
Effect Polymorphism in Higher-Order Logic
(Proof Pearl)

Andreas Lochbihler(B)

Institute of Information Security, Department of
Computer Science, ETH Zurich, Zurich, Switzerland

andreas.lochbihler@inf.ethz.ch

Abstract. The notion of a monad cannot be expressed within higher-
order logic (HOL) due to type system restrictions. We show that if a
monad is used with values of only one type, this notion can be formalised
in HOL. Based on this idea, we develop a library of effect specifications
and implementations of monads and monad transformers. Hence, we can
abstract over the concrete monad in HOL definitions and thus use the
same definition for different (combinations of) effects. We illustrate the
usefulness of effect polymorphism with a monadic interpreter.

1 Introduction

Monads have become a standard way to write effectful programs in pure func-
tional languages [25]. In proof assistants, they provide a widely-used abstraction
for modelling and reasoning about effects [3,4,14,17]. Abstractly, a monad con-
sists of a type constructor τ and two polymorphic operations, return :: α ⇒ α τ
for embedding values and bind :: α τ ⇒ (α ⇒ β τ) ⇒ β τ for sequencing (written
>>= infix), satisfying three monad laws:

1. (m >>= f) >>= g = m >>= (λx. f x >>= g)
2. return x >>= f = f x 3. m >>= return =m

Yet, the notion of a monad cannot be expressed as a formula in higher-order
logic (HOL) [8] as there are no type constructor variables like τ in HOL and the
sequencing operation bind occurs with three different type instances in the first
law. Thus, only concrete monad instances have been used to model side effects
of HOL functions. In fact, monad definitions for different effects abound in HOL,
e.g., a state-error monad [3], non-determinism with errors and divergence [14],
probabilistic choice [4], and probabilistic resumptions with errors [17]. Each of
these formalisations fixes τ to a particular type (constructor) and develops its
own reasoning infrastructure. This approach achieves value polymorphism, i.e.,
one monad can be used with varying types of values, but not effect polymorphism
where one function can be used with different monads.

In this paper, we give up value polymorphism in favour of effect polymor-
phism. The idea is to fix the type of values to some type α0. Then, the monad
c© Springer International Publishing AG 2017
M. Ayala-Rincón and C.A. Muñoz (Eds.): ITP 2017, LNCS 10499, pp. 389–409, 2017.
DOI: 10.1007/978-3-319-66107-0 25

390 A. Lochbihler

type constructor τ is applied only to α0, which an ordinary HOL type variable μ
can represent. So, the monad operations have the HOL types return :: α0 ⇒ μ and
bind :: μ ⇒ (α0 ⇒ μ) ⇒ μ. This notion of a monad can be formalised within HOL.
In detail, we present an Isabelle/HOL library (available online [18]) for different
monadic effects and their algebraic specification. All effects are also implemented
as value-monomorphic monads and monad transformers. Using Isabelle’s mod-
ule system [1], function definitions can be made abstractly and later specialised
to several concrete monads. As our running example, we formalise and reason
about a monadic interpreter for a small language. The library has been used in
a larger project to define and reason about parsers and serialisers for security
protocols.

Contributions. We show the advantages of trading in value polymorphism for
effect polymorphism. First, HOL functions with effects can be defined in an
abstract monadic setting (Sect. 2) and reasoned about in the style of Gibbons
and Hinze [6]. This preserves the level of abstraction that the monad notion pro-
vides. As the definitions need not commit to a concrete monad, we can use them
in richer effect contexts, too—simply by combining our modular effect specifica-
tions. When a concrete monad instance is needed, it can be easily obtained by
interpretation using Isabelle’s module system.

Second, as HOL can express the notion of a value-monomorphic monad, we
have also formalised several monad transformers [15,21] in HOL (Sect. 3). Thus,
there is no need to define the monad and derive the reasoning principles for each
combination of effects, as is current practice with value polymorphism. Instead,
it suffices to formalise every effect only once as a transformer and combine them
modularly.

Third, relations between different instances can be proven using the theory
of representation independence (Sect. 4) as supported by the Transfer package
[10]. This makes it possible to switch in the middle of a bigger proof from a
complicated monad to a simpler one.

2 Abstract Value-Monomorphic Monads in HOL

In this section, we formalise value-monomorphic monads and monad transform-
ers for several types of effects. A monadic interpreter for an arithmetic language
will be used throughout as a running example. The language, adapted from
Nipkow and Klein [22], consists of integer constants, variables, addition, and
division.
datatype ν exp = Const int | Var ν | (ν exp) ⊕ (ν exp) | (ν exp) � (ν exp)

We formalise the concept of a monad using Isabelle’s module system of
locales [1]. The locale monad below fixes the two monad operations return and
bind (written infix as >>=) and assumes that the monad laws hold. It will col-
lect definitions of functions, which use the monad operations, and theorems
about them, whose proofs can use the monad laws. Every locale also defines a

Effect Polymorphism in Higher-Order Logic (Proof Pearl) 391

predicate of the same name that collects all the assumptions. When a user inter-
prets the locale with more concrete operations and has discharged the assump-
tions for these operations, every definition and theorem inside the locale context
is specialised to these operations. Although the type of values is a type vari-
able α, α is fixed inside the locale. Instantiations may still replace α with any
other HOL type. In other words, the locale monad formalises a monomorphic
monad, but leaves the type of values unspecified. As usual, m >> m′ abbreviates
m >>= (λ . m′).

locale monad = fixes return :: α ⇒ μ and bind :: μ⇒(α⇒μ) ⇒ μ (infixr >>=)
assumes bind-assoc : (m >>= f) >>= g = m >>= (λx. f x >>= g)

and return-bind : return x >>= f = f x
and bind-return : x >>= return = x

Monads become useful only when effect-specific operations are available. In
the remainder of this section, we formalise monadic operations for different types
of effects and their properties. For each effect, we introduce a new locale in
Isabelle that extends the locale monad, fixes the new operations, and specifies
their properties. A locale extension inherits parameters and assumptions. This
leads to a modular design: if several effects are needed, one merely combines the
relevant locales in a multi-extension.

2.1 Failure and Exception

Failures are one of the simplest effects and widely used. A failure aborts the com-
putation immediately. The locale monad-fail given below formalises the failure
effect fail :: μ. It assumes that a failure propagates from the left hand side of bind.
In contrast, there is no assumption about how fail behaves on the right hand
side. Otherwise, if monad-fail also assumed m >>= (λ . fail) = fail, then fail would
undo any effect of m. Although the standard implementation of failures using
the option type satisfies this additional law, many other monad implementations
do not, e.g., resumptions. Note that there is no need to delay the evaluation of
fail in HOL because HOL has no execution semantics.

locale monad-fail = monad + fixes fail :: μ
assumes fail-bind : fail >>= f = fail

As a first example, we define the monadic interpreter eval :: (ν ⇒ μ)⇒
ν exp ⇒ μ for arithmetic expressions by primitive recursion using these abstract
monad operations inside the locale monad-fail.1 The first argument is an interpre-
tation function E :: ν ⇒ μ for the variables. The evaluation fails when a division
by zero occurs.
1 Type variables that appear in the signature of locale parameters are fixed for the

whole locale. In particular, the value type α cannot be instantiated inside the locale
monad or its extension monad-fail. The interpreter eval, however, returns ints. For this
reason, eval is defined in an extension of monad-fail that merely specialises α to int.
For readability, we usually omit this detail in this paper.

