
Deniable Upload and Download via Passive Participation

David Sommer
ETH Zürich

Aritra Dhar
ETH Zürich

Esfandiar Mohammadi
ETH Zürich

Daniel Ronzani
Ronzani Schlauri Attorneys

Srdjan Čapkun
ETH Zürich

Abstract

Downloading or uploading controversial information can put
users at risk, making them hesitant to access or share such
information. While anonymous communication networks
(ACNs) are designed to hide communication meta-data, al-
ready connecting to an ACN can raise suspicion. In order
to enable plausible deniability while providing or accessing
controversial information, we design CoverUp: a system that
enables users to asynchronously upload and download data.
The key idea is to involve visitors from a collaborating web-
site. This website serves a JavaScript snippet, which, after
user’s consent produces cover traffic for the controversial
site / content. This cover traffic is indistinguishable from the
traffic of participants interested in the controversial content;
hence, they can deny that they actually up- or downloaded
any data.

CoverUp provides a feed-receiver that achieves a down-
link rate of 10 to 50 Kbit/s. The indistinguishability guaran-
tee of the feed-receiver holds against strong global network-
level attackers who control everything except for the user’s
machine. We extend CoverUp to a full upload and down-
load system with a rate of 10 up to 50 Kbit/s. In this case,
we additionally need the integrity of the JavaScript snippet,
for which we introduce a trusted party. The analysis of our
prototype shows a very small timing leakage, even after half
a year of continual observation. Finally, as passive partici-
pation raises ethical and legal concerns for the collaborating
websites and the visitors of the collaborating website, we dis-
cuss these concerns and describe how they can be addressed.

1 Introduction

Access to and distribution of sensitive and controversial in-
formation often comes at risk for users. Due to the risk of
being observed, users might be reluctant to download or up-
load certain content. Even if the content itself is end-to-end
encrypted, the fact that the user accessed a particular domain
or used an anonymity network might already indicate his in-

terest in the particular content. Since Edward Snowden’s rev-
elations, we know that surveillance is mostly based on meta-
data, such as source and destination IP, timestamps, and the
size of the data [54].

Solutions like anonymous communication networks
(ACN) are designed to hide such meta-data. Despite that,
even the strongest ACNs in literature [68, 66, 40, 60] do
not protect against global network attackers and do not hide
users’ participation in the ACN, except for the brute-force
method of continuously producing artificial traffic [30]. This
participation in an ACN alone can appear suspicious. Par-
ticipation time can be used in long-term statistical disclo-
sure attacks to re-identify the user, thereby downgrading the
anonymity properties of an ACN [43, 44].

In this paper, we aim to solve this issue in the case of asyn-
chronous upload and download and therefore address the
following problem: how to allow users to safely download
and upload content without the fear of their intentions be-
ing identified. This problem is different from the more gen-
eral problem of anonymous communication. Namely, con-
tent upload and download is asynchronous, typically allows
for high latency, and is therefore much less vulnerable to tim-
ing correlations. Additionally, we aim to achieve a stronger
anonymity property: we require that the participation (time)
of users is protected.

Our approach to solving this problem is to draw in visi-
tors (Passive Participants) of highly accessed websites and
trigger them via JavaScript to create cover traffic to the
controversial content server. Additionally, we ensure that
the passive participants’ traffic is indistinguishable from ac-
tive participants’, who are genuinely interested in download-
ing/uploading the content, thereby enabling deniable com-
munication.

Finally, prior work [41, 62] neglected vital implementa-
tion details, such as system timing leakage. They left, in
particular, three major challenges unsolved. (i) How to con-
struct a downlink connection (using the browser) that relays
data to an external program with minimal timing leakage.
(ii) How to relay data from an external program to the uplink

1

connection (using the browser) with minimal timing leak-
age. (iii) How long can such a system be safely used before
the timing leakage renders active participants clearly distin-
guishable?

Contributions. We address these three challenges.
• We design a deniable uni-directional channel to a broad-

cast server, CU:Feed, that can deliver data to an external
program, called COVERUP-Tool, for highly anonymity-
sensitive users (Challenge (i)) with a throughput of 10
Kbit/s and up to 50 Kbit/s. Such message feeds are suited
for the transmission of information that a user does not
want to be caught reading (e.g., sensitive medical infor-
mation, leaked documents, or an e-mail list of an incrimi-
nating web service). We protect passive participants from
potentially incriminating information by enforcing that a
participant’s machine never contains enough data chunks
to reconstruct any incriminating information. CU:Feed
achieves deniability against a global network-level attack-
ers that controls all parties except for the user’ machine.

• We extend CU:Feed to a deniable bi-directional chan-
nel CU:Transfer, which enables selective data download
and data upload to a content server. Active users in-
stall for CU:Transfer a browser extension that replaces
dummy traffic with upstream data and communicates
with COVERUP-Tool (Challenge (ii)). CU:Transfer as-
sumes an honest-but-curious party (the COVERUP server)
that serves the active and passive participants’ JavaScript
code. CU:Transfer achieves deniability against a global
network-level attacker that controls all parties except for
the user’s machine, the COVERUP server, and the Trans-
fer server.

• For both channels, we implemented a prototype that care-
fully minimize the timing leakage (Challenge (iii)). The
prototype includes an entry server, the COVERUP server
that serves the COVERUP JavaScript client code. For ac-
tive participants, we additionally provide a browser exten-
sion and an external tool that enable participants to interact
with the COVERUP system. The COVERUP downlink and
uplink rate of our prototype is between 10 and 50 Kbit/s,
depending on the bandwidth overhead, and the expected
latency is 60 seconds.

• We experimentally evaluate the timing-leakage of our pro-
totypes by measuring the differences between active users
and cover-traffic generating passive users in the network
timing-delays (Challenge (iii)). We show that their usage
patterns are hard to distinguish, and for half a year of con-
tinual observation1 with a latency of 60s we are able to
bound the attacker’s advantage of distinguishing these us-
age patterns with 2 ·10−3 , i.e., the chance of successfully
deciding whether a user is active or passive is 50.001%.2

1We assume a usage pattern of at most 50 times a day, and at most 5
hours per day in total.

2This advantage is very low, since (in contrast to some usages of cryp-
tographic schemes) COVERUP is a system that has limited exposure. Thus,

com com com

surf surf surf

com com com
Leakage w/o 
Passive Part.

Passive session

Active session

Leakage
time

Figure 1: Passive participation can hide the participation time for
a file-sharing protocol. The x-axis is the time, and the y-axis show
whether at that time surfing or protocol-communicating behavior is
expected. Only communicating activity which is not covered by the
expected surfing behavior creates leakage. Active participants that
produce protocol-communication only produce leakage during time
where they would normally not surf.

• We discuss ethical and selected legal questions w.r.t. the
entry server and the passive participants.

2 Problem description

The goal of this paper is to enable users to safely up- and
download content without the fear of their intentions being
identified. The concrete problem is to enable users to hide
their up- and download activities among traffic that is pro-
duced by other normal web users. This problem is different
from the more general problem of anonymous communica-
tion, as our goal is to utilize the traffic of normal web surfers.

2.1 Passive participation
One approach for utilizing the traffic of normal web surfers
of highly accessed websites (the entry server) is passive par-
ticipation: compel web surfers (passive participants) to cre-
ate cover traffic to the content server in a non-invasive man-
ner and such that their traffic is indistinguishable from active
participants (which are genuinely interested in download-
ing/uploading the content). As a result, active participants
can deny that they up- or downloaded any data during their
normal surfing time on the entry server websites, protecting
their participation time in the file-sharing protocol.

The degree of plausible deniability depends on whether
the active participants manage to let their surfing behavior
towards the entry server unchanged. For users that are will-
ing to make a paradigm shift, COVERUP offers strong guar-
antees. Instead of activating COVERUP whenever a deni-
able up- or download channel is needed, COVERUP gives
the highest degree of privacy if users let it run in the back-
ground. For asynchronous up- and downloads, COVERUP
can just up- and download opportunistically, whenever an
active participant is anyway visiting the entry server. More-
over, the wider COVERUP is deployed, the lower is the need

an attacker cannot get arbitrarily many samples to amplify his or her chance
to guess correctly to a clear decision.

2

of a user to adapt its behavior to gain more throughput.
Even with imperfect behavior, this approach provides par-

tial cover and delays a potential detection. First, consider
the case where the browsing behavior of the active partici-
pants towards the entry server does not change. There, using
COVERUP can provide deniability for the act of utilization.
In contrast, a slightly altered user behavior leaks its differ-
ence to the unaltered behavior. However, this difference is
smaller than the full leakage without COVERUP, as connect-
ing directly to a service already reveals intention. Figure 1
illustrates this property by focusing on the participation time.

2.2 Challenges

We consider an attacker that controls the network but the
user’s machine and the Transfer server (the file server) are
honest, and a dedicated party (the COVERUP server) that
serves the protocol code for active and passive participants
as a JavaScript snippet is honest but curious. Even in the
presence of such an honest-but-curious COVERUP server and
an honest Transfer server, the browser’s processing time of
active and passive participants can potentially leak informa-
tion. This problem is amplified, since a network-level at-
tacker can change the TCP flag for timestamps and compel
the victim’s operating system to add OS-level timestamps to
the TCP headers [25]; hence, there is no hope of network-
noise blurring the timing leakage. This leads us to three ma-
jor challenges that we study in this work. (i) How to con-
struct a deniable downlink connection that relays data to an
external program with minimal timing leakage? (ii) How
to relay data from an external program to a deniable uplink
connection with minimal timing leakage. (iii) How long can
such a system be safely used before the timing leakage ren-
ders active participants clearly distinguishable?

2.3 Non-goals

In the problem area of passive participation, two challenges
remain that are out of scope of this work.

Behavior-changes towards the entry server. The usage
of COVERUP may unconsciously influence the behavior of
active participants, e.g. if active users spend more time on a
specific entry server in order to use COVERUP. We believe,
however, that these behavior changes do not cause a large
amount of leakage as COVERUP is meant for asynchronous
up- and download of files; hence, it is less prone to timing
correlations (e.g., intersection attacks) than synchronous ap-
plications, such as messaging. As a consequence, the only
source of leakage would be users that keep the tabs longer
open in the background with COVERUP. Recent studies
show that many users keep tabs open in the background any-
way [53]; hence, COVERUP would not cause significant pri-
vacy leakage for these users. Properly understanding these

entry server

.

.

