
A Benchmark Generator for
Online First-Order Monitoring

Srđan Krstić and Joshua Schneider

Institute of Information Security, Department of Computer Science, ETH Zürich,
Zurich, Switzerland

{srdan.krstic, joshua.schneider}@inf.ethz.ch

Abstract. We present a randomized benchmark generator for attest-
ing the correctness and performance of online first-order monitors. The
benchmark generator consists of three components: a stream generator, a
stream replayer, and a monitoring oracle. The stream generator produces
random event streams that conform to user-defined characteristics such
as event frequencies and distributions of the events’ parameters. The
stream replayer reproduces event streams in real time at a user-defined
velocity. By varying the stream characteristics and velocity, one can an-
alyze their impact on the monitor’s performance. The monitoring oracle
provides the expected result of monitoring the generated streams against
metric first-order regular specifications. The specification languages sup-
ported by most existing monitors are either a subset of or share a large
common fragment with the oracle’s language. Thus, we envision that our
benchmark generator will be used as a standard correctness and perfor-
mance testing tool for online monitors.

Keywords: Online Monitoring · Temporal Logic · Benchmark

1 Introduction

Monitors lie at the core of runtime verification (RV) [4]. Given a sequence of time-
stamped events and a specification (i.e., a property formulated in a specification
language), a monitor checks that the specification holds at each point in the se-
quence and otherwise reports the violations. The monitored properties can range
from simple state invariants to complex patterns expressing qualitative [22,14]
and quantitative [18,11] temporal relations between events. Particularly challeng-
ing are first-order [8,5] and aggregation [13,7] properties, which additionally refer
to the events’ parameters. The implementation of such monitors is a non-trivial
task, which can introduce bugs that are difficult to detect. Moreover, the theo-
retical analysis of a monitor’s algorithm often does not provide sufficient insight
into its performance. These two reasons motivate thorough, automated testing.
In this paper, we present a benchmark generator that tests the correctness and
evaluates the performance of monitors for expressive specification languages.

We distinguish between online and offline monitors [16]. Offline monitors
read events from a finite event stream (called an event log) in an arbitrary fash-
ion, while online monitors must sequentially read from a (potentially unbounded)
event stream. Due to the nature of streams, each event can be read only once.

https://orcid.org/0000-0001-8314-2589
https://orcid.org/0000-0001-8253-4513

2 S. Krstić, J. Schneider

Hence, an online monitor must keep all relevant events in its memory. Another
challenge for online monitors is events arriving out-of-order, which may be caused
by unreliable communication channels over which the events are transmitted.

The performance of an online monitor can be assessed in terms of its memory
usage and its latency. The latency of processing a single event is the time differ-
ence between the moment the event is read and the moment it has been fully pro-
cessed by the monitor. Latency and memory usage depend on two main factors:
the complexity of the monitored specification and the characteristics of the event
stream, such as its velocity (i.e., the number of events per second), the distribu-
tion of the different event types, and the maximum delay of out-of-order events.

The benchmark generator presented in this paper focuses mainly on the event
stream characteristics. They are not only useful for evaluating a monitor’s perfor-
mance, but also for testing its correctness, as streams with specific characteristics
can trigger corner cases in the monitoring algorithm. We provide three tools: a
stream generator, a stream replayer, and a monitoring oracle.

The generator randomly generates a stream with user-defined character-
istics. The generator has two modes. In the first mode, it supports arbitrary
specifications by generating events independently at random. This mode is useful
for the correctness testing of a monitor against a large number of specifications
involving different event types. The second mode is restricted to a family of spec-
ifications for which a monitor must compute joins over three relations. This is
known to be a difficult problem [12,21] and a core task in first-order monitoring.
The second mode is thus tailored to the performance evaluation of first-order
monitors. For the restricted family of specifications, the generator uses biased
sampling to match the average violation frequency specified by the user.

The replayer feeds the generated stream to an online monitor at a user-
defined velocity, which allows for latency measurements under realistic condi-
tions. The replayer can optionally simulate out-of-order streams by exploiting
the randomized emission time-stamps that the generator adds to the stream.

The oracle provides the expected correct result (a stream of verdicts) for
the generated stream, given a property specified in a monitorable fragment of
metric first-order dynamic logic (MFODL) [5]. Since MFODL is very expressive,
our benchmark generator can be used to test the correctness of the majority of
the existing monitors over a large class of specifications.

