
Des. Codes Cryptogr. (2018) 86:481–516
https://doi.org/10.1007/s10623-017-0337-5

Strengthening the security of authenticated key exchange
against bad randomness

Michèle Feltz1 · Cas Cremers2

Received: 17 June 2016 / Revised: 28 November 2016 / Accepted: 24 January 2017 /
Published online: 13 February 2017
© Springer Science+Business Media New York 2017

Abstract Recent history has revealed that many random number generators (RNGs) used in
cryptographic algorithms and protocols were not providing appropriate randomness, either
by accident or on purpose. Subsequently, researchers have proposed new algorithms and
protocols that are less dependent on the RNG. One exception is that all prominent authenti-
cated key exchange (AKE) protocols are insecure given bad randomness, even when using
good long-term keying material. We analyse the security of AKE protocols in the presence
of adversaries that can perform attacks based on chosen randomness, i.e., attacks in which
the adversary controls the randomness used in protocol sessions. We propose novel stateful
protocols, which modify memory shared among a user’s sessions, and show in what sense
they are secure against this worst case randomness failure. We develop a stronger security
notion for AKE protocols that captures the security that we can achieve under such failures,
and prove that our main protocol is correct in this model. Our protocols make substantially
weaker assumptions on the RNG than existing protocols.

Keywords Authenticated key exchange (AKE) · Security models · Stateless protocols ·
Stateful protocols · Chosen randomness

Mathematics Subject Classification 94A60

1 Introduction

Authenticated key exchange (AKE) protocols are a critical building block in most security
infrastructures. They provide the glue between asymmetric cryptography (e.g., for addressing

Communicated by C. Boyd.

B Michèle Feltz
mmc.feltz@gmail.com

Cas Cremers
cas.cremers@cs.ox.ac.uk

1 Institute of Information Security, ETH Zurich, Zurich, Switzerland

2 University of Oxford, Oxford, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10623-017-0337-5&domain=pdf
http://orcid.org/0000-0001-7220-6970

482 M. Feltz, C. Cremers

the key distribution problem) and symmetric cryptography (e.g., for efficient encryption of
large amounts of data). Since the proposal of the Diffie–Hellman key exchange protocol,
much research effort has gone into improving AKE protocol designs, achieving ever stronger
notions of security. These include protocols such as the TLS and IKE handshakes, as well as
pure key exchange protocols such as MQV, HMQV, and NAXOS. A common factor among
these designs is that they explicitly rely on the existence of another building block: a random
number generator (RNG).

Constructing a goodRNG is hard, as indicated by a large number of security vulnerabilities
that involve either flawed or weakened RNGs. Recently there have been a surprising number
of examples in which bad RNGs were substantially weakening the security guarantees of
cryptographic systems. We recall some instances. In 2008, Bello discovered a randomness
vulnerability in Debian’s OpenSSL package; keys generated by the RNG of this package
were predictable [1]. Affected keys included SSH keys, OpenVPN keys, DNSSEC keys,
key material for use in X.509 certificates and ephemeral Diffie–Hellman keys leading to
compromised session keys in SSL/TLS connections [1]. In 2012 it was shown that the RSA
keys of many users can be easily factored because the prime factors from which they are
derived were not sufficiently random [2]. In August 2013 attackers took control of Bitcoin
transactions due to flaws in Android’s Java and OpenSSL RNG [3]. As multiple transactions
were signed using the same randomness in the ECDSA signature generation, the attacker was
able to recover the long-term secret signing key of the user initiating the transactions, enabling
the attacker to perform transactions on the user’s behalf. After the Snowden revelations, it
has become clear that the NSA was involved in the backdoor found in a NIST-standardized
RNG [4–6]. This RNG was the default in RSA’s BSAFE toolkit and also made its way into
ISO/IEC standards. This backdoor can be effectively used to break the security of deployed
internet protocols, such as TLS [6].

As a result, researchers have worked on providing cryptographic mechanisms that depend
less on theRNG (e. g., for digital signatures [5,7] or in the public key encryption setting [8,9]).
Unfortunately, the security of state-of-the-art key exchange protocols still depends critically
on the RNG.

One might intuitively think that a faulty/broken/malicious RNG is not a protocol problem,
and should be solved by the RNG designers instead. There are two main arguments against
this view.

First, designing for security implies reducing single points of failure and reducing the
assumptions under which the protocol is secure. In many AKE protocols, the RNG is such
a single point of failure. Our techniques show that this can be avoided: if the RNG becomes
insecure, we may still retain some security at the AKE level.

Second, there are solutions to bad randomness that can be naturally implemented at the
higher (AKE) level, but not at the RNG level. In particular, our work confirms earlier results.
For example, the approach from [10] involves replacing the randomness x in the exponent
of the ephemeral public Diffie–Hellman key gx by a combination of the randomness and a
static secret a, namely gH(a,x). This forces the attacker to learn both the randomness and the
static secret if he wants to recompute the exponent. If one would like to provide a solution at
the level of the RNG’s design, there is no secret to leverage. At the level of the AKE protocol,
we have natural access to a long-term secret that can be leveraged to reduce the dependency
on good randomness, enabling security under weaker assumptions.
Contributions

In this work, we propose new protocols for AKE that offer stronger security against
bad randomness than previous protocols. Thus, our protocols are secure under significantly
weaker assumptions (on the RNG) than previous protocols.

123

Strengthening the security of AKE against bad randomness 483

To achieve and prove this stronger notion of security, we design a strong eCK-like security
model that additionally incorporates the adversarial ability of choosing session-specific ran-
domness, which corresponds to theworst-case RNG scenario. Previousworks that considered
such a capability concluded that AKE security cannot be achieved against such an adversary.
In contrast, we show that these works implicitly assumed that protocols are stateless, i.e., that
different sessions of the same user do not write into shared memory. Our protocols leverage
state shared among sessions to achieve a stronger notion of security.
Related work
Randomness failures The first models addressing the leakage of session-specific information
include the eCKmodel [10] and theCKmodel [11]. The eCKmodel considers an information-
leaking RNG that leaks values after they have been generated, which is modelled via the
query ephemeral-key. Intermediate protocol computations are assumed to be outside of
the adversary’s control. In contrast, the CK model considers long-term keys stored in secure
memory (e.g., an HSM), whereas protocol computations are (partly) done in less-protected
memory. The adversary has read-only access to the less-protected memory through a query
session-state. However, in the vast majority of proofs in the CK model, the less-protected
memory has been defined to contain exactly the randomness, thereby effectively modeling
an information-leaking RNG. Unlike our work, the CK and eCK models do not consider
predictable, failing, or compromised RNGs.

Yang et al. [12] first analyzed AKE security w.r.t. adversaries who can manipulate random
values. They define two security models: Reset-1 and Reset-2. In the Reset-1 model the
adversary controls the randomness of each session, with the restrictions that the adversary
(a) does not issue corrupt queries to the actor and peer of the test session, and (b) the
randomness used in the test and partner session is not used in any other session. The Reset-2
model captures repeated secret randomness in multiple sessions due to reset attacks, but
no chosen-randomness attacks. Critically, the Reset-1 model does not capture weak perfect
forward secrecy and both models do not allow the adversary to perform reset attacks against
the target session or its partner session. Both models are based on their impossibility result
that no protocol can be secure against reset-and-replay attacks on the target session [12, p.
120]. In a reset-and-replay attack the adversary first sets the randomness of a session to the
same randomness as used in a previous session of the same user and then replays messages
to the session so that both sessions compute the same session key [12]. Yang et al. [12]
propose a transformation that turns any stateless protocol secure in the Reset-2 model into
a stateless protocol secure in the Reset-1 model. We show that stateful protocols achieve
stronger security guarantees against attacks based on bad randomness; in particular, they can
achieve security against reset-and-replay attacks on the target session.

Ristenpart and Yilek [13] show that virtual machine (VM) snapshots can lead to VM reset
attacks.As a countermeasure, they propose a framework forhedging cryptographic operations
based on preprocessing potentially bad RNG-supplied randomness together with additional
inputs with HMAC to provide pseudorandomness for the cryptographic operation; their
framework uses hedging techniques for public-key encryption of Bellare et al. [8]. Hedging
a cryptographic operation means designing it in such a way that, given good randomness, the
operation provably (in the random oracle model) achieves strong security goals, and, given
bad randomness, the operation achieves weaker, but still meaningful, security goals [8]. Our
models cover VM reset attacks on stateless protocols, i.e., resettable randomness, and we
thereby address some of their future work.

Kamara and Katz [14] provide security notions for private-key encryption schemes that
incorporate chosen-randomness attacks modelling the ability of the adversary to completely
control the randomness used in the encryption process. In their definitions, the adversary has

123

484 M. Feltz, C. Cremers

complete control over the random coins used by the encryption oracle, but has no control over
the randomness involved in the encryption of the challenge ciphertext, which is supposed to
be secret (i.e. unknown to the adversary) and chosen uniformly at random by the challenger.

Bellare and Tackmann [15] investigate randomness failures (and, in particular, subver-
sion of RNGs) in the context of public-key encryption (PKE) and introduce nonce-based
public-key encryption. The differences between nonce-based PKE schemes and standard
PKE schemes are that (a) the sender needs to run a seed-generation algorithm and (b) the
encryption algorithm is deterministic, taking as input a nonce n and a seed s in addition to
an encryption key k and a message m ∈ {0, 1}∗. They also provide two new security defi-
nitions for nonce-based PKE schemes and construct a nonce-based PKE scheme based on a
hedged extractor that achieves both security notions, that is, the scheme guarantees security
if either the sender’s seed is secret and message-nonce pairs do not repeat, or even if the
sender’s seed is compromised and the nonces are unpredictable. Bellare and Tackmann give
constructions of a hedged extractor in the random oracle model and in the standard model
yielding concrete nonce-based PKE schemes in the random oracle model and in the standard
model, respectively.
Stateless and stateful AKE protocolsMost AKE protocols (e. g., HMQV [16], NAXOS [10],
CMQV [17]) are stateless, i.e., they only modify session-specific memory, whereas the mem-
ory that is shared among sessions is invariant under protocol execution. Furthermore, the
security of stateful AKE protocols, which update the memory that is shared among ses-
sions during execution of the protocol, has not been considered in the context of randomness
failures.

A few stateful protocols have been suggested. For example, in [18], Blake-Wilson et al.
propose to modify their Protocol 2 by concatenating the secret value that is used as the secret
material to derive the session key with the value of a counter. We denote this new protocol by
Protocol 2C. Instead of running the protocol each time a session key is required, a new session
key is obtained by simply incrementing the counter and computing a new hash value [18].
The idea of using a counter variable is presented in the context of special applications for
which it might not be desirable to run the protocol whenever a new session key has to be
established. However, no security proof of Protocol 2C has been given. In Sect. 4 we present
a new protocol, which we call CNX, and prove its security in a model capturing chosen-
randomness attacks. The CNX protocol includes a global counter value, which is shared
across the sessions of a user, as input to the hash function H1 used in the computation of the
outgoing messages.
Overview

In Sect. 2 we define a generic AKE framework that includes queries for the adversary to
reveal randomness and to choose the randomness used by sessions. In Sect. 3 we introduce
the notions of stateful and stateless protocols, and show that no stateless protocol can achieve
security in a model that permits the adversary to choose the randomness of sessions and to
reveal certain session keys. The proof sketch of this statement is as follows. The adversary
can make two sessions of the same user, say B̂, accept the same session key without being
partnered (or matching sessions) by making them use the same randomness and sending
the messages of the partner session to both sessions. As the two sessions of user B̂ are not
partnered, the adversary can learn the session key of either of them by revealing the session
key of the other, non-partnered, session. We then proceed by showing an initial attempt at
addressing this issue with a novel stateful protocol in Sect. 4. In Sect. 5 we step back and
consider the question: what is the optimal security that stateful protocols can achieve under
chosen randomness? We use our findings in Sect. 6 to develop a stronger security model

123

Strengthening the security of AKE against bad randomness 485

Table 1 Elements of the session state

actor The session’s actor (the user running the session)

peer The session’s peer (the intended communication partner)

role Taken role; either I (initiator) orR (responder)

sent, recv Concatenation of all messages sent, respectively received, in the session

status Session status; either active, accepted, or rejected

key Key established in the session

rand Randomness used in the session

data Any additional session-specific or protocol-specific data

step Protocol step to be executed (in the session)

against chosen randomness. We propose a protocol that is provably secure in our stronger
security model. We conclude in Sect. 7.

2 AKE framework

We first define a framework to reason about the security of different classes of AKE proto-
cols against adversaries with diverse capabilities. This framework allows to express existing
models such as the eCK model [10], the eCKw model [19] and the eCK-PFS model [19] as
well as extensions of these models that permit the adversary to choose the randomness used
in protocol sessions.

2.1 Security model

Sessions and session-specific memory Let P be a finite set of N binary strings representing
user identifiers. Each user can executemultiple instances of anAKE protocol, called sessions,
concurrently. We can uniquely identify specific sessions of a user by referring to the order in
which they are created. Thus, the i’th session of user P̂ is denoted by the tuple (P̂, i) ∈ P×N.
These tuples are not used by the protocol, but allow the adversary to identify the sessions he
created.Wemodel each user by a probabilistic Turingmachine. For each user P̂ , the state of its
Turing machine consists of the memory contents of the user, where we differentiate between
session-specific memory and user memory, which is shared among different sessions. We
take an abstract view on the session-specific memory and assume that it can be separated into
distinct named fields, referred to as variables and listed in Table 1. Some of these variables are
set upon session creation, whereas others are set or updated during execution of the protocol.
The next step to be executed by the protocol is stored in the variable step. Alternatively, this
value could be stored in the variable data. We choose to store it in a separate variable for
clarity.We say that a session s has accepted (or is completed) if the value of its status variable
taking values in the set {active,accepted,rejected} isaccepted.Wedenote by sts
the session-specific memory related to session s. The session-specific memory contains the
session-specific variables of Table 1. Initially we assume that each session-specific variable
is undefined, denoted by ⊥.
User memory The user memory of some user stores the user’s long-term public/secret key
pair, the public key of all other users Q̂ ∈ P as well as additional variables that might be
required by the protocol. The information stored in the user memory is accessed and possibly
updated by sessions of the user according to the protocol specification. In contrast to session-

123

486 M. Feltz, C. Cremers

specific information, data stored in the usermemory of some user P̂ is shared among different
sessions of the user P̂ . We denote by st P̂ the user memory of user P̂ ∈ P .
Game state and game behaviour (see also [20]) The adversary, modeled as a probabilistic
polynomial-time algorithm, interactswith the users in the setP within a game through queries
in a set Q. The state of the game (or game state) contains session-specific state information
sts for all sessions s, user-specific information st P̂ for each user P̂ ∈ P as well as other
information related to the game such as some bit that the adversary attempts to guess. The
game behaviour, which we denote by Φ, describes how the game processes the queries in Q.
More precisely, the game behaviour Φ is an algorithm taking as input the current state of the
game GST , a query q ∈ Q, a protocol π , and a security parameter k, and returning a new
state GST ′ as well as a response response ∈ {0, 1}∗ ∪ {⊥, �} to the adversary’s query q .