392 A. Lochbihler

primrec (in monad-fail) eval :: (ν ⇒ μ) ⇒ ν exp ⇒ μ where

eval E (Const i) = return i
| eval E (Var x) = E x
| eval E (e1 ⊕ e2) = eval E e1 >>= (λi1. eval E e2 >>= (λi2. return (i1 + i2)))
| eval E (e1 � e2) =

eval E e1 >>= (λi1. eval E e2 >>= (λi2. if i2 = 0 then fail else return (i1 div i2)))

Note that evaluating a variable can have an effect μ, which is necessary to
obtain a compositional interpreter. Let subst :: (ν ⇒ ν′ exp) ⇒ ν exp ⇒ ν′ exp be
the substitution function for exp. That is, subst σ e replaces every Var x in e with
σ x. Then, the following compositionality statement holds (proven by induction
on e and term rewriting with the definitions), where function composition ◦ is
defined as (f ◦ g)(x) = f (g x).

lemma compositionality : eval E (subst σ e) = eval (eval E ◦ σ) e
by induction simp-all

We refer to failures as exceptions whenever there is an operator
catch :: μ ⇒ μ ⇒ μ to handle them. Following Gibbons and Hinze [6], the locale
monad-catch assumes that catch and fail form a monoid and that returns are
not handled. It inherits fail-bind and the monad laws by extending the locale
monad-fail. No properties about catch and bind are assumed because in general
exception handling does not distribute over sequencing.

locale monad-catch = monad-fail + fixes catch :: μ ⇒ μ ⇒ μ
assumes fail-catch : catch fail m = m
and catch-fail : catch m fail = m
and catch-catch : catch (catch m1 m2) m3 = catch m1 (catch m2 m3)
and return-catch : catch (return x) m = return x

2.2 State

Stateful computations use operations to read (get) and replace (put) the state
of type σ. In a value-polymorphic setting, get :: σ τ and put :: σ ⇒ unit τ are
usually computations that return the state or () inhabiting the singleton type
unit. Without value-polymorphism, these types cannot be formalised in the HOL
setting because we cannot apply τ to different value types. Instead, our opera-
tions additionally take a continuation: get :: (σ ⇒ μ) ⇒ μ and put :: σ ⇒ μ ⇒ μ.
In a value-polymorphic setting, both signatures are equivalent. Passing the con-
tinuation return as in get return and λs. put s (return ()) yields the conventional
operations. Conversely, our operations get f and put s m can be implemented as
get >>= f and put s >> m using conventional get and put. The locale monad-state
collects the properties get and put must satisfy:

Effect Polymorphism in Higher-Order Logic (Proof Pearl) 393

locale monad-state = monad + fixes get :: (σ ⇒ μ) ⇒ μ and put :: σ ⇒ μ ⇒ μ
assumes put-get : put s (get f) = put s (f s)
and get-get : get (λs. get (f s)) = get (λs. f s s)
and put-put : put s (put s′ m) = put s′ m
and get-put : get (λs. put s m) = m
and get-const : get (λ . m) = m
and bind-get : get f >>= g = get (λs. f s >>= g)
and bind-put : put s m >>= f = put s (m >>= f)

The first four assumptions adapt Gibbons’ and Hinze’s axioms for the state
operations [6] to the new signature. The fifth, get-const, additionally specifies
that get can be discarded if the state is not used. The last two assumptions,
bind-get and bind-put, demand that get and put distribute over bind. In
the conventional value-polymorphic setting, where the continuations are applied
using bind, these two are subsumed by the monad laws. In the remainder of this
paper, get and put always take continuations.

A state update function update can be implemented abstractly for all state
monads. Like put, update takes a continuation m.

definition (in monad-state) update :: (σ ⇒ σ) ⇒ μ ⇒ μ where
update f m = get (λs. put (f s) m)

The expected properties of update can be derived from monad-state’s assump-
tions by term rewriting. For example,

lemma update-id : update id m = m
by (simp add : update-def get-put)

lemma update-update : update f (update g m) = update (g ◦ f) m
by (simp add : update-def put-get put-put)

lemma update-bind : update f m >>= g = update f (m >>= g)
by (simp add : update-def bind-get bind-put)

As an example, we implement a memoisation operator memo using the
state operations. To that end, the state must be refined to a lookup
table, which we model as a map of type β ⇀ α = β ⇒ α option. The def-
inition uses the function λt. t(x �→ y) that takes a map t and updates it
to associate x with y, leaving the other associations as they are; formally,
t(x �→ y) = (λx′. if x = x′ then Some y else t x′).

definition (in monad-state) memo :: (β ⇒ μ) ⇒ β ⇒ μ where
memo f x = get (λtable.

case table x of Some y ⇒ return y
| None ⇒ f x >>= (λy. update (λt. t(x �→ y)) (return y)))

A memoisation operator should satisfy three important properties. First, it
should evaluate the memoised function at most on the given argument, not on
others. This can be expressed as a congruence rule, which holds independently
of the monad laws by definition:

394 A. Lochbihler

lemma memo-cong : f x = g x −→ memo f x = memo g x

Second, memoisation should be idempotent, i.e., if a function is already being
memoised, then there is no point in memoising it once more.

lemma memo-idem : memo (memo f) x = memo f x

The mechanised proof of memo-idem in Isabelle needs only two steps, which are
justified by term rewriting with the properties of the monad operations and the
case operator. Every assumption about get and put except get-put is needed.

Third, the memoisation operator should indeed evaluate f on x at most once.
As memo f x memoises only the result of f x, but not the effect of evaluating
f x, the next lemma captures this correctness property. Its proof is similar to
memo-idem’s.

lemma correct : memo f x >>= (λa. memo f x >>= g a) = memo f x >>= (λa. g a a)

2.3 Probabilistic Choice

Randomised computations are built from an operation ¢ for probabilistic choice.
The probabilities are specified using probability mass functions (type π pmf) [7],
i.e., discrete probability distributions. Binary probabilistic choice, which is often
used in the literature [5,6,24], is less general as it leads to finite distributions.
Continuous distributions would work, too, but they would clutter the theorems
and proofs with measurability conditions.