The generator and replayer were originally developed to assess the per-
formance of our online first-order monitor [28,26,6], which is sensitive to the event
stream characteristics. Together with the oracle, the generator can be used
to test the correctness of monitoring tools, which we have already done [5,29] for
a number of existing monitors via differential testing [20]. We summarize these
applications of our benchmark in Section 4.

An earlier version of this work, called FOStreams, was presented in the bench-
mark challenge [1] at the RV 2018 conference. Since then, we extended our bench-
mark generator to 1) generate streams with arbitrary event signatures; 2) use
the correct-by-design monitor VeriMon [5,29] as the oracle; and 3) generate
out-of-order event streams.

A Benchmark Generator for Online First-Order Monitoring 3

Related work. From 2014 to 2016, the RV community organized an annual tool
competition to address a lack of standardized benchmarks in the field [3]. Its
goals (among others) were to design and discuss evaluation methods for RV
tools and to inspire new efficient implementations of such tools. A follow-up
workshop [25], which replaced the competition in 2017, concluded that one of
the obstacles in achieving standardized benchmarks is the diversity of the tools’
specification languages. Our benchmark generator focuses on the event streams
characteristics, which avoids a strong dependence on the specification language.
Such a dependence still exists in the oracle, but we hope that its highly ex-
pressive language allows meaningful testing of the majority of existing tools.

The community continued to collect and curate benchmarks after 2017 [1].
The benchmark by Li and Rozier [19] uses SMT solvers to generate satisfying
or violating event streams for propositional monitors. In contrast, our work sup-
ports first-order specifications and it relies on an orthogonal approach to stream
generation: the oracle provides verdicts which are correct by design, while the
generator uses a best-effort strategy to reach the user-defined violation rate.
Ulus [30] provides a benchmark generator tailored to propositional monitors and
common specification patterns [15] involving parameterized time constraints,
whereas we focus on data constraints and the reproduction of real-time streams.

2 The Benchmark Generator

In this section, we first introduce event streams and define the stream charac-
teristics that can be configured in our benchmark generator. We then describe
the benchmark generator’s three main components.

2.1 Event Streams and Stream Characteristics

An event is a tuple of data values that is labeled with an event type. The values’
domain D typically includes strings and integers. Every event type R has an
associated arity α(R) defining the number of data values for this type. We call
1, . . . , α(R) the attributes of the type R. For example, the following line in the
/var/log/auth.log file

Jul 7 17:14:11 mbp sshd[375]: Accepted publickey for root from 10.11.1.3:5161

can be represented by the event login(“10.11.1.3”, 5161, “mbp”, “root”, 375, “pub-
lickey”) with type login and arity α(login) = 6. Every event has an associated
time-stamp, modeled as a natural number. The use of naturals is realistic as time
is often recorded in the UNIX format. For example, the event in the above log line
has the associated time-stamp 1594142051, which encodes July 7 2020, 17:14:11
in UNIX format, assuming the GMT time zone and a one second time granularity.

We group a finite set of events that happen concurrently (from the event
source’s point of view) into databases. An (event) stream is thus an infinite
sequence (τi, Di)i∈N of databases Di with associated time-stamps τi. We distin-
guish between the time-stamp τi and its index in the stream i, also called a time-
point. Specifically, a stream may have the same time-stamp τi = τj at different

4 S. Krstić, J. Schneider

Name Notation Definition

Index rate ιτ |{i ∈ N | τ = τi}|
Event rate ετ |{e ∈ Di | τ = τi}|
Relation rate ρτ (R) |{R(d1, ..., dα(R)) ∈ Di | τ = τi}|
Relation frequency fτ (R) ρτ (R)/ετ
Data rate δτ (d,R, k) |{R(d1, . . . , dα(r)) ∈ Di | dk = d ∧ τ = τi}|

Heavy hitters Hτ (R, k)

{
d ∈ D

∣∣∣∣∣
∑

0≤τ ′≤τ δτ ′(d,R, k)∑
0≤τ ′≤τ ρτ ′(R) >

1
p

}

Table 1: Summary of stream characteristics for the event stream (τi, Di)i∈N

indices i 6= j, i.e., event sources may record the order of events with higher pre-
cision than the time-stamps’ granularity. Time-stamps must be non-decreasing
(∀i. τi ≤ τi+1) and always eventually strictly increasing (∀τ. ∃i. τ < τi). The
above example can be represented by the tuple (1594142051, D) where D is a
singleton database containing the login event.