Definition 1 (h-message protocol) Let k be a security parameter. An h-message protocol π ,
where h is the sum of the number of messages sent and received during a protocol session
that accepts, consists of

– a set of domain parameters,
– a probabilistic polynomial-time key generation algorithm KeyGen, which takes as input

1k and outputs a public/secret key pair, and
– a deterministic polynomial-time algorithm Ψ executed by a user in a session. This algo-

rithm takes as input 1k , the session-specificmemory sts of a session s, the usermemory st P̂
of the actor P̂ of session s, and a messagem ∈ {0, 1}∗, and outputs a triple (m′, st′s, st′P̂),

where m′ ∈ {0, 1}∗ ∪ {�} is a message, st′s is an updated internal session state, and st′P̂ is

an updated state of the user memory of user P̂ .

If h is even, then the number of messages m′ �= � output by Ψ during a protocol session is
h
2 for both roles initiator and responder. If h is odd, then the number of messages m′ �= �

output by Ψ during a protocol session is h+1
2 for the initiator role and h−1

2 for the responder
role.

The output of the key exchange algorithm Ψ (see Definition 1) may include the value � to
indicate that the session does not generate an outgoing message.
Setup of the game A setup algorithm SetupG is used to generate a set of a fixed number N
of user identifiers, to set all session-specific variables to ⊥, and to initialize the user memory
of each user. The algorithm SetupG takes as input the protocol π and the security parameter
1k , and outputs an initial game state GSTinit . More precisely, the setup algorithm proceeds
as follows:

1. generate a set P = {P̂1, . . . , P̂N } of N distinct binary strings (representing user identi-
fiers),

2. for all users P̂ ∈ P: generate a long-term public/secret key pair (pk P̂ , sk P̂) using
algorithm KeyGen,

3. for all users P̂ ∈ P: store the key pair (pk P̂ , sk P̂) together with the set {(P̂,pk P̂) | P̂ ∈
P\{P̂}} in the user memory st P̂ , and

4. store and initializewith public values all other user-specific variables used by the protocol.

Queries The specification of some of the queries that we define below is similar to queries
defined in the framework of Boyd et al. [21]. The public-info query, which was informally
introduced in [20, p. 4], allows the adversary to obtain information that was generated during
the setup phase of the game such as the users’ identifiers and their public keys.

123

Strengthening the security of AKE against bad randomness 487

– public-info(). The query returns a set L of information, which contains the set
{(P̂,pk P̂) | P̂ ∈ P} as well as the initial values of all other variables stored in the
user memory of each user, except for the users’ long-term secret key, if such variables
are used by the protocol.

The queries in the set QR = {create, send} model regular execution of the protocol.

– create(P̂, r [, Q̂]). The query models the creation of a new session s for the user with
identifier P̂ . It requires that P̂ ∈ P, Q̂ ∈ P , and that r ∈ {I,R}; otherwise, it returns ⊥.
Session variables are initialized as

(sactor, srole, ssent, srecv, sstatus, skey, sstep) ← (P̂, r, ε, ε,active,⊥, 1) .

Abit string in {0, 1}k is sampleduniformly at randomandassigned to srand .1 If the optional
peer identifier Q̂ is provided, the variable speer is set to Q̂. The key exchange algorithm
Ψ is executed on input (1k, sts, st P̂ , ε). The algorithm returns a triple (m′, st′s, st′P̂). We

set sts ← st′s and st P̂ ← st′
P̂
. The query returns m′.

– send(P̂, i,m). The query models sendingmessagem to the i’th session of user P̂ , which
we denote by s. It requires that sstatus = active; otherwise it returns ⊥. The algorithm
Ψ is run on input (1k, sts, st P̂ ,m), and outputs a triple (m′, st′s, st′P̂). We set sts ← st′s
and st P̂ ← st′

P̂
. The query returns m′.

Wenext define thequeries in the setQC = {session-key, corrupt, randomness, cr-create},
which model the corruption of a user’s secrets. The randomness query models the adver-
sary’s capability of revealing the randomness srand of a particular session s. In contrast, the
cr-create query models the adversary’s capability of choosing the randomness used within
a session. We do not explicitly model repeated randomness, i.e., secret uniform bits that
have been used in previous key exchange sessions; as we show in Sect. 6.2, security in a
model that permits the adversary to reveal the randomness used in sessions and to choose the
randomness of sessions implies security in a model capturing repeated randomness.

In the definition of the queries session-key and randomness we denote the i’th session
of user P̂ by s.

– session-key(P̂, i). The query requires that sstatus = accepted; otherwise, it returns⊥.
The query returns the session key skey of session s.

– corrupt(P̂). If P̂ /∈ P , then S returns⊥. Otherwise the query returns the long-term secret
key sk P̂ of user P̂ .

– randomness(P̂, i). If sstatus �= ⊥, then the randomness srand used in session s is returned.
Otherwise, the query returns ⊥.

– cr-create(P̂, r, rnd[, Q̂]). The query models the creation of a new session s, using
randomness rnd chosen by the adversary, for the user P̂ . The query requires that P̂ ∈
P, Q̂ ∈ P, rnd ∈ {0, 1}k , and that r ∈ {I,R}; otherwise, it returns ⊥. The session
variables are initialized as

(sactor, srole, ssent, srecv, sstatus, skey, srand, sstep) ← (P̂, r, ε, ε,active,⊥, rnd, 1) .

If the optional peer identifier Q̂ is provided, the variable speer is set to Q̂.
The key exchange algorithm Ψ is executed on input (1k, sts, st P̂ , ε). The algorithm
returns a triple (m′, st′s, st′P̂). We set sts ← st′s and st P̂ ← st′

P̂
. The query returns m′.

1 Note that our syntax implies that all randomness required during the execution of session s is deterministically
derived from srand .

123

488 M. Feltz, C. Cremers

The set QnoCR = QR ∪ (QC\{cr-create}) contains all execution and corruption queries,
except the query cr-create.

The notion of matching sessions specifies when two sessions are supposed to be intended
communication partners. It is formalized below via matching conversations as in [10,19].

Definition 2 (Matching sessions) Let π be an h-message protocol. We say that two sessions
s and s′ of π are matching if sstatus = s′

status = accepted and sactor = s′
peer ∧ speer =

s′
actor ∧ ssent = s′

recv ∧ srecv = s′
sent ∧ srole �= s′

role.

We next define a parameterized family of AKE security models. The parameters for each
model consist of a subset Q of the above adversary queries and a freshness predicate F ,
which restricts the adversary from performing certain combinations of queries.

Definition 3 (AKE security model) Let π be an h-message protocol. Let Q be a set of
adversary queries such that QR ⊆ Q ⊆ QR ∪ QC. Let F be a freshness predicate, that is, a
predicate that takes a session of protocol π and a sequence of queries (including arguments
and results) in Q. We call (Q, F) an AKE security model.

Remark 1 In this work we fix a particular definition for matching sessions (namely, Defini-
tion 2) and construct strong securitymodelswith respect to this definition. It is straightforward
to adapt these models to other definitions of matching sessions that are suitable for analyzing
protocols such as (H)MQV that allow two sessions performing the same role to compute the
same session key.

2.2 Security experiment

We associate to each AKE security model X = (Q, F) a security experimentW (X), defined
below, played by an adversary E against a challenger. To win the experiment, the adversary
aims to distinguish a real session key from a random key, modelled through the following
query.

– test-session(s). This query requires that sstatus = accepted; otherwise, it returns ⊥.
A bit b is chosen at random. If b = 0, then skey is returned. If b = 1, then a random key
is returned according to the probability distribution of keys generated by the protocol.

Definition 4 (Security experiment) Let k be a security parameter and π be an h-message
protocol. Let X = (Q, F) be an AKE security model. We define experimentW (X), between
an adversary E and a challenger who implements all the users, as follows:

1. The game is initialized with domain parameters for security parameter k and the setup
algorithm SetupG is executed.

2. The adversary E first issues the query public-info, and then performs any sequence of
queries from the set Q.

3. At some point in the experiment, E issues a test-session query to a session s that has
accepted and satisfies F at the time the query is issued.

4. The adversarymay continuewith queries from Q, under the condition that the test session
must continue to satisfy F .

5. Finally, E outputs a bit b′ as his guess for b.

The adversary E wins the security experimentW (X) if he correctly guesses the bit b chosen
by the challenger during the test-session query (i.e., if b = b′, where b′ is E’s guess).
Success of E in the experiment is expressed in terms of E’s advantage in distinguishing

123

Strengthening the security of AKE against bad randomness 489

whether he received the real or a random session key in response to the test-session query.
The advantage of adversary E in the above security experiment against a key exchange
protocol π for security parameter k is defined as Adv

π,E
W (X)(k) = |2P(b = b′) − 1|.

Definition 5 (AKE security) A key exchange protocol π is said to be secure in AKE security
model X = (Q, F) if, for all PPT adversaries E , it holds that

– if two users successfully completematching sessions, then they compute the same session
key,

– the probability of event Multiple-MatchW (X)
π,E (k) is negligible, where

Multiple-MatchW (X)
π,E (k) denotes the event that there exists a session that has accepted

with at least two matching sessions, and
– E has no more than a negligible advantage in winning the W (X) security experiment,

that is, there exists a negligible function negl in the security parameter k such that
Adv

π,E
W (X)(k) ≤ negl(k).

Informally, the second requirement in Definition 5 (see also [22]) states that, for a given
session of protocol π that has accepted, it holds that its matching session, if it exists, is
unique.

3 Chosen randomness and stateless protocols

3.1 Stateless and stateful protocols

We start by defining a global class of AKE protocols. Such protocols are required to be
executable, i.e., if the messages of two users Â and B̂ are faithfully relayed to each other,
then both users end up with a shared session key [22–24]. A second requirement ensures that
protocol messages depend on session-specific randomness.

Definition 6 (Protocol class AKE) We define AKE as the class of all h-message protocols,
where h is the sum of the number of messages sent and received during a protocol session that
accepts, that meet the following requirements: In the presence of an eavesdropping adversary,

– if the messages of two sessions s and s′ with sactor = s′
peer ∧ speer = s′

actor ∧ srole �= s′
role

are faithfully relayed to one another (that is, such that ssent = s′
recv ∧ srecv = s′

sent), then
sstatus = s′

status = accepted and skey = s′
key.

– the probability that two sessions of the same user output in all protocol steps identical
messages is negligible in the security parameter.

We distinguish between stateless and stateful protocols. Stateless protocols leave the state
of a user’s memory st P̂ (where P̂ ∈ P), that is, the memory that is shared among sessions,
invariant under execution of the protocol. In contrast, the state of a user’s memory st P̂ is
modified when executing a protocol that is not stateless. The vast majority of two-message
AKEprotocols proposed in the last two decades (e. g. NAXOS,HMQV,CMQV) are stateless.

Definition 7 (Stateless protocol, SL) Let A,B, and C be sets. Let proj3 : A × B × C → C
be the map given by proj3(a, b, c) = c for all (a, b, c) ∈ A × B × C. Let π be a protocol in
the class AKE. We say that π is a stateless protocol if

proj3
(
Ψ (1k, sts, st P̂ ,m)

) = st P̂ ,

123

490 M. Feltz, C. Cremers

for all (k, sts, st P̂ ,m) ∈ N× {sts | s ∈ P ×N} × {st P̂ | P̂ ∈ P} × {0, 1}∗. We denote by SL
the class of all stateless protocols.

If a protocol is not stateless, we say that it is stateful.

Remark 2 Stateless protocols cannot provide message replay detection to reject messages
that have been received in earlier sessions of the same user as this would require storing
all previously received messages in a table in the user memory and, upon receipt of a valid
message in a session, accessing the table in the user memory and checking whether the
message corresponds to a message in the table.

3.2 Insecurity of stateless protocols against chosen-randomness attacks

Yang et al. state that no protocol can be secure against reset-and-replay attacks on the target
session [12, p. 120]. However their statement only holds because of an implicit assumption on
the protocol class that they consider. In particular, their definition of the protocols’ execution
model implies that they only consider stateless protocols, according to our Definition 7.2

The following proposition states that no stateless protocol is secure in amodel that permits
the adversary to choose the randomness of sessions and to reveal certain session keys. This
model gives the adversary access to the minimal set of queries for the proposition to hold.

Proposition 1 (Impossibility result for AKE ∩ SL) Let X = (Q, F) be an AKE security
model, where

(
QR ∪ {cr-create, session-key}) ⊆ Q ⊆ QR ∪ QC and F is defined as

follows. A session s is said to satisfy F if no session-key(s) query has been issued and,
for all sessions s∗ such that s∗ matches s, no session-key(s∗) query has been issued. No
protocol in the class AKE ∩ SL can satisfy security in the model X.

Proof of Proposition 1 The proof is based on an attack sketched by Yang et al. [12]. Let π be
an arbitrary protocol inSL. There exists an adversary E that wins theW (X) game against the
challenger with non-negligible probability as follows. The adversary E chooses randomness
r1 ∈ {0, 1}k and creates a responder session s′ of user B̂ via the query cr-create(B̂,R, r1, Â).
E then completes a protocol execution between the users Â and B̂; Â and B̂ complete
sessions s and s′, respectively. E creates another responder session s′′ of user B̂ via the query
cr-create(B̂,R, r1, Â), where r1 is the same randomness as used to create session s′, and
replays the messages from session s to session s′′. As the randomness used in session s′′ is
identical to the randomness used in session s′ and π ∈ SL, the messages that E receives from
session s′′ are the same as the messages sent by session s′. Now, E chooses the completed
session s′ as the test session, and reveals the session key computed in session s′′ via a
session-key(s′′) query. As the session keys computed in sessions s′ and s′′ are the same and
both sessions are non-matching, the adversary learns the session key of the test session. ��

4 CNX: preventing key repetition

In this section we first describe a general method of how to prevent replay attacks com-
bined with chosen-randomness attacks, where two sessions of the same user accept the same

2 The crucial observation is that the protocol execution algorithm P in [12] uses abstract session-specific
state information for a userU ’s session i , denoted by StiU . Additionally, the framework includes user-specific
information: the identity U , and public/private keys pkU , skU . It follows from their definition of the protocol
execution algorithm that a protocol can only update the session-specific state StiU , but cannot change any state
that can be accessed by other sessions of the same user. Hence, stateful protocols are not modeled in their
framework.

123

Strengthening the security of AKE against bad randomness 491

session key without being matching sessions (see, for example, the attack in the proof of
Proposition 1). We then apply our method to a concrete protocol, namely to the NAXOS
protocol.