Like the state operations, ¢ :: π pmf ⇒ (π ⇒ μ) ⇒ μ takes a continuation to
separate the type of probabilistic choices π from the type of values. The locale
monad-prob assumes the following properties, where supp p denotes the support
of p:

– sampling from the one-point distribution dirac x has no effect
(sample-dirac),

– sequencing bindpmf in the probability monad yields sequencing
(sample-bind),

– sampling can be discarded if the result is unused (sample-const),
– sampling from independent distributions commutes (sample-comm, inde-

pendence is formalised by p and q not taking y and x as an argument, respec-
tively),

– sampling calls the continuation only on values in p’s support (sample-cong),
and

– sampling distributes over both sides of bind (bind-sample1, bind-sample2).

locale monad-prob = monad + fixes ¢ :: π pmf ⇒ (π ⇒ μ) ⇒ μ
assumes sample-dirac : ¢ (dirac x) f = f x

and sample-bind : ¢ (bindpmf p f) g = ¢ p (λx. ¢ (f x) g)
and sample-const : ¢ p (λ . m) = m
and sample-comm : ¢ p (λx. ¢ q (f x)) = ¢ q (λy. ¢ p (λx. f x y))
and sample-cong : (∀x ∈ supp p. f x = g x) −→ ¢ p f = ¢ p g
and bind-sample1 : ¢ p f >>= g = ¢ p (λx. f x >>= g)
and bind-sample2 : m >>= (λx. ¢ p (f x)) = ¢ p (λy. m >>= (λx. f x y))

Effect Polymorphism in Higher-Order Logic (Proof Pearl) 395

2.4 Combining Abstract Monads

Formalising monads in this abstract way has the advantage that the different
effects can be easily combined. In the running example, suppose that the vari-
ables represent independent random variables. Then, expressions are probabilis-
tic computations and evaluation computes the joint probability distribution. For
example, if x1 and x2 represent coin flips with 1 representing heads and 0 tails,
then Var x1 ⊕ Var x2 represents the probability distribution of the number of
heads.

Here is a first attempt. Let X :: ν ⇒ int pmf specify the distribution X x
for each random variable x. Combining the locales for failures and prob-
abilistic choices, we let the variable environment do the sampling, where
sample-var X x = ¢ (X x) return:

locale monad-fail-prob = monad-fail + monad-prob

definition (in monad-fail-prob) wrong :: (ν ⇒ int pmf) ⇒ ν exp ⇒ μ where
wrong X e = eval (sample-var X) e

As the name suggests, wrong does not achieve what we intended. If a
variable occurs multiple times in e, say e = Var x ⊕ Var x, then wrong X e
samples x afresh for each occurrence. So, if X x = uniform {0, 1}, i.e., x
is a coin flip, wrong X e computes the probability distribution given by
0 �→ 1/4, 1 �→ 1/2, 2 �→ 1/4 instead of 0 �→ 1/2, 2 �→ 1/2. Clearly, we should sample
every variable at most once. Memoising the variable evaluation achieves that.
So, we additionally need state operations.

locale monad-fail-prob-state = monad-fail-prob + monad-state +
assumes sample-get : ¢ p (λx. get (f x)) = get (λs. ¢ p (λx. f x s))

definition (in monad-fail-prob-state) lazy :: (ν ⇒ int pmf) ⇒ ν exp ⇒ μ where
lazy X e = eval (memo (sample-var X)) e

The interpreter lazy samples a variable only when needed. For example, in
e0 = (Const 1 � Const 0) ⊕ Var x0, the division by zero makes the evaluation fail
before x0 is sampled.

The locale monad-fail-prob-state adds an assumption that ¢ distributes over
get. Such distributivity assumptions are typically needed because of the contin-
uation parameters, which break the separation between effects and sequencing.
Their format is as follows: If two operations f1 and f2 with continuations do not
interact, then we assume f1 (λx. f2 (g x)) = f2 (λy. f1 (λx. g x y)). Sometimes,
such assumptions follow from existing assumptions. For example, sample-put
follows from bind-sample2 and put s m = put s (return x) >> m for all x. A
similar law holds for update.

lemma sample-put : ¢ p (λx. put s (f x)) = put s (¢ p f)

In contrast, sample-get does not follow from the other assumptions due to
the restriction to monomorphic values. The state of type σ, which get passes to
its continuation, may carry more information than a value can hold. Indeed, in

396 A. Lochbihler

the case of lazy, the type int of values is countable, but the state type ν ⇀ int
is not if the type of variables is infinite. As put passes no information to its
continuation, put’s continuation can be pushed into bind as shown above. Still,
put needs its continuation; otherwise, it would have to create a return value out
of nothing, which would cause problems later (§4). Moreover, there is no need
to explicitly specify how fail interacts with get and ¢ as get (λ . fail) = fail and
¢ p (λ . fail) = fail are special cases of get-const and sample-const.

Instead of lazy sampling, we can also sample all variables eagerly. Let
vars e return the (finite) set of variables in e. Then, the interpreter eager with
eager sampling is defined as follows (all three definitions live in the locale
monad-fail-prob-state):

definition sample-vars :: (ν ⇒ int pmf) ⇒ ν set ⇒ μ ⇒ μ where
sample-vars X A m = fold (λx m. memo (sample-var X) x >> m) m A

definition lookup :: ν ⇒ μ where
lookup x = get (λs. case s x of None ⇒ fail | Some i ⇒ return i)

definition eager :: (ν ⇒ int pmf) ⇒ ν exp ⇒ μ where
eager X e = sample-vars X (vars e) (eval lookup e)

where fold is the fold operator for finite sets [23]. The operator fold f requires
that the folding function f is left-commutative, i.e., f x (f y z) = f y (f x z)
for all x, y, and z. In our case, f = λx m. memo (sample-var X) x >> m is
left-commutative by the following lemma about memo whose assumptions
sample-var X satisfies by return-bind, bind-sample1, bind-sample2, and
sample-get. Moreover, by correct, it is also idempotent, i.e., f x ◦ f x = f x.

lemma memo-commute :
(∀m x g. m >>= (λa. f x >>= g a) = f x >>= (λb. m >>= (λa. g a b)))

−→ (∀x g. get (λs. f x >>= g s) = f x >>= (λa. get (λs. g s a)))
−→ memo f x >>= (λa. memo f y >>= (λb. g a b)) =

memo f y >>= (λb. memo f x >>= (λa. g a b))

This lemma and correct illustrate the typical form of monadic statements.
The assumptions and conclusions take a continuation g for the remainder of
the program. This way, the statements are easier to apply because they are
in normal form with respect to bind-assoc. This observation also holds in a
value-polymorphic setting.

Now, the question is whether eager and lazy sampling are equivalent. In
general, the answer is no. For example, for e0 from above, eager X e0 samples and
memoises the variable x0, but lazy X e0 does not. Thus, there are contexts that
distinguish the two. If we extend monad-fail-prob-state with exception handling
from monad-catch such that

catch-get : catch (get f) m2 = get (λs. catch (f s) m2)
catch-put : catch (put s m) m2 = put s (catch m m2)

Effect Polymorphism in Higher-Order Logic (Proof Pearl) 397

then the two can be distinguished:

catch (lazy X e0) (lookup x0) = fail
catch (eager X e0) (lookup x0) = memo (sample-var X) x0

In contrast, if we assume that failures erase state updates, then the two are
equivalent:

theorem lazy-eager : (∀s. put s fail = fail) −→ lazy X e = eager X e

Proof. The proof consists of three steps proven by induction on e. First, by
idempotence and left-commutativity, sample-vars X V commutes with lazy X e
for any finite V :

∀g. sample-vars X V (lazy X e >>= g) = lazy X e >>= (λi. sample-vars X V (g i)) (1)

Here, put s fail = fail ensures that all state updates are lost if a division by zero
occurs. The next two steps will use (1) in the inductive cases for ⊕ and � to bring
together the sampling of the variables and the evaluation of the subexpressions.
Second,

lazy X e >>= g = sample-vars X (vars e) (lazy X e >>= g) (2)

shows that the sampling can be done first, which holds by correct. Finally,

sample-vars X V (lazy X e >>= g) = sample-vars X V (eval lookup e >>= g) (3)

holds for any finite set V with vars e ⊆ V . Here, Var x is the interesting case,
which follows from ∀g. memo f x >>= (λi. lookup x >>= g i) = memo f x>>=
(λi. g i i) and correct. Taking V = vars e and g = return, (2) and (3) prove the
lemma. �

In Sect. 3.5, we show that some monads satisfy lazy-eager’s assumption,
but not all.