In the following, we introduce the relevant stream characteristics. Their def-
initions are summarized in Table 1, where we fix a stream (τi, Di)i∈N. The index
rate ιτ at time τ is the number of time-points in one time unit. The event rate
ετ at time τ is the total number of events in one time unit. The rate of events
with type R is called R’s relation rate. The relation frequency of R at τ , denoted
by fτ (R), is the ratio of R’s relation rate and ετ . The data rate δτ (d,R, k) of a
data value d at time τ with respect to the kth attribute of R is the number of
events R that carry the value d in the kth attribute. Finally, we define the sets
of heavy hitters Hτ (R, k). A heavy hitter is a data value that occurs as the kth
attribute of R events disproportionately often in the stream prefix up to τ . This
characteristic differs from the previous ones in that it is computed over a prefix
instead of a single time-stamp. A value is a heavy hitter if its data rate, relative
to the corresponding relation rate, exceeds the threshold 1/p. The parameter
p ∈ N− {0} is typically the monitor’s level of parallelism [27].

We exemplify all the stream characteristics using the stream ρex depicted
in the following figure, which shows the first four time-points as black circles.
Databases are drawn above, while time-stamps are the numbers below the circles.

0 0 5 8

{A(1),A(2)} {A(3),B(7)}
{A(1)} {}

ρex:

Table 2 lists all the stream characteristics for this stream, where p = 3 and
τ ∈ {0, 8}. For example, the index rate ι0 is two because there are two time-
points, 0 and 1, with time-stamp 0. Note that two out of the three A events in
the time interval [0, 8] carry the data value 1, and 2/3 is greater than the heavy
hitter threshold 1/p = 1/3. Therefore, the set H8(A, 1) contains 1 as the single
heavy hitter (as of time-stamp 8) in the first attribute of A events.

A Benchmark Generator for Online First-Order Monitoring 5

Name Examples

Index rate ι0 = 2, ι8 = 1
Event rate ε0 = 4, ε8 = 0
Relation rate ρ0(A) = 3, ρ0(B) = 1, ρ8(A) = ρ8(B) = 0
Relation frequency f0(A) = 3

4 , f0(B) = 1
4 , f8(A) = f8(B) = undefined

Data rate δ0(1,A, 1) = δ0(2,A, 1) = δ0(3,A, 1) = δ0(7,B, 1) = 1
δ8(1,A, 1) = δ8(2,A, 1) = δ8(3,A, 1) = δ8(7,B, 1) = 0

Heavy hitters H0(A, 1) = {}, H0(B, 1) = H8(B, 1) = {7}, H8(A, 1) = {1}

Table 2: Stream characteristics of the example stream ρex

2.2 Specification and Oracle

Our benchmark generator can be used with arbitrary specifications. Depending
on the benchmark’s mode, the generated streams are either compatible with all
specifications that use a given signature, or they are tailored to a single specifi-
cation from a fixed family (see Section 2.3). A specification’s signature describes
the finite set of relevant event types together with their arities.

The oracle provides the expected output of monitoring any specification
expressible in monitorable metric first-order dynamic logic (MFODL) [5] on any
in-order event stream. MFODL extends MFOTL [8] with regular expressions.
The oracle is implemented using VeriMon [5], a correct-by-design monitor
that has been formally verified in a proof assistant. Its high trustworthiness and
expressiveness allows us to attest the correctness of a wide variety of existing
monitors [29,5] by comparing their output to the oracle’s output.

2.3 Generating Streams

The generator produces a random but reproducible event stream. Since it
generates output as quickly as possible, one must use the replayer (see Sec-
tion 2.4) to simulate a more realistic real-time stream for an online monitor. The
generator can be operated in two different modes, which we detail below.

Mode I (arbitrary specifications). When used with arbitrary specifications, the
generator expects a signature file describing all the event types and their
arities. Users can also configure the event rate, the index rate, and the value
of the first time-stamp. The generator then creates a random stream with
consecutive time-stamps and constant event and index rates. Event types are
chosen uniformly at random. The generator maintains a configurable number
of unique most recently sampled data values. It samples from this pool with a
configurable probability, which ensures common data values across events and
thus increases the likelihood of exercising non-trivial computation inside the
monitor. Otherwise, a fresh value is sampled uniformly from the set {1, . . . , 109}.