Let π ∈ Λ∩SL, where the protocol classΛ is defined in Definition 10. Let H : {0, 1}∗ →
Zq (with ||q|| = k, where k denotes the security parameter) be a hash function. We propose
the following security-strengthening method to build a protocol π ′ with the goal to achieve
security against eCK-like adversaries who, in addition, can perform replay attacks combined
with chosen-randomness attacks on different sessions of the same user. The resulting protocol
π ′ uses the user’s state to prevent key repetition by implementing a counter. More precisely,
protocol π ′ is defined in the same way as protocol π except that in protocol π ′:

– Each user P̂ ∈ P maintains a counter l, taking values in N, initialized with 0 and
incremented by one upon creation of a new session. This counter variable is stored in the
user memory stP̂ . We write st P̂ .l to access the counter variable l of user P̂ . We assume
that the “read and increment” is atomic, i.e., different sessions are guaranteed to obtain
different values.

– The user memory of each user P̂ ∈ P is given by stπ
′

P̂
= (stπ

P̂
, l).

– The functions fI and fR (of Definition 10) are instantiated as follows in protocol π ′:

fI(r, v, stπ
′

Â
) = H(r, a, v)

fR(r, v, stπ
′

B̂
) = H(r, b, v).

– The key exchange algorithm for protocol π ′ is defined in a similar way as the one for
protocol π except that if sstep = 1, the algorithm for π ′ first executes the instructions

stπ
′

P̂
.l ← stπ

′
P̂

.l + 1;
sdata ← stπ

′
P̂

.l

before executing the remaining instructions of protocol π (with fI , fR as defined in the
previous point).

We next apply our security-strengthening method to the NAXOS protocol. NAXOS is a
modern Diffie–Hellman type protocol that is less efficient than HMQV, but enjoys a simpler
security proof in the eCKw model [25]. Similarly, ourmethod can be applied to other protocols
such as CMQV.

Let H1 : {0, 1}∗ → Zq and H2 : {0, 1}∗ → {0, 1}k be two hash functions. For user Â, we
write a as a shorthand for sk Â and write A as a shorthand for pk Â = ga , and define (b, B)

similarly for user B̂. Applying our security-strengthening method to the NAXOS protocol
yields a new protocol, which we call the CNX (“Counter-NaXos”) protocol, shown in Fig. 1.
In contrast to the NAXOS protocol, the CNX protocol is a stateful protocol belonging to the
class AKE\SL.

The model CR-eCKw , which we define below, is given by the set of queries Q =
QnoCR ∪ {cr-create} and its freshness predicate is obtained from the freshness predicate
of the eCKw model [25] by adding two conditions taking into account combinations of
corrupt and cr-create queries. We start by recalling the notion of an origin session [25],
which is used to relate a received message that was not constructed by the adversary to the
session it originates from.

Definition 8 (Origin session [25]) We say that a session s′ with s′
status �= ⊥ is an origin

session for a session s with sstatus = accepted if s′
send = srecv.

123

492 M. Feltz, C. Cremers

Initiator I Responder R
st

Â
: a, {(P̂ , pk

P̂
) | P̂ ∈ P}, l st

B̂
: b, {(P̂ , pk

P̂
) | P̂ ∈ P}, l

st
Â

.l ← st
Â

.l + 1 st
B̂

.l ← st
B̂

.l + 1
sdata ← st

Â
sl. data ← st

B̂
.l

X ← gH1(srand ,a,sdata) X

Y ← gH1(srand ,b,sdata)

σ1 ← AH1(srand ,b,sdata)

σ2 ← Xb

σ3 ← XH1(srand ,b,sdata)

skey ← H2(σ1, σ2, σ3, Â, B̂)

σ1 ← Y a Y
sstatus ← accepted

σ2 ← BH1(srand ,a,sdata)

σ3 ← Y H1(srand ,a,sdata)

skey ← H2(σ1, σ2, σ3, Â, B̂)
sstatus ← accepted

Fig. 1 The CNX protocol

Definition 9 (CR-eCKw) The CR-eCKw model is defined by (Q, F), where Q = QnoCR ∪
{cr-create} and a session s is said to satisfy F if all of the following conditions hold:

1. no session-key(s) query has been issued, and
2. for all sessions s∗ such that s∗ matches s, no session-key(s∗) query has been issued,

and
3. not both queries corrupt(sactor) and (randomness(s) or cr-create(.) creating session

s) have been issued, and
4. for all sessions s′ such that s′ is an origin session for session s, not both queries

corrupt(speer) and (randomness(s′) or cr-create(.) creating session s′) have been
issued, and

5. if there exists no origin session for session s, then no corrupt(speer) query has been
issued.

The following proposition states that the CNX protocol is secure in model CR-eCKw.

Proposition 2 Let k be a security parameter. Under the GAP-CDH assumption [26] in
the cyclic group G of prime order q with ||q|| = k, the CNX protocol is secure in model
CR-eCKw , when the hash functions H1 : {0, 1}∗ → Zq and H2 : {0, 1}∗ → {0, 1}k are
modeled as independent random oracles.

We refer the reader to Appendix 1 for the proof of Proposition 2.

Remark 3 (comparisonwith [12]) Yang et al. [12] argue that whenever the randomness of one
session is identical to the randomness of another session of the same user, the adversary can
learn the session key of either of the two sessions by performing a replay attack combined
with a session-key query (as both sessions compute the same session key, but are non-
matching). While Proposition 1 confirms that this statement holds for all protocols in the
class AKE ∩ SL, we have shown that there exists a protocol in AKE, namely CNX, that
achieves security even under such reset-and-replay attacks against the target session.

123

Strengthening the security of AKE against bad randomness 493

Initiator I Responder R
sactor = Â, speer = ˆ sB actor = B̂, speer = Â

st
Â
: a, {(P̂ , pk

P̂
) | P̂ ∈ P}, l st

B̂
: b, {(P̂ , pk

P̂
) | P̂ ∈ P}, l

x ← fI(srand , sdata , st
Â
)

X ← gx
X

y ← fR(srand , sdata , st
B̂
)

Y
Y ← gy

skey ← FI x, Y, st
Â

skey ← FR y, X, st
B̂

sstatus ← accepted sstatus ← accepted

Fig. 2 Messages for generic two-message Diffie–Hellman type protocol in the class Λ

5 Impossibility result for chosen randomness

The CNX protocol prevents key repetition even in the presence of chosen randomness. The
natural next question is: can we offer even more guarantees in the presence of chosen ran-
domness? We tackle this question in three steps. In this section we prove an impossibility
result for a class of protocols with respect to chosen randomness. We use this impossibility
result to construct a stronger security model against chosen randomness in Sect. 6.1. Then, in
Sect. 6.3, we construct a protocol that is secure in this model, thereby offering even stronger
guarantees than CNX.

In this paper we restrict ourselves to the subclassΛ of the classAKE. The classΛ contains
all two-messageDiffie–Hellman type protocols thatmay only access and update usermemory
upon creation of sessions. Our results also apply to larger classes of AKE protocols, as we
show in [27].

Definition 10 (Protocol class�) Let k be a security parameter. The protocol classΛ consists
of all two-message protocols in the classAKE of the following form, specified by polynomial-
time (in the security parameter k) computable functions fI , fR, FI , FR:

– Domain parameters (G, g, q), where G = 〈g〉 is a group of prime order q with ||q|| = k,
generated by g.

– KeyGen(1k): Choose a ∈R [0, q − 1]. Set A ← ga . Return secret key sk = a and
public key pk = A.

– The specification of how users respond to create and send queries as well as how the
session key is computed is given in Fig. 2.3

– The protocol can only access and update user memory upon creation of sessions.

The class Λ contains, e. g., the protocols NAXOS, HMQV, CMQV, CNX, and NXPR
(presented in Sect. 6.3).4 However, it does not contain, e. g., protocols providing message
replay detection as such protocols need to access and update the list of received messages
stored in the user memory upon receipt of a message.

We now provide an impossibility result for protocols in the class Λ. Theorem 1 shows the
impossibility of achieving certain security guarantees in protocol class Λ. That is, given an

3 Note that the ephemeral secret keys x and y can either be stored in a session-specific variable and reused in
the key derivation phase or recomputed in the key derivation phase.
4 In the long version of this paper, the class Λ is referred to as INDP-DH ∩ ISM.

123

494 M. Feltz, C. Cremers

arbitrary protocol from class Λ, our impossibility result indicates attacks that are applicable
to this protocol. From Theorem 1 we then derive a strong security model in Sect. 6.1 and
show that there exists a protocol that is secure in this model in Sect. 6.3.

Theorem 1 Let π be an arbitrary protocol in the class Λ. Let X = (QR ∪ QC, F) be the
AKE security model with F being true for all sessions s and all sequences of queries. Let
s∗ denote the test session. There exist adversaries who win the security experiment W (X)

against protocol π with non-negligible probability by issuing either

1. a query session-key(s∗), or
2. a query session-key(s′), where s′ and s∗ are matching sessions, or
3. a query corrupt(s∗

actor) in combination with queries (randomness(s̃) or cr-create(s̃))
on all sessions s̃ for which s̃actor = s∗

actor that were started not later than session s
∗ (and

therefore includes s∗), or
4. for any session s	, such that s	 is an origin session for session s∗: a query corrupt(s	

actor)

in combination with queries (randomness(s̃) or cr-create(s̃)) on all sessions s̃ for
which s̃actor = s	

actor before the start of session s	, or
5. a query corrupt(s∗

peer) before completion of session s
∗ and impersonating the peer s∗

peer
to session s∗, or

6. a query corrupt(s∗
peer) after completion of session s∗ and impersonating the peer s∗

peer
to session s∗.

Proof Let π ∈ Λ. There exist PPT adversaries who win the security game W (X) against
protocol π with non-negligible probability, as follows.

Scenario 1 and 2: Since π ∈ Λ, π is also a member of AKE. By the definition of AKE
protocols, an adversary E1 can establish via a sequence of create and send queries
two sessions s and s′ that are matching according to Definition 2. He next issues the
test-session query to one of the two sessions, say to session s. He then issues a
session-key query to either session s (the test session) or s′ (the matching session).
Since by the definition of AKE, the matching sessions compute the same key, E1 thereby
learns the session key of session s.
Scenario 3:We consider a sequence of queries in which the adversary E3 creates sessions
by using create or cr-create, and which contain at least two sessions s∗ and s′ that are
matching. Such a sequence exists because π ∈ AKE. E3 now chooses session s∗ as the
test session.We use Â to denote the actor of the test session, i.e., Â = s∗

actor . E3 issues the
query corrupt(Â). E3 also issues randomness(s̃) for all sessions s̃ that (a) were started
no later than the test session, (b) for which s̃actor = Â, and (c) were not created using
cr-create. The adversary now has all public and secret information available to Â for
executing these sessions. In particular, E3 also has the randomness of all sessions up to the
test session, because he either chose it (by cr-create) or revealed it (by randomness). He
can thus emulate the first created session of Â, denoted by s1, by executing the algorithm
Ψ on input (1k, sts1 , st Â,m′). By the definition of Λ, the intermediate computations of
the protocol only depend on values known to E3, and it can therefore also compute the
new contents of the state. By induction, E3 can compute this for all subsequent sessions
up to and including the test session s∗, which implies that it can compute the session key
of s∗.
Scenario 4:We consider a sequence of queries in which the adversary E4 creates sessions
by using create or cr-create, and which contain at least two sessions s∗ and s′ such
that s′ is an origin session for session s∗ and s∗

status = accepted. Such a sequence

123

Strengthening the security of AKE against bad randomness 495

exists because π ∈ Λ. E4 now chooses session s∗ as the test session. E4 issues the
query corrupt(s∗

peer). E4 also issues randomness(s̃) for all sessions s̃ that (a) were
started no later than the origin session s′, (b) for which s̃actor = s∗

peer , and (c) were
not created using cr-create. The adversary now has all public and secret information
available to s∗

peer for executing these sessions. In particular, E4 also has the randomness of
all sessions up to the origin session, because he either chose it (by cr-create) or revealed
it (by randomness). He can thus emulate the first created session of s∗

peer , denoted by

s1, by executing the algorithm Ψ on input (1k, sts1 , sts∗peer , ε). By the definition of Λ, the
intermediate computations of the protocol only depend on values known to E4, and it can
therefore also compute the new contents of the state. By induction, E4 can compute this
for all subsequent sessions up to and including the origin session s′. The adversary now
emulates the session key computation of amatching session and computes the session key
of session s∗ by executing Ψ on input (1k, sts′ , sts∗peer ,m), wherem denotes the outgoing
message of session s∗.
Scenario 5: Adversary E5 issues a corrupt query to some user, say user Q̂. He then
creates a responder session s by issuing the query create(P̂,R, Q̂). The adversary now
impersonates user Q̂ to sactor as follows. E5 chooses randomness r ∈R {0, 1}k and
runs the protocol with P̂ on behalf of Q̂ by executing the algorithm Ψ . The algorithm Ψ

executed by the adversary takes as input, among others, the user state of user Q̂ containing
its long-term secret key sk Q̂ and the set L returned as response to the public-info query.
Once session s has accepted, he chooses the latter as the test session. The adversary can
compute the session key of session s, for which no origin session exists, by emulating a
matching session.
Scenario 6: Adversary E6 first creates an initiator session s at Âwith peer B̂ via the query
create(Â, I, B̂) and receives as a response the message m = X , where X is the Diffie–
Hellman exponential generated in session s. E6 chooses a value z ∈R Zq , computes
Z = gz , and sends message m̃ = Z to session s. Upon receiving message m̃ in session
s, Â executes Ψ (1k, sts, st Â, m̃). E6 then chooses the completed session s as the test

session and reveals the long-term secret key of user B̂ via the query corrupt(B̂). This
enables him to compute the session key of the test session as FR(fR(z, st B̂), st B̂ , X).
Note that the query public-info returned the initial values of additional variables stored
in the user memory. This is a generalisation of Krawczyk’s attack [16, p. 15]. ��

6 Stronger security against chosen randomness

6.1 Security model

Theorem 1 gives rise to the model ΩΛ below. In contrast to previous AKE security models
(including eCK,CR-eCKw , andReset-1), theΩΛ model permits the adversary to compromise
the randomness of the target session and the long-term secret key of the actor of that session
as long as the randomness of at least one of the previous sessions of the same user has not
been compromised. A similar statement holds for sessions that are origin sessions for the
target session.

Definition 11 The model ΩΛ is defined by (Q, F), where Q = QR ∪ QC and a session s
is said to satisfy F if all of the following conditions hold:

1. no session-key(s) has been issued,

123

496 M. Feltz, C. Cremers

2. for all sessions s∗ such that s∗ matches s, no session-key(s∗) query has been issued,
3. not all queries corrupt(sactor) as well as (randomness or cr-create) on all sessions s̃

with s̃actor = sactor , where the query create or cr-create creating session s̃ occurred
before or at creation of session s, have been issued,

4. for all sessions s′ such that s′ is an origin session for session s, not all queries
corrupt(speer) as well as (randomness or cr-create) on all sessions s̃ with s̃actor =
s′
actor , where the query create or cr-create creating session s̃ occurred before or at
creation of session s′, have been issued, and

5. if there exists no origin session for session s, then no corrupt(speer) query has been
issued.

Proposition 3 The CNX protocol is insecure in model ΩΛ.