2.5 Further Abstract Monads

Apart from exceptions, state, and probabilistic choice, we have formalised effect
specifications for non-deterministic choice alt :: μ ⇒ μ ⇒ μ, the reader and writer
monads with ask :: (ρ ⇒ μ) ⇒ μ and tell :: ω ⇒ μ ⇒ μ, and resumptions with
pause :: o ⇒ (ι ⇒ μ) ⇒ μ. We do not present them in detail as the examples in
this paper do not require them.

Moreover, we formalise as locales the notions of a commutative monad, where
bind satisfies m1 >>= (λx. m2 >>= f x) = m2 >>= (λy. m1 >>= (λx. f x y)), and of
a discardable monad, where the law m >> m′ = m′ makes it possible to drop a
computation whose result is not used.

398 A. Lochbihler

3 Implementations of Monads and Monad Transformers

In the previous section, we specified the properties of monadic operations
abstractly. Now, we provide monad implementations that satisfy these specifica-
tions. Some effects are implemented as monad transformers [15,21], which allow
us to compose implementations of different effects almost as modularly as the
locales specifying them abstractly. In particular, we analyse whether the trans-
formers preserve the specifications of the other effects. All our implementations
are polymorphic in the values such that they can be used with any value type,
although by the value-monomorphism restriction, each usage must individually
commit to one value type.

3.1 The Identity Monad

The simplest monad implementation in our library is the identity monad ident,
which models the absence of all effects. It is not really useful in itself, but will be
an important building block when combining monads using transformers. The
datatype α ident is a copy of α with constructor Ident and selector run-ident. To
distinguish the abstract monad operations from their implementations, we sub-
script the latter with the implementation type. The lemma states that returnident
and bindident satisfy the assumption of the locale monad. Additionally, the iden-
tity monad is commutative and discardable.

datatype α ident = Ident (run-ident : α)
definition returnident :: α ⇒ α ident where returnident = Ident
definition bindident :: α ident ⇒ (α ⇒ α ident) ⇒ α ident where

m >>=ident f = f (run-ident m)

lemma monad returnident bindident

3.2 The Probability Monad

The probability monad α prob is another basic building block. We use discrete
probability distributions [7] and Giry’s probability monad operations dirac and
bindpmf, which we already used in the abstract specification in Sect. 2.3. Then,
probabilistic choice ¢prob is just monadic sequencing on α pmf. The probability
monad is commutative and discardable.

type-synonym α prob = α pmf
definition returnprob :: α ⇒ α prob where returnprob = dirac
definition bindprob :: α prob ⇒(α ⇒ α prob)⇒α prob where bindprob = bindpmf

definition ¢prob :: π pmf ⇒ (π ⇒ α prob) ⇒ α prob where ¢prob = bindpmf

lemma monad-prob returnprob bindprob ¢prob

Effect Polymorphism in Higher-Order Logic (Proof Pearl) 399

3.3 The Failure and Exception Monad Transformer

Failures and exception handling are implemented as a monad transformer. Thus,
these effects can be added to any monad τ . In the value-polymorphic setting,
the failure monad transformer takes a monad τ and defines a type construc-
tor failT such that β failT is isomorphic to (β option) τ . That is, the trans-
former specialises the value type α of the inner monad to β option. In our value-
monomorphic setting, the type variable μ represents the application of τ to the
value type, i.e., β option. So, μ failT is just a copy of μ:

datatype μ failT = FailT (run-fail : μ)

As failT’s operations depend on the inner monad, we fix abstract operations
return and bind in an unnamed context and define failT’s operations in terms of
them. The line on the left indicates the scope of the context. At the end, which
is marked by , the fixed operations become additional arguments of the defined
functions. Values in the inner monad now have type α option. The definitions
themselves are standard [21].

context fixes return :: α option ⇒ μ and bind :: μ ⇒ (α option ⇒ μ) ⇒ μ

definition returnfailT :: α ⇒ μ failT where
returnfailT x = FailT (return (Some x))

definition bindfailT :: μ failT ⇒ (α ⇒ μ failT) ⇒ μ failT where
m >>=failT f = FailT (run-fail m >>=

(λx. case x of None ⇒ return None | Some y ⇒ run-fail (f y)))
definition failfailT :: μ failT where failfailT = FailT (return None)
definition catchfailT :: μ failT ⇒ μ failT ⇒ μ failT where
catchfailT m1 m2 = FailT (run-fail m1 >>=

(λx. case x of None ⇒ run-fail m2 | Some ⇒ return x))

If return and bind form a monad, so do returnfailT and bindfailT, and failfailT
and catchfailT satisfy the effect specification from Sect. 2.1, too. The next lemma
expresses this.

lemma monad-catch returnfailT bindfailT failfailT catchfailT
if monad return bind

Clearly, we want to keep using the existing effects of the inner monad.
So, we must lift their operations to failT and prove that their specifications
are preserved. The lifting is not hard; the continuations of the operations are
transformed in the same way as bindfailT does. Here, we only show how to lift
the state operations, where the locale monad-catch-state extends monad-catch
and monad-state with catch-get and catch-put. Moreover, failT also lifts
¢, alt, ask, tell, and pause, preserving their specifications. It is commutative if
the inner monad is commutative and discardable.

context fixes get :: (σ ⇒ μ) ⇒ μ and put :: σ ⇒ μ ⇒ μ

400 A. Lochbihler

definition getfailT :: (σ ⇒ μ failT) ⇒ μ failT where
getfailT f = FailT (get (λs. run-fail (f s)))

definition putfailT :: σ ⇒ μ failT ⇒ μ failT where
putfailT s m = FailT (put s (run-fail m))

lemma monad-catch-state returnfailT bindfailT failfailT catchfailT getfailT putfailT
if monad-state return bind get put

From now on, as the context scope has ended, returnfailT and bindfailT
take the inner monad’s operations return and bind as additional argu-
ments. For example, we obtain a plain failure monad by applying failT to
ident. Interpreting the locale monad-fail for returnF = returnfailT returnident and
bindF = bindfailT returnident bindident and failF = failfailT returnident yields an exe-
cutable version of the interpreter eval from Sect. 2.1, which we refer to as evalF.
Then, Isabelle’s code generator and term rewriter both evaluate

evalF (λx. returnF (((λ . 0)(x0 := 5)) x)) (Var x0 ⊕ Const 7)

to FailT (Ident (Some 12)). Given some variable environment Y :: ν ⇒ int,2 we
obtain a textbook-style interpreter [22, Sect. 3.1.2] as run-ident (run-fail(evalF
(return¸ [fail.¸] ◦ Y) e)).

