
IsaNet: A Framework for Verifying Secure
Data Plane Protocols

Tobias Klenze a, Christoph Sprenger a,∗ and David Basin a

a Department of Computer Science, ETH Zurich, Switzerland
E-mails: tobias.klenze@inf.ethz.ch, sprenger@inf.ethz.ch, basin@inf.ethz.ch

Abstract. Today’s Internet is built on decades-old networking protocols that lack scalability, reliability and security. In response,
the networking community has developed path-aware Internet architectures that solve these problems while simultaneously
empowering end hosts to exert some control on their packets’ route through the network. In these architectures, autonomous
systems authorize forwarding paths in accordance with their routing policies, and protect these paths using cryptographic
authenticators. For each packet, the sending end host selects an authorized path and embeds it and its authenticators in the
packet header. This allows routers to efficiently determine how to forward the packet. The central security property of the data
plane, i.e., of forwarding, is that packets can only travel along authorized paths. This property, which we call path authorization,
protects the routing policies of autonomous systems from malicious senders.

The fundamental role of packet forwarding in the Internet’s ecosystem and the complexity of the authentication mechanisms
employed call for a formal analysis. We develop IsaNet, a parameterized verification framework for data plane protocols in
Isabelle/HOL. We first formulate an abstract model without an attacker for which we prove path authorization. We then refine
this model by introducing a Dolev–Yao attacker and by protecting authorized paths using (generic) cryptographic validation
fields. This model is parametrized by the path authorization mechanism and assumes five simple verification conditions. We
propose novel attacker models and different sets of assumptions on the underlying routing protocol. We validate our framework
by instantiating it with nine concrete protocol variants and prove that they each satisfy the verification conditions (and hence
path authorization). The invariants needed for the security proof are proven in the parametrized model instead of the instance
models. Our framework thus supports low-effort security proofs for data plane protocols. In contrast to what could be achieved
with state-of-the-art automated protocol verifiers, our results hold for arbitrary network topologies and sets of authorized paths.

Keywords: security protocols, formal verification, future Internet, data plane

1. Introduction

The Internet is a global network of ca. 70,000 independently managed networks, called autonomous
systems (ASes), which are run by entities such as Internet service providers (ISPs), content providers, or
public institutions. Routing is based on the aging Border Gateway Protocol (BGP), a protocol that scales
poorly and has no built-in security. In response to these well-known problems, the networking commu-
nity has been working to augment BGP with security mechanisms [1–3], but the proposed solutions have
proven to be insufficient, inefficient, or they introduce new problems [4–6].

In parallel to the proposed BGP enhancements, which trade off performance for security, many re-
searchers have acknowledged the need for a clean-slate approach. The networking community has in-
vested substantial effort into developing novel security protocols with the objective of building a new

*Corresponding author. E-mail: sprenger@inf.ethz.ch.

mailto:tobias.klenze@inf.ethz.ch
mailto:sprenger@inf.ethz.ch
mailto:basin@inf.ethz.ch
mailto:sprenger@inf.ethz.ch

Internet architecture that is both more efficient and more secure. We focus here on path-aware architec-
tures [7–14]. In contrast to the current Internet, these provide end hosts with some control over the paths
along which they send their packets.

Networking architectures generally consist of a control plane, where routers exchange topology in-
formation and establish paths, and a data plane (also called forwarding plane or simply forwarding),
where packets are forwarded along these paths. In the path-aware Internet architectures that we study,
the control plane constructs forwarding paths as sequences of cryptographically authenticated forward-
ing directives, one for each AS on the path. The source selects such a forwarding path for each packet
and includes it in the packet’s header, a technique known as packet-carried forwarding state. Routers
forward the packets according to the forwarding information of their AS, which they extract from the
packet’s path and validate by checking the associated cryptographic authenticator. Since each packet
contains its own forwarding state, routers do not require routing tables unlike with current BGP-based
routers.

Path-aware architectures allow end hosts to select paths, but the architectures must also ensure that
the policies of ASes are followed. These policies rule out impractical or uneconomical paths. To protect
ASes from malicious sources, the control plane should only construct and authenticate paths consistent
with the policy of each AS, and the data plane should only forward packets along these paths. The latter
property is called path authorization and it is the central security property of path-aware data planes.
The cryptographic authenticators embedded in the forwarding paths ensure that malicious end hosts
cannot tamper with the paths produced by the control plane to craft packets that are forwarded along
unauthorized paths.