Mode II (temporal three-way conjunctions). The generator gives more control
over the stream generation process for a special family F3 of specifications, which

6 S. Krstić, J. Schneider

we call temporal three-way conjunctions. For example, it is possible to define the
expected violation frequency. The family F3 is inspired by query patterns that
are commonly used in database systems to benchmark the performance of rela-
tional joins [12]. Joins are an important operation also for first-order monitors
because (the negations of) many specifications contain conjunctions, e.g., any
specification involving a response constraint [15]. We augment the conjunctions
with temporal operators to increase the joins’ input size.

A three-way conjunction is a temporal pattern referring to three event types
A, B, and C with integer data values. The specifications differ only in the way
these events are related among each other. They can be formalized using the
parametric MFODL formula �∀v.

(
�[0,w) A(vA)

)
∧ B(vB) → �[0,w) ¬C(vC),

where is w is a positive integer and vA, vB, and vC are lists of variables. In-
formally, the formula states that whenever there is a B event that was preceded
by a matching A event less than w time units ago, there must not be a matching
C event within the next w time units. Two events with different types match if
their data values coincide according to the variables vA, vB, and vC, respectively.
For example, if vA = (x, y) and vB = (y, z), then the events A(1, 2) and B(2, 5)
match, but A(1, 2) and B(1, 5) do not.

The variable lists, which must be non-empty, can be chosen freely by the
user. There are three built-in configurations: star (vA = (w, x), vB = (w, y),
vC = (w, z)), linear (vA = (w, x), vB = (x, y), vC = (y, z)), and triangle (vA =
(x, y), vB = (y, z), vC = (z, x)). These configurations are again well-known in
the database literature [12].

For F3, the events of type A, B and C are generated randomly and inde-
pendently according to the user-specified relation frequencies fτ (A), fτ (B), and
fτ (C), which are constant with respect to τ . The data values are also chosen
randomly and independently under the following constraints: (1) every A event
must be matched with a B event within the interval w to ensure that the premise
of the specification is satisfied frequently; (2) a user-specified percentage of viola-
tions must be generated. Constraint (2) is enforced by generating an appropriate
number of C events matching both a proceeding B event and an A event before
that (both within the appropriate time intervals). The above constraints imply
some restrictions on the user-specified frequencies: the sum of all three frequen-
cies must be 1, fτ (A) can be at most fτ (B), and the frequency of violations can
be at most the minimum of fτ (A) and fτ (C).

By default, values are sampled uniformly from D = {1, . . . , 109}. It is also
possible to select a Zipf distribution per variable, which has the probability mass
function p(x) = (x−s)−z/

∑109

n=1 n
−z for x ∈ {s+1, s+2, . . . , s+109}. The larger

the exponent z > 0 is, the fewer values have a correspondingly larger relative
frequency and are thus more likely to be heavy hitters. The parameter s is the
start value, which can be used to further control the specific heavy hitter values.
Events that form a violation are always drawn from the uniform distribution
to prevent unintended matchings. Likewise, Zipf-distributed values of C events
are increased by 1 000 000. Note that there is still a nonzero probability that
additional violations occur, even though the set D is large.

A Benchmark Generator for Online First-Order Monitoring 7

Out-of-order streams. The generator optionally attaches an emission time to
every event. The emission times, which are time differences relative to the start of
the stream, may be used to determine the order in which the events are supplied
to the monitor. For in-order event streams, the emission times correspond to the
events’ time-stamps decreased by the value of the first time-stamp in the stream.
To create out-of-order streams, the generator increases each event’s emission
time by a value sampled from the truncated normal distribution N (0, σ2) over
the interval [0, δmax]∩N. Both the standard deviation σ and the maximum delay
δmax are configurable. The generator also adds watermarks after configurable
time-stamp increments called watermark periods to the stream. A watermark
is a time-stamp which is a strict lower bound on all time-stamps of the events
received in the future. They are commonly used in stream processing systems to
handle out-of-order events [2].