3.4 The State Monad Transformer

The state monad transformer adds the effects of a state monad to some inner
monad. The formalisation follows the same ideas as for failT, so we only mention
the important points. The state monad transformer transforms a monad α τ
into the type σ ⇒ (α × σ) τ where σ is the type of states. So, in HOL, the type
of values of the inner monad becomes α × σ and μ represents (α × σ) τ .

datatype (σ, μ) stateT = StateT (run-state : σ ⇒ μ)

Like for failT, the state monad operations returnstateT and bindstate depend on
inner monad operations return and bind. With getstateT and putstateT defined in
the obvious way, the transformer satisfies the specification monad-state for state
monads.

context fixes return :: α × σ ⇒ μ and bind :: μ ⇒ (α × σ ⇒ μ) ⇒ μ

definition returnstateT :: α ⇒ (σ, μ) stateT where
returnstateT x = StateT (λs. return (x, s))

definition bindstateT :: (σ, μ) stateT ⇒ (α ⇒ (σ, μ) stateT) ⇒ (σ, μ) stateT where
m >>=stateT f = StateT (λs. run-state f s >>= (λ(x, s′). run-state (f x) s′))

definition getstateT :: (σ ⇒ (σ, μ) stateT) ⇒ (σ, μ) stateT where
getstateT f = StateT (λs. run-state (f s) s)

2 Such environments can be nicely handled by applying a reader monad transformer
on top (Sect. 4).

Effect Polymorphism in Higher-Order Logic (Proof Pearl) 401

definition putstateT :: σ ⇒ (σ, μ) stateT ⇒ (σ, μ) stateT where
putstateT s m = StateT (λ . run-state m s)

lemma monad-state returnstateT bindstateT getstateT putstateT
if monad return bind

The state monad transformer lifts the other effect operations fail, ¢, ask,
tell, alt, and pause according to their specifications. But catch cannot be lifted
through stateT such that catch-get and catch-put from Sect. 2.4 hold. As our
exceptions carry no information, the inner monad cannot pass the state updates
before the failure to the handler.

3.5 Composing Monads with Transformers

Composing the two monad transformers failT and stateT with the monad
prob, we can now instantiate the probabilistic interpreter from Sect. 2.4.
As is well known, the order of composition matters. If we first apply
failT to prob and then stateT (SFP for short), the resulting interpreter
evalSFP E e :: (ν ⇀ int, (int × (ν ⇀ int)) option prob failT) stateT nests the result
state of type ν ⇀ int inside the option type for failures, i.e., fail-
ures do not return a new state. Thus, failures erase state updates,
i.e., putSFP s failSFP = failSFP, and lazy and eager sampling are equivalent
(lazy-eager). Conversely, if we apply failT after stateT to prob (FSP for short),
then evalFSP E e :: (ν ⇀ int, (int option × (ν ⇀ int)) prob) stateT failT and fail-
ures do return a new state as only the result type int sits inside option. In
particular, putSFP s failFSP
= failFSP in general, and lazy and eager sampling
are not equivalent. We will consider the SFP case further in Sect. 4.

3.6 Further Monads and Monad Transformers

Apart from the monad implementations presented so far, our library provides
implementations also for the other types of effects mentioned in Sect. 2.5. In par-
ticular, non-deterministic choice is implemented as a monad transformer based
on finite multisets, which works only for commutative inner monads. Moreover,
we define a reader (readT) and a writer (writerT) monad transformer. The reader
monad transformer differs from stateT only in that no updates are possible. Thus,
(ρ, μ) readT leaves the type of values of the inner monad unchanged, as no new
state must be returned.

datatype (ρ, μ) readT = ReadT (run-read : ρ ⇒ μ)
context fixes return :: α ⇒ μ and bind :: μ ⇒ (α ⇒ μ) ⇒ μ

definition returnreadT :: α ⇒ (ρ, μ) readT where
returnreadT x = ReadT (λ . return x)

definition bindreadT :: (ρ, μ) readT ⇒ (α ⇒ (ρ, μ) readT) ⇒ (ρ, μ) readT where
m >>=readT f = ReadT (λr. run-read m r >>= (λx. run-read (f x) r))

402 A. Lochbihler

definition askreadT :: (ρ ⇒ (ρ, μ) readT) ⇒ (ρ, μ) readT where
askreadT f = ReadT (λr. run-read (f r) r)

definition failreadT :: (μ ⇒ (ρ, μ) readT) where failreadT fail = ReadT (λ . fail)

Resumptions are formalised as a plain monad using the codatatype

codatatype (o, ι, α) resumption = Done α | Pause o (ι ⇒ (o, ι, α) resumption)

Unfortunately, we cannot define resumptions as a monad transformer in HOL
despite the restriction to monomorphic values. The reason is that for a trans-
former with inner monad τ , the second argument of the constructor Pause would
have to be of type ι ⇒ (o, ι, α) resumption τ , i.e., the codatatype would recurse
through the unspecified type constructor τ . This is not supported by Isabelle’s
codatatype package [2] and, in fact, for some choices of τ , e.g., unbounded non-
determinism, the resumption transformer type does not exist in HOL at all.
For the same reason, we cannot have other monad transformers that have simi-
lar recursive implementation types. Therefore, we fail to modulary construct all
combinations of effects. For example, probabilistic resumptions with failures [17]
are out of reach and must still be constructed from scratch.

3.7 Overloading the Monad Operations

When several monad transformers are composed, the monad operations quickly
become large HOL terms as the transformer’s operations take the inner monad’s
as explicit arguments. These large terms must be handled by the inference kernel,
the type checker, the parser, and the pretty-printer, even if locale interpretations
hide them from the user using abbreviations. To improve readability and the pro-
cessing time of Isabelle, our library also defines the operations as single constants
which are overloaded for the different monad implementations using recursion
on types [26]. As overloading does not need these explicit arguments, it thus
avoids the processing times for unification, type checking, and (un)folding of
abbreviations. Yet, Isabelle’s check against cyclic definitions [13] fails to see that
the resulting dependencies must be acyclic (as the inner monad is always a type
argument of the outer monad). So, we moved these overloaded definitions to a
separate file and marked them as unchecked.3 Overloading is just a syntactic
convenience, on which the library and the examples in this paper do not rely.
If users want to use it, they are responsible for not exploiting these unchecked
dependencies.

3 Isabelle’s adhoc-overloading feature, which resolves overloading during type check-
ing, cannot be used either as it does not support recursive resolutions. For example,
resolving return :: α ⇒ α option ident failT takes two steps: first to returnfailT return
and then to returnfailT returnident. The second step fails due to the intricate interleav-
ing of type checking and resolution. Even if this is just an implementation issue,
resolving overloading during type checking prevents definitions that are generic in
the monad, which general overloading supports.