.

passive
participants

Feed Server

CoverUp server

active
participants

(3) connects
clients via JS to

(2) triggers clients
to connect to

(4) sends
messages to

CoverUp Tool

(5) extract feed

browser

(1) connects to

feed feed

feed

CoverUp Tool

(5) extract feed

browser

feed

Figure 2: Main components of COVERUP for CU:Feed. All visitors
of an entry server are redirected to the COVERUP server, triggered
to send (dummy) requests to the Feed server, and then receive an
encoded piece of a uni-directional message feed (4), which is ex-
tracted (5) by active participants via the COVERUP-Tool.

behavior changes requires a thorough user study, which is
out of scope of this work.

Browsing time of passive participants. Passive par-
ticipants potentially reveal their browsing behavior to the
COVERUP infrastructure, as a malicious server can read
HTTP header’s referrer field. While this leakage exists, we
would like to put it into perspective. Many popular websites
already leak this information to other services, such as adver-
tisement networks or external analytic tools, such as Google
Analytics. A deeper analysis of this leakage is out of scope.

3 COVERUP

Passive participation raises the challenge of utilizing passive
participants to produce cover traffic with unintrusive tech-
nologies while asking for not more than an informed con-
sent3 and while keeping the traffic of active and passive par-
ticipants indistinguishable. This section details how we over-
come these technical challenges and presents the system de-
sign of COVERUP. We split COVERUP into two parts based
on their features: a uni-directional broadcast-receiver chan-
nel and a fully bi-directional channel. We call them CU:Feed
and CU:Transfer respectively.

3We discuss the challenges of an informed consent in Section 6.

3

3.1 CU:Feed
The uni-directional channel CU:Feed implements a deni-
able feed-receiver for a feed that is broadcast by a dedicated
Feed server. CU:Feed triggers visitors (the passive partici-
pants) of cooperating websites (the entry server) to produce
cover traffic, after they give an informed consent. CU:Feed
leverages unintrusive widely-used JavaScript functionality of
browsers. For active participants, which are interested in
the feed, CU:Feed performs the same steps, but we addition-
ally provide the external application COVERUP-Tool. With
this application, the feed’s content can be extracted from the
browser’s cache. As active users are indistinguishable from
passive ones for all involved parties except their own ma-
chine, they cannot chose the feed they are listen to. The entry
server could be a university, a knowledge, or a news site.

As illustrated in Figure 2, CU:Feed performs as follows:
(1) The user connects to the entry server. The entry server

embeds in its HTML-code an iframe to a dedicated
server (the COVERUP server) from a different domain.

(2) The COVERUP server responds with a JS code snippet.
(3) This JS snippet triggers the browser of the entry server’s

visitors to send requests to the Feed server.
(4) The Feed server responds with CU:Feed packets. This

effectively produces cover traffic to and from the Feed
server. The COVERUP JS snippet then stores the most
recent CU:Feed packet in the browser’s localStorage
cache, thereby overwriting the old one.

The passive participants of COVERUP stop here. The rest of
the protocol is only executed by the active participants.
(5) An active participant uses a previously obtained ex-

ternal application, called COVERUP-Tool4, to extracts
these CU:Feed packets from the browser’s cache, which
is stored on the disk.

CU:Feed executes the same steps for active and passive
participants except that active participants additionally in-
stall COVERUP-Tool on their computer to extract the feed.
This makes the active and the passive participants indistin-
guishable to a network level adversary who does not compro-
mise a user’s system. As the CU:Feed has no strict latency
requirements, the browser behavior of active participants can
be kept exactly the same, thus avoiding timing leakage.

With regard to the privacy of participants, the JS snippet
from the COVERUP server is in an isolated context and thus
can not learn anything from other contexts (including the
page the iframe is embeeded in) due to the SAME-ORIGIN-
POLICY [8]. Hence, the COVERUP server can only learn
when a participant visited the entry server, by the requests.

The content of the Feed could be controversial. To deflect
potential legal harm to the passive participants, we crypto-

4COVERUP-Tool could be obtained off-the-record or as part of the
CU:Feed. There, a small program including explanation could be distributed
in clear text and without any encoding which could be extracted from the
cache manually. This program assembles the full COVERUP-Tool delivered
by the encoded feed.

graphically protect them from accidentally storing meaning-
ful parts of the CU:Feed on their disc by utilizing an ALL-
OR-NOTHING SCHEME [61] and only storing one CU:Feed
packet in their localStorage. Without actively trying to,
passive participants do not have sufficient packets collected
to potentially reconstruct any content of the feed.

After applying the All-or-Nothing protection, we use
error-correcting FOUNTAIN CODE (see Section 4.1) on the
protected feed content. This splits the content in many pack-
ets and enables COVERUP-Tool to assemble these CU:Feed
packets in an arbitrary order and with potentially missing
packets, as the feed content might be too big for a single re-
quest. Thereby, the Feed server does not need to know which
packet has reached a user and in which order. As there is no
difference in feed packets for an active and passive partici-
pant, CU:Feed does not require TLS. The authenticity of the
feed can be achieved by signing the content, assuming a PKI.

Trust assumptions and attacker capabilities. The
CU:Feed is resistant against a global network-level active
attacker that controls all parts of the system except the ac-
tive participant’s hardware, operating system, and its run-
ning applications, as the only difference between active and
passive participants is COVERUP-Tool that reads browser’s
cache (localStorage). This attacker is active, so he can
modify, drop or delay any number of messages, which in-
cludes the creation of an arbitrary number of participants –
passive or active as individual participants are independent
of each other. As we focus on guaranteed anonymity and
not on integrity, COVERUP is not censorship resistant as it
cannot protect from denial of service.

3.2 CU:Transfer

We extend CU:Feed to CU:Transfer, which enables user to
upload content to and download content from a file server
(Transfer server). Active CU:Transfer participants have to
additionally install the COVERUP browser extension that es-
tablishes a channel to the external COVERUP-Tool, which
can be used to upload and download content.

The protocol of CU:Transfer is almost the same as
CU:Feed. While passive participants only transmit dummy
and receive CU:Feed messages, active participants of
CU:Transfer also transmit dummy messages unless they
need to transmit content (Figure 3, Step 1). In those cases,
they use native messaging to connect from the COVERUP-
Tool to the browser extension (Step 2). The browser exten-
sion then replaces a CU:Feed request with a real message
content (Step 3). All messages (Step 4) are encrypted by
TLS, are of the same size, and are transmitted at regular time
intervals. Hence, messages of passive participants are indis-
tinguishable from messages of active participants for a global
network-level adversary. Upon receiving the encrypted mes-
sage (Step 5), the browser extension records it (Step 6), and
sends it via native messaging (Step 7) to the COVERUP-Tool

4

Transfer
CoverUp Tool

response8

local
storag

e

request1

7
3 6

5

4

www

Extension

Extensio
n

Browser

active
participant

JavaScript

2

feed

feed

passive
participants

Native
Messaging

and Feed Server

Figure 3: CU:Transfer in combination with CU:Feed. Once the
JS snippet has been received, all participants request CU:Feed
packets. An active CU:Transfer participant can use the exten-
sion to replace these requests to the Transfer server with custom
requests. To render the traffic from passive and active users in-
distinguishable, we use TLS encryption at step 4 and 5, and at
all connections by passive participants - in contrast to CU:Feed.
For CU:Transfer the dummy messages do not need to contain
feed content; they can also purely contain garbage.

which decrypts the content (Step 8).
As a result, both active and passive participants constantly

send requests to the Transfer server, and the Transfer server
responds with a constant-size data chunk; in particular, larger
files are sent in smaller chunks. In general, the Transfer
server does not need to be a centralized entity. Traffic sharing
solutions (content distribution networks) could be used.

CU:Transfer trust assumptions. CU:Transfer is resis-
tant against global network-level attacker that control all
parts of the system except for the active participant’s ma-
chine, the COVERUP server, and the Transfer server. The
COVERUP server has to be trusted because CU:Transfer re-
lies on the integrity of the JS snippet; otherwise an attacker
can inject malicious JS code that can detect active partici-
pants (e.g., by testing for the existence of the extension5).
To enable the browser extension to check the integrity of the
JavaScript snippet with minimal timing leakage, we trust the
COVERUP server to be honest-but-curious for CU:Transfer
and the browser extension simply checks whether the origin
of the JavaScript code snippet is as expected. If the check
fails, the browser extension does not hijack any packets.6

We trust the Transfer server as hiding access pattern is a
non-trivial problem for which current solutions either require
prohibitively high communication complexity or are unsuit-
able in a bandwidth limited multi-user setting [30, 64].

3.3 Timing leakage

In CU:Feed active participants need to run COVERUP-Tool
to extract information from the browser. While this ap-
plication is external to the browser and does not directly
interact with it, they share system-wide computation re-
sources, which influences the browser’s computation time.
In CU:Transfer, the client additionally installs a browser ex-
tension and hence directly influences the browser’s computa-
tion time. In both cases, the timing pattern of the issued web

5Modern browser claim to prevent any page-loaded JavaScript from
checking for installed WebExtensions unless the extension wants to reveal
itself. Specifically, any content-scripts run undetectable by page-loaded JS
in an isolated context [4] and any access to resources of an extension must
be allowed explicitly by the extension [19].

6Trusting the COVERUP server can be circumvented by checking the
integrity of the JavaScript code byte for byte. This would eliminate any
costs associated with running such an honest-but-curious COVERUP server,
but the timing leakage by such a solution would be significantly higher.

requests is influenced (in the order of milliseconds) and this
is noticeable by a network-level attacker. While CU:Feed
causes minor timing leakages, CU:Transfer causes signifi-
cantly more timing leakage.

This timing leakage cannot be countered by introducing
deterministic delays, as a JavaScript program cannot mea-
sure the sending processing time of the systems outside of
its context. For the same reason, it cannot precisely enforce
a delay. Therefore, we introduce random delays and show
in Section 5 that these random delays significantly reduce
the timing leakage. To limit the amplification of the tim-
ing leakage, we additionally limit the number of requests for
which the browser extension (of an active participant) is ac-
tive. This limits the risk of malicious entry servers triggering
excessive amounts of page-loads, which would enable an at-
tacker to dramatically increase the number of observations
and in turn increase the timing leakage.

Figure 4 illustrates all potential observations of a network-
layer attacker and the timeline of how messages are sent,
received, processed in the browser, and when random de-
lays (i.e., noise) are added. The system delay si in this fig-
ure refers to the system’s computation time (including delays
caused by the OS, the browser, and the network card). Any
computation – and for CU:Transfer the communication with
the extension – takes place in ci with minimal interference.