Proof of Proposition 3. The following attack shows that the CNX protocol is insecure in
ΩΛ. The adversary creates an initiator session s of user Â via the query create(Â, I, B̂)

and an initiator session s” of user B̂ by issuing the query create(B̂, I, Ĉ). He then
creates a responder session s′ via the query create(B̂,R, Â) and activates session s′
by sending the message X = gx sent by session s to session s′. The adversary then
sends message Y sent by session s′ to session s. Session s accepts the key skey =
H2(Ya, BH1(srand ,a,sdata), Y H1(srand ,a,sdata), Â, B̂) as the session key, while session s′ accepts
as its key s′

key = H2(AH1(s′rand ,b,s′data), Xb, XH1(s′rand ,b,s′data), Â, B̂). The completed session s is
chosen as the test session. Now a randomness query to session s′ revealing the randomness
of session s′ followed by a corrupt(B̂) query revealing the long-term secret key of user B̂,
allows the adversary to compute the session key of the test session s (as he knows the counter
value used in session s′). Note that the test session is fresh in ΩΛ since the adversary did
issue neither the query randomness nor the query cr-create to session s” of user B̂, where
the query create(B̂, I, Ĉ) creating session s′′ occurred before creation of session s′. ��
Proposition 4 The model ΩΛ is stronger than the model CR-eCKw with respect to AKE.

Proof We first show that model ΩΛ is at least as strong as model CR-eCKw . The first condi-
tion of Definition 5 is satisfied as matching is defined in the same way for both models ΩΛ

and CR-eCKw . To see that the second condition of Definition 5 holds, it suffices to show that
if there exists an adversary E such that the probability of eventMultiple-MatchW (CR-eCKw)

π,E (k)
is non-negligible, then there exists an adversary E ′ such that the probability of event
Multiple-MatchW (ΩΛ)

π,E ′ (k) is non-negligible. This is straightforward. Let π ∈ Π . To show
that the third condition of Definition 5 holds, we construct an adversary E ′ attacking proto-
col π in model ΩΛ using an adversary E attacking π in model CR-eCKw , where π ∈ AKE.
Whenever E issues a query q ∈ QnoCR ∪ {cr-create, test-session}, adversary E ′ issues
the same query and forwards the answer received to E . Note that if the freshness condition
of CR-eCKw holds for the test session, then the freshness condition of ΩΛ is also satisfied.

The CNX protocol provides an example of a protocol that is secure in model CR-eCKw,
but insecure in model ΩΛ (see Proposition 3). ��
6.2 Security against repeated randomness failures

In this section we show that security in our model ΩΛ implies security against repeated
randomness. To this end, we introduce the query reset-create, defined below, which allows
the adversary to create a session that uses the same randomness as used in a previous session
of the same user.

123

Strengthening the security of AKE against bad randomness 497

The query reset-create below creates a new session with the same randomness as used
in a previous session of the same user. Practically, this query models a flawed RNG that
produces the same value more than once. A similar query is found in the Reset-2 model of
Yang et al. [12].

– reset-create(P̂, r, i[, Q̂]). The query models the creation of a new session s, using the
same randomness as in session s′ = (P̂, i), for the user P̂ . The query requires that
P̂ ∈ P, Q̂ ∈ P, r ∈ {I,R}, and that s′

status �= ⊥; otherwise, it returns ⊥. The session
variables are initialized as

(sactor, srole, ssent, srecv, sstatus, skey, srand, sstep) ← (P̂, r, ε, ε,active,⊥, s′
rand, 1) .

If the optional peer identifier Q̂ is provided, the variable speer is set to Q̂. The key
exchange algorithm Ψ is executed on input (1k, sts, st P̂ , ε). The algorithm returns a
triple (m′, st′s, st′P̂). We set sts ← st′s and st P̂ ← st′

P̂
. The query returns m′.

Proposition 5 below states that security in a model that permits the adversary to reveal
the randomness used in sessions and to control the randomness of sessions implies security
against repeated randomness failures.

The relative strengths of security between game-based securitymodelswas investigated by
Choo et al. [28], and formally defined byCremers andFeltz [19] as follows. Let secure(X,Π)

be a predicate that is true if and only if the protocol Π is secure in security model X .

Definition 12 [19] Let π be a class of AKE protocols. Let X and Y be two security models.
We say that model Y is at least as strong asmodel X with respect to π , denoted by X ≤π

Sec Y ,
if

∀ Π ∈ π. secure(Y,Π) ⇒ secure(X,Π). (1)

We say that model Y is stronger than model X with respect to protocol class π , if X ≤π
Sec Y

and not Y ≤π
Sec X .

Proposition 5 Let F be defined as follows: a session s is said to satisfy F if no
session-key(s) query has been issued and, for all sessions s∗ such that s∗ matches s,
no session-key(s∗) query has been issued. Let X = (Q, F)with Q = QR∪{reset-create,

session-key}. Let Y = (Q′, F) with Q′ = QR ∪ {cr-create, randomness, session-key}.
The model Y is at least as strong as the model X w.r.t. AKE.

Proof The first condition of Definition 5 is satisfied since matching is defined in the same
way for both models X and Y . Let π ∈ Π . To show that the second and third condition of
Definition 5 hold, we construct an adversary E ′ attacking protocol π in model Y using an
adversary E attacking π in model X . Adversary E ′ proceeds as follows. Whenever E issues
a query create, send, session-key or test-session, adversary E ′ issues the same query and
forwards the answer received to E . Whenever E issues a query reset-create(P̂, r, i[, Q̂])
to create a new session of user P̂ , adversary E ′ first checks whether the status of session
s = (P̂, i) is different from ⊥. If this is the case, then E ′ issues the following sequence
of queries: 1. randomness(P̂, i), and 2. cr-create(P̂, r, srand[, Q̂]). At the end of E’s
execution, i.e. after it has output its guess bit b, E ′ outputs b as well. Hence, it holds that
Adv

π,E
W (X)(k) ≤ Adv

π,E ′
W (Y)(k), where k denotes the security parameter. Since by assumption

protocol π is secure in Y , there is a negligible function g such that Adv
π,E ′
W (Y)(k) ≤ g(k). It

follows that protocol π is secure in X . ��

123

498 M. Feltz, C. Cremers

Corollary 1 follows from Proposition 5 and from the fact that Implication (1) is transitive.

Corollary 1 Let X and Y be defined as in Proposition 5. Let Z = (Q′′, F ′′) with QR ⊆
Q′′ ⊆ QR ∪QC. If model Z is at least as strong as model Y with respect to AKE, then model
Z is also at least as strong as model X with respect to AKE.

We show in Proposition 6 that security in ΩΛ implies security against repeated random-
ness,modelled by the query reset-create. Hence, security inΩΛ also implies security against
reset-and-replay attacks on the target session or its partner session.

Proposition 6 Let F be defined as follows: a session s is said to satisfy F if no
session-key(s) query has been issued and, for all sessions s∗ such that s∗ matches s,
no session-key(s∗) query has been issued. Let X = (Q, F)with Q = QR∪{reset-create,

session-key}. The model ΩΛ is at least as strong as the model X with respect to AKE.

Proof Let Y be defined as in Proposition 5. The proof that model ΩΛ is at least as strong as
the model Y with respect to AKE proceeds in a similar way as the proof of Proposition 5.
The proposition then follows from Corollary 1. ��
6.3 NXPR: achieving strong AKE security against chosen randomness

In this section we first describe a general method of how to prevent attacks based on the
compromise of random values that are used in sessions of a user and the long-term secret
keys of that user. We then apply our method to a concrete protocol, namely to the NAXOS
protocol.

Let π ∈ Λ∩SL, where the protocol classΛ is defined in Definition 10. Let H : {0, 1}∗ →
Zq (with ||q|| = k, where k denotes the security parameter) be a hash function. We propose
the following security-strengthening method to build a protocol π ′ with the goal to achieve
security even under compromise of the randomness of the target session and the long-term
secret key of the actor of that session as long as the randomness of at least one of the previous
sessions of the same user has not been compromised. The resulting protocol π ′ includes the
user’s long-term private key, the current session’s randomness, and the randomness of all
sessions (of the same user) that have been previously created, as input to the hash function
H . The protocol uses the user’s state to store the concatenation of all previously generated
random values of the user. More precisely, protocol π ′ is defined in the same way as protocol
π except that in protocol π ′:
– Each user P̂ ∈ P maintains a variable l ∈ {0, 1}∗ initialized with the empty string ε. This

variable l stores the concatenation of all previously generated random values in sessions
of user P̂ . It is stored in the user memory stP̂ . We write st P̂ .l to access the variable l of

user P̂ .
– The user memory of each user P̂ ∈ P is given by stπ

′
P̂

= (stπ
P̂
, l).

– The functions fI and fR (of Definition 10) are instantiated as follows in protocol π ′:

fI(r, v, stπ
′

Â
) = H(r, v, a),

where v denotes the concatenation of the random values that have been generated in all
the previous sessions of user Â;

fR(r, v, stπ
′

B̂
) = H(r, v, b),

where v denotes the concatenation of the random values that have been generated in all
the previous sessions of user B̂;

123

Strengthening the security of AKE against bad randomness 499

Initiator I Responder R
st

Â
: a, {(P̂ , pk

P̂
) | P̂ ∈ P}, l st

B̂
: b, {(P̂ , pk

P̂
) | P̂ ∈ P}, l

sdata ← st
Â

sl. data ← st
B̂

.l
st

Â
.l ← (srand , sdata) st

B̂
.l ← (srand , sdata)

X ← gH1(srand ,sdata ,a) X

Y ← gH1(srand ,sdata ,b)

σ1 ← AH1(srand ,sdata ,b)

σ2 ← Xb

σ3 ← XH1(srand ,sdata ,b)

skey ← H2(σ1, σ2, σ3, Â, B̂)

σ1 ← Y a Y
sstatus ← accepted

σ2 ← BH1(srand ,sdata ,a)

σ3 ← Y H1(srand ,sdata ,a)

skey ← H2(σ1, σ2, σ3, Â, B̂)
sstatus ← accepted

Fig. 3 The NXPR protocol

– The key exchange algorithm for protocol π ′ is defined in a similar way as the one for
protocol π except that if sstep = 1, the algorithm for π ′ executes the instructions

sdata ← stπ
′

P̂
.l;

stπ
′

P̂
.l ← (srand, sdata)

before executing the remaining instructions of protocol π (with fI , fR as defined in the
previous point).
In other words, upon creation of a session of user P̂ , the value of the variable l, which
stores the concatenation of all previously generated random values of the user, is assigned
to the variable sdata. The variable l is then updated and assigned the concatenation of the
randomness that has been generated in the current session and the randomness that has
been generated in all the previous sessions of the user.

We next apply our security-strengthening method to the NAXOS protocol. Let H1, H2,
(a, A), and (b, B) be defined as in Sect. 4. Applying our security-strengthening method to
the NAXOS protocol yields a new stateful protocol, which we call the NXPR (“NaXos with
Previous Randomness”) protocol, shown in Fig. 3. We show in Proposition 7 that the NXPR
protocol is secure in the ΩΛ model. It thus provides even stronger security guarantees than
the CNX protocol.

If we compare NXPR to the CNX protocol, we see that CNX used the user’s state to
prevent key repetition, essentially by implementing a counter. NXPR has an implicit counter
(i.e., the number of previously generated random values) and incorporates all randomness
previously generated by the user. This construction ensures that partially leaking or choosing
randomness does not imply loss of the exponent H1(. . .), even if the adversary knows a user’s
long-term secret key.

Proposition 7 Let k be a security parameter. Under the GAP-CDH assumption [26] in the
cyclic group G of prime order q with ||q|| = k, the NXPR protocol is secure in the ΩΛ

123

500 M. Feltz, C. Cremers

model, when the hash functions H1 : {0, 1}∗ → Zq and H2 : {0, 1}∗ → {0, 1}k are modeled
as independent random oracles.

We refer the reader to Appendix 2 for the proof of Proposition 7.
Intuitively, the NXPR protocol is resilient against the attack described in the proof of

Proposition 1 since if the adversary creates a responder session s′′ at B̂ via the query
cr-create(B̂,R, rnd, Â), where rnd are the random coins used in the previous responder
session s′ of user B̂, then the session key computed in session s′′ is different (and indepen-
dent via the RO assumption) from the session key computed in session s′ since the outgoing
message of session s′′ is different to the message sent in session s′.

Remark 4 (user state comparison of NXPR to CNX) In contrast to the CNX protocol, the
NXPR protocol requires each user to store the concatenation of the randomness generated in
all his sessions in the user memory. Thus, before the n’th session of user P̂ is created (where
n > 1), the user memory st P̂ contains its long-term secret key, the long-term public key of

all users Q̂ ∈ P , and the concatenation of n − 1 bit strings of length k corresponding to the
randomness generated in all previous sessions of user P̂ .

Remark 5 Instead of concatenating the randomness used in all previous sessions with the
current randomness, one could determine the randomness of the n’th session of user Â, with
long-term secret key a, as H1(snrand, H1(s

n−1
rand, H1(. . . , H1(s1rand, a)))), i.e., the hash of the

concatenation of the current session’s randomness together with a previously stored value
of fixed length k. The advantage of this minor modification would be that each user needs
to store its long-term secret key and a bit string of fixed length k, which is updated upon
activation of new session of the user.

7 Conclusions

In this paper we explored the limits of AKE security with respect to adversaries who can
perform chosen-randomness attacks, whereby they control the randomness used in protocol
sessions. While stateless protocols fail to achieve security against attacks based on this worst
case randomness failure, we constructed stateful variants of theNAXOSprotocol that provide
security even against such attacks. We use the user’s state only locally: our protocols do not
require any form of state synchronisation between communicating users. Our new protocols
allow us to weaken the assumptions made on the security of the RNG used to generate
session-specific randomness.

Stepping back, we see that our analysis identifies the double purpose of randomness in
AKE protocols. The first purpose of randomness in AKE is to ensure that the session keys
of subsequent sessions are different. Both the CNX and the NXPR protocol leverage the
users’ state to ensure this goal is met even when the RNG fails. The second purpose of
randomness in AKE is to provide a session-specific secret. In state-of-the-art protocols this
session-specific secret is combined with the user’s long-term secret to serve as a combined
secret for the session key. For these protocols this means that if the randomness of a specific
session is bad (e.g., chosen or predictable for the adversary) then the session-key is only
protected by the long-term key. In contrast, our NXPR protocol reduces the impact of some
bad randomness by combining all previously generated randomness with the long-term key
to protect the session key.

It is intriguing that all broken/flawed/subverted RNGs that we mentioned in the intro-
duction already maintain local state as part of their design. However, the local state of the

123

Strengthening the security of AKE against bad randomness 501

RNG serves a different purpose than what we need for AKE protocols. History has made
abundantly clear that the presence of local state in the RNG’s design does not guarantee that
it has not been subverted [6,29].