2.4 Replaying Streams

The time-stamps in an event stream do not necessarily correlate to the (real)
times at which the corresponding events are received by an online monitor.
Therefore, we distinguish the ingestion time of an event from its time-stamp.
The ingestion rate is the total number of events received by the monitor per unit
of (real) time. The replayer tool reproduces an event stream (or log) with an
ingestion rate proportional to the stream’s event rate. The proportionality con-
stant, called acceleration, is chosen by the user. For example, an acceleration of 2
will replay the stream twice as fast. Thus the replayer can be used to generate
workloads with different ingestion rates from the same data. This allows for a
meaningful performance evaluation as the stream characteristics are retained.

Upon startup, the replayer immediately outputs all events with the small-
est time-stamp in its input. The subsequent events with the next time-stamp are
delayed proportionally to the difference between the two time-stamps (which are
interpreted as seconds), where the delay factor is the inverse of the acceleration
parameter. This process is repeated for each unique time-stamp in the stream.

To reproduce streams with out-of-order events, the replayer uses the emis-
sion times provided by the generator instead of the events’ time-stamps.

3 Usage Examples

We provide our benchmark generator as a ready-to-use Docker image.1 The
source code is available online.2 In the following, we assume that Docker version
19.03.8 or higher is installed and configured properly. The components of the
benchmark generator can be invoked with the command

$ docker run -iv `pwd`:/work infsec/benchmark component [options ...]

where component is one of generator, replayer, or oracle. The command
makes the current working directory available to the Docker container. Hence,
1 https://hub.docker.com/r/infsec/benchmark/ (version 1.2.1)
2 https://bitbucket.org/krle/scalable-online-monitor

https://hub.docker.com/r/infsec/benchmark/
https://bitbucket.org/krle/scalable-online-monitor

8 S. Krstić, J. Schneider

one can access all the files below the current directory using relative paths in
the components’ options. Each component prints detailed usage information if it
is invoked with the --help option. In the examples below, we omit the Docker
part of the invocation and only show the component and its arguments.

Example: differential testing with Mode I. We explain the steps needed to test the
correctness of a monitor against the oracle. An MFODL formula and, if nec-
essary, its translation to the monitor’s native language must be provided. Here,
we use the MFODL formula �∀ip, port . login(ip, port)→ ♦[0,60] logout(ip, port),
which is loosely inspired by the example from the beginning of Section 2.1. In
words, every login from some IP address and port combination must be eventu-
ally followed by a matching logout within 60 time units. For simplicity, we assume
that the time unit is minutes. Note that the interpretation of the time unit is
irrelevant for the generator; the replayer interprets time-stamps in seconds.

We first describe the signature in a text file ssh.sig with the content

login(ip,port) logout(ip,port)

and the specification (without the prefix � ∀) in a separate file ssh.spec:

login(ip,port) IMPLIES EVENTUALLY[0,60] logout(ip,port)

The syntax for the MFOTL subset is described in [9]. Next, the following com-
mand generates a random log for the signature with a length of 300 minutes.

$ generator -sig ssh.sig -i 10 -q 20 -r 0.01 300 > ssh.csv

The generator prints the events to its standard output. We use a shell redi-
rection to save them in a file. The option -i 10 sets the index rate to 10. To-
gether with the default event rate (option -e), which is also 10, this implies ten
databases per minute with one event each. Options -q and -r define the number
of the most recently sampled unique data values and the probability to sample
a fresh data value. Here we use few values (20) and a low probability (0.01)
because otherwise there would be many violations of the specification.

The generator outputs the CSV format from the first RV competition [3].
For example, the ssh.csv file begins with the line

login, tp=0, ts=0, x0=569872521, x1=373321178

representing the event login(569872521, 373321178) at time-stamp 0. The ran-
dom generator’s seed is fixed and the output is deterministic. The seed can be
customized using the -seed option. Since VeriMon expects a different format
for the input event stream, we invoke the replayer to translate the formats:

$ replayer -f verimon -a 0 < ssh.csv > ssh.log

Note that -a 0 disables the real-time replay and events are emitted as quickly
as possible. Finally, the oracle provides the reference verdicts:

$ oracle -sig ssh.sig -formula ssh.spec < ssh.log
@0. (time point 7): (703748452,559514287)
[...]

A Benchmark Generator for Online First-Order Monitoring 9

Each line in the output represents a violation, showing the time-stamp, the time-
point, and values of ip and port . If we now ran another monitoring tool on the
same specification and log, we could compare its output to this reference.