In the rest of the paper, we concentrate on two time mea-
surements that an attacker can perform: i) Loading mea-
surements denote the time between the reception of the
JavaScript snippet from the COVERUP server and the first
outgoing request to the Feed/Transfer server, and ii) Pe-
riodic measurements denote the time between subsequent
COVERUP requests to the Feed/Transfer server. For the
CU:Transfer case, Figure 5 shows distributions of timing de-
lays of active and passive participants for Loading and for
Periodic measurements, without adding delays. It illustrates
the importance of adding random delays; without these de-
lays, already the naked eye can distinguish the distributions.

4 Prototype & performance

This section describes the COVERUP prototype implemen-
tation and presents its performance. We stress that main
purpose of the prototype is the timing leakage evaluation.
Hence, our implementation only contains a dummy feed

5

𝑐2𝑐1𝑐0

Loading Periodic Periodic

𝑢0

JS execution start 𝑡0 𝑡1 𝑡2 𝑡3

𝑠1 𝑠2 𝑠3𝑢1 𝑢2

Transfer

CoverUp Server

iframe received

time
𝑠0

server

Figure 4: The timeline of an active or passive participant in the browser, starting at a request
to the COVERUP Server for a JavaScript code snippet from an iframe. The code is executed
and makes continuous requests to the Feed/Transfer server. The attacker can measure network
timestamps of the requests (

⊕
). To decrease the leakage si of the system or browser internals, we

add randomly chosen delays ui to the sending times ti. There are two main sources of leakage:
the set-up of the iframe context (Loading) and the interval between the consecutive requests
(Periodic). Any comprehensive computation ci inside the script or by the browser extension (for
active participants) is done between the sending intervals when all components are idle.

ui = artificially added noise
ti = XMLHttpRequest.send() call
si = system noise
ci = computation inside the script

= time-stamp measurement

Loading

time (ms)

D
en

si
ty

5 6 7 8 9 10 11 12

0.
0

0.
2

0.
4

0.
6

0.
8 ●

●

Active Participant
Passive Participant

Periodic

time (ms)

D
en

si
ty

−0.15 −0.10 −0.05 0.00 0.05 0.10 0.15

0
5

10
15

20
25

●

●

Active Participant
Passive Participant

Figure 5: Distribution of timing (without additional noise) of Load-
ing and Periodic measurements run on Linux. Each of the graphs
overlays the timing distributions of active and passive participants.
For the Periodic measurements, we substraced the expectation value
(it is centered around 0).

server and a dummy Transfer server.

4.1 Prototype implementation

We implemented a prototype and made it available under
http://coverup.tech. It delivers a feed and the upload
and download system, for which we implemented a high-
latency mailbox. The COVERUP implementation consists
of five components: a COVERUP server, a dummy central
server that acts as the Transfer server, in the protocol the
mailbox server, the message relay and the broadcaster, an
external application (COVERUP-Tool), a browser extension,

and a short JS code snippet. The COVERUP server and the
Feed/Transfer server is implemented as a JAVA Servlet run-
ning on an Apache Tomcat web server. The external appli-
cation is written in JAVA. The browser extension is imple-
mented in Google Chrome browser using the JS WebExten-
sions API. The JS code served by the entry server is kept at
the COVERUP server. The COVERUP-Tool and the server
implementation consists of about 14 KLoC and the browser
extension of about 200 LoC.

We make the following four assumptions about the
browser, which are in line with Chrome’s explicitly stated
security policies. 1. iframes are isolated, which we need
for the code integrity of COVERUP’s JS snippet. The parent
page of the iframe cannot modify the iframe if the iframe is
originated (domain) from a source other than the parent [6].
2. a JS code cannot read from or write to another context
of a different domain source without its consent. 3. the JS
code can write a small amount of data to the browser’s local-
Storage cache and this cache cannot be accessed by another
JS code which originates from a different origin. This prop-
erty is known as the “same-origin-policy” [8], and all modern
browsers claim to enforce it.

CU:Feed. For the CU:Feed, all the users of the en-
try server receive identical broadcast content which is en-
coded with a fountain code [56]. Such encoding ensures that
any out of order threshold amount of broadcast packet can
recover the data successfully. Our prototype implementa-
tion uses an XOR based fountain code (for details see Ap-
pendix A.1). The JS snippet served by the COVERUP server
stores the fountain pieces in the cache database file located
on the mass storage (known as browser localstorage).
The COVERUP-Tool collects and assembles the fountain
pieces from the localstorage. Our implementation also
employs an All-or-Nothing-Encryption scheme (one similar
to [61]) which ensures that one needs threshold amount of
pieces of the fountain (i.e. the entire source data) to de-
crypt it. The JS snippet only keeps one fountain piece in the

6

localstorage to ensure that the passive users do not have
any sensitive content on their disk in decipherable form.

CU:Transfer. We extend the uni-directional CU:Feed to
the bi-directional CU:Transfer (recall Section 3.2), which
provides a up- and download channel for arbitrary data. As
a example protocol, we implemented a high-latency mail-
box protocol which enables the secure exchange of mes-
sages between active users. The implementation of the pro-
tocol involves indexing the messages as POP (post office
protocol [26]) where the indexing is done by public ad-
dresses of the clients. This public address is derived from the
curve25519 [34] public keys (first 48 bits of the hashed pub-
lic key). Additionally, the Transfer server indexes these pub-
lic addresses by the SSL identifier of the TLS client request
channel. The SSL identifier is an unique id that is pseudo
randomly generated during the start of a TLS session and
dependent on the session key. The Transfer server uniquely
identifies a sender/receiver of an incoming request by its SSL
identifier without the overhead of sending an additional iden-
tification token. This prevents the attacker also from hijack-
ing the session. The CU:Transfer application assumes that
the user added all long-term public keys of all his trusted
peers. For the cryptographic protection for the messages, the
application computes a shared secret (using Diffie-Hellman
key exchange) from the long-term key pairs. The current
prototype of COVERUP does not provide forward secrecy,
but one can easily integrate such feature into the messenger.
Whenever a new message arrives from a source address, the
Transfer server keeps the message to the index of the des-
tination address. When a request arrives at the destination
address, the Transfer server delivers the message as the re-
sponse and removes the message from the previously kept
index location.

4.2 COVERUP performance

We estimate COVERUP’s overhead, latency, and throughput
to demonstrate that it can perform reasonably well in a real-
world scenario, is feasible for deployment in large scale and
does not incur an intolerable overhead. COVERUP has three
adjustable system parameters: request payload size, response
payload size and the average request frequency, which is the
average requesting rate for CU:Feed packets after adding ar-
tificial noise. Increasing the payload increases the traffic
overhead for passive participants; and a lower request fre-
quency leaves room for more artificial noise and thus in-
creases privacy. Hence, there is a natural trade-off between
the latency and privacy and the amount of traffic overhead
caused and throughput of the system. In our prototype imple-
mentation, the request/response payload size is in the range
of 75 KB to 375 KB. We send a request every 60 seconds in
average for CU:Transfer and CU:Feed. Section 5 evaluates
our choices for these system parameters.

Computational overhead. The computational overhead
of COVERUP’s JS executed in the Browser is negligible. Our
implementation of the COVERUP-Tool takes around 50 MB
of main memory and less than 1% CPU time. Similarly, the
COVERUP browser extension incurs an almost unnoticeable
amount of memory and CPU consumption.

Traffic overhead. The traffic overhead of CU:Feed and
CU:Transfer are identical, as they are indistinguishable by
design. The entry server’s overhead is minimal: Only the
size of the iframe tag in its HTML code. The passive partic-
ipants’ traffic overhead depends on the system parameters.
We based our estimation of the system parameters on the
Alexa top 15 news sites, in particular since the privacy im-
provements of COVERUP’s passive-participation-approach
depends on the entry server’s regular number of visitors. The
average main-page load-size of the Alexa Top 15 news sites
is around 2.2 MB and will grow in near future. A few exam-
ples are CNN with 5.6 MB, NYTimes with 2.4 MB, Huff-
ingtonPost with 6.1 MB, TheGuardian with 1.8 MB, Forbes
with 5.5 MB, BBC with 1.1 MB and Reddit with 0.8 MB.

COVERUP is parametric in the packet size. Once fixed,
the traffic overhead for the passive users is proportional to
this packet length. We generously assume a passive par-
ticipant that has a daily connected to the entry server for
5 hours each day. This participants would have 22MB (∼
5 ·60 ·60s · 1

60s ·75KB) to 110 MB (∼ 5 ·60 ·60s · 1
60s ·375KB)

of data overhead per day and 660MB (= 30 · 22 MB) to 3.3
GB (= 30 · 110MB) per month. For landline data flat-rates
(i.e., for non-mobile visitors), 22 MB is not significant, e.g.,
in comparison to the traffic caused by streaming videos. We
envision a deployment of COVERUP not to include mobile
users. But it may be possible in near future due to the in-
creased bandwidth of the mobile networks. Section 6 fur-
ther discusses the ethical aspects of using the passive partic-
ipants’ resources after an explicit consent.

Latency & throughput. We evaluate the performance of
COVERUP for the duration that a tab is opened since the us-
age of COVERUP is bound to the visiting patterns of passive
participants towards the entry server’s sites. Depending on
the service that the entry server offers, it might be common
to keep the tab open (in the background) for a long time,
or to visit the site more than a few times a day, and even
to switch to another entry server if multiple are available.
COVERUP achieves 10 to 50 Kbits/s (for different the fixed
length packet size system parameter 75 to 375 KB) through-
put and a latency of around 60 seconds in average (delay
between consecutive messages). As the future size of web-
sites and the Internet infrastructure will evolve, COVERUP’s
packet size system parameter can be increase and thus data
usage can be adapted to deliver a higher throughput. Sec-
tion 5 explains our choice for the delays.

Scalability. For the participants the workload of the
COVERUP channel itself is independent of the number of
participants, and for the Transfer server the workload lin-

7

early increases. Hence, for the participants COVERUP scales
well, and for the Transfer server an infrastructure at the scale
of the entry server suffices, rendering COVERUP practical
with current infrastructure.

5 Timing leakage experiments

How much timing leakage does COVERUP cause? To answer
this question, we set up an experiment that measures the tim-
ing leakage. These measurement-experiments produce his-
tograms that we use as models for the underlying processes.
We use these models to estimate the privacy leakage under
continual observation.