Effect Polymorphism in Higher-Order Logic (Proof Pearl) 403

4 Moving Between Monad Instances

Once all variables have been sampled eagerly, the evaluation of the expression
itself is deterministic. Thus, the actual evaluation need not be done in a monad
as complex as FSP or SFP. It suffices to work in a reader-failure monad with
operations fail and ask, which we obtain by applying the monad transformers
readT and failT to ident (RFI for short). Such simpler monads have the advantage
that reasoning becomes easier as more laws hold. We now explain how the theory
of representation independence [20] can be used to move between different monad
instances by going from SFP to RFI. This ultimately yields a theorem that
characterises evalSFP in terms of evalRFI. So, in general, this approach makes it
possible to switch in the middle of a bigger proof from a complicated monad to
a much simpler one.

Let us first deal with sampling. To go from α prob to β ident, we use a relation
IP(A) between α ident and β prob since relations work better with higher-order
functions than equations. Following Huffman and Kunčar [10], we call such rela-
tions correspondence relations. It is parametrised by a relation A between the
values, which we will use later to express the differences in the values due to the
monad transformers changing the value type of the inner monad. In detail, IP(A)
relates a value Ident x to the one-point distribution dirac y iff A relates x to y.
Then, the monad operations of ident and prob respect this relation. Respectful-
ness is formalised using the function relator A �⇒ B defined by (f, g) ∈ A �⇒ B iff
(x, y) ∈ A implies (f(x), g(y)) ∈ B for all x and y. Then, the monad operations
respecting IP(A) is expressed by the following two conditions:

– (returnident, returnprob) ∈ A �⇒ IP(A) and
– (bindident, bindprob) ∈ IP(A) �⇒ (A �⇒ IP(A)) �⇒ IP(A).

Note the similarity between the relations and the types of the monad opera-
tions, where A and IP take the roles of the type variables for values and of
the monad type constructor, respectively. As the monad transformers failT and
stateT are relationally parametric in the inner monad and eval is parametric in
the monad, we prove the following relation between the evaluators automatically
using Isabelle/HOL’s Transfer prover [10]

(evalSFP lookupSFP e, evalSFI lookupSFI e) ∈ relstateT (relfailT (IP(=))) (4)

where SFI refers to the state-failure-identity composition of monads, (=) is
the identity relation, and relstateT and relfailT are the relators for the datatypes
stateT and failT [2]. Formally, the relators lift relations on the inner monad
to relations on the transformed monad. For example, (m1,m2) ∈ relstateT M
iff (run-state m1 s, run-state m2 s) ∈ M for all s, and (m1,m2) ∈ relfailT M iff
(run-fail m1, run-fail m2) ∈ M . Intuitively, (4) states that in the monads SFP
and SFI, eval behaves the same with respect to states updates and failure and
the results are the same; in particular, the evaluation is deterministic.

In the following, we use the property of a relator rel that if M is
the graph Gr f of a function f , then rel M is the graph of the function

404 A. Lochbihler

map f , where map is the canonical map function for the relator. For example,
mapfailT f = FailT ◦ f ◦ run-fail, so

relfailT (Gr f) = Gr (mapfailT f) (5)

where (x, y) ∈ Gr f iff f x = y. Isabelle’s datatype package automatically proves
these relator-graph identities. The correspondence relation IP satisfies a similar
law: IP(Gr f) = Gr (mapIP f) where mapIP f = dirac ◦ f ◦ run-ident.

Having eliminated probabilities, we next switch from the state monad trans-
former to the reader monad transformer. We again define a correspondence rela-
tion RS(s,M) between readT and stateT. It takes as parameters the environ-
ment s and the correspondence relation M between the inner monads. It relates
the two monadic values m1 and m2 iff M relates the results of running m1

and m2 on s, i.e., (run-read m1 s, run-state m2 s) ∈ M . Again, we show that the
monad operations respect RS(s,M) as formalised below. As readT and stateT
are monad transformers, we assume that the operations of the inner monads
respect M . These assumptions can be expressed using �⇒ since the inner oper-
ations are arguments to readT’s and stateT’s operations. Here, A�×s adapts
the relation A on values to stateT’s change of the value type from α to α × σ;
(x, (y, s′)) ∈ A�×s iff (x, y) ∈ A and s′ = s, i.e., A relates the results and the
state is not updated.

– (returnreadT, returnstateT) ∈ (A�×s �⇒ M) �⇒ A �⇒ RS(s,M),
– (bindreadT, bindstateT) ∈

(M �⇒ (A�×s �⇒ M) �⇒ M) �⇒ RS(s,M) �⇒ (A �⇒ RS(s,M)) �⇒ RS(s,M),
– (askreadT, getstateT) ∈ ({(s, s)} �⇒ RS(s,M)) �⇒ RS(s,M), and
– (failreadT, failstateT) ∈ M �⇒ RS(s,M),

Then, by representation independence, the Transfer package automatically
proves the following relation between evalRFI and evalSFI, where lookupRFI uses
askreadT instead of getstateT, and relident and reloption are the relators for the
datatypes ident and option.

(evalRFI lookupRFI e, evalSFI lookupSFI e) ∈ RS(s, relfailT (relident (reloption (=�×s))))

This says that running eval in RFI and SFI computes the same result, has the
same behaviour with respect to state queries and failures, and does not update
the state.

Actually, we can go from SFP directly to RFI, without the monad SFI as a
stepping stone, thanks to IP taking a relation on the value types:

(evalRFI lookupRFI e, evalSFP lookupSFP e) ∈ RS(s, relfailT (IP(reloption (=�×s))))
(6)

As =�×s is the graph of λa. (a, s), using only the graph properties like (5) of
IP and the relators, and using RS’s definition, we derive the characterisation of
evalSFP from (6):

Effect Polymorphism in Higher-Order Logic (Proof Pearl) 405

run-state (evalSFP lookupSFP e) s =
mapfailT (mapIP (mapoption (λa. (a, s)))) (run-read (evalRFI lookupRFI e) s)

where mapfailT and mapoption are the canonical map functions for failT and option.
Thus, instead of reasoning about evalSFP in SFP, we can conduct our proofs in
the simpler monad RFI. For example, as RFI is commutative, subexpressions
can be evaluated in any order. Thus, we get the following identity expressing the
reversed evaluation order (and a similar one for �).4

evalRFI E (e1 ⊕ e2) = evalRFI E e2 >>=RFI (λj. evalRFI E e1 >>=RFI (λi. returnRFI (i + j)))

In summary, we have demonstrated a generic approach to switch from a
complicated monad to a much simpler one. Conceptually, the correspondence
relations IP and RS just embed one monad or monad transformer (ident and
readT) in a richer one (prob and stateT). It is precisely this embedding that ulti-
mately yields the map functions in the characterisation. In this functional view,
the respectfulness conditions express that the embedding is a monad homomor-
phism. Yet, we use relations for the embedding instead of functions because only
relations work for higher-order operations in a compositional way.