Example: online performance measurements with Mode II. Here, we illustrate
the generation of a real-time stream with out-of-order events for the specification
family F3 (Section 2.3). By varying the stream characteristics, one can analyze
their impact on the monitor’s throughput, latency, and memory usage.

Recall that F3 is parameterized by three variable lists. One can select either
a built-in or a custom variable configuration. The options -S (star), -L (linear),
and -T (triangle) select the respective built-in configuration. A custom pattern is
supplied as a single argument after the option -P. In this example, we will use the
triangle specification, i.e., � ∀x, y, z.

(
�[0,w) A(x, y)

)
∧B(y, z)→ �[0,w) ¬C(z, x).

$ generator -T -pA 0.1 -pB 0.5 -z "x=1.5+3,z=2" -e 100

The relation frequencies of the three event types are set with -pA and -pB.
The frequency of type C is implied by the frequencies of type A and B because
their sum is always 1. In the invocation above, the relation frequency of A events
is approximately 10%, that of B events is 50%, and that of C events is 40%. To
obtain values from a Zipf distribution, the exponent of the distribution can be
specified per variable. The exponents of all Zipf-distributed variables are passed
as a single argument after option -z. In our case, the values of variables x and z
follow a Zipf distribution with exponents 1.5 and 2. The start value for variable
x is 3, while for variable z it is 0 (default). Variable y is distributed uniformly.

We did not specify the frequency of violations (option -x) nor the interval size
w (option -w), so they assume their default values of 0.01 and 10, respectively. No
log length was specified either, which prompts the generator to produce an un-
bounded stream as quickly as possible. We can pipe its output into the replayer
to obtain a real-time stream, which can be further sent to the monitor under test:

$ generator [...] | replayer | some monitor tool

The replayer outputs 100 events per second because the generated stream’s
event rate is 100 (option -e 100 in the generator’s invocation). With the re-
player option -a 2, the stream would be replayed twice as fast at 200 events
per second. If a pipeline connects the generator and the replayer, the former
needs to be fast enough for the events to be replayed at the proper time. For
higher accelerations or event rates, a finite log should be generated and written
to a file from where the replayer can read it.

To obtain an out-of-order stream, we must pass additional options:

$ generator [...] -et -md 5 -s 2 -wp 1 | replayer -e

The flag -et instructs the generator to add explicit emission times to the
events based on maximum delay (option -md) and standard deviation (option
-s). The generator also outputs watermarks after configurable periods (option
-wp), which appear as lines of the form >WATERMARK time-stamp < in the stream.

10 S. Krstić, J. Schneider

4 Applications

We used previous versions of our benchmark generator to assess the perfor-
mance of our scalable monitoring framework [28], which relies on first-order
(sub)monitors to monitor event streams in parallel. The framework initially
supported only MonPoly [9] as a submonitor, but it was later extended [27] to
also support DejaVu [17]. The framework’s performance depends on the stream
characteristics shown in Section 2.1. We used the generator in Mode II during
the evaluation, which revealed a noticeable impact of the index rate and the
specific variable configurations on the monitoring framework’s throughput. The
framework was later extended to adapt to dynamically changing stream charac-
teristics [26] and to handle multiple event streams with events arriving out-of-
order [6]. The evaluation of these extensions was again driven by the generator
and replayer. For example, we could confirm a direct relationship between the
monitoring latency and both the maximum delay and the watermark period.

In conjunction with the development of VeriMon [29], the generator
(in Mode I) and the oracle were used to perform differential testing of both
propositional (Aerial [10] and Hydra [23,24]) and first-order monitors (Mon-
Poly [9] and DejaVu [17]). We have discovered multiple inconsistencies between
the outputs of the tools and our oracle [29,5]. In some cases (e.g., MonPoly)
we discovered bugs in a monitoring algorithm’s implementation.

5 Conclusion and Future Work

Online first-order monitors implement complex algorithms, whose correctness is
rarely obvious. Furthermore, they require a highly optimized join implementa-
tion to achieve competitive performance. We proposed a benchmark generator
for evaluating first-order monitors. It consists of three components: a stream
generator, stream replayer, and a monitoring oracle. The stream generator and
replayer produce random event streams in real time with highly customizable
characteristics suitable for evaluating the performance of join implementations
in monitors. The monitoring oracle provides the correct monitoring output for
monitorable metric first-order regular specifications, which allows for the cor-
rectness testing of a large class of first-order monitors.