5.1 Experimental set-up
We assume that the dominant part of the timing leakage will
be visible from two kinds of measurements: Loading and
Periodic measurements, as depicted by the orange arrows in
Figure 4. In Loading measurements, we force the iframe
to refresh on the entry server page in the browser. In the
corresponding TCP dump, we measure the timing difference
between the response of the initial iframe HTML source re-
quest and its first (“passive”) request to the Feed/Transfer
server. This forces to load the extension’s content script and
thus captures any distinguishing feature (any timing delay
added by the existence of the browser extension) produced
by the extension.

The Periodic measurements model the scenario where
the active and passive participants load the iframe once,
followed by JavaScript generated periodic requests to the
Feed/Transfer server and their response. In the network traf-
fic dump, we look for the timing difference for two contigu-
ous CU:Feed/CU:Transfer requests from the browser. Sec-
tion 5.5 discusses the choice to concentrate on these mea-
surements. For both measurements, we compare the timing
measurement distributions of a passive participant against
the distribution of an active participant.

To simulate realistic scenarios, we set up the passive and
both kinds (CU:Transfer and CU:Feed) of active participants
on 12 identical systems running Windows 10 and Ubuntu
16.04 (both x86-64 and in dual-boot configuration) equipped
with an Intel Core i5-2400 3.1 GHz CPU and 8 GB of main
memory. Additionally, the COVERUP and a dummy imple-
mentation of a Feed/Transfer server run as an Apache Tom-
cat web server instance (works as an ACN, a messenger relay
and a Feed server) on a separate machine in the same subnet
connected by a 10 Gbps switch. We ended up with 3.8 mil-
lion measurements in total.

All of the communications between the server and the
browser are executed over a local GigaBit Ethernet network.
We use tshark [28] to capture all such network traffic on the
participant’s network interface. We compare the distribu-
tions of timing traces produced by an active participant to the

distribution produced by a passive participant. All the exper-
iments are conducted on these set-ups to investigate the tim-
ing leakage of the browser caused by COVERUP’s browser
extension and external COVERUP-Tool.

Reflecting the attacker model. The attacker model (see
Section 3.1) is reflected in our experiments by taking tim-
ing traces from the perspective of the attacker who has ac-
cess to all network traffic. Therefore, we captured the traf-
fic on a corresponding network interface. As a network-
level attacker can change the TCP flag for timestamps and
compel the victim’s operating system to add timestamps
to the TCP headers [25], we conduct all measurements in
the settings where participants, the COVERUP server, and
the Feed/Transfer server are in the same GigaBit Ethernet
switched network. According to our measurements, the ac-
curacies of the added time-stamps are 4000µs for Linux, and
400µs for Windows respectively.

Test modes. We emulate primarily three different user
scenarios by using various combinations of the browser ex-
tension and the COVERUP-Tool. We use Google Chrome
browser v57.0 to run our extension. The extension and the
COVERUP-Tool communicate via the native messaging in-
terface (via STDIO). The three different test modes include:
1. Passive participant: Google chrome with no extension

and no COVERUP-Tool running.
2. Active CU:Transfer participant: Google Chrome with

the extension installed and the COVERUP-Tool running
which communicates with the aforementioned browser
extension by the native messaging interface.

3. Active CU:Feed participant: Google chrome with
no extension and COVERUP-Tool running assembling
CU:Feed chunk from the browser localStorage.

These are repeated for both Loading and Periodic measure-
ments (they are described in Section 5.3).

Interfering processes. Additionally we constructed one
user profile in Linux to understand how the execution of
other browsing tabs influences the timing leakage. To
demonstrate a simple profile we additionally open another
tab in the Google Chrome which is running a high definition
(720p) video in a loop (see Figure 8).

Data sanitization. Our test setup was unstable with fre-
quently freezing machines (e.g., networkcard stopped work-
ing and power outages). We repeatedly ran the same set-up;
hence, we expect the measurement-chunks generated from
the same machine to be fairly consistent. While we kept sig-
nificantly represented outliers, we also measured 150 widely
scattered outliers in 3 million measurements. These out-
liers are too few to be representatives of real effects. How-
ever, such widely scattered outliers distort our timing leakage
analysis, since in theory real outlier effects that only happen
in one configuration and not in the other configuration heav-
ily amplify privacy leakage under continual observation.

To get a representative model of the underlying response-
delay distributions from the measurements, we removed

8

the above-mentioned unrepresentative, scarcely scattered
outliers. To minimize the bias to the model, however,
we dismissed entire batches of 6h measurements-blocks if
they contained clear outliers w.r.t. to the rest of the (sub-
)histograms for the same scenario, e.g., periodic active par-
ticipants. Removing all such 6h blocks led to dismissing
20% of all measurements, leaving us with 3 million mea-
surements in total.

5.2 Adding noise
To simplify and accelerate testing, our experiments send re-
quests at fixed intervals, while the actual COVERUP im-
plementation includes random delays. These delays are
chosen from a Gaussian distribution N[0,2µ](µ, σ) with
mean µ and standard-deviation7 σ = 2

10 µ , restricted to
the interval [0,2µ], and add this delay to the minimum
delay of one second. The expected delay is therefore
E
[
1+N[0,2µ](µ = µ,σ = 2

10 µ)
]
= 1+ µ . We added noise

artificially after the measurements by convolving the result-
ing measurement-histograms with a gaussian distribution.8

Adding the noise after the experiments is reasonable
for our purpose. Recall that we use the measurement-
experiments to produce a model for the underlying process,
which we use to estimate the timing leakage under long-term
attacker-observation. We evaluated the effect of separately
adding the noise (see Appendix B) and found that does not
significantly distorts our model.

5.3 Estimating the advantage
Our goal is to give an upper bound on the advantage for the
task of distinguishing active and passive participants. This
section explains the estimators that we use. We assume that
the dominant part of the timing leakage will be visible from
two kinds of measurements: Loading and Periodic measure-
ments, as depicted by the orange arrows in Figure 4.

To quantify the timing leakage we use a quantitative vari-
ant of statistical indistinguishability of two distributions. For
a pair of distributions X ,Y and a random sample either from
X or from Y , statistical indistinguishability requires that no
attacker can tell whether the sample was chosen from X or
from Y with more than an advantage δ , which can be repre-
sented as follows: δ (X ,Y) := 1

2 ∑a∈Ω(|pX (a)− pY (a)|).9
In other words, we provide a bound on a distinguisher’s

advantage. Specifically, n continual collected observations
can be modeled by considering δn,{X ,Y} := δ (Xn,Y n) for the

7There is no specific reason for this σ , but we wanted to prevent hard
noise-distribution cut-offs as they increase δn.

8If we view the histogram as the probability mass function (pmf) for
the timing delays, convolving this pmf with a gaussian distribution the his-
togram corresponds to addition of the corresponding random variables, i.e.,
adding the noise within the experiment.

9This advantage is also known as total variation or statistical distance
and is connected to the classification-accuracy: acc= (δ/2)+0.5.

product distribution Xn and Y n. Another way of looking
at the definition is that it requires the advantage of the in-
teraction with active versus with passive participants to be
bounded by a number close to 0.

Recall that the advantage quantifies an attacker’s success
in distinguishing active from passive participants after n ob-
servations, while having perfect knowledge of underlying
response-delay distributions of the active and passive par-
ticipants of type type ∈ {loading, periodic}. Therefore, we
use δn,type as an estimator for the atacker’s advantage.

Our analysis relies on three assumptions. First, all the
measurement samples are independent. Second, Loading
and Periodic measurements are independent. Third, the mea-
sured distributions represent the accurate underlying distri-
butions. We believe that the first two assumptions hold in
a deployed system because we assume a very high wait-
ing time between requests (around 60s). The third assump-
tion is of theoretical nature. While we conducted extensive
measurements (around 3 million measurements in total) to
render the model more representative, such measurements
can only result in an approximation of the underlying pro-
cesses. Using standard composition results (see Appendix
Lemma 1), these assumptions enable us to bound the advan-
tage of COVERUP with totaln,m := δn,loading + δm,periodic,
after attacker that makes n Loading observations and m Peri-
odic observations for either Linux or Windows. Here we ex-
plicitly use the assumptions that Periodic and Loading mea-
surements are independent.

Moreover, under these assumption we use the Privacy-
Buckets-tool [58]10 to compute δn,loading and δn,periodic from
δ1,loading and δ1,periodic (for Linux and Windows, respec-
tively), which we get from the sanitized measurement-
histograms. Since the Ratiobuckets-tool is most precise
when n = 2x for some x, the number of compositions that
we use are powers of 2.

5.4 Timing leakage results

This section plots the results of our timing leakage estima-
tion. For our evaluation, we overapproximate the connection
pattern to the entry server by at most 50 site-loads and at
most 5 hours of left open tabs (in the background) of visited
entry servers per day. We consider an attacker that is able
to continuously collect such data for half a year, i.e., 7 days
a week for 26 weeks. We assume that the usage pattern of
an active participant is identical to the visiting behavior of
passive participants (see Section 5.5 for a deeper discussion
on visiting behavior). We would like to stress that the same
analysis applies to a continuous observation over 2.5 years
for users that only make 10 site-loads at the entry server per

10A publicly available numerical tool that computes a provable upper
bound for the advantage under continual observation of a given pair of dis-
crete distributions.

9

2 4 8 16 32 64 128 256

expected delay [s] (log-scale)

10−4

10−3

10−2

10−1

at
ta

ck
er

’s
a
d

va
n
ta

ge Windows Feed

Windows Transfer

Linux Feed

Linux Transfer

Linux Feed

Linux Transfer

Figure 6: Latency versus upper bound on advantage for obser-
vation of half a year, with at most 5 hours of visiting the entry
server (Periodic-observations) and at most 50 connecting to the en-
try server (Loading-observations) per day.

day and are connected for at most 1 hour per day to the entry
server.

Latency vs timing leakage. Fixing the observation time
to half a year and the connection pattern as described above,
Figure 6 plots how totaln,m increases with decreasing de-
lays. Looking at the graph, we recommend 60s expected de-
lay as system parameters to achieve an overall advantage of
less than 2 ·10−3 after 6 months of continual measurements
of the user’s timing patterns with daily 50 Loading observa-
tions and daily 5 hours worth of Periodic observations. We
stress that despite the limits of our evaluation, the bounds
that we present are highly over-approximated: we assume a
global network-level attacker that has very precise informa-
tion about the state of the system such as which processes
are running and how they influence the measurements.