The complexity of data plane protocols and their central role in a new Internet architecture calls for
their formal verification. This is needed for strong guarantees of their correctness and security. It also
enables the early detection of protocol flaws and vulnerabilities, avoiding critical exploits and expensive
corrections after deployment has begun. This is especially important for the data plane since it will be
implemented in large numbers of high-performance software or hardware routers, which are difficult
to update after their deployment. Furthermore, a formal proof increases confidence in the architecture’s
security, thereby fostering its adoption.

Data plane protocols exhibit several characteristics that make the verification of path authorization
particularly challenging. First, we want to verify protocols over arbitrary network topologies and au-
thorized paths therein, as determined by the control plane. Second, the formalism must be expressive
enough to describe (i) path authorization, which is a non-local property that involves all ASes on a path,
and (ii) assumptions on a control plane adversary’s capabilities to shorten, modify, and extend certain
authorized paths. Third, the number of participants and the message sizes in a protocol run depend on
the (unbounded) length of the path embedded in a given packet. We anticipate that state-of-the-art auto-
mated security protocol verifiers such as Tamarin [15] and ProVerif [16] could only be used for bounded
verification of path authorization, instead of verification under arbitrary sets of authorized paths.

We instead employ a higher-order logic theorem prover, Isabelle/HOL [17], which allows us to model
and verify data plane protocols in their full generality. As research in novel path-aware Internet architec-
tures has led to several interesting candidate (families of) data plane protocols, we would like to verify
these without the need to redo the specification and verification effort from scratch for each protocol or
variant. Specifications and proofs should thus share as much structure as possible with each other. To
achieve this, we propose a parametrized framework in Isabelle/HOL for the verification of data plane
protocols. Since we model network protocols in Isabelle/HOL, we name our framework IsaNet. Figure 1
provides an overview of our framework.

ICING

prove path author.

Abstract

 declare parameters
 assume conditions
 prove refinement

Concrete

EPIC

SCION-22

 define parameters
prove conditions

SCION-11
instantiate

refine

Generic Models Protocol Instances

FIGURE 1: Overview of our models. Refinement and instantiation preserve properties.

We follow a refinement approach, in which we formally relate models at different levels of abstraction
via simulation relations in order to develop protocols that are secure by construction. The resulting
trace inclusion guarantee ensures that properties proven on the abstract models are preserved to more
concrete models. We first develop a simple abstract event system model of a packet forwarding protocol.
We omit the attacker in this model, which makes it easy to prove path authorization. We then refine this
model into a more concrete one, where we introduce a Dolev–Yao adversary and (generic) cryptographic
authenticators, called (hop) validators (HV), that protect each AS-level hop along a forwarding path.
A key insight is that the main difference between path authorization mechanisms is how the HV is
computed. This allows us to define a single skeleton protocol model, which we can instantiate to a
wide range of actual protocols. We achieve this by parametrizing the concrete model by four protocol
parameters. For example, we have a parameter representing the cryptographic validator check that must
be performed by each AS locally to determine the authorization of the forwarding path. We identify five
verification conditions (simply called conditions below) on these parameters that suffice to prove that
the concrete model refines the abstract one and therefore inherits the path authorization property. These
conditions require the HV to be unforgeable and to be computed over the forwarding path.

Our development is also parametrized by an arbitrary network topology and a set of authorized paths
constructed by the control plane. Our security proofs hold for all network topologies and control planes
that satisfy some realistic assumptions. We support both a standard and a strong attacker model.

To define a concrete data plane protocol in IsaNet, we instantiate our model’s protocol parameters and
to prove its security, we discharge the associated conditions. We do so for the data plane of the original
SCION protocol [13, 18], which we will call SCION-11 after its year of publication, and its substantially
revised version [19, 20], which we will analogously call SCION-22. We also verify members of the EPIC
protocol family [21], and ICING [22], as well as variants of the above protocols. The instantiations and
associated proofs are substantially shorter, simpler, and more manageable than redoing a full specifi-
cation and security proof for each protocol. In particular, discharging the conditions does not involve
reasoning about state transitions (unlike, e.g., proving an invariant).

The results reported on in this paper revise and substantially extend those of [23]. The main extensions
are the addition of the SCION-22 protocol instance (§7.3), an algebraic model of exclusive-or (§8.2),
and packet header updates by on-path routers (§8.3).

Since path-aware Internet architectures have not yet been widely deployed, they are not well-known
outside of the networking community. Hence, there is little other existing verification work. The most
closely related works are the verification of a weaker AS-local form of path authorization [24] and of
different security properties [25] for such architectures. Both of these works mechanize their proofs in
Coq using a non-foundational approach, i.e., relying on an axiomatization or external tools. We further
discuss related work in §10.