In the future, we would like to support other event stream formats (e.g.,
JSON) and additional data value types (e.g., strings). Moreover, the current
stream generator determines the time-stamps based on the event rate and log
length only. We would like to give the users additional control over the distribu-
tion of the time-stamp values. Finally, we plan to improve and publish a version
of the generator that provides multiple randomized event streams resembling
those obtained from distributed systems [6].

Acknowledgment. We thank Matthieu Gras for his contributions to the stream
generator. VeriMon was developed in collaboration with Dmitriy Traytel and Martin
Raszyk. This research is supported by the US Air Force grant “Monitoring at Any
Cost” (FA9550-17-1-0306) and by the Swiss National Science Foundation grant “Big
Data Monitoring” (167162). The authors are listed alphabetically.

A Benchmark Generator for Online First-Order Monitoring 11

References

1. Runtime Verification Benchmark Challenge. https://github.com/
runtime-verification/benchmark-challenge-2018, 2018.

2. T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. Fernández-Moctezuma,
R. Lax, S. McVeety, D. Mills, F. Perry, E. Schmidt, and S. Whittle. The Dataflow
Model: A practical approach to balancing correctness, latency, and cost in massive-
scale, unbounded, out-of-order data processing. Proc. VLDB Endow., 8(12):1792–
1803, 2015.

3. E. Bartocci, Y. Falcone, B. Bonakdarpour, C. Colombo, N. Decker, K. Havelund,
Y. Joshi, F. Klaedtke, R. Milewicz, G. Reger, G. Rosu, J. Signoles, D. Thoma,
E. Zălinescu, and Y. Zhang. First international competition on runtime verifica-
tion: rules, benchmarks, tools, and final results of CRV 2014. Int. J. Softw. Tools
Technol. Transf., 21(1):31–70, 2019.

4. E. Bartocci, Y. Falcone, A. Francalanza, and G. Reger. Introduction to runtime
verification. In E. Bartocci and Y. Falcone, editors, Lectures on Runtime Verifica-
tion, volume 10457 of LNCS, pages 1–33. Springer, 2018.

5. D. Basin, T. Dardinier, L. Heimes, S. Krstić, M. Raszyk, J. Schneider, and D. Tray-
tel. A formally verified, optimized monitor for metric first-order dynamic logic. In
N. Peltier and V. Sofronie-Stokkermans, editors, IJCAR 2020, volume 12166 of
LNCS, pages 432–453. Springer, 2020.

6. D. Basin, M. Gras, S. Krstić, and J. Schneider. Scalable online monitoring of
distributed systems. In J. Deshmukh and D. Ničković, editors, RV 2020, LNCS.
Springer, 2020. To appear.

7. D. Basin, F. Klaedtke, S. Marinovic, and E. Zălinescu. Monitoring of temporal
first-order properties with aggregations. Formal Methods Syst. Des., 46(3):262–
285, 2015.

8. D. Basin, F. Klaedtke, S. Müller, and E. Zălinescu. Monitoring metric first-order
temporal properties. J. ACM, 62(2):15:1–15:45, 2015.

9. D. Basin, F. Klaedtke, and E. Zălinescu. The MonPoly monitoring tool. In G. Reger
and K. Havelund, editors, RV-CuBES 2017, volume 3 of Kalpa Publications in
Computing, pages 19–28. EasyChair, 2017.

10. D. Basin, S. Krstić, and D. Traytel. AERIAL: almost event-rate independent
algorithms for monitoring metric regular properties. In G. Reger and K. Havelund,
editors, RV-CuBES 2017, volume 3 of Kalpa Publications in Computing, pages 29–
36. EasyChair, 2017.

11. D. Basin, S. Krstić, and D. Traytel. Almost event-rate independent monitoring of
metric dynamic logic. In S. Lahiri and G. Reger, editors, RV 2017, volume 10548
of LNCS, pages 85–102. Springer, 2017.

12. P. Beame, P. Koutris, and D. Suciu. Communication steps for parallel query
processing. J. ACM, 64(6):40:1–40:58, 2017.