Observation-length vs timing leakage. The next angle
is the length of the observation versus the degree of privacy:
Figure 7. We fix the expected latency to 60s and plot for
an increasing number of observations the functions δn,loading
and δm,periodic. This graph lets us study different usage be-
haviors. E-mail service, such as Google mail or Hotmail, as
an entry server, e.g., would lead to significantly longer ses-
sions than e-commerce entry servers. E-mail services would,
hence, lead to less Loading observations and more Periodic
observations. This graph shows that the leakage grows at
most linearly with the number of observations. While Load-
ing needs more time in Linux for the CU:Transfer (presum-
ably because it invokes the extension each time), it pro-
duces less Periodic leakage while running. The graphs show
that in many cases the Feed produces more timing leakage
than Transfer. We believe that this is not true and an ar-
tifact of the Ratiobuckets-tool. The initial leakage for all
Feed histograms is lower than their Transfer counterparts.
The Ratiobuckets-tool also produces lower bounds (omitted
here for readability) and those show that the Transfer upper
bounds are much tighter than the Feed upper bounds.

Distorting effects of concurrent activities. The exper-
iments of which we saw the results so far do not let any
other program run in the background. In contrast, Figure 8
overlays the histogram of the vanilla experiments (without

0.0 0.2 0.4 0.6 0.8 1.0

number of observations

0.0

0.2

0.4

0.6

0.8

1.0

a
tt

ac
ke

r’
s

a
d

va
n
ta

g
e

0 1 · 105 2 · 105 3 · 105
0 · 10−4

1 · 10−4

2 · 10−4

3 · 10−4

4 · 10−4

5 · 10−4

Periodic
Windows Feed

Windows Transfer

Linux Feed

Linux Transfer

0 10000 20000 30000 40000 50000
0 · 10−3

2 · 10−3

4 · 10−3

Loading

Figure 7: Number of observations versus upper bound on the ad-
vantage for Periodic and Loading leakage, evolving over numerous
observations, with a 60s expected delay. The right end of the x-axes
correspond to 3 years of observation.

any other programs running in the background) and experi-
ments where the browser is rendering a 720p video on Linux.
The experiments are conducted with Loading observations,
as those produce more leakage. We can clearly see that ren-
dering the video has some impact on the measurement (red
line vs. blue line in Figure 8). Hence, it will be hard for an at-
tacker to get such clean measurements like those that we use
in our evaluation. This is another reason why we have some
confidence that our privacy bounds give a good impression
of the degree of privacy that COVERUP can offer, and maybe
even provide a significant over-approximation.

5.5 Limits of our evaluation

This section discusses the limits of our evaluation of the tim-
ing leakage. While we do not claim that our evaluation of-
fers provable bounds for the timing leakage of COVERUP,
we believe that it captures the dominant part of the leak-
age of COVERUP and is a good indicator of the privacy that
COVERUP offers.

Pairs of requests. We stick to pairs of requests since the
autocorrelation is low and exploring all possible combina-
tions for a higher number of contiguous requests increases
the number of required measurements exponentially. To re-
duce potential effects from longer sequences of contiguous
requests, we incorporate into our recommended delays a
minimum of 1s between pairs of requests.

Unnoised measurements. We accelerated our measure-
ments by not adding any additional noise, as we want to eval-
uate COVERUP with different amounts of noise. During the

10

4 5 6 7 8 9 10 11 12

delay [ms]

o
cc

u
re

n
ce

p
ro

b
ab

il
it

y

Linux Loading

Active (Transfer)

Passive

Active Video (Transfer)

Passive Video

Figure 8: Different computation loads lead to different timing dis-
tributions. In the blue video plots, Google Chrome additionally
renders a high definition (720p) video in a separate tab. Loading
measurement. No randomly chosen delays added.

analysis phase, we introduce noise by computing the convo-
lution of the resulting histograms with ideal Gaussian noise.
To justify this we additionally construct an experiment with
two scenarios: one with added artificial noise and another
without where we add the artificial noise after the samples
are collected. Figure 9 in Appendix B shows the timing dis-
tributions with total variation 1.8%.

Browser profiling. Evaluating our method against profil-
ing attacks that are designed to detect whether a particular
extension or a specific application is running [38] are out of
scope of this work.

Neglecting the sampling error. Our experiments are lim-
ited to 3 million measurements. Hence, the histograms that
we analyze do not exactly represent the underlying distri-
bution. As our timing-leakage-bounds are computed on the
histograms, they are not hard bounds but rather bounds that
hold with high confidence.

6 Ethical & legal considerations

“Passive” participation has to be carefully implemented to
avoid ethical and legal issues. We address potential ethical
and legal considerations that stem from triggering visitors of
some webpage into passively participating in a system like
COVERUP. Our work received formal approval of our Insti-
tutional Review Board (IRB).

Even consenting passive participants that have been in-
formed can experience unexpected consequences, e.g., by
misunderstanding the consequences or by accidental con-
sent. We are aware of the difficulties of informing website
visitors in a way that they do not ignore the message and
understand the consequences of consenting. Prior research
[59, 33] suggests that one can design the COVERUP-dialog
such that it minimizes the risks of misunderstanding and of
agreeing by accident, e.g. deny by default and consenting
in two phases, and highlight the network/battery-activities.
Moreover, concepts like nudging and soft paternalism have

the potential to let users act for benefits for themselves and
for others [29].

Are computation and bandwidth resources of passive par-
ticipants unwittingly utilized? No, only after an informed
consent does COVERUP turn an entry server visitor to a pas-
sive participant.

Is COVERUP harmful to passive participants? No,
COVERUP utilizes standard browser functionality.

Does COVERUP store potentially incriminating data on
the machine of passive participants? No, we carefully in-
corporated an All-or-Nothing scheme such that passive par-
ticipants never contain any useful information on their ma-
chine, as long as they do not actively extract and collect the
COVERUP data packets from the browser’s local storage.

Does COVERUP trigger passive participants to open po-
tentially suspicious connections? After an informed consent,
COVERUP does trigger a connection to the Feed/Transfer
server, which some parties (e.g., an employer) could indeed
view as suspicious.We do not consider this an ethical is-
sue since this connection is only opened after its nature was
stated and an informed consent was received.

Does the COVERUP server collect information about the
browsing behavior of the entry server’s visitors? No, while
each iframe request of every entry server’s visitor includes
the visitor’s IP address, the COVERUP server does not collect
or store this information in any form.

Legal considerations for passive participants. Due to the
AON scheme (see above), potentially illegal information dis-
tributed via the feeds never reaches a passive participant’s
machine. Additionally, as COVERUP is not primarily de-
signed for the purpose of committing a cybercrime offense,
receiving the COVERUP JS snippet is not an offense.

Legal considerations for the entry server. As the
JavaScript code is provided by a third party, the entry server
has no knowledge about the content, under EU and US leg-
islation and case law the provider’s liability privilege should
apply. As a result, the entry server should not be held liable
for the JavaScript code and thus the content of the feed.

Appendix C provides a more differentiated and thorough
discussion of the legal topics.

7 Related work

Extending the anonymity set via JavaScript. There are
previous research works on utilizing visitors of a collab-
orating website to produce anonymizing cover traffic via
JavaScript. Conscript [41] and Adleaks [62] describes up-
load only uni-directional channel from the users to the mix
network. In contrast, COVERUP provides a transport private
bi-directional channel. Conscript mentioned timing leakage
based side channel attacks but evaluation details are missing
except power consumption. Conscript additionally has de-
ployment hurdles, since it trusts the entry server to achieve
code integrity. While previous work suggests mitigating this

11

trust assumption by letting the extension check all dynamic
content to achieve code integrity against a malicious entry
server, such dynamic checks will tremendously increase the
timing leakage, and thus rendering the active participants
clearly distinguishable from passive ones. The need to trust
the entry server gives the entry server more responsibility
and requires a careful evaluation of the entry servers. The
implementation of Adleaks requires a patched version of the
browser. This reduces the set of possible browsers and there-
fore reduces the anonymity set massively. Detailed privacy
analysis is not described in the paper including timing leak-
ages. The paper [32] describes how to include unwilling
users to cover server to server communication. All trans-
port between the servers (by passive clients) is not encrypted.
This means an inspection of the HTTP body reveals inten-
tion. Moreover, the paper lacks any implementation details.
Additionally, previous works lack a legal aspects discussion
of “passive” participation.

Anonymous uploads and downloads. While COVERUP
at its core provides a bi-directional transport channel on
which ACNs could run, COVERUP has distinctly other
goals than traditional ACNs or systems like Pung [30]:
COVERUP’s goal is to enable users to hide their traffic in
the traffic of normal web surfers, i.e., to extend the potential
anonymity set to normal web surfers.

Covert channels & steganography. Covert channels hide
whether communication took place, and thus achieve full
deniability. As covert channels typically use a piggyback
approach to transport data, they depend on existing data
streams, resulting in a dependency of the piggybacked sys-
tem for latency and throughput. Steganography is another
approach which is hiding messages in unsuspicious looking
data [52, 51, 31]. But once detected, the origin, thus the
intention, is obvious. The same applies to Mixing [55]. Off-
the-record messaging publishes the MAC key after each talk,
rendering it vulnerable against real-time monitoring [35].

McPherson et al. proposed CovertCast, a broadcast hid-
den in normal video streams like YouTube [57]. Che et
al. were able to create a deniable communication channel
based on different levels of noisy channels [39]. Deploying
that system is, however, require a much higher effort by the
service provider (e.g., YouTube) and does not provide any
interactive communication like COVERUP. Freewave [49]
provides a covet channel where the user can modulate his
internet traffic signal into acoustic data and transfer it to a
remote server via VoIPs such as Skype. Such system has
bandwidth limitation and is vulnerable to attacks described
in [48]. SWEET [50] describes a covert channel e-mail com-
munication where the user can send the query to the remote
server by using any available mail server. Such system suf-
fered from inherently very low bandwidth and high latency,
making them practically infeasible for deployment. Cloud-
Transport [37] introduced covert communication which in-
volves publicly accessible cloud servers such as Amazon S3

which acts as the oblivious mix. However, such services do
not provide protection against attackers learning intention.
Infranet [45] describes a system executing covert commu-
nication using image stenography, but it also suffers from
inherently low bandwidth.