The reader may wonder why we go through all the trouble of defining cor-
respondence relations and showing respectfulness and parametricity. Indeed, in
this example, it would probably have been easier to simply perform an induction
over expressions and prove the equation directly. The advantage of our approach
is that it does not rely on the concrete definition of eval. It suffices to know that
eval is parametric in the monad, which Isabelle derives automatically from the
definition. This automated approach therefore scales to arbitrarily complicated
monadic functions whereas induction proofs do not. Moreover, note that the cor-
respondence relations and respectfulness lemmas only depend on the monads.
They can therefore be reused for other monadic functions.

5 Related Work

Huffman et al. [9,11] formalise the concept of value-polymorphic monads and
several monad transformers in Isabelle/HOLCF, the domain theory library of
Isabelle/HOL. They circumvent HOL’s type system restrictions by projecting
everything into HOLCF’s universal domain of computable values. That is, they
trade in HOL’s set-theoretic model with its simple reasoning rules for a domain-
theoretic model with ubiquituous ⊥ values and strictness side conditions. This
way, they can define a resumption monad transformer (for computable continua-
tions). Being tied to domain theory, their library cannot be used to model effects
of plain HOL functions, which is our goal, the strictness assumptions make their
laws and proofs more complicated than ours, and functions defined with HOLCF

4 Following the “as abstract as possible” spirit of this paper, we actually proved the
identities in the locale of commutative monads and showed that readT is commuta-
tive if its inner monad is.

406 A. Lochbihler

do not work with Isabelle’s code generator. Still, their idea of projecting every-
thing into a universal type could also be adapted to plain HOL, albeit only for a
restricted class of monads; achieving a similar level of automation and modular-
ity would require a lot more effort than our approach, which uses only existing
features of Isabelle.

Gibbons and Hinze [6] axiomatize monads and effects using Haskell-style type
constructor classes and use the algebraic specification to prove identities between
Haskell programs, similar to our abstract locales in Sect. 2. Their specification of
state effects omits get-const, but they later assume that it holds [6, Sect. 10.2].
Being value-polymorphic, their operations do not need our continuations and
the laws are therefore simpler. In particular, no new assumptions are typically
needed when monad specifications are combined. In contrast, our continuations
sometimes require interaction assumptions like sample-get. Gibbons and Hinze
only consider reasoning in the abstract setting and do not discuss the transition
to concrete implementations and the relations between implementations. Also,
they do not prove that monad implementations satisfy their specifications. Later,
Jeuring et al. [12] showed that the implementations in Haskell do not satisfy them
because of strictness issues similar to the ones in Huffman’s work.

Lobo Vesga [16] formalised some of Gibbons’ and Hinze’s examples in Agda.
She does not need assumptions for the continuations like we do as value-
polymorphic monads can be directly expressed in Agda. Like Gibbons and Hinze,
she does not study the connection between specifications and implementations.
Thanks to the good proof automation in Isabelle, our mechanised proofs are
much shorter than hers, which are as detailed as Gibbons’ and Hinze’s pen-and-
paper proofs.

Lochbihler and Schneider [19] implemented support for equational reasoning
about applicative functors, which are more general than monads. They focus
on lifting identities on values to a concrete applicative functor. Reasoning with
abstract applicative functors is not supported. Like monads, the concept of an
applicative functor cannot be expressed as a predicate in HOL. Moreover, the
applicative operations do not admit value monomorphisation like monads do, as
the type of contains applications of the functor type constructor τ to α ⇒ β, α,
and β. So, monads seem to be the right choice, even though we could have defined
the interpreter eval applicatively (but not, e.g., memoisation).

6 Conclusion

We have presented a library of abstract monadic effect specifications and their
implementations as monads and monad transformers in Isabelle/HOL. We illus-
trated its usage and the elegance of reasoning using a monadic interpreter. The
type system of HOL forced us to restrict the monads to monomorphic values.
Monomorphic values work well when the reasoning involves only a few monadic
functions like in our running example. In larger projects, this restriction can
become a limiting factor. Nevertheless, in our project on formalising computa-

Effect Polymorphism in Higher-Order Logic (Proof Pearl) 407

tional soundness results,5 we successfully formalised and reasoned about several
complicated serialisers and parsers for symbolic messages of security protocols.
In that work, reasoning abstractly about effects and being able to move from
one monad instance to another were crucial. More concretely, the serialiser con-
verts symbolic protocol messages into bitstrings. The challenges were similar to
those of our interpreter eval. Serialisation may fail when the symbolic message
is not well-formed, similar to division by zero in the interpreter. When serial-
isation encounters a new nonce, it randomly samples a fresh bitstring, which
must also be used for serialising further occurrences of the same nonce. We for-
malised this similar to the memoisation of variable evaluation in the interpreter.
A further challenge not present in the interpreter was that the serialiser must
also record the serialisation of all subexpressions such that the parser can map
bitstrings generated by the serialiser back to symbolic messages without calling
a decryption oracle or inverting a cryptographic hash function. The construction
relied on the invariant that the recorded values were indeed generated by the
serialiser, but such an invariant cannot be expressed easily for a probabilistic,
stateful function. We therefore formalised also the switch from lazy to eager
sampling for the serialiser (lazy sampling was needed to push the randomisation
of encryptions into an encryption oracle) and the switch to a read-only version
without recording of results using techniques similar to our example in Sect. 4.

Instead of specifying effects abstractly and composing them using monad
transformers, we obviously could have formalised everything in a sufficiently
rich monad that covers all the effects of interest, e.g., continuations. Then, there
would be no need for abstract specifications as we could work directly with a
concrete monad as usual, where our reasoning on the abstract level could be mim-
icked. But we would deprive ourselves of the option of going to a specific monad
that covers precisely the effects needed. Such specialisation has two advantages:
First, as shown in Sect. 4, simpler monads satisfy more laws, e.g., commutativ-
ity, which make the proofs easier. Second, concrete monads can have dedicated
setups for reasoning and proof automation that are not available in the abstract
setting. Our library achieves the best of both worlds. We can reason abstractly
and thus achieve generality. When this gets too cumbersome or impossible, we
can switch to a concrete monad, continuing to use the abstract properties already
proven.

In the long run, we can imagine a definitional package for monads and monad
transformers that composes concrete value-polymorphic monad transformers.
Similar to how Isabelle’s datatype package composes bounded natural functors
[2], such a package must perform the construction and the derivation of all laws
afresh for every concrete combination of monads, as value-polymorphic monads
lie beyond HOL’s expressiveness. When combined with a reinterpretation frame-
work for theories, we could model effects and reason about them abstractly and
concretely without the restriction to monomorphic values.

5 http://www.infsec.ethz.ch/research/projects/FCSPI.html.

http://www.infsec.ethz.ch/research/projects/FCSPI.html

408 A. Lochbihler

Acknowledgements. We thank Dmitriy Traytel and the anonymous reviewers for
suggesting many improvements to the presentation. This work is supported by the Swiss
National Science Foundation grant 153217 “Formalising Computational Soundness for
Protocol Implementations”.