Moving forward, we hope that future practical protocols can be made less dependent
on their complex, and often external, RNG libraries. For example, in TLS 1.2, the RNG
is a single point of failure: if an adversary observes a DH-based TLS handshake and
learns/predicts/chooses the randomness used by one user in this session, he can directly
compute the session keys, even without knowing any long-term secrets. This is a weakness
in the design of TLS that enables an adversary to turn the NIST RNG backdoor into an actual
attack on Internet traffic, as described in [6]. Given the history surrounding RNG subversion
and its role in Internet communications, we argue that it is prudent to make the next versions
of protocols such as TLS and IKEmore resilient against RNG problems. The technical means
are available.

Acknowledgements Funding was provided by ETH Research Grant ETH-30 09-3.

Appendix 1: Proof of Proposition 2

Proof It is straightforward to verify the first condition of Definition 5.We next verify that the
second condition of Definition 5 holds. Let E denote a PPT adversary against protocol π :=
CNX.We show that the probability of event Multiple-MatchW (CR-eCKw)

π,E (k) is bounded above

by a negligible function in the security parameter k, where Multiple-MatchW (CR-eCKw)
π,E (k)

denotes the event that, in the security experiment, there exist a session s with sstatus =
accepted and at least two distinct sessions s′ and s′′ that are matching session s. Note that,
if both sessions s′ and s′′ are matching session s, then it must hold that s′′

actor = s′
actor and

s′′
role = s′

role). In addition, the counter value in two different sessions of the same user are
distinct. For some fixed session s that has accepted, let Ev denote the event that there exist
two distinct sessions s′ and s′′ such that s and s′ are matching as well as s and s′′. We have:

P(Ev) ≤ P(
⋃

s′,s′′
s′ �=s′′

{H1(s
′′
rand, sk P̂ , i) = H1(s

′
rand, sk P̂ , j)})

≤
∑

s′,s′′
s′ �=s′′

P({H1(s
′′
rand, sk P̂ , i) = H1(s

′
rand, sk P̂ , j)})

≤ q2s
1

p
,

where P̂ = s′′
actor = s′

actor , i �= j and qs denotes the number of created ses-
sions (either via the create or the cr-create query) by the adversary. Therefore,
P(Multiple-MatchW (CR-eCKw)

π,E (k)) ≤ q3s
1
p .

The third condition of Definition 5 is implied by an adaptation of the security proof of
NAXOS in the eCKw model from [19]. Let s∗ denote the test session. Consider first the
event Kc where the adversary M wins the security experiment against π with non-negligible
advantage and does not query H2 with (σ1, σ2, σ3, Â, B̂), where σ1 = CDH(Y, A), σ2 =
CDH(B, X) and σ3 = CDH(X, Y).
Event Kc

123

502 M. Feltz, C. Cremers

If event Kc occurs, then the adversary M must have issued a session-key query to some
session s such that Ks = Ks∗ (where Ks and Ks∗ denote the session keys computed in
sessions s and s∗, respectively) and s does not match s∗. We consider the following four
events:

1. A1: there exist two distinct sessions s′, s′′ created via a create query such that s′
rand =

s′′
rand .

2. A2: there exists a session s �= s∗ such that H1(srand, sksactor , i) = H1(s∗
rand, sks∗actor , j).

3. A3: there exists a session s′ �= s∗ such that H2(inputs′) = H2(inputs∗) with inputs′ �=
inputs∗ .

4. A4: there exists an adversarial query inputM to the oracle H2 such that H2(inputM) =
H2(inputs∗) with inputM �= inputs∗ .

In contrast to the NAXOS protocol with respect to model CR-eCKw , the adversary cannot
force two sessions of protocol π of the same user with the same role to compute the same
session key via a chosen-randomness replay attack, as the H1 values in both sessions will be
different with overwhelming probability due to different counter values. The latter event is
included in event A2.
Analysis of event Kc

We denote by qs the number of created sessions (either via the create or the cr-create query)
by the adversary and by qro2 the number of queries to the random oracle H2. We have that

P(Kc) ≤ P(A1 ∨ A2 ∨ A3 ∨ A4) ≤ P(A1) + P(A2) + P(A3) + P(A4)

≤ q2s
2

1

2k
+ qs

p
+ qs + qro2

2k
,

which is a negligible function of the security parameter k.
In the subsequent events (and their analyses) we assume that no collisions in the queries

to the oracle H1 occur and that none of the events A1, . . . , A4 occurs. As in the proof of [19,
Proposition 7], we next consider the following three events:

1. DL ∧ K ,
2. TO ∧ DLc ∧ K , and
3. (TO)c ∧ DLc ∧ K , where

TO denotes the event that there exists an origin-session for the test session, DL denotes
the event where there exists a user Ĉ ∈ P such that the adversary M , during its execution,
queries H1 with (∗, c, ∗) before issuing a corrupt(Ĉ) query and K denotes the event that M
wins the security experiment against NAXOS by querying H2 with (σ1, σ2, σ3, Â, B̂), where
σ1 = CDH(Y, A), σ2 = CDH(B, X) and σ3 = CDH(X, Y).
Event DL ∧ K
Let the input to the GAP-DLog challenge be C . Suppose that event DL ∧ K occurs with
non-negligible probability. In this case, the simulator S chooses one user Ĉ ∈ P at random
and sets its long-term public key to C . S chooses long-term secret/public key pairs for
the remaining honest parties and stores the associated long-term secret keys. Additionally
S chooses a random value m ∈R {1, 2, . . . , qs}. We denote the m’th activated session by
adversary M by s∗. Suppose further that s∗

actor = Â, s∗
peer = B̂ and s∗

role = I, w.l.o.g. We
now define S’s responses to M’s queries for the pre-specified peer setting; the post-specified
peer case proceeds similarly. Algorithm S maintains tables Q, J, T and L , all of which are
initially empty. S also maintains a variable ω initialized with 1 and a table CV maintaining
for each user the current counter value. Initially, table CV contains an entry (P̂, 0) for each
user P̂ ∈ P .

123

Strengthening the security of AKE against bad randomness 503

1. create
(
P̂, r, Q̂

)
to create session s: S checkswhether P̂ ∈ P, Q̂ ∈ P , and r ∈ {I,R}. If

one of the checks fails, then S returns⊥. Else, S initializes the session variables according
to the protocol specification, and stores an entry of the form

(
s, srand, sksactor , ls, κ

) ∈
(P × N) × {0, 1}k × (Zp ∪ {∗}) × N × Zp in table Q as follows:

– S retrieves the counter value c for the userwith identifier P̂ from tableCV , increments
c by 1, and updates the counter value for P̂ stored in table CV with c + 1,

– S chooses srand ∈R {0, 1}k (i.e. the randomness of session s),
– S chooses κ ∈R Zp ,
– if sactor �= Ĉ , then S stores the entry

(
s, srand, sksactor , c + 1, κ

)
in Q, else S stores

the entry (s, srand, ∗, c + 1, κ) in Q,5 and
– if r = I, then S returns the Diffie–Hellman exponential gκ to M , else S returns �.

2. cr-create
(
P̂, r, str, Q̂

)
to create session s: S checks whether P̂ ∈ P, Q̂ ∈ P , and

r ∈ {I,R}. If one of the checks fails, then S returns ⊥. Else, S initializes the ses-
sion variables according to the protocol specification, and stores an entry of the form(
s, srand, sksactor , ls, κ

) ∈ (P×N)×{0, 1}k × (Zp ∪{∗})×N×Zp in table Q as follows:

– S retrieves the counter value c for the userwith identifier P̂ from tableCV , increments
c by 1, and updates the counter value for P̂ stored in table CV with c + 1,

– if there is an entry (ri , hi , li , κi) in table J such that ri = str , hi = sk P̂ , and
li = c + 1, then S sets ω ← κi , else S chooses κ ∈R Zp , and sets ω ← κ .6

– if sactor �= Ĉ , then S stores the entry
(
s, srand, sksactor , c + 1, x5

)
in Q, else S stores

the entry (s, srand, ∗, c + 1, x5) in Q, where x5 denotes the value of variable ω,
– if r = I, then S returns the Diffie–Hellman exponential gκ to M , else S returns �.

3. S stores entries of the form (r, h, l, κ) ∈ {0, 1}k × Zp × N × Zp in table J . When M
makes a query of the form (r, h, l) to the random oracle for H1, answer it as follows:

– If C = gh , then S aborts M and is successful by outputting DLogg(C) = h.
– Else if (r, h, l, κ) ∈ J for some κ ∈ Zp , then S returns κ to M .
– Else if there exists an entry

(
s, srand, sksactor , ls, κ

)
in Q, for some s ∈ P×N, srand ∈

{0, 1}k , sksactor ∈ Zp , ls ∈ N and κ ∈ Zp , such that srand = r , sksactor = h and ls = l,
then S returns κ to M and stores the entry (r, h, l, κ) in table J .

– Else, S chooses κ ∈R Zp , returns it to M and stores the entry (r, h, l, κ) in table J .

4. send(P̂, i, V) to send message V to session s = (P̂, i): If sstatus �= active, then S
returns⊥. Else if srole = I, then S does the following. If V /∈ G, then the status of session
s is set to rejected. Else, the status of session s is set to accepted, the variable
recv is updated to srecv ← (srecv, V) and

– If there exists an entry
(
speer, sactor,R, srecv, ssent, λ

)
in table T , then S stores the

entry
(
sactor, speer, I, ssent, srecv, λ

)
in table T .

5 We do not need to keep consistency with H1 queries via lookup in table J since the probability that the
adversary guesses the randomness of a session created via a query create is negligible.
6 Here we need to keep consistency with H1 queries via lookup in table J to be able to consistently answer
all possible combinations of queries. Consider, e. g., the following scenario. The adversary first issues a query
(x, sk P̂ , i) to H1 and then issues the query cr-create(P̂, r, x, Q̂), which increments the current counter value

i − 1 by 1 so that the counter value used in session s = (P̂, i) is i . So, in contrast to the NAXOS proof with
respect to model eCKw , we need to additionally keep consistency between cr-create queries and queries to
the random oracle for H1.

123

504 M. Feltz, C. Cremers

– Else if there exists an entry
(
σ1, σ2, σ3, sactor, speer, λ

)
in table L , for some λ ∈

{0, 1}k , such that DDH(srecv, ssent, σ3) = 1, DDH(ssent,pkspeer , σ2) = 1 and

DDH(srecv,pksactor , σ1) = 1, then S stores
(
sactor, speer, I, ssent, srecv, λ

)
in table

T .
– Else, S chooses μ ∈R {0, 1}k and stores the entry (sactor, speer, I, ssent, srecv, μ) in

T .

Else if srole = R, then S does the following. If V /∈ G, then the status of session s is
set to rejected. Else, S sets the status of session s to accepted, and the variable
recv to (srecv, V). S returns gκ to M , where κ denotes the last element of the entry(
s, r, sksactor , l, κ

)
in table Q, and proceeds in a similar way as in the previous case.

5. When M makes a query of the form
(
σ1, σ2, σ3, P̂i , P̂j

)
to the random oracle for H2,

answer it as follows:

– If
(
σ1, σ2, σ3, P̂i , P̂j , λ

)
∈ L for some λ ∈ {0, 1}k , then S returns λ to M .

– Else if there exist entries
(
P̂i , P̂j , I,U, V, λ

)
or

(
P̂j , P̂i ,R, V,U, λ

)
in table

T , for some λ ∈ {0, 1}k and U, V ∈ G, such that DDH(V,U, σ3) = 1,
DDH(V,pk P̂i , σ1) = 1 and DDH(U,pk P̂j

, σ2) = 1, then S returns λ to M and

stores the entry
(
σ1, σ2, σ3, P̂i , P̂j , λ

)
in table L .

– Else, S chooses μ ∈ R {0, 1}k , returns it to M and stores the entry
(
σ1, σ2, σ3, P̂i ,

P̂j , μ
)
in L .

6. randomness(s): If sstatus = ⊥, then S returns ⊥. Otherwise, S returns srand (via lookup
in table Q).

7. session-key(s): If sstatus �= accepted, then S returns ⊥. Otherwise, S answers this
query by lookup in table T .

8. test-session(s): If s �= s∗, then S aborts; otherwise S answers the query in the appro-
priate way.

9. corrupt(P̂): If P̂ /∈ P , then S returns ⊥. Else if P̂ = Ĉ , then S aborts. Else S returns
sk P̂ .

10. M outputs a guess: S aborts.

Analysis of event DL ∧ K
Similar to the analysis of the related event DL ∧ K in the proof of [19, Proposition 7].
Event TO ∧ DLc ∧ K
Let s∗ and s′ denote the test session and the origin-session for the test session, respectively.
We split event Evt := TO ∧ DLc ∧ K into the following events B1, . . . , B3 so that Evt =
B1 ∨ B2 ∨ B3:

1. B1: Evt occurs and s∗
peer = s′

actor .
2. B2: Evt occurs and s∗

peer �= s′
actor and M does issue neither a randomness(s′) query nor

a cr-create(s′,×) query to the origin-session s′ of s∗, but may issue a corrupt(s∗
peer)

query.
3. B3: Evt occurs and s∗

peer �= s′
actor and M does not issue a corrupt(s∗

peer) query, but may
issue either a randomness(s′) query or a cr-create(s′,×) query to the origin-session
s′ of s∗.

Event B1

123

Strengthening the security of AKE against bad randomness 505

Let the input to the GDH challenge be (X0, Y0). Suppose that event B1 occurs with non-
negligible probability. In this case S chooses long-term secret/public key pairs for all the
honest parties and stores the associated long-term secret keys. Additionally S chooses two
random values m, n ∈R {1, 2, . . . , qs}. The m’th activated session by adversary M will
be called s∗ and the n’th activated session will be called s′. Suppose further that s∗

actor =
Â, s∗

peer = B̂ and s∗
role = I, w.l.o.g. The simulation of M ′s environment proceeds as follows:

1. create(Â, I, B̂) or cr-create(Â, I, str, B̂) to create session s∗: If create is issued, then
S chooses s∗

rand ∈R {0, 1}k . Else, S sets s∗
rand ← str . Then, S (a) returns the message

X0, where (X0, Y0) is the GDH challenge, (b) increments by 1 the counter value c for
the user with identifier Â (stored in table CV), and (c) stores the updated counter value
c + 1 for Â in table CV .7

2. create(B̂, r, Q̂) or cr-create(B̂, r, str, Q̂) to create session s′: If create is issued, then
S chooses s′

rand ∈R {0, 1}k . Else, S sets s′
rand ← str . S then increments by 1 the counter

value c for the user with identifier B̂ (stored in table CV), and stores the updated counter
value c+ 1 for B̂ in table CV .If r = I, then S returns message Y0 to M , where (X0, Y0)
is the GDH challenge. Else, � is returned.

3. send(B̂, i, Z) with (B̂, i) = s′: If s′
status �= active, then S returns ⊥. Else if s′

role = R
and Z ∈ G, then S returns message Y0 to M , where (X0, Y0) is the GDH challenge, sets
the status of session s′ to accepted, and proceeds as in the previous simulation for
completing the session. Else, S proceeds as in the previous simulation.

4. send(Â, i, Y0)with (Â, i) = s∗: S proceeds as in the previous simulation for completing
the session.