Censorship circumvention. There exist several censor-
ship circumvention tools that allow users to reach websites
which are otherwise unreachable due to local policies. Flash
Proxies [46] provides a browser-based proxy that connects
to a tor bridge. Its implementation uses WebSocket and
JavaScript to create many, generally ephemeral bridge IP ad-
dresses, effectively surpassing the censor’s ability to block
them. It is now outdated and replaced by Snowflake [27]
which is a Tor pluggable transport [22] with a design princi-
ple identical to Flash Proxies. Other pluggable transports
such as Tor’s meek [20] relay data through a third-party
server that is hard to block, for example a CDN, using a
mechanism called domain fronting [47]. COVERUP is or-
thogonal to the aforementioned papers. COVERUP does
not provide any form of censorship circumvention, as the
censor can disable COVERUP by blocking all the web re-
quests to either the entry server, the COVERUP server, or the
feed/Transfer server.

8 Conclusion

We discussed how the concept of passive participation can
improve the privacy of accessing information in an anony-
mous and deniable manner. By drawing in passive partici-
pants to create cover traffic, we achieve participation deni-
ability: an attacker cannot tell whether an observed request
to a Feed/Transfer server originates from a active participant
which is interested in its content, or from a passive partici-
pant which is only surfing on the entry server.

We leverage this concept with COVERUP, which can op-
erate in two modes: CU:Feed, distributing an uni-directional
broadcast, and CU:Transfer, providing a deniable up- and
download channel. Given our implementation, we exper-
imentally evaluated the degree of privacy COVERUP can
guarantee. For both, CU:Transfer and CU:Feed, we found
that the timing leakage is acceptable (an advantage under
2 ·10−3) within a half a year of continual observation. Even
for a state-level agency a half a year of continual observation
(on sub-ms-level granularity) incurs a significant cost.

This work introduces a practical solution for deniable
upload and download, and deniable feed-receivers. The
present analysis clearly shows that the passive-participation-
approach can provide sufficient cover for highly anonymity-
aware users. We conclude that the line of research on passive
participation is a promising direction for deniable communi-
cation.

12

References
[1] 17 u.s. code para. 512. https://www.law.cornell.edu/uscode/

text/17/512.

[2] America’s founding documents — national archives. https://www.
archives.gov/founding-docs.

[3] Chart of signatures and ratifications of treaty 185. http://tinyurl.
com/h8ketgj.

[4] Chome scripts - google chrome. https://

developer.chrome.com/extensions/content_scripts#

execution-environment.

[5] Consolidated version of the treaty on the functioning of the european
union. http://eur-lex.europa.eu/resource.html?uri=

cellar:41f89a28-1fc6-4c92-b1c8-03327d1b1ecc.0007.

02/DOC_1&format=PDF.

[6] Content security policy (csp) - google chrome.
https://developer.chrome.com/extensions/

contentSecurityPolicy.

[7] Convention on cybercrime, budapest, 23.xi.2001. http://www.

europarl.europa.eu/meetdocs/2014_2019/documents/

libe/dv/7_conv_budapest_/7_conv_budapest_en.pdf.

[8] Cross origin xmlhttprequest - google chrome. https://developer.
chrome.com/extensions/xhr.

[9] Directive 2000/31/EC of the European Parliament and of the Council
of 8 June 2000 on certain legal aspects of information society services,
in particular electronic commerce, in the Internal Market (’Directive
on electronic commerce’), 2000 O.J. L 178.

[10] Directive 2002/22/ec of the european parliament and of the coun-
cil. http://eur-lex.europa.eu/legal-content/EN/TXT/

PDF/?uri=CELEX:32002L0022&from=EN.

[11] Directive 2002/58/ec of the european parliament and of the coun-
cil. http://eur-lex.europa.eu/LexUriServ/LexUriServ.

do?uri=CELEX:32002L0058:en:PDF.

[12] Directive 2009/136/ec of the european parliament and of the coun-
cil. http://eur-lex.europa.eu/LexUriServ/LexUriServ.

do?uri=OJ:L:2009:337:0011:0036:en:PDF.

[13] Directive 95/46/ec of the european parliament and of the coun-
cil. http://eur-lex.europa.eu/legal-content/EN/TXT/

PDF/?uri=CELEX:31995L0046&from=EN.

[14] Eur lex. http://eur-lex.europa.eu/legal-content/EN/

ALL/?uri=OJ%3AC%3A2012%3A326%3ATOC.

[15] European convention on human rights (ehcr). http://www.echr.

coe.int/Documents/Convention_ENG.pdf.

[16] Federal constitution of the swiss confederation. https:

//www.admin.ch/opc/en/classified-compilation/

19995395/index.html.

[17] Fourth amendment. https://www.law.cornell.edu/

constitution/fourth_amendment.

[18] Katz v. united states, 389 u.s. 347 (1967). https://supreme.

justia.com/cases/federal/us/389/347/case.html.

[19] Manifest: Web accessable resources - google chrome.
https://developer.chrome.com/extensions/manifest/

web_accessible_resources.

[20] meek: Tor bug tracker and wiki.

[21] Olmstead v. united states, 277 u.s. 438 (1928). https://supreme.

justia.com/cases/federal/us/277/438/case.html.

[22] Pluggable transports.

[23] Regulation (ec) no 2006/2004 of the european parliament and of
the council. http://eur-lex.europa.eu/legal-content/EN/

TXT/PDF/?uri=CELEX:32004R2006&from=EN.

[24] Regulation (ec) no 2006/679 of the european parliament and of
the council. http://eur-lex.europa.eu/legal-content/EN/

TXT/PDF/?uri=CELEX:32016R0679&from=en.

[25] Rfc 7323 - tcp extensions for high performance.
https://tools.ietf.org/html/rfc7323.

[26] Rfc 918 - post office protocol. https://tools.ietf.org/html/rfc918.

[27] Snowflake.

[28] tshark-the wireshark network analyzer 2.0.0.
https://www.wireshark.org/docs/man-pages/tshark.html.

[29] ACQUISTI, A. Nudging privacy: The behavioral economics of per-
sonal information. IEEE Security Privacy (2009).

[30] ANGEL, S., AND SETTY, S. T. Unobservable communication over
fully untrusted infrastructure.

[31] ARTZ, D. Digital steganography: hiding data within data. IEEE In-
ternet Computing (2001).

[32] BAUER, M. New covert channels in http: Adding unwitting web
browsers to anonymity sets. In Proceedings of the 2003 ACM Work-
shop on Privacy in the Electronic Society (New York, NY, USA,
2003), WPES ’03, ACM, pp. 72–78.

[33] BEAUDOUIN-LAFON, M. Designing interaction, not interfaces. In
Proceedings of the Working Conference on Advanced Visual Inter-
faces, AVI ’04.

[34] BERNSTEIN, D. J. Curve25519: New diffie-hellman speed records.
In Public Key Cryptography - PKC 2006 (Berlin, Heidelberg, 2006),
M. Yung, Y. Dodis, A. Kiayias, and T. Malkin, Eds., Springer Berlin
Heidelberg, pp. 207–228.

[35] BONNEAU, J., AND MORRISON, A. Finite-state security analysis of
otr version 2.

[36] BOYKO, V. On the Security Properties of OAEP as an All-or-Nothing
Transform.

[37] BRUBAKER, C., HOUMANSADR, A., AND SHMATIKOV, V. Cloud-
transport: Using cloud storage for censorship-resistant networking. In
International Symposium on Privacy Enhancing Technologies Sympo-
sium (2014).

[38] CAO, Y., LI, S., AND WIJMANS, E. (Cross-)Browser Fingerprinting
via OS and Hardware Level Features. In NDSS 2017.

[39] CHE, P. H., BAKSHI, M., AND JAGGI, S. Reliable deniable commu-
nication: Hiding messages in noise. In Information Theory Proceed-
ings (ISIT), 2013 IEEE International Symposium on.

[40] CORRIGAN-GIBBS, H., BONEH, D., AND MAZIÈRES, D. Riposte:
An anonymous messaging system handling millions of users. In S&P
2015.

[41] CORRIGAN-GIBBS, H., AND FORD, B. Conscript Your Friends into
Larger Anonymity Sets with JavaScript. In WPES 2013.

[42] DAEMEN, J., AND RIJMEN, V. The design of Rijndael: AES-the
advanced encryption standard. 2013.

[43] DANEZIS, G., AND SERJANTOV, A. Statistical disclosure or intersec-
tion attacks on anonymity systems. In Information Hiding.

[44] DANEZIS, G., AND SERJANTOV, A. Statistical disclosure or intersec-
tion attacks on anonymity systems. In Information Hiding, J. Fridrich,
Ed.

[45] FEAMSTER, N., BALAZINSKA, M., HARFST, G., BALAKRISHNAN,
H., AND KARGER, D. R. Infranet: Circumventing web censorship
and surveillance. In USENIX Security Symposium (2002).

[46] FIFIELD, D., HARDISON, N., ELLITHORPE, J., STARK, E., BONEH,
D., DINGLEDINE, R., AND PORRAS, P. Evading censorship with
browser-based proxies. In Privacy Enhancing Technologies (2012),
Springer Berlin Heidelberg.

13

[47] FIFIELD, D., LAN, C., HYNES, R., WEGMANN, P., AND PAXSON,
V. Blocking-resistant communication through domain fronting. Pro-
ceedings on Privacy Enhancing Technologies (2015).

[48] GEDDES, J., SCHUCHARD, M., AND HOPPER, N. Cover your acks:
Pitfalls of covert channel censorship circumvention. In PCCS 2013.

[49] HOUMANSADR, A., RIEDL, T. J., BORISOV, N., AND SINGER,
A. C. I want my voice to be heard: Ip over voice-over-ip for un-
observable censorship circumvention. In NDSS (2013).

[50] HOUMANSADR, A., ZHOU, W., CAESAR, M., AND BORISOV, N.
Sweet: Serving the web by exploiting email tunnels. IEEE/ACM
Trans. Netw..

[51] JOACHIM J. EGGERS, ROBERT BAEUML, B. G. Communications
approach to image steganography.

[52] KAMBLE, M. P. R., WAGHAMODE, M. P. S., GAIKWAD, M. V. S.,
AND HOGADE, M. G. B. Steganography techniques: A review. In-
ternational Journal of Engineering (2013).

[53] LABAJ, M., AND BIELIKOVÁ, M. Tabbed Browsing Behavior as a
Source for User Modeling. In User Modeling, Adaptation, and Per-
sonalization (2013).

