08 39.42 TO TO

TLS-sec X 0.07 8.63 15551.63 TO
0.05 0.51 369.57 TO

Table 4: Experimental verification results for CL-Atse. The time is in seconds.

TLS protocol for 10 sessions whereas it times out for 5 sessions of the original protocol. On
the negative side, SATMC loses performance for the protocols in the ISO/IEC family.

Apart from positive results, our experiments also provide an evidence that protocol abstractions
are not always helpful. This is typically the case when an abstraction removes sensitive information.
In particular, the performance degradation for the AVANTSSAR tools can possibly be attributed to
an interference with the highly refined optimization techniques used in these tools. More precisely,
an abstraction may get rid of data that is crucial to eliminate redundancies (for CL-Atse) or to limit
the number of branching nodes in the symbolic search tree (for OFMC). As a result, the search
space becomes larger in the abstracted protocols than in the originals. However, the influence of
abstraction on the SATMC’s performance is not clear. A further investigation is therefore desirable.

106

protocol/prop./#sessions S A W N 2 3 4 5

IKEv1-pk2-a X X 36.28 27745.29 TO TO
59.10 TO TO TO

IKEv1-pk-a2 X X 4.28 849.46 TO TO
12.09 9192.14 TO TO

IKEv2-eap X X 8920.57 TO TO TO
10.07 8942.94 TO TO

IKEv2-eap2 X X 5407.00 TO TO TO
46.14 TO TO TO

IKEv2-mac X X 18.59 22547.87 TO TO
11.19 16139.98 TO TO

IKEv2-mactosig X X 22.08 15561.69 TO TO
9.27 10605.58 11782.39 TO

IKEv2-sigtomac X X 18.58 13617.91 TO TO
12.36 12408.54 TO TO

ISO/IEC 9798-2-5 X 805.64 TO TO TO
3.61 3.43 3.85 3.59

ISO/IEC 9798-2-6 X 7232.17 TO TO TO
144.06 TO TO TO

ISO/IEC 9798-3-6-1 X X 17941.80 TO TO TO
27.92 18019.32 TO TO

ISO/IEC 9798-3-6-2 X X TO TO TO TO
12.97 3673.20 TO TO

ISO/IEC 9798-3-7-1 X X TO TO TO TO
50.52 TO TO TO

ISO/IEC 9798-3-7-2 X X TO TO TO TO
11.61 4010.64 TO TO

Kerb-basic X 20.63 TO TO TO
8.07 28699.72 TO TO

TLS-auth X 9.12 6002.38 TO TO
8.88 3549.25 TO TO

TLS-sec X 0.27 13.62 1304.21 TO
0.15 1.97 59.87 TO

Table 5: Experimental verification results for OFMC. The time is in seconds.

107

number of sessions S A W N 3 4 5 10

ISO/IEC 9798-2-5 X 0.44 0.42 0.45 0.50
0.58 0.64 0.90 3.70

ISO/IEC 9798-2-6 X 0.45 0.46 0.48 0.50
35.36 247.67 2155.28 23740.06

ISO/IEC 9798-3-7-1 X X 0.46 0.47 0.48 0.53
0.78 0.95 1.31 8.17

ISO/IEC 9798-3-7-2 X X 0.47 0.47 0.64 0.60
2.64 5.83 11.61 121.17

Kerb-basic X 100.88 107.66 ME TO
3.32 3.46 51.15 23396.15

TLS-auth X 163.51 4464.73 TO TO
1.52 1.90 2.65 20.74

TLS-sec X 148.21 4002.34 TO TO
1.71 1.90 2.30 8.85

Table 6: Experimental verification results for SATMC. The time is in seconds.

C.3 ProVerif tool

ProVerif is an automated cryptographic protocol verifier in the standard Dolev-Yao model. It
supports user-defined equational theories to model algebraic properties of cryptographic primitives.
In contrast to Scyther, it uses approximations, e.g., translating protocol models in the applied pi
calculus to a set of Horn clauses, to handle an unbounded number of sessions. These approximations
are sound with respect to attacks, i.e., if the tool finds no attacks then the protocol is indeed secure.

We have validated our abstractions for ProVerif (version 1.88) on six protocols from the IKE
and ISO/IEC 9798 families (see Table 7). For all these protocols, we observe good speedups. In
particular, for the IKEv1-pk-a2 and the IKEv2-eap, the speedup factors are 6 and 5, respectively.
The performance gains for the ISO/IEC 9798 protocols are less obvious than for the IKE ones.
Concretely, the tool is roughly 1.5 times faster for these protocols.

108

protocol/prop./#threads S N ∞

IKEv1-pk2-a X X 43.53
15.11

IKEv1-pk-a2 ?
1.84
0.3

IKEv2-eap X X 22.27
4.22

IKEv2-mactosig X X 4.57
0.91

ISO/IEC 9798-2-5 X 0.09
0.06

ISO/IEC 9798-3-7-1 X 0.13
0.08

Table 7: Experimental verification results for ProVerif. The time is in seconds. The ? presents
ProVerif verifies the property for one role and cannot prove it for the other.

109

	1 Introduction
	2 Motivating example: an IKE protocol
	3 Security protocol model
	3.1 Type system
	3.2 Equational theories
	3.3 The finite variant property
	3.4 Protocols
	3.5 Operational semantics
	3.6 Property language

	4 Security protocols abstractions
	4.1 Overview
	4.2 General soundness theorem for protocol abstractions
	4.3 Typed protocol abstractions
	4.4 Atom-and-variable removal abstractions
	4.5 Redundancy removal abstractions
	4.6 Well-formedness preservation for protocol abstractions

	5 Using protocol abstractions for efficient verification
	5.1 Generating abstractions for verification
	5.2 Checking for spurious attacks

	6 Implementation and case studies
	6.1 Implementation for the Scyther tool
	6.2 Experimental results

	7 Related work
	8 Conclusions
	A Proofs for Section 4: Abstraction theory
	A.1 Basic lemmas about the auxiliary functions and the type system
	A.2 General soundness result
	A.3 Basic properties of typed abstractions
	A.4 Soundness of typed abstractions
	A.5 Additional criterion for condition I
	A.6 Justification of soundness conditions for IKEm-to-IKEm1
	A.7 Soundness of untyped protocol abstractions
	A.8 Proofs for Section 4.6: Well-formedness preservation

	B Details for Section 5: Algorithm
	B.1 Abstraction algorithms
	B.2 Applying the abstraction mechanism to the Needham-Schroeder public-key protocol

	C Details for Section 6.2: Experimental results
	C.1 Scyther tool
	C.2 Avantssar tools
	C.3 ProVerif tool