5. Other create, cr-create and send queries are answered as in the previous simulation.
6. randomness(s): If sstatus = ⊥, then S returns ⊥. Else, S returns srand .
7. session-key(s): If sstatus �= accepted, then S returns ⊥. Otherwise, S answers this

query by lookup in table T .
8. test-session(s): If s �= s∗ or if s′ is not the origin-session for session s∗, then S aborts;

otherwise S answers the query in the appropriate way.
9. H1(r, h, ∗): If h = a and r = s∗

rand or if h = b and r = s′
rand , then S aborts. Otherwise

S simulates a random oracle as in the previous simulation.
10. corrupt(P̂): If P̂ /∈ P , then S returns ⊥. Else, S returns sk P̂ .

11. When M makes a query of the form
(
σ1, σ2, σ3, P̂i , P̂j

)
to the random oracle for H2,

answer it as follows:

– If
{
P̂i , P̂j

}
=

{
Â, B̂

}
, σ1 = Ya

0 , σ2 = Xb
0 and DDH(X0, Y0, σ3) = 1, then S aborts

M and is successful by outputting CDH(X0, Y0) = σ3.

– Else if
(
σ1, σ2, σ3, P̂i , P̂j , λ

)
∈ L for some λ ∈ {0, 1}k , then S returns λ to M .

– Else if there exist entries
(
P̂i , P̂j , I,U, V, λ

)
or

(
P̂j , P̂i ,R, V,U, λ

)
in table

T , for some λ ∈ {0, 1}k and U, V ∈ G, such that DDH(V,U, σ3) = 1,
DDH(V,pk P̂i , σ1) = 1 and DDH(U,pk P̂j

, σ2) = 1, then S returns λ to M and

stores the entry
(
σ1, σ2, σ3, P̂i , P̂j , λ

)
in table L .

– Else, S choosesμ∈R {0, 1}k , returns it toM and stores the entry
(
σ1, σ2, σ3, P̂i , P̂j , μ

)

in L .

7 Note that s∗rand is not used in the calculation.

123

506 M. Feltz, C. Cremers

12. M outputs a guess: S aborts.

Analysis of event B1

Similar to the analysis of the related event B1 in the proof of [19, Proposition 7].
Event B2

Let the input to the GDH challenge be (X0, Y0). Suppose that event B2 occurs with non-
negligible probability. The simulation of S proceeds in the same way as for event B1 with
the following changes:

– create(B̂, r, Q̂) or cr-create(B̂, r, str, Q̂) to create session s′: If cr-create is issued,
then S aborts. Else, S proceeds as described before.

– randomness(s): If sstatus = ⊥, then S returns ⊥. Else if s = s′, then S aborts. Else, S
returns srand .

– H1(r, h, ∗): If h = a and r = s∗
rand , then S aborts. Otherwise S simulates a random

oracle as in the previous simulation.

Analysis of event B2

Similar to the analysis of the related event B2 in the proof of [19, Proposition 7].
Event B3

Let the input to the GDH challenge be (X0, B). Suppose that event B3 occurs with non-
negligible probability. In this case, S chooses one user B̂ ∈ P at random from the set P
and sets its long-term public key to B. S chooses long-term secret/public key pairs for the
remaining parties inP and stores the associated long-term secret keys.Additionally S chooses
two randomvaluesm, n ∈R {1, 2, . . . , qs}.We denote them’th activated session by adversary
M by s∗ and the n’th activated session by s′. Suppose further that s∗

actor = Â, s∗
peer = B̂

and s∗
role = I, w.l.o.g. Algorithm S maintains tables Q, J, T and L , all of which are initially

empty. S also maintains a variable ω initialized with 1 and a table CV maintaining for each
user the current counter value. Initially, table CV contains an entry (P̂, 0) for each user
P̂ ∈ P . The simulation of M ′s environment proceeds as follows:

1. create(Â, I, B̂) or cr-create(Â, I, str, B̂) to create session s∗: If create is issued, then
S chooses s∗

rand ∈R {0, 1}k . Else, S sets s∗
rand ← str . Then, S (a) returns the message

X0, (b) increments by 1 the counter value c for the user with identifier Â (stored in table
CV), and (c) stores the updated counter value c + 1 for Â in table CV .

2. create
(
P̂, r, Q̂

)
to create session s: S checkswhether P̂ ∈ P, Q̂ ∈ P , and r ∈ {I,R}. If

one of the checks fails, then S returns⊥. Else, S initializes the session variables according
to the protocol specification, and stores an entry of the form

(
s, srand, sksactor , ls, κ

) ∈
(P × N) × {0, 1}k × (Zp ∪ {∗}) × N × Zp in table Q as follows:

– S retrieves the counter value c for the userwith identifier P̂ from tableCV , increments
c by 1, and updates the counter value for P̂ stored in table CV with c + 1,

– S chooses srand ∈R {0, 1}k (i.e. the randomness of session s),
– S chooses κ ∈R Zp ,
– if sactor �= B̂, then S stores the entry

(
s, srand, sksactor , c + 1, κ

)
in Q, else S stores

the entry (s, srand, ∗, c + 1, κ) in Q, and
– if r = I, then S returns the Diffie–Hellman exponential gκ to M , else S returns �.

3. cr-create
(
P̂, r, str, Q̂

)
to create session s: S checks whether P̂ ∈ P, Q̂ ∈ P , and

r ∈ {I,R}. If one of the checks fails, then S returns ⊥. Else, S initializes the ses-
sion variables according to the protocol specification, and stores an entry of the form(
s, srand, sksactor , ls, κ

) ∈ (P×N)×{0, 1}k × (Zp ∪{∗})×N×Zp in table Q as follows:

123

Strengthening the security of AKE against bad randomness 507

– S retrieves the counter value c for the userwith identifier P̂ from tableCV , increments
c by 1, and updates the counter value for P̂ stored in table CV with c + 1,

– if there is an entry (ri , hi , li , κi) in table J such that ri = str , hi = sk P̂ , and
li = c + 1, then S sets ω ← κi , else S chooses κ ∈R Zp , and sets ω ← κ .

– if sactor �= B̂, then S stores the entry
(
s, srand, sksactor , c + 1, x5

)
in Q, else S stores

the entry (s, srand, ∗, c + 1, x5) in Q, where x5 denotes the value of variable ω,
– if r = I, then S returns the Diffie–Hellman exponential gκ to M , else S returns �.

4. S stores entries of the form (r, h, l, κ) ∈ {0, 1}k × Zp × N × Zp in table J . When M
makes a query of the form (r, h, l) to the random oracle for H1, answer it as follows:

– If r = s∗
rand and h = a, then S aborts,

– Else if (r, h, l, κ) ∈ J for some κ ∈ Zp , then S returns κ to M .
– Else if there exists an entry

(
s, srand, sksactor , ls, κ

)
in Q, for some s ∈ P×N, srand ∈

{0, 1}k , sksactor ∈ Zp , ls ∈ N and κ ∈ Zp , such that srand = r , sksactor = h and ls = l,
then S returns κ to M and stores the entry (r, h, l, κ) in table J .

– Else, S chooses κ ∈R Zp , returns it to M and stores the entry (r, h, l, κ) in table J .

5. send(P̂, i, V) to send message V to session s = (P̂, i): If sstatus �= active, then S
returns⊥. Else if srole = I, then S does the following. If V /∈ G, then the status of session
s is set to rejected. Else, the status of session s is set to accepted, the variable
recv is updated to srecv ← (srecv, V) and

– If there exists an entry
(
speer, sactor,R, srecv, ssent, λ

)
in table T , then S stores the

entry
(
sactor, speer, I, ssent, srecv, λ

)
in table T .

– Else if there exists an entry
(
σ1, σ2, σ3, sactor, speer, λ

)
in table L , for some λ ∈

{0, 1}k , such that DDH(srecv, ssent, σ3) = 1, DDH(ssent,pkspeer , σ2) = 1 and

DDH(srecv,pksactor , σ1) = 1, then S stores
(
sactor, speer, I, ssent, srecv, λ

)
in table

T .
– Else, S chooses μ ∈R {0, 1}k and stores the entry (sactor, speer, I, ssent, srecv, μ) in

T .

Else if srole = R, then S does the following. If V /∈ G, then the status of session s is
set to rejected. Else, S sets the status of session s to accepted, and the variable
recv to (srecv, V). S returns gκ to M , where κ denotes the last element of the entry(
s, r, sksactor , l, κ

)
in table Q, and proceeds in a similar way as in the previous case.

6. When M makes a query of the form
(
σ1, σ2, σ3, P̂i , P̂j

)
to the random oracle for H2,

answer it as follows:

– If s′
status �= ⊥,

{
P̂i , P̂j

}
=

{
Â, B̂

}
, σ1 = Aκ , DDH(X0, B, σ2) = 1, and σ3 = Xκ

0 ,

where κ denotes the last element of the entry (s′, s′
rand, sks′actor , l, κ) in table Q,8 then

S aborts M and is successful by outputting CDH(X0, B) = σ2.

– Else if
(
σ1, σ2, σ3, P̂i , P̂j , λ

)
∈ L for some λ ∈ {0, 1}k , then S returns λ to M .

– Else if there exist entries
(
P̂i , P̂j , I,U, V, λ

)
or

(
P̂j , P̂i ,R, V,U, λ

)
in table

T , for some λ ∈ {0, 1}k and U, V ∈ G, such that DDH(V,U, σ3) = 1,
DDH(V,pk P̂i , σ1) = 1 and DDH(U,pk P̂j

, σ2) = 1, then S returns λ to M and

stores the entry
(
σ1, σ2, σ3, P̂i , P̂j , λ

)
in table L .

8 This entry exists in table Q since the status of the session is different to ⊥.

123

508 M. Feltz, C. Cremers

– Else, S choosesμ∈R {0, 1}k , returns it toM and stores the entry
(
σ1, σ2, σ3, P̂i , P̂j , μ

)

in L .

7. randomness(s): If sstatus = ⊥, then S returns ⊥. Else, S returns srand .
8. session-key(s): If sstatus �= accepted, then S returns ⊥. Otherwise, S answers this

query by lookup in table T .
9. test-session(s): If s �= s∗ or if s′ is not the origin-session for session s∗, then S aborts;

otherwise S answers the query in the appropriate way.
10. corrupt(P̂): If P̂ /∈ P , then S returns ⊥. Else if P̂ = B̂, then S aborts. Else, S returns

sk P̂ .
11. M outputs a guess: S aborts.

Analysis of event B3

Similar to the analysis of the related event B3 in the proof of [19, Proposition 7].
Event (TO)c ∧ DLc ∧ K
The simulation and analysis are very similar to the simulation and analysis related to event
B3. ��

Appendix 2: Proof of Proposition 7

Proof It is straightforward to verify the first condition of Definition 5.We next verify that the
second condition of Definition 5 holds. Let E denote a PPT adversary against protocol π :=
NXPR. We show that the probability of event Multiple-MatchW (ΩΛ)

π,E (k) is bounded above by

a negligible function in the security parameter k, whereMultiple-MatchW (ΩΛ)
π,E (k) denotes the

event that, in the security experiment, there exist a session s with sstatus = accepted and
at least two distinct sessions s′ and s′′ that are matching session s. Note that, if both sessions
s′ and s′′ are matching session s, then it must hold that s′′

actor = s′
actor and s′′

role = s′
role. In

addition, it is easy to see that the value of the variable data in two different sessions of the
same user are distinct (since of different length). For some fixed session s that has accepted,
let Ev denote the event that there exist two distinct sessions s′ and s′′ such that s and s′ are
matching as well as s and s′′. We have:

P(Ev) ≤ P

⎛

⎜⎜
⎝

⋃

s′,s′′
s′ �=s′′

{H1(s
′′
rand, s

′′
data, sk P̂) = H1(s

′
rand, s

′
data, sk P̂)}

⎞

⎟⎟
⎠

≤
∑

s′,s′′
s′ �=s′′

P
({H1(s

′′
rand, s

′′
data, sk P̂) = H1(s

′
rand, s

′
data, sk P̂)})

≤ q2s
p

,

where P̂ = s′′
actor = s′

actor and qs denotes the number of created sessions (either via the
create or the cr-create query) by the adversary.

In the above computation, we distinguished between the following two events:

1. D1 := {s′′
rand �= s′

rand ∧ s′′
data �= s′

data}; the probability that the two hash values are
identical given D1 is the probability of a collision in the hash function, and

123

Strengthening the security of AKE against bad randomness 509

2. D2 := {s′′
rand = s′

rand ∧ s′′
data �= s′

data}; the probability that the two hash values are
identical given D2 is the probability of a collision in the hash function.

The events D3 := {s′′
rand = s′

rand ∧ s′′
data = s′

data} and D4 := {s′′
rand �= s′

rand ∧ s′′
data = s′

data}
both occur with probability zero.

Even though the value of the variable rand can be the same for two different session of
the same user due to the queries cr-create and randomness, the value of the variable data
of two different sessions s′ and s′′ of the same user is always different since the bit strings
s′
data and s′′

data differ in length. Given a created session s, the length of the bit string sdata
depends on the number of sessions of user sactor that have already been created either via
create or cr-create.

Finally, P(Multiple-MatchW (ΩΛ)
π,E (k)) ≤ q3s

1
p .

The third condition of Definition 5 is implied by an adaptation of the security proof of
protocol CNX in the Ω−

INDP-DH model (see Appendix 1). Let s∗ denote the test session.
Consider first the event Kc where the adversary M wins the security experiment against π

with non-negligible advantage and does not query H2 with (σ1, σ2, σ3, Â, B̂), where σ1 =
CDH(Y, A), σ2 = CDH(B, X) and σ3 = CDH(X, Y).
Event Kc

If event Kc occurs, then the adversary M must have issued a session-key query to some
session s such that Ks = Ks∗ (where Ks and Ks∗ denote the session keys computed in
sessions s and s∗, respectively) and s does not match s∗. We consider the following four
events:

1. A1 : there exist two distinct sessions s′, s′′ created via a create query such that s′
rand =

s′′
rand .

9

2. A2 : there exists a session s �= s∗ such that H1(srand, sdata) = H1(s∗
rand, s

∗
data).

3. A3 : there exists a session s′ �= s∗ such that H2(inputs′) = H2(inputs∗) with inputs′ �=
inputs∗ .

4. A4 : there exists an adversarial query inputM to the oracle H2 such that H2(inputM) =
H2(inputs∗) with inputM �= inputs∗ .

Analysis of event Kc

We denote by qs the number of created sessions (either via the query create or the query
cr-create) by the adversary and by qro2 the number of queries to the random oracle H2. We
have that

P(Kc) ≤ P(A1 ∨ A2 ∨ A3 ∨ A4) ≤ P(A1) + P(A2) + P(A3) + P(A4)

≤ q2s
2

1

2k
+ qs

p
+ qs + qro2

2k
,

which is a negligible function of the security parameter k.
In contrast to the NAXOS protocol analyzed with respect to model ΩINDP-DH, the adver-

sary cannot force two sessions of protocol π of the same user with the same role to compute
the same session key via a chosen-randomness replay attack since the H1 values in both ses-
sions will be different with overwhelming probability. The latter event is included in event
A2.