[54] LANDAU, S. Making sense from snowden: What’s significant in the
nsa surveillance revelations. IEEE Security Privacy (2013).

[55] LE BLOND, S., CHOFFNES, D., ZHOU, W., DRUSCHEL, P., BAL-
LANI, H., AND FRANCIS, P. Towards efficient traffic-analysis resis-
tant anonymity networks. In ACM SIGCOMM Computer Communi-
cation Review (2013).

[56] MACKAY, D. Fountain codes. IEE Proceedings - Communications.

[57] MCPHERSON, R., HOUMANSADR, A., AND SHMATIKOV, V.
Covertcast: Using live streaming to evade internet censorship. Pro-
ceedings on Privacy Enhancing Technologies (2016).

[58] MEISER, S., AND MOHAMMADI, E. Privacy buckets: Upper and
lower bounds for k-fold tight approximate differential privacy. Cryp-
tology ePrint Archive, Report 2017/1034.

[59] PATRICK, A. S., AND KENNY, S. From privacy legislation to inter-
face design: Implementing information privacy in human-computer
interactions. In Privacy Enhancing Technologies (2003), R. Dingle-
dine, Ed.

[60] PIOTROWSKA, A. M., HAYES, J., ELAHI, T., MEISER, S., AND
DANEZIS, G. The loopix anonymity system. In 26th USENIX Security
Symposium, USENIX Security (2017), pp. 16–18.

[61] RIVEST, R. L. All-or-nothing encryption and the package transform.
In Fast Software Encryption (Berlin, Heidelberg, 1997), E. Biham,
Ed., Springer Berlin Heidelberg.

[62] ROTH, V., GÜLDENRING, B., RIEFFEL, E., DIETRICH, S., AND
RIES, L. A Secure Submission System for Online Whistleblowing
Platforms. In FC 2013.

[63] SHOKROLLAHI, A. Raptor codes. IEEE transactions on information
theory.

[64] STEFANOV, E., VAN DIJK, M., SHI, E., FLETCHER, C. W., REN,
L., YU, X., AND DEVADAS, S. Path ORAM: an extremely simple
oblivious RAM protocol. In CCS 2013 (2013), pp. 299–310.

[65] SUNDARARAJAN, J. K., SHAH, D., AND MÉDARD, M. Arq for
network coding. In ISIT 2008.

[66] VAN DEN HOOFF, J., LAZAR, D., ZAHARIA, M., AND ZELDOVICH,
N. Vuvuzela: Scalable private messaging resistant to traffic analysis.
In Proceedings of the 25th Symposium on Operating Systems Princi-
ples (2015).

[67] WEBER, R. E-Commerce und Recht, 2. Auflage. 2010.

[68] WOLINSKY, D. I., CORRIGAN-GIBBS, H., FORD, B., AND JOHN-
SON, A. Dissent in numbers: Making strong anonymity scale. In
OSDI (2012), pp. 179–182.

A Constructions

In this section we describe existing tools and techniques that
have been used in our proposed system COVERUP.

A.1 Fountain Code
Fountain codes [56, 65] are a class of forward error correc-
tion (FEC) codes with the following properties
• Arbitrary sequence of encoding symbols can be generated

form a given set of source symbols i.e., input data.
• Original source symbols can be recovered from any subset

of encoding symbols with size more than a threshold value
T .

• Encoding symbols can be delivered regardless of specific
order.

• Fountain codes does not show fixed code rate.
In this paper, we have used a bit-wise XOR (⊕) based foun-

tain code with error detection mechanism.
In a simple analogy, one can consider an empty glass for

water. A fountain emits the input data encoded in a large
amount of droplets in a steady stream. Anyone can collect
them in a glass alternately and if one thinks the glass is filled
enough, one may try to assemble the data from the water
(data stored in the glass). If the amount of droplets is insuffi-
cient to reassemble the data, one has to wait longer to collect
more droplets and retries later.

Our specific fountain code implementation is not optimal.
There exists efficient fountain codes such as Raptor [63] in
the literature but most of them are protected by intellectual
property rights.

A.2 All-or-nothing transformation
All-or-nothing transformation is an encryption mode in
which the data only can be decrypted if all the encrypted
data is known. More precisely: “An AONT is an un-keyed,
invertible, randomized transformation, with the property that
it is hard to invert unless all of the output is known.”[36].

We modified the all-or-nothing scheme proposed by
Rivest [61] which encrypts all data with a symmetric key
cryptography algorithm (in our implementation, we use
AES-128 [42]) in Cipher Block Chaining (CBC) mode and
appends a new block in which the encryption key is XOR’ed
(⊕) with the 128 bit truncated SHA-256 hashes of all the en-
crypted blocks. This guarantees that one needs all encrypted
data (or at least its hash) to extract the decryption key from
last block.

1. Input message block: m1, m2, . . . , mn

2. Chose random key K
R←− {0,1}128 for AES-128.

3. Compute output text sequence m′1, m′2, . . . , m′n,m
′
key as

follows:
• Let m′i = Enc(K ,mi) ∀ i ∈ 1, . . . ,n with CBC

mode.

14

0.30 0.24 0.18 0.12 0.06 0.00 0.06 0.12 0.18 0.24
ms

0.0

0.1

0.2

0.3

0.4

0.5

0.6

D
e
n
si

ty

No Noise added

0.30 0.24 0.18 0.12 0.06 0.00 0.06 0.12 0.18 0.24
ms

0.0

0.1

0.2

0.3

0.4

0.5

0.6

D
e
n
si

ty

Noise added in JavaScript subtracted

Figure 9: Statistical Independence using uniform noise: Distance:
1.8%

• Let m′key = K ⊕h1⊕h2⊕ . . .⊕hn

where hi =Hi[1, . . . ,128];Hi =SHA-256(mi)∀i∈
1, . . . ,n

• Send m′ = m′1|| . . . ||m′n||m′key

The receiver can recover the key K only after receiving
all message blocks. He executes the following steps

• K = m′key⊕h1⊕h2⊕ . . .⊕hn.
• mi = Dec(K ,m′i) ∀ i ∈ 1, . . . ,n.

B Independence of additional noise

Recall that we simulated the additional noise by adding it
to the measurement result. To justify this procedure, we con-
ducted separate experiments, similar to the periodic scenario,
but instead of waiting 1000ms for the next droplet request,
we drew in JavaScript a uniformly distributed random num-
ber (using Math.random()) and expanded it in an affine way
such that an interval ranges from 200ms to 1800ms. Addi-
tionally, we stored each of the drawn random numbers to-
gether with an epoch time stamp. Later in the analysis step,
we subtracted the corresponding random number from the
network dump measurement. This procedure produced mea-
surements artifacts, caused by the time resolution of our sys-
tem (which lies slightly under 1us). As we are only inter-
ested in the fact whether artificially adding the noise after the
experiment is independent of directly adding the additional
noise in the experiments, we clustered close histogram bars
that are not separated by a significant gap. Figure 9 shows
the resulting distribution. The statistical distance of these
two distributions is 1.8% which is an acceptable value.

C Selected legal questions

One of the challenges in answering the question whether the
provision of COVERUP and the upload of the JavaScript code
by the entry server is legal or not (and many other questions
evolving around the use of the Internet) is that, whereas the
Internet functions globally, law mostly [7] remains limited
by territory because sovereign states put their own legisla-
tion into effect [5, 14, 2]. The legal provisions and possible
offenses that apply to the technical setup of COVERUP, dif-
fer from country to country. Moreover, as law is not an exact
science and definite legal statements are made by the courts,
we conclude the legal discussion herein with an assessment
that we consider probable.

Many countries enforce their own laws and have their own
(territorial) jurisdiction, many countries, among others the
EU member states and the USA, have ratified [3] in the Con-
vention on Cybercrime [7] (CCC) – the international treaty
on crimes committed via the Internet and other computer net-
works. This international treaty criminalizes, among others,
illegal access (Art. 2 CCC), data interference (Art. 4 CCC),
and misuse of devices (Art. 6 CCC).

C.1 Passive participants

Illegal access. Illegal access (Art. 2 CCC) penalizes the en-
tering of a computer system but does not include the mere
sending of an e-mail message or a file to a system. The ap-
plication of standard tools provided for in the commonly ap-
plied communication protocols and programs is not per se
“without right”, in particular not if the accessing application
can be considered to have been accepted (e.g. acceptance of
cookies [12, 10, 11, 23] by client). However, a broad inter-
pretation of Art. 2 CCC is not undisputed (refer [7], §44 -
50).

Upon request, the entry server delivers a webpage that
contains an iframe request for the COVERUP server, which
then delivers the JavaScript to the browser for the download
of the packet. Not only does the entry server merely send
a file (pointer) to the browser, but the request to download
the JavaScript from the COVERUP server is standard browser
functionality for communication. The same would happen if
the entry server were financed by online advertising: upon
request the entry server would deliver a webpage pointing to
the advertising server and trigger the download of the adver-
tising text or pictures to the browser. As this is a standard
online process, we conclude that even in a broad interpreta-
tion of Art. 2 CCC, the provider of the entry server should
not be illegally accessing the browser.

Data interference. Data interference (Art. 4 CCC) pe-
nalizes the damaging, deletion, deterioration, alteration, or
suppression of computer data “without right”. This provi-
sion protects a computer device from the input of malicious
code, such as viruses and Trojan horses as well as the result-

15

ing alteration of data. However, the modification of traffic
data for the purpose of facilitating anonymous communica-
tions should in principle be considered legitimate protection
of privacy (refer [15, 17, 21, 18], [13, Recitals(1) and (35)]),
[16, Art. 13], and, therefore, be considered as being under-
taken “with right” [7, §61].

COVERUP does not damage, delete, deteriorate, or sup-
press data on the participant’s client. However, it does alter
the data on the hard disk: on the one hand the webpage with
the iframe uses disk space and thus modifies the participant’s
data; on the other hand COVERUP triggers the download of
the JavaScript code and subsequently the packets from the
ACN to the passive participant’s browser, which again uses
disk space and thus modifies the data anew.

However the explanatory report to the Convention on Cy-
bercrime foresees that the file causing data interference be
“malicious”. Code is malicious if it executes harmful func-
tions or if the functions are undesirable.

As concluded above, the JavaScript code utililized stan-
dard core browser functionality. Thus from a technical view-
point, COVERUP is not harmful. Therefore in our view the
provider of the entry server not does cause any malicious
data interference. We advocate that Art. 4 should not ap-
ply to the provision of the webpage with the iframe by the
provider of the entry server.