Contributions. Our main contributions are as follows. (i) We develop IsaNet, a generic framework for
verifying security properties for a general class of data plane protocols for arbitrary network topologies.
This framework has four protocol parameters that are required to satisfy five simple verification condi-
tions. (ii) The five conditions provide insight into the common structure underlying data plane protocols
of path-aware Internet architectures. (iii) We instantiate our framework with nine different variants of
realistic data plane protocols proposed in the literature and prove that they satisfy path authorization
by establishing the parametrized model’s conditions. (iv) We incorporate many features of proposed
protocols, which allows us to verify a wide range of protocols. (v) All of our definitions and results
are formalized in Isabelle/HOL following a foundational approach, which only relies on the axioms of
higher-order logic and thus provides strong soundness guarantees. All results are available online [26].

2. Problem Domain and Overview

In this section, we provide background on secure data planes and give an overview of our framework,
in particular the protocols and security properties that we verify.

2.1. Motivation for future Internet architectures

Networking in today’s Internet is plagued by numerous performance and security problems. Packet
forwarding uses longest-prefix matching on large routing tables, which scales poorly and requires expen-
sive hardware support. Networking using BGP relies on the convergence of the distributed state. Changes
to the network topology trigger routing updates that can lead to outages lasting tens of minutes [27], and
in some topologies, BGP does not converge to a stable state at all [28].

The current Internet not only has these efficiency and scalability limitations, it also lacks security at the
networking level. Due to the lack of authentication of packets’ sources, adversaries can launch attacks
with spoofed source addresses. BGP hijacking attacks, which involve malicious BGP announcements,
allow attackers to illegitimately attract traffic of IP prefix ranges. Without secure routing, all of the
ca. 70,000 ASes in the Internet must be trusted not to carry out prefix hijacking attacks [29].

Various protocols have been proposed that add security mechanisms to the existing BGP infrastruc-
ture. These include BGPSec [3], S-BGP [1], soBGP [30], psBGP [31], PGBGP [32], and BGP origin
validation [2]. Unfortunately, these additions are insufficient to solve the Internet’s problems [4–6], or
they introduce new problems such as high overhead [33, 34] and kill switches [6]. In short, they trade off
security with performance and they fail to address the reliability problems of BGP’s convergence-based
approach. As the networking layer already suffers from scalability and efficiency limitations, solutions
that amend BGP at the cost of performance are unlikely to be deployed in the future.

Our work instead applies to data planes of a wide range of future Internet architectures that follow
a clean-slate path-aware approach [7–14]. We first discuss these data planes generically, and present
SCION-11 as an example in §2.5, where we also describe SCION’s control plane.

A

B C

D

E

F G

(a) Auth. paths (yellow and
green)

A

B C

D

E

F G

(b) Spliced path (red)

AS
border router
internal router

(c) Internals of AS E, one path shown.

FIGURE 2: If path authorization holds, a malicious sender at node F cannot splice the two authorized paths in
(a) to create the unauthorized forwarding path in (b). Internal paths in (c) are decided by the AS.

2.2. Data planes of future Internet architectures

Each AS in the Internet administers its internal network including its routing and forwarding mecha-
nisms. We abstract from internal forwarding and consider the networking between ASes, which requires
entities to agree on a common protocol. Since we view the Internet as a network of ASes, we also refer
to ASes as nodes. See Figure 2 for an example of a (tiny) Internet topology. The internal structure of
an AS is shown in Figure 2c. Nodes are interconnected at border routers, which sit at the edge of each
node’s network and perform both inter-AS and intra-AS forwarding.

The path-aware Internet architectures that we examine provide end hosts with path control. This means
that they can choose from a set of authorized forwarding paths for each destination. End hosts select their
desired forwarding path at the granularity of inter-AS links, and embed the path alongside authenticators
in each data packet. This packet-carried forwarding state removes the need for border routers to keep
state for inter-AS forwarding. Path control also empowers end hosts to make path choices that are suit-
able for their applications’ needs. For instance, Voice-over-IP requires little bandwidth but low latency,
whereas data synchronization requires high bandwidth, but latency is less critical. These applications
can thus benefit from using paths with different properties. Moreover, multipath routing allows multiple
paths between the same source-destination pair to be used simultaneously, even by the same application.

The end host’s power to choose paths is balanced against the interest of ASes. Paths are discovered
and authorized in the control plane (cf. §2.5), which must ensure that paths are only authorized if they
satisfy the routing policies of ASes.