13. D. Bianculli, C. Ghezzi, and S. Krstić. Trace checking of metric temporal logic with
aggregating modalities using MapReduce. In D. Giannakopoulou and G. Salaün,
editors, SEFM 2014, volume 8702 of LNCS, pages 144–158. Springer, 2014.

14. G. De Giacomo and M. Y. Vardi. Linear temporal logic and linear dynamic logic
on finite traces. In F. Rossi, editor, IJCAI 2013, pages 854–860. AAAI Press, 2013.

15. M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property specifications
for finite-state verification. In B. W. Boehm, D. Garlan, and J. Kramer, editors,
ICSE 1999, pages 411–420. ACM, 1999.

https://github.com/runtime-verification/benchmark-challenge-2018
https://github.com/runtime-verification/benchmark-challenge-2018

12 S. Krstić, J. Schneider

16. Y. Falcone, S. Krstić, G. Reger, and D. Traytel. A taxonomy for classifying runtime
verification tools. In C. Colombo and M. Leucker, editors, RV 2018, volume 11237
of LNCS, pages 241–262. Springer, 2018.

17. K. Havelund, D. Peled, and D. Ulus. First order temporal logic monitoring with
BDDs. In D. Stewart and G. Weissenbacher, editors, FMCAD 2017, pages 116–123.
IEEE, 2017.

18. R. Koymans. Specifying real-time properties with metric temporal logic. Real-Time
Syst., 2(4):255–299, 1990.

19. J. Li and K. Y. Rozier. MLTL benchmark generation via formula progression.
In C. Colombo and M. Leucker, editors, RV 2018, volume 11237 of LNCS, pages
426–433. Springer, 2018.

20. W. M. McKeeman. Differential testing for software. Digital Technical Journal,
10(1):100–107, 1998.

21. H. Q. Ngo, E. Porat, C. Ré, and A. Rudra. Worst-case optimal join algorithms.
J. ACM, 65(3):16:1–16:40, 2018.

22. A. Pnueli. The temporal logic of programs. In FOCS 1977, pages 46–57. IEEE
Computer Society, 1977.

23. M. Raszyk, D. Basin, S. Krstić, and D. Traytel. Multi-head monitoring of metric
temporal logic. In Y. Chen et al., editors, ATVA 2019, volume 11781 of LNCS,
pages 151–170. Springer, 2019.

24. M. Raszyk, D. Basin, and D. Traytel. Multi-head monitoring of metric dynamic
logic. In D. V. Hung and O. Sokolsky, editors, ATVA 2020, volume 12302 of LNCS.
Springer, 2020. To appear.

25. G. Reger. A report of RV-CuBES 2017. In G. Reger and K. Havelund, editors, RV-
CuBES 2017, volume 3 of Kalpa Publications in Computing, pages 1–9. EasyChair,
2017.

26. J. Schneider, D. Basin, F. Brix, S. Krstić, and D. Traytel. Adaptive online first-
order monitoring. In Y. Chen, C. Cheng, and J. Esparza, editors, ATVA 2019,
volume 11781 of LNCS, pages 133–150. Springer, 2019.

27. J. Schneider, D. Basin, F. Brix, S. Krstić, and D. Traytel. Scalable online first-order
monitoring. Int. J. Softw. Tools Technol. Transf., 2020. To appear.

28. J. Schneider, D. Basin, S. Krstić, F. Brix, and D. Traytel. Scalable online first-order
monitoring. In C. Colombo and M. Leucker, editors, RV 2018. Springer, 2018.

29. J. Schneider, D. Basin, S. Krstić, and D. Traytel. A formally verified monitor for
metric first-order temporal logic. In B. Finkbeiner and L. Mariani, editors, RV
2019, volume 11757 of LNCS, pages 310–328. Springer, 2019.

30. D. Ulus. Timescales: A benchmark generator for MTL monitoring tools. In
B. Finkbeiner and L. Mariani, editors, RV 2019, volume 11757 of LNCS, pages
402–412. Springer, 2019.

	A Benchmark Generator for Online First-Order Monitoring-0.7ex
	1 Introduction
	2 The Benchmark Generator
	2.1 Event Streams and Stream Characteristics
	2.2 Specification and Oracle
	2.3 Generating Streams
	2.4 Replaying Streams

	3 Usage Examples
	4 Applications
	5 Conclusion and Future Work