References

1. Ballarin, C.: Locales: a module system for mathematical theories. J. Automat.
Reason. 52(2), 123–153 (2014)

2. Blanchette, J.C., Hölzl, J., Lochbihler, A., Panny, L., Popescu, A., Traytel,
D.: Truly modular (co)datatypes for Isabelle/HOL. In: Klein, G., Gamboa,
R. (eds.) ITP 2014. LNCS, vol. 8558, pp. 93–110. Springer, Cham (2014).
doi:10.1007/978-3-319-08970-6 7

3. Bulwahn, L., Krauss, A., Haftmann, F., Erkök, L., Matthews, J.: Imperative func-
tional programming with Isabelle/HOL. In: Ait Mohamed, O., Muñoz, C., Tahar,
S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 134–149. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-71067-7 14

4. Eberl, M., Hölzl, J., Nipkow, T.: A verified compiler for probability density func-
tions. In: Vitek, J. (ed.) ESOP 2015. LNCS, vol. 9032, pp. 80–104. Springer, Hei-
delberg (2015). doi:10.1007/978-3-662-46669-8 4

5. Erwig, M., Kollmansberger, S.: Functional pearls: probabilistic functional program-
ming in Haskell. J. Funct. Program. 16, 21–34 (2006)

6. Gibbons, J., Hinze, R.: Just do it: simple monadic equational reasoning. In: ICFP
2011, pp. 2–14. ACM (2011)

7. Hölzl, J., Lochbihler, A., Traytel, D.: A formalized hierarchy of probabilistic system
types. In: Urban, C., Zhang, X. (eds.) ITP 2015. LNCS, vol. 9236, pp. 203–220.
Springer, Cham (2015). doi:10.1007/978-3-319-22102-1 13

8. Homeier, P.V.: The HOL-Omega logic. In: Berghofer, S., Nipkow, T., Urban, C.,
Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 244–259. Springer, Heidel-
berg (2009). doi:10.1007/978-3-642-03359-9 18

9. Huffman, B.: Formal verification of monad transformers. In: ICFP 2012, pp. 15–16.
ACM (2012)

10. Huffman, B., Kunčar, O.: Lifting and Transfer: a modular design for quotients in
Isabelle/HOL. In: Gonthier, G., Norrish, M. (eds.) CPP 2013. LNCS, vol. 8307,
pp. 131–146. Springer, Cham (2013). doi:10.1007/978-3-319-03545-1 9

11. Huffman, B., Matthews, J., White, P.: Axiomatic constructor classes in
Isabelle/HOLCF. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603,
pp. 147–162. Springer, Heidelberg (2005). doi:10.1007/11541868 10

12. Jeuring, J., Jansson, P., Amaral, C.: Testing type class laws. In: Haskell 2012, pp.
49–60. ACM (2012)

13. Kunčar, O.: Correctness of Isabelle’s cyclicity checker: implementability of over-
loading in proof assistants. In: CPP 2015, pp. 85–94. ACM (2015)

14. Lammich, P., Tuerk, T.: Applying data refinement for monadic programs to
Hopcroft’s algorithm. In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406,
pp. 166–182. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32347-8 12

15. Liang, S., Hudak, P., Jones, M.: Monad transformers and modular interpreters. In:
POPL 1995, pp. 333–343. ACM (1995)

16. Lobo Vesga, E.: Hacia la formalización del razonamiento ecuacional sobre mónadas.
Technical report, Universidad EAFIT (2013). http://hdl.handle.net/10784/4554

http://dx.doi.org/10.1007/978-3-319-08970-6_7
http://dx.doi.org/10.1007/978-3-540-71067-7_14
http://dx.doi.org/10.1007/978-3-662-46669-8_4
http://dx.doi.org/10.1007/978-3-319-22102-1_13
http://dx.doi.org/10.1007/978-3-642-03359-9_18
http://dx.doi.org/10.1007/978-3-319-03545-1_9
http://dx.doi.org/10.1007/11541868_10
http://dx.doi.org/10.1007/978-3-642-32347-8_12
http://hdl.handle.net/10784/4554

Effect Polymorphism in Higher-Order Logic (Proof Pearl) 409

17. Lochbihler, A.: Probabilistic functions and cryptographic oracles in higher order
logic. In: Thiemann, P. (ed.) ESOP 2016. LNCS, vol. 9632, pp. 503–531. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-49498-1 20

18. Lochbihler, A.: Effect polymorphism in higher-order logic. Archive of Formal Proofs
(2017). Formal proof development. http://isa-afp.org/entries/Monomorphic
Monad.shtml

19. Lochbihler, A., Schneider, J.: Equational reasoning with applicative functors. In:
Blanchette, J.C., Merz, S. (eds.) ITP 2016. LNCS, vol. 9807, pp. 252–273. Springer,
Cham (2016). doi:10.1007/978-3-319-43144-4 16

20. Mitchell, J.C.: Representation independence and data abstraction. In: POPL 1986,
pp. 263–276. ACM (1986)

21. Moggi, E.: An abstract view of programming languages. Technical report ECS-
LFCS-90-113, LFCS, School of Informatics, University of Edinburgh (1990)

22. Nipkow, T., Klein, G.: Concrete Semantics. Springer, Cham (2014).
doi:10.1007/978-3-319-10542-0

23. Nipkow, T., Paulson, L.C.: Proof pearl: defining functions over finite sets. In: Hurd,
J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 385–396. Springer,
Heidelberg (2005). doi:10.1007/11541868 25

24. Ramsey, N., Pfeffer, A.: Stochastic lambda calculus and monads of probability
distributions. In: POPL 2002, pp. 154–165. ACM (2002)

25. Wadler, P.: Monads for functional programming. In: Jeuring, J., Meijer, E.
(eds.) AFP 1995. LNCS, vol. 925, pp. 24–52. Springer, Heidelberg (1995).
doi:10.1007/3-540-59451-5 2

26. Wenzel, M.: Type classes and overloading in higher-order logic. In: Gunter, E.L.,
Felty, A. (eds.) TPHOLs 1997. LNCS, vol. 1275, pp. 307–322. Springer, Heidelberg
(1997). doi:10.1007/BFb0028402

http://dx.doi.org/10.1007/978-3-662-49498-1_20
http://isa-afp.org/entries/Monomorphic_Monad.shtml
http://isa-afp.org/entries/Monomorphic_Monad.shtml
http://dx.doi.org/10.1007/978-3-319-43144-4_16
http://dx.doi.org/10.1007/978-3-319-10542-0
http://dx.doi.org/10.1007/11541868_25
http://dx.doi.org/10.1007/3-540-59451-5_2
http://dx.doi.org/10.1007/BFb0028402

	Effect Polymorphism in Higher-Order Logic (Proof Pearl)
	1 Introduction
	2 Abstract Value-Monomorphic Monads in HOL
	2.1 Failure and Exception
	2.2 State
	2.3 Probabilistic Choice
	2.4 Combining Abstract Monads
	2.5 Further Abstract Monads

	3 Implementations of Monads and Monad Transformers
	3.1 The Identity Monad
	3.2 The Probability Monad
	3.3 The Failure and Exception Monad Transformer
	3.4 The State Monad Transformer
	3.5 Composing Monads with Transformers
	3.6 Further Monads and Monad Transformers
	3.7 Overloading the Monad Operations

	4 Moving Between Monad Instances
	5 Related Work
	6 Conclusion
	References