The forwarding paths embedded into packets consist of a hop field (HF) for each AS on the path,
each of which consists of a (hop) info field (HI) and a (hop) validator (HV). The info field includes the
AS identifier id, as well as the interfaces prev, on which the packet is received, and next, on which the
packet is to be sent out. The AS internally forwards the packet between the border routers adjacent to
these interfaces. The path is fixed by the sending end host and remains static. A pointer moving through
the sequence of hop fields indicates the current hop field. The validator HV, created in the control plane,

proves the authorization of the routing information during forwarding. Upon receiving a data packet, a
border router checks the HV of its hop field. If it is valid, then the path was authorized in the control
plane, and the border router forwards the packet.

There are two kinds of path authorization mechanisms that differ in how paths are authorized in the
control plane: in undirected protocols, each AS authorizes the path in its entirety. In directed protocols,
each AS only authorizes the partial path consisting of its own hop and all subsequent hops in forwarding
direction. For instance, in Figure 2a, AS D could decide which of the partial paths D-B-A and D-C-A to
allow, but once authorization is granted, extensions authorized by E and E’s children are also implicitly
authorized by D. Undirected protocols requires weaker assumptions (cf. Sections 6.1 and 8.5), but have
practical disadvantages compared to directed ones (cf. Appendix B).

In the protocols we study, path authorization still holds even if the malicious sender learns the keys of
compromised on-path ASes. However, we must make assumptions to exclude trivial violations of path
authorization.

2.3. Security properties that we verify

We verify two data plane security properties (formally defined in §4.4): path authorization and de-
tectability. They protect ASes against malicious senders and compromised ASes.

Path authorization is the data plane property that all data packets traverse the Internet only along
authorized paths. It protects ASes from malicious senders forging paths that are advantageous to them-
selves (e. g., by using costly paths that these senders have not paid for), detrimental to ASes (e. g.,
uneconomical valley paths [35]), or disrupt forwarding entirely (e. g., through loops).

Path authorization is not just a local property; in particular, it is insufficient for each validator HV to
only authenticate the local hop info field HI, since that would still allow for attacks such as forwarding
loops. If a strictly hierarchical structure with defined provider–customer and peering relationships is as-
sumed, forwarding loops can be prevented with only local checks [36]. However, path policies in general
cannot be protected just with local checks, as our example in Figure 2a illustrates. In this example, two
paths leading to the destination node A are authorized: the left path F–E–D–B–A, and the right path
G–E–D–C–A. Node F is only authorized to use the left path and is forbidden to send packets to A via C.
Path authorization implies that an attacker at F cannot craft a packet that traverses the path in Figure 2b.
Each AS checking only authorizing and checking the local hop information cannot guarantee this.

Detectability states that the actual path that a packet traverses is contained in the path embedded in
the packet’s header. Since the entire forwarding path is contained in each packet, a malicious source
cannot hide its presence on the path. This property does not prevent source spoofing, but rather ensures
that if a source is spoofed, then the attacker must be in one of the nodes on the packet’s forwarding path,
thus ensuring basic accountability for data packets.

2.4. Security properties that we do not verify

Source and packet authentication allow border routers or the destination to authenticate the sender and
packet. Path validation allows the destination to verify that the path contained in the packet was actually
traversed. We do not verify these data plane properties and defer their treatment to Appendix C.

Intra-AS forwarding is out of scope, since each AS exercises control over its own network, and global
coordination is not required for intra-AS security. We also do not specify or verify the control plane, as its
properties are independent from those of the data plane. For instance, path authorization is independent

A

B

D

. . .

MACKA(TSpath, hiA)

MACKB(⟨TSpath, hiB, MACKA(hiA)⟩)

MACKD(⟨TSpath, hiD, MACKB(⟨hiB,MACKA(hiA)⟩)⟩)

FIGURE 3: Validators of simplified SCION-11 that contain nested MACs. The fields hii contain the info fields.

of the property that a path authorized by the control plane is in accordance with the routing policies of
all on-path ASes.

2.5. SCION control and data plane

We now describe a concrete protocol that implements the control and data plane and achieves path
authorization. We use the (simplified) data plane protocol of the SCION architecture as an example.