In the subsequent events (and their analyses) we assume that no collisions in the queries
to the oracle H1 occur and that none of the events A1, . . . , A4 occurs. As in the proof of [19,
Proposition 7], we next consider the following three events:

9 Under event A1 the query randomness (e. g., for two sessions of different users) together with other
queries might enable the adversary to learn all the information necessary to compute the session key of the
target session without violating the freshness condition.

123

510 M. Feltz, C. Cremers

1. DL ∧ K ,
2. TO ∧ DLc ∧ K , and
3. (TO)c ∧ DLc ∧ K , where

TO denotes the event that there exists an origin-session for the test session, DL denotes
the event where there exists a user Ĉ ∈ P such that the adversary M , during its execution,
queries H1 with (∗, c) before issuing a corrupt(Ĉ) query and K denotes the event that M
wins the security experiment against NXPR by querying H2 with (σ1, σ2, σ3, Â, B̂), where
σ1 = CDH(Y, A), σ2 = CDH(B, X) and σ3 = CDH(X, Y).
Event DL ∧ K
Let the input to the GAP-DLog challenge be C . Suppose that event DL ∧ K occurs with
non-negligible probability. In this case, the simulator S chooses one user Ĉ ∈ P at random
and sets its long-term public key to C . S chooses long-term secret/public key pairs for
the remaining honest parties and stores the associated long-term secret keys. Additionally
S chooses a random value m ∈R {1, 2, . . . , qs}. We denote the m’th activated session by
adversary M by s∗. Suppose further that s∗

actor = Â, s∗
peer = B̂ and s∗

role = I, w.l.o.g. We
now define S’s responses to M’s queries for the pre-specified peer setting; the post-specified
peer case proceeds similarly. Algorithm S maintains tables Q, J, T and L , all of which are
initially empty. S also maintains a variable ω initialized with 1.

1. create
(
P̂, r, Q̂

)
to create session s: S checkswhether P̂ ∈ P , Q̂ ∈ P , and r ∈ {I,R}. If

one of the checks fails, then S returns⊥. Else, S initializes the session variables according
to the protocol specification, and stores an entry of the form

(
s, srand, ls, sksactor , κ

) ∈
(P × N) × {0, 1}k × {0, 1}∗ × (Zp ∪ {∗}) × Zp in table Q as follows:

– S chooses srand ∈R {0, 1}k (i.e. the randomness of session s),
– S chooses κ ∈R Zp ,
– if there is no entry

(
s, srand, ls, sksactor , κ

)
in table Q such that sactor = P̂ , then S

sets the value of ls to srand , else S sets the value of ls to (srand, ls′), where s′ is the
previous session with s′

actor = sactor for which an entry in table Q has been made.10

– if sactor �= Ĉ , then S stores the entry
(
s, srand, sdata, sksactor , κ

)
in Q, else S stores

the entry (s, srand, sdata, ∗, κ) in Q, and
– if r = I, then S returns the Diffie–Hellman exponential gκ to M , else S returns �.

2. cr-create
(
P̂, r, str, Q̂

)
to create session s: S checks whether P̂ ∈ P , Q̂ ∈ P , and

r ∈ {I,R}. If one of the checks fails, then S returns ⊥. Else, S initializes the ses-
sion variables according to the protocol specification, and stores an entry of the form(
s, srand, ls, sksactor , κ

) ∈ (P × N) × {0, 1}k × {0, 1}∗ × (Zp ∪ {∗}) × Zp in table Q as
follows:

– if there is an entry (ri , hi , κi) in table J such that ri = (str, ls′), and hi = sk P̂ ,
where s′ is the previous session with s′

actor = sactor for which an entry in table Q has
been made, then S sets ω ← κi , else S chooses κ ∈R Zp and sets ω ← κ .

– if sactor �= Ĉ , then S stores the entry
(
s, srand, ri , sksactor , ω

)
in Q, else S stores the

entry (s, srand, ls, ∗, ω) in Q with ls = (str, ls′),
– if r = I, then S returns the Diffie–Hellman exponential gκ to M , else S returns �.

3. S stores entries of the form (r, h, κ) ∈ {0, 1}∗ × Zp × Zp in table J . When M makes a
query of the form (r, h) to the random oracle for H1, answer it as follows:

10 The value of ls′ is the concatenation of the randomness of the current and the previous sessions of the same
user.

123

Strengthening the security of AKE against bad randomness 511

– If C = gh , then S aborts M and is successful by outputting DLogg(C) = h.
– Else if (r, h, κ) ∈ J for some κ ∈ Zp , then S returns κ to M .
– Else if there exists an entry

(
s, srand, ls, sksactor , κ

)
in table Q with ls = r and

sksactor = h, then S returns κ to M and stores the entry (r, h, κ) in table J .
– Else, S chooses κ ∈R Zp , returns it to M and stores the entry (r, h, κ) in table J .

4. send(P̂, i, V) to send message V to session s = (P̂, i): If sstatus �= active, then S
returns ⊥. Else if srole = I, then S does the following. If V /∈ G, then the status of
session s is set to rejected. Else, the status of session s is set to accepted, and

– If there exists an entry
(
speer, sactor,R, srecv, ssent, λ

)
in table T , then S stores the

entry
(
sactor, speer, I, ssent, srecv, λ

)
in table T .

– Else if there exists an entry
(
σ1, σ2, σ3, sactor, speer, λ

)
in table L , for some λ ∈

{0, 1}k , such that DDH(srecv, ssent, σ3) = 1, DDH(ssent,pkspeer , σ2) = 1 and

DDH(srecv,pksactor , σ1) = 1, then S stores
(
sactor, speer, I, ssent, srecv, λ

)
in table

T .
– Else, S chooses μ ∈R {0, 1}k and stores the entry (sactor, speer, I, ssent, srecv, μ) in

T .

Else if srole = R, then S does the following. If V /∈ G, then the status of session s is set
to rejected. Else, S sets the status of session s to accepted, returns gκ to M , where
κ denotes the last element of the entry

(
s, srand, ls, sksactor , κ

)
in table Q, and proceeds

in a similar way as in the previous case.

5. When M makes a query of the form
(
σ1, σ2, σ3, P̂i , P̂j

)
to the random oracle for H2,

answer it as follows:

– If
(
σ1, σ2, σ3, P̂i , P̂j , λ

)
∈ L for some λ ∈ {0, 1}k , then S returns λ to M .

– Else if there exist entries
(
P̂i , P̂j , I,U, V, λ

)
or

(
P̂j , P̂i ,R, V,U, λ

)
in table

T , for some λ ∈ {0, 1}k and U, V ∈ G, such that DDH(V,U, σ3) = 1,
DDH(V,pk P̂i , σ1) = 1 and DDH(U,pk P̂j

, σ2) = 1, then S returns λ to M and

stores the entry
(
σ1, σ2, σ3, P̂i , P̂j , λ

)
in table L .

– Else, S choosesμ∈R {0, 1}k , returns it toM and stores the entry
(
σ1, σ2, σ3, P̂i , P̂j , μ

)

in L .

6. randomness(s): If sstatus = ⊥, then S returns ⊥. Otherwise, S returns srand .
7. session-key(s): If sstatus �= accepted, then S returns ⊥. Otherwise, S answers this

query by lookup in table T .
8. test-session(s): If s �= s∗, then S aborts; otherwise S answers the query in the appro-

priate way.
9. corrupt(P̂): If P̂ /∈ P , then S returns ⊥. Else if P̂ = Ĉ , then S aborts. Else, S returns

sk P̂ .
10. M outputs a guess: S aborts.

Analysis of event DL ∧ K
Similar to the analysis of the related event DL ∧ K in the proof of [19, Proposition 7].
Event TO ∧ DLc ∧ K
Let s∗ and s′ denote the test session and the origin-session for the test session, respectively.
We split event Evt := TO ∧ DLc ∧ K into the following events B1, . . . , B3 so that Evt =
B1 ∨ B2 ∨ B3:

123

512 M. Feltz, C. Cremers

1. B1 : Evt occurs and s∗
peer = s′

actor .
2. B2 : Evt occurs and s∗

peer �= s′
actor and M does not issue the queries randomness or

cr-create to all sessions of s′
actor that were created prior to creation of the origin-session

s′ of s∗, including the origin-session itself, but may issue a corrupt(s∗
peer) query.

3. B3 : Evt occurs and s∗
peer �= s′

actor and M does not issue a corrupt(s∗
peer) query, but may

issue the queries randomness or cr-create to all session created prior to creation of the
origin-session, including the origin-session s′ itself.

Event B1

Let the input to the GDH challenge be (X0, Y0). Suppose that event B1 occurs with non-
negligible probability. In this case S chooses long-term secret/public key pairs for all the
honest parties and stores the associated long-term secret keys. Additionally S chooses two
random values m, n ∈R {1, 2, . . . , qs}. The m’th activated session by adversary M will
be called s∗ and the n’th activated session will be called s′. Suppose further that s∗

actor =
Â, s∗

peer = B̂ and s∗
role = I, w.l.o.g. We now define S’s responses to M’s queries. S maintains

tables Q, J, T and L , all of which are initially empty, as well as a variable ω initialized with
1.

1. create(Â, I, B̂) or cr-create(Â, I, str, B̂) to create session s∗: If create is issued, S
chooses s∗

rand ∈R {0, 1}k . Else, S sets s∗
rand ← str . S (a) returns the message X0, where

(X0, Y0) is the GDH challenge, and (b) stores the entry (s∗, s∗
rand, ls∗ , sk Â, ∗) in table

Q, where ls∗ = (s∗
rand, ls) if there exists a previously created session s of user sactor = Â

with an entry in table Q, and ls∗ = s∗
rand if there no such session exists.

2. create(B̂, r, Q̂) or cr-create(B̂, r, str, Q̂)with r ∈ {I,R} to create session s′: If create
is issued, S chooses s′

rand ∈R {0, 1}k . Else, S sets s′
rand ← str . S stores the entry

(s′, s′
rand, ls′ , sk B̂ , ∗) in table Q, where ls′ = (s′

rand, ls) if there exists a previously created

session s of user sactor = Â with an entry in table Q, and ls′ = s′
rand if there no such

session exists. If r = I, then S returns message Y0 to M , where (X0, Y0) is the GDH
challenge. Else, � is returned.

3. send(B̂, i, Z) with (B̂, i) = s′: If s′
status �= active, then S returns ⊥. Else if s′

role = R
and Z ∈ G, then S returns message Y0 to M , where (X0, Y0) is the GDH challenge, sets
the status of session s′ to accepted, and proceeds as in the previous simulation for
completing the session. Else, S proceeds as in the previous simulation.

4. send(Â, i, Y0)with (Â, i) = s∗: S proceeds as in the previous simulation for completing
the session.

5. Other create, cr-create and send queries are answered as in the simulation relative to
event DL ∧ K .

6. When M makes a query of the form
(
σ1, σ2, σ3, P̂i , P̂j

)
to the random oracle for H2,

answer it as follows:

– If
{
P̂i , P̂j

}
=

{
Â, B̂

}
, σ1 = Ya

0 , σ2 = Xb
0 and DDH(X0, Y0, σ3) = 1, then S aborts

M and is successful by outputting CDH(X0, Y0) = σ3.

– Else if
(
σ1, σ2, σ3, P̂i , P̂j , λ

)
∈ L for some λ ∈ {0, 1}k , then S returns λ to M .

– Else if there exist entries
(
P̂i , P̂j , I,U, V, λ

)
or

(
P̂j , P̂i ,R, V,U, λ

)
in table

T , for some λ ∈ {0, 1}k and U, V ∈ G, such that DDH(V,U, σ3) = 1,
DDH(V,pk P̂i , σ1) = 1 and DDH(U,pk P̂j

, σ2) = 1, then S returns λ to M and

stores the entry
(
σ1, σ2, σ3, P̂i , P̂j , λ

)
in table L .

123

Strengthening the security of AKE against bad randomness 513

– Else, S choosesμ∈R {0, 1}k , returns it toM and stores the entry
(
σ1, σ2, σ3, P̂i , P̂j , μ

)

in L .

7. randomness(s): If sstatus = ⊥, then S returns ⊥. Otherwise, S returns srand .
8. session-key(s): If sstatus �= accepted, then S returns ⊥. Otherwise, S answers this

query by lookup in table T .
9. test-session(s): If s �= s∗ or if s′ is not the origin-session for session s∗, then S aborts;

otherwise S answers the query in the appropriate way.
10. H1(r, h): If r = ls∗ and h = sk Â or if r = ls′ and h = sk B̂ , then S aborts. Otherwise S

simulates a random oracle as in the simulation relative to event DL ∧ K .
11. corrupt(P̂): If P̂ /∈ P , then S returns ⊥. Else, S returns sk P̂ .
12. M outputs a guess: S aborts.

Analysis of event B1

S’s simulation of M’s environment is perfect except with negligible probability. The proba-
bility that M selects s∗ as the test-session and s′ as the origin-session for the test-session is
1

(qs)2
. Assuming that this is indeed the case, S does not abort in Step 9. Under event DLc,

the adversary first issues a corrupt(P̂) query to party P̂ before making an H1 query that
involves the long-term secret key of party P̂ . Freshness of the test session guarantees that
the adversary can reveal/determine either ls∗ or sk Â, but not both. Similar for ls′ and sk B̂ .
Hence S does not abort in Step 10. Under event K , except with negligible probability of
guessing CDH(X0, Y0), S is successful as described in the first case of Step 6 and does not
abort as in Step 12. Hence, if event B1 occurs, then the success probability of S is given by
P(S) ≥ 1

(qs)2
P(B1).

Event B2

Let the input to the GDH challenge be (X0, Y0). Suppose that event B2 occurs with non-
negligible probability. The simulation of S proceeds in the same way as for event B1 with
the following changes. S additionally keeps a history H of M’s queries.

– randomness(s): If sstatus = ⊥, then S returns ⊥. Else if s = s′ and there were queries
(randomness or cr-create) to all previous sessions of the same user s′

actor , then S aborts.
Else, S returns srand .

– H1(r, h): If r = ls∗ and h = sk Â, then S aborts. Otherwise S simulates a random oracle
as in the previous simulation.

Analysis of event B2

Similar to the analyses of the related event B2 in the proof of [19, Proposition 7] and event
B1.
Event B3

Let the input to the GDH challenge be (X0, B). Suppose that event B3 occurs with non-
negligible probability. In this case, S chooses one user B̂ ∈ P at random from the set P
and sets its long-term public key to B. S chooses long-term secret/public key pairs for the
remaining parties inP and stores the associated long-term secret keys.Additionally S chooses
two randomvaluesm, n ∈R {1, 2, . . . , qs}.We denote them’th activated session by adversary
M by s∗ and the n’th activated session by s′. Suppose further that s∗

actor = Â, s∗
peer = B̂

and s∗
role = I, w.l.o.g. Algorithm S maintains tables Q, J, T and L , all of which are initially

empty. S also maintains a variable ω initialized with 1.