Misuse of devices. Misuse of devices (Art. 6 CCC) pe-
nalizes the production, making available, or distribution of a
code designed or adapted primarily for the purpose of com-
mitting a cybercrime offense, or the possession of such a
computer program. It refers to the commission of “hacker
tools”, i.e. programs that are e.g. designed to alter or even
destroy data or interfere with the operation of systems, such
as virus programs, or programs designed or adapted to gain
access to computer systems. The objective element of of-
fense comprises several activities, e.g. distribution of such
code (i.e. the active act of forwarding data to others), or mak-
ing code available (i.e. placing online devices or hyperlinks
to such devices for the use by others) [3, §72].

One of the main questions relating to the misuse of devices
is how to handle dual use devices (code). Dual use means in
our case that the JavaScript code could be used to download
legal content, e.g. political information, as well as illegal
content, e.g. child pornography. Should Art. 6 CCC only
criminalize the distribution or making available of code that
is exclusively written to commit offenses or should it include
all code, even if produced and distributed legally? Art. 6
CCC restricts the scope to cases where the code is objectively
designed primarily for the purpose of committing an offense,
usually excluding dual-use devices [3, §72–§73].

First, it is important to note that COVERUP was not de-
signed primarily for the purpose of committing an offense.
While the main purpose of COVERUP is to protect privacy,
it can be used to conceal illegal activities. Second, can the
download of criminal information be considered an illegal

activity if the information is encrypted? Here we draw a legal
analogy to data protection law. Data relating to an identified
or identifiable person is considered personal data [13, Art.
2(a)], [24, Art. 4(1)]. If a person is identifiable or identified,
data protection law applies. However, if the personal data
are pseudonymized or anonymized, then data protection law
might not apply anymore because the (formerly identifiable
or identified) person cannot longer be identified.

Recital (83), Art. 6(4)(e), 32(1)(a) and 34(3)(a) of the new
General Data Protection Regulation11 stipulate that encryp-
tion renders the personal data unintelligible and mitigates the
risk of infringing the new regulation.

By applying this data protection principle to the encryp-
tion of data by COVERUP we can argue that the data pro-
vided by the ACN in the packets are not information because
the data is unintelligible. Not only does the passive partic-
ipant not have sufficient data to reassemble the packet to a
whole, but the data are encrypted in such manner that it is im-
possible to make any sense of it. At least from a theoretical
viewpoint the encryption of COVERUP cannot be breached.
We therefore conclude that the JavaScript code, with regard
to the passive participant, does not qualify as dual use device
because even if it is used for illegal purpose. The data trans-
mitted remain unintelligible and therefore do not qualify as
information. Moreover, the JavaScript code, with regard to
the active participant, can be qualified as dual use device be-
cause the encrypted and unintelligible data are decrypted and
reassembled to intelligible information.

Legal conclusion. We discussed the applicability of Art.
2 (illegal access), 4 (data interference), and 6 (misuse of de-
vice) CCC to COVERUP. We conclude that the provider of
the entry server is probably not illegally accessing the partic-
ipant’s browser by applying COVERUP; that the provider of
the entry server probably does not cause any malicious data
interference; and that the use of COVERUP with regard to
the passive participant does not qualify as misuse of device.
In regard to the reassembly of the packets to a meaningful
whole, if the information is illegal, COVERUP might qualify
as dual use device and fall under Art. 6 CCC. We conclude
that at least with regard to the risk of indictment pursuant to
Art. 6 CCC it seems advisable that the provider of the entry
server does not provide the JavaScript code for download.

C.2 Entry servers
A participant is dependent on Internet service providers
(ISP). The question arises whether an (ISP) should be liable
for illegal Internet activities of its subscribers. In the follow-
ing we discuss legislation and case law on the ISP’s liabil-
ity in two different jurisdictions: the EU and the USA.For
this discussion it is important to differentiate among the var-
ious types of ISPs, for instance access providers, hosting
providers, and content providers [67].

11Regulation (EU), applicable as of 25.5.2018

16

European union. In the European Union, liability of ISPs
has been regulated in the E-Commerce Directive [9]. Gen-
erally, providers shall not have any obligation to monitor the
information which they transmit or store, or to seek actively
facts or circumstances indicating illegal activity [9, Art. 15
(1)]. According to the directive, access providers acting as
“mere conduits” shall not be liable for the information trans-
mitted, on the condition that they do not initiate, select the
receiver of, or select or modify the information contained in
the transmission [9, Art. 12 (1)].12 Caching providers (effi-
ciency transmitters) shall not be liable for the automatic, in-
termediate and temporary storage of information, on the con-
dition that they do not modify the information; comply with
access regulations and industry standards for updating the
information; do not interfere with the lawful use of technol-
ogy; and act expeditiously to remove information if removed
from the initial source [9, Art. 13 (1)]. Hosting providers
shall not be liable for the information stored on their servers,
on the condition that they are unaware of illegal activity or
information or acts expeditiously to remove or disable access
to the illegal information [9, Art. 14 (1)].

With regard to the obligations of a hosting provider, the
European Court of Justice decided in SABAM v Netlog13

that, among other directives, the E-Commerce Directive pre-
cluded a national court from issuing an injunction against a
hosting service provider which requires it to install a system
for filtering (a) information which is stored on its servers by
its service users, (b) which applies indiscriminately to all of
those users; (c) as a preventative measure; (d) exclusively at
its expense; and (e) for an unlimited period; which is capable
of identifying IP-infringing content.

USA. Similarly, in the United States there are limita-
tions on liability relating to material online [1]. There are
statutory limitations for transitory communications (i.e. ac-
cess provider, “mere conduit”) [1, Section 512(a)], system
caching (i.e. storage for limited time) [1, Section 512(b)],
information residing on systems or networks at the direction
of users (i.e. hosting) [1, Section 512(c)], and information
location tools (i.e. search engines or hyperlinking) [1, Sec-
tion 512(d)].

With regard to the obligations of a hosting provider [1,
Section 512(c)], the United States Court of Appeals for the
Second Circuit, by referencing UMG Recordings, Inc. v.
Shelter Capital Partners LLC, 667 F.3d 1022 (9th Cir. 2011),
argued that “[t]he Court of Appeals affirmed [...] that the
website operator was entitled to safe harbor protection. With
respect to the actual knowledge provision, the panel declined
to ‘adopt [...] a broad conception of the knowledge require-
ment,’ id. at 1038, holding instead that the safe harbor
‘[r]equir[es] specific knowledge of particular infringing ac-

12With regard to the German liability for interference (“Störerhaftung”)
according to Sommer unseres Lebens (I ZR 121/08), see also decision by
the ECJ in Mc Fadden (C- 484/14).

13ECJ C-360/10.

tivity,’ id. at 1037. The Court of Appeals reach[ed] the same
conclusion’ [..] noting that [w]e do not place the burden
of determining whether [materials] are actually illegal on a
service provider.’ Id. At 1038 (alterations in original) (quot-
ing Perfect 10, Inc. v. CCBill LLC, 488 F.3d 1102, 1114 (9th
Cir. 2007))”. Hence, the 2nd Circuit Court concluded, among
others, that 17 U.S.C. §512(c)(1)(A) requires knowledge or
awareness of facts or circumstances that indicate specific and
identifiable instances of infringement.

Legal conclusion. The entry server is probably not an
access provider, maybe a caching provider and presumably a
hosting provider. In the latter case two points seem relevant:
(i) by whom the information is stored on the entry server and
(ii) the entry server’s knowledge of any (illegal) activity.

First, depending on how the entry server’s webpage is set
up, the JavaScript code may be stored by the entry server
itself or by a third party. Only in the latter case does the
provider’s liability privilege apply, because if the JavaScript
code is stored on the entry server by the entry server it-
self, then it is neither an access, nor a caching nor a host-
ing provider, but probably a content provider (assuming that
the JavaScript code is qualified as content). The ISP liability
privilege does not apply to content providers. Second, if the
JavaScript code is stored by the entry server itself on the en-
try server, then the entry server obviously has knowledge of
the content. The ISP liability privilege should not apply. If
the JavaScript code is uploaded by a third party (as done in
COVERUP) to the entry server, and the entry server therefore
has no knowledge about the content, then under EU and US
legislation and case law the entry server should not be held
liable for the JavaScript code.

D Estimator-assumptions

Definition 1 (Total variation over finite domain). Let X ,Y
be two discrete distributions over a finite domain with a
joint domain Ω. Then, the total variation d of X and Y is
d(X ,Y) := 1

2 ∑a∈Ω(|pX (a)− pY (a)|).

Lemma 1. Let Xl ,Xp be the Loading, respectively the Peri-
odic, measurement distribution of the passive user and Yl ,Yp
the Loading respectively the Periodic measurement distribu-
tion of the active user, all with a joint Domain Ω. Let further
be δl be the total variation between Xl and let Yl and δp be
the total variation between Xp and Yp. Then, for all Turing
machines A, if all the measurement samples are independent
(AI), Loading and Periodic measurements are independent
(AII), and the measured distributions represent the accurate
underlying distributions (AIII),

|Pr[b = 1 : b← A(wl ,wp),wl ← Xn
l ,wp← Xm

p]

−Pr[b = 1 : b← A(wl ,wp),wl ← Y n
l ,wp← Y m

p]| ≤ nδl +mδp

Proof. Let w n←− X denote n independent draws from a distri-
bution X . Let Pr[w← X] = Pr[b = 1 : b← A(w),w← X] and
Pr[wl ← Xl 1 wp ← Xp] = |Pr[b = 1 : b← A(wl ,wp),wl ←

17

Xl ,wp← Xp]. We conclude:

|Pr[b = 1 : b← A(wl ,wp),wl ← Xn
l ,wp← Xm

p]

−Pr[b = 1 : b← A(wl ,wp),wl ← Y n
l ,wp← Y m

p]|
= |Pr[wl

n←− Xl 1 wp
m←− Xp]−Pr[wl

n←− Yl 1 wp
m←− Yp]|

AI
≤ |Pr[wl

n←− Xl ∨wp
m←− Xp]−Pr[wl

n←− Yl ∨wp
m←− Yp]|

AII
≤ n · |Pr[wl

1←− Xl]−Pr[wl
1←− Yl]|

+m · |Pr[wp
1←− Xp]−Pr[wp

1←− Yp]|
AIII
≤ n ·δl +m ·δp

18