1. create(Â, I, B̂) or cr-create(Â, I, str, B̂) to create session s∗: If create is issued, S
chooses s∗

rand ∈R {0, 1}k . Else, S sets s∗
rand ← str . S (a) returns the message X0, where

(X0, B) is the GDH challenge, and (b) stores the entry (s∗, s∗
rand, ls∗ , sk Â, ∗) in table Q,

123

514 M. Feltz, C. Cremers

where ls∗ = (s∗
rand, ls) if there exists a previously created session s of user sactor = Â

with an entry in table Q, and ls∗ = s∗
rand if there no such session exists.

2. create
(
P̂, r, Q̂

)
to create session s: S checkswhether P̂ ∈ P , Q̂ ∈ P , and r ∈ {I,R}. If

one of the checks fails, then S returns⊥. Else, S initializes the session variables according
to the protocol specification, and stores an entry of the form

(
s, srand, ls, sksactor , κ

) ∈
(P × N) × {0, 1}k × {0, 1}∗ × (Zp ∪ {∗}) × Zp in table Q as follows:

– S chooses srand ∈R {0, 1}k (i.e. the randomness of session s),
– S chooses κ ∈R Zp ,
– if there is no entry

(
s, srand, ls, sksactor , κ

)
in table Q such that sactor = P̂ , then S

sets the value of ls to srand , else S sets the value of ls to (srand, ls′), where s′ is the
previous session with s′

actor = sactor for which an entry in table Q has been made.
– if sactor �= B̂, then S stores the entry

(
s, srand, sdata, sksactor , κ

)
in Q, else S stores

the entry (s, srand, sdata, ∗, κ) in Q, and
– if r = I, then S returns the Diffie–Hellman exponential gκ to M , else S returns �.

3. cr-create
(
P̂, r, str, Q̂

)
to create session s: S checks whether P̂ ∈ P , Q̂ ∈ P , and

r ∈ {I,R}. If one of the checks fails, then S returns ⊥. Else, S initializes the ses-
sion variables according to the protocol specification, and stores an entry of the form(
s, srand, ls, sksactor , κ

) ∈ (P × N) × {0, 1}k × {0, 1}∗ × (Zp ∪ {∗}) × Zp in table Q as
follows:

– if there is an entry (ri , hi , κi) in table J such that ri = (str, ls′), and hi = sk P̂ ,
where s′ is the previous session with s′

actor = sactor for which an entry in table Q has
been made, then S sets ω ← κi , else S chooses κ ∈R Zp and sets ω ← κ .

– if sactor �= B̂, then S stores the entry
(
s, srand, ri , sksactor , ω

)
in Q, else S stores the

entry (s, srand, ls, ∗, ω) in Q with ls = (str, ls′),
– if r = I, then S returns the Diffie–Hellman exponential gκ to M , else S returns �.

4. S stores entries of the form (r, h, κ) ∈ {0, 1}∗ × Zp × Zp in table J . When M makes a
query of the form (r, h) to the random oracle for H1, answer it as follows:

– If r = ls∗ and h = sk Â, then S aborts.
– Else if (r, h, κ) ∈ J for some κ ∈ Zp , then S returns κ to M .
– Else if there exists an entry

(
s, srand, ls, sksactor , κ

)
in table Q with ls = r and

sksactor = h, then S returns κ to M and stores the entry (r, h, κ) in table J .
– Else, S chooses κ ∈R Zp , returns it to M and stores the entry (r, h, κ) in table J .

3. send(P̂, i, V) to send message V to session s = (P̂, i): If sstatus �= active, then S
returns ⊥. Else if srole = I, then S does the following. If V /∈ G, then the status of
session s is set to rejected. Else, the status of session s is set to accepted, and

– If there exists an entry
(
speer, sactor,R, srecv, ssent, λ

)
in table T , then S stores the

entry
(
sactor, speer, I, ssent, srecv, λ

)
in table T .

– Else if there exists an entry
(
σ1, σ2, σ3, sactor, speer, λ

)
in table L , for some λ ∈

{0, 1}k , such that DDH(srecv, ssent, σ3) = 1, DDH(ssent,pkspeer , σ2) = 1 and

DDH(srecv,pksactor , σ1) = 1, then S stores
(
sactor, speer, I, ssent, srecv, λ

)
in table

T .
– Else, S chooses μ ∈R {0, 1}k and stores the entry (sactor, speer, I, ssent, srecv, μ) in

T .

123

Strengthening the security of AKE against bad randomness 515

Else if srole = R, then S does the following. If V /∈ G, then the status of session s is set
to rejected. Else, S sets the status of session s to accepted, returns gκ to M , where
κ denotes the last element of the entry

(
s, srand, ls, sksactor , κ

)
in table Q, and proceeds

in a similar way as in the previous case.

6. When M makes a query of the form
(
σ1, σ2, σ3, P̂i , P̂j

)
to the random oracle for H2,

answer it as follows:

– If
{
P̂i , P̂j

}
=

{
Â, B̂

}
, σ1 = Aκ , DDH(X0, B, σ2) = 1, and σ3 = Xκ

0 , where κ

denotes the last element of the entry (s′, s′
rand, ls′ , sks′actor , κ) in table Q, then S aborts

M and is successful by outputting CDH(X0, B) = σ2.

– Else if
(
σ1, σ2, σ3, P̂i , P̂j , λ

)
∈ L for some λ ∈ {0, 1}k , then S returns λ to M .

– If
(
σ1, σ2, σ3, P̂i , P̂j , λ

)
∈ L for some λ ∈ {0, 1}k , then S returns λ to M .

– Else if there exist entries
(
P̂i , P̂j , I,U, V, λ

)
or

(
P̂j , P̂i ,R, V,U, λ

)
in table

T , for some λ ∈ {0, 1}k and U, V ∈ G, such that DDH(V,U, σ3) = 1,
DDH(V,pk P̂i , σ1) = 1 and DDH(U,pk P̂j

, σ2) = 1, then S returns λ to M and

stores the entry
(
σ1, σ2, σ3, P̂i , P̂j , λ

)
in table L .

– Else, S choosesμ∈R {0, 1}k , returns it toM and stores the entry
(
σ1, σ2, σ3, P̂i , P̂j , μ

)

in L .

7. randomness(s): If sstatus = ⊥, then S returns ⊥. Otherwise, S returns srand .
8. session-key(s): If sstatus �= accepted, then S returns ⊥. Otherwise, S answers this

query by lookup in table T .
9. test-session(s): If s �= s∗ or if s′ is not the origin-session for session s∗, then S aborts;

otherwise S answers the query in the appropriate way.
10. corrupt(P̂): If P̂ /∈ P , then S returns ⊥. Else if P̂ = B̂, then S aborts. Else, S returns

sk P̂ .
11. M outputs a guess: S aborts.

Analysis of event B3

Similar to the analysis of the related event B3 in the proof of [19, Proposition 7].
Event (TO)c ∧ DLc ∧ K
The simulation and analysis are very similar to the simulation and analysis related to event
B3. ��

References

1. Debian, Debian Security Advisory DSA-1571-1 openssl—predictable random number generator. http://
www.debian.org/security/2008/dsa-1571. Accessed 05 Nov 2013.

2. Lenstra A., Hughes J., Augier M., Bos J., Kleinjung T., Wachter C.: Public keys. In: Advances in Cryp-
tology (Crypto 2012). LNCS, vol. 7417, pp. 626–642. Springer, Heidelberg (2012).

3. Marvin R.: Google admits an Android crypto PRNG flaw led to Bitcoin heist (2013). http://sdt.bz/64008
Accessed 01 Oct 2013.

4. Perlroth N., Larson J., Shane S.: N.S.A. able to foil basic safeguards of privacy on web. The New York
Times (2013).

5. Koblitz N., Menezes A.: The random oracle model: a twenty-year retrospective. Cryptology ePrint
Archive, Report 2015/140 (2015). http://eprint.iacr.org/.

6. Bernstein D.J., Lange T., Niederhagen R.: Dual EC: a standardized back door. Cryptology ePrint Archive,
Report 2015/767 (2015). http://eprint.iacr.org/. Accessed July 2015.

123

http://www.debian.org/security/2008/dsa-1571
http://www.debian.org/security/2008/dsa-1571
http://sdt.bz/64008
http://eprint.iacr.org/
http://eprint.iacr.org/

516 M. Feltz, C. Cremers

7. Pornin T.: Deterministic usage of the Digital Signature Algorithm (DSA) and Elliptic Curve Digital
Signature Algorithm (ECDSA), RFC 6979 (2013).

8. Bellare M., Brakerski Z., Naor M., Ristenpart T., Segev G., Shacham H., Yilek S.: Hedged public-key
encryption: how to protect against bad randomness. In: Advances in Cryptology (ASIACRYPT 2009).
LNCS, pp. 232–249. Springer, Heidelberg (2009).

9. Yilek S.: Resettable public-key encryption: how to encrypt on a virtual machine. In: Proceedings of the
2010 International Conference on Topics in Cryptology (CT-RSA’10), pp. 41–56. Springer, Berlin (2010).

10. LaMacchia B., Lauter K., Mityagin A.: Stronger security of authenticated key exchange. In: Susilo W.,
Liu J.K., Mu Y. (eds.) ProvSec’07. LNCS, vol. 4784, pp. 1–16. Springer, Berlin (2007).

11. Canetti R., Krawczyk H.: Analysis of key-exchange protocols and their use for building secure channels.
In: Pfitzmann B. (ed.) EUROCRYPT’01. LNCS, vol. 2045, pp. 453–474. Springer, London (2001).

12. YangG., Duan S.,WongD.S., Tan C.H.,WangH.: Authenticated key exchange under bad randomness. In:
Proceedings of the 15th International Conference on Financial Cryptography and Data Security. FC’11,
pp. 113–126. Springer, Berlin (2012). doi:10.1007/978-3-642-27576-0_10.

13. Ristenpart T.,Yilek S.:When good randomness goes bad: virtualmachine reset vulnerabilities and hedging
deployed cryptography. In: Proceedings of the Network and Distributed System Security Symposium
(NDSS’10) (2010).

14. Kamara S., Katz J.: How to encrypt with a malicious random number generator. In: Fast Software Encryp-
tion. LNCS, vol. 5086, pp. 303–315. Springer, Berlin (2008).

15. Bellare M., Tackmann B.: Nonce-based cryptography: retaining security when randomness fails. Cryp-
tology ePrint Archive, Report 2016/290 (2016). http://eprint.iacr.org/.

16. Krawczyk H.: HMQV: a high-performance secure Diffie–Hellman protocol. In: Shoup, V. (ed.) Advances
in Cryptology (CRYPTO 2005). LNCS, vol. 3621, pp. 546–566. Springer, Berlin (2005).

17. Ustaoglu B.: Obtaining a secure and efficient key agreement protocol from (H)MQV and NAXOS. Cryp-
tology ePrint Archive, Report 2007/123, 2007, version June 22 (2009).

18. Blake-WilsonS., JohnsonD.,MenezesA.:Key agreement protocols and their security analysis. In:Darnell
M. (ed.) Crytography and Coding. LNCS, vol. 1355, pp. 30–45. Springer, Berlin (1997). doi:10.1007/
BFb0024447.

19. Cremers C., Feltz M.: Beyond eCK: perfect forward secrecy under actor compromise and ephemeral-key
reveal. Des. Codes Cryptogr. 74(1), 183–218 (2015).

20. Brzuska C., Fischlin M., Warinschi B., Williams S.: Composability of Bellare-Rogaway key exchange
protocols. In: Proceedings of the 18th ACM Conference on Computer and Communications Security
(CCS’11). pp. 51–62. ACM, New York (2011). doi:10.1145/2046707.2046716.

21. Boyd C., Cremers C., FeltzM., Paterson K., Poettering B., Stebila D.: ASICS: authenticated key exchange
security incorporating certification systems. In: Crampton J., Jajodia S., Mayes K. (eds.) Computer Secu-
rity (ESORICS 2013). LNCS, vol. 8134, pp. 381–399. Springer, Berlin (2013).

22. Bellare M., Rogaway P.: Entity authentication and key distribution. In: 13th Annual International Cryp-
tology Conference on Advances in Cryptology (CRYPTO’93), pp. 232–249. Springer, New York (1994).

23. Bellare M., Rogaway P.: Provably secure session key distribution: the three party case. In: 27th Annual
ACM Symposium on Theory of Computing (STOC’95), pp. 57–66. ACM, New York (1995).

24. Bellare M., Pointcheval D., Rogaway P.: Authenticated key exchange secure against dictionary attacks.
In: 19th International Conference on Theory and Application of Cryptographic Techniques (EURO-
CRYPT’00), pp. 139–155. Springer, Berlin (2000).

25. Cremers C., Feltz M.: Beyond eCK: perfect forward secrecy under actor compromise and ephemeral-key
reveal. In: Proceedings of the 17th European Conference on Research in Computer Security. ESORICS.
Springer, Berlin (2012).

26. Okamoto T., Pointcheval D.: The gap-problems: a new class of problems for the security of cryptographic
schemes. In: Kim K. (ed.) PKC’2001. LNCS, vol. 1992, pp. 104–118. Springer, Berlin (2001).

27. Feltz M., Cremers C.: On the limits of authenticated key exchange security with an application to bad
randomness. Cryptology ePrint Archive, Report 2014/369 (2014). http://eprint.iacr.org/.

28. Choo K.-K.R., Boyd C., Hitchcock Y.: Examining indistinguishability-based proof models for key estab-
lishment protocols. In: Advances in Cryptology—ASIACRYPT 2005, 11th International Conference on
the Theory and Application of Cryptology and Information Security, Chennai, India, 4–8 Dec 2005,
Proceedings. Lecture Notes in Computer Science, vol. 3788, pp. 585–604. Springer, Berlin (2005).

29. Schneier B., Fredrikson M., Kohno T., Ristenpart T.: Surreptitiously weakening cryptographic systems.
Cryptology ePrint Archive, Report 2015/097 (2015). http://eprint.iacr.org/. Accessed March 2015.

123

http://dx.doi.org/10.1007/978-3-642-27576-0_10
http://eprint.iacr.org/
http://dx.doi.org/10.1007/BFb0024447
http://dx.doi.org/10.1007/BFb0024447
http://dx.doi.org/10.1145/2046707.2046716
http://eprint.iacr.org/
http://eprint.iacr.org/

	Strengthening the security of authenticated key exchange against bad randomness
	Abstract
	1 Introduction
	2 AKE framework
	2.1 Security model
	2.2 Security experiment

	3 Chosen randomness and stateless protocols
	3.1 Stateless and stateful protocols
	3.2 Insecurity of stateless protocols against chosen-randomness attacks

	4 CNX: preventing key repetition
	5 Impossibility result for chosen randomness
	6 Stronger security against chosen randomness
	6.1 Security model
	6.2 Security against repeated randomness failures
	6.3 NXPR: achieving strong AKE security against chosen randomness

	7 Conclusions
	Acknowledgements
	Appendix 1: Proof of Proposition 2
	Appendix 2: Proof of Proposition 7
	References