Authorized paths are established on SCION’s control plane using path-discovery beacons. Beacons are
initialized by a subset of nodes and constructed in the opposite direction of forwarding. Each AS decides
which of the beacons it has created or received should be extended by a hop field and propagated to a
given neighbor. Since each AS implicitly authorizes the further dissemination by its neighbor, SCION
is a directed protocol. Beacons contain two types of authenticators: signatures, which authenticate the
beacons themselves in the control plane, and message authentication codes (MACs), which are used to
achieve path authorization in the data plane. The signatures are stripped off the beacons before they
are embedded into a data plane packet. In the data plane, which transports vastly more packets than
the control plane, asymmetric cryptography is too slow to be employed for each packet. Consequently,
SCION’s data plane relies entirely on symmetric cryptography using a key KA that is shared by all border
routers of AS A.

In the SCION-11 variant that we present here, the validator hvA is a MAC over A’s local forwarding
data hiA, and the validator of the next hop B:

hvA = MACKA(⟨hiA, hvB⟩) . (1)

Crucially, the MAC is created not only over the local info field, but also over the next MAC. As Figure 3
illustrates, this nests the MACs and protects the entire subsequent path. During forwarding, each border
router checks the validity of its own MAC embedded in the packet header. The validation of the MAC is
substantially faster, and scales better, than looking up authorized paths in a table on each router [13].

2.6. Verified data plane protocols

In §7, we instantiate our parametrized model with SCION-11 and the following protocols, proving
that they satisfy path authorization and detectability.

• EPIC [21], a family of directed data plane protocols that provide three levels of security guaran-
tees. We verify levels 1 and 2. EPIC levels 2 and 3 add source and packet authentication as well
as path validation mechanisms, which we do not verify.

N, B natural numbers, booleans (| x = a, y = b |) concrete record

A × B cartesian product x(r), r(| x := v |) record field x access, update

P(A), A∗ powerset, finite sequences f (x := v) function update

A⊥ option set (sum of A and {⊥}) ⟨⟩, x# xs, ⟨a, b, c⟩ empty, cons, concrete seq.

A ⇀ B, A → B partial and total function xs ⩽ ys, x ∈ xs seq. prefix, seq. membership

dom(f), ran(f) function domain and range hd(xs), tl(xs) list head and tail if cons, else ⊥
(| x ∈ A, y ∈ B |) set of records xs · ys, rev(xs) seq. concatenation, seq. reversal

TABLE 1: Summary of notation and definitions.

• SCION-22 [19, 20], which uses mutable fields and XOR to accumulate authenticators.
• ICING [22], the undirected data plane protocol in the NEBULA Internet architecture [12]. It also

provides path validation, which we do not verify.

3. Preliminaries

In this section, we provide background on event systems, refinement, and model parametrization.
We introduce relevant notation in Table 1. Despite our use of Isabelle/HOL, we largely use standard
mathematical notation and deliberately blur the distinction between types and sets.

3.1. Event systems, invariants, and refinement

Event systems are labeled transition systems, where transitions are labeled with events. Formally, an
event system is of the form E = (S, s0, E, { e−→}e∈E), where S is a set of states, s0 ∈ S is the initial state,
E is a set of events, and e−→⊆ S × S is the transition relation corresponding to the event e. As usual, we
write s e−→ s′ for (s, s′) ∈ e−→. The set of states reachable from a state s, written reach(E , s), is inductively
defined by s ∈ reach(E , s), and s′ ∈ reach(E , s) and s′ e−→ s′′ implies s′′ ∈ reach(E , s). A state property
P is a subset of S (or, equivalently, a predicate on S). A state property P is an invariant of E , written
E |= P, if reach(E , s0) ⊆ P.

Given an abstract event system Ea = (Sa, s0a , Ea, {
e−→a}e∈Ea) and a concrete event system Ec =

(Sc, s0c , Ec, {
e−→c}e∈Ec), we say that Ec refines Ea if there are refinement mappings π0 : Sc → Sa on

states and π1 : Ec → Ea on events such that π0(s0c) = s0a and for all sc, s′c ∈ Sc and ec ∈ E such

that sc
ec−→c s′c we have π0(sc)

π1(ec)−−−→a π0(s′c). This is functional forward simulation [37]. Refinement
preserves invariants from the abstract to the concrete model, namely, Ea |= P implies that Ec |= π−1

0 (P),
where π−1

0 (P) = {s ∈ Sc | π0(s) ∈ P}.
In our models, we often use parameterized events and states structured as records. We use the notation

e(x̄) : g(x̄, v̄) ▷ w̄ := ū(x̄, v̄)

Parameter Introduced Description Used to express
Environment
Parameters
used in abstr.

& concr. model

tg Equation (2) network topology
ASMautha Equation (4) authorized paths

COND

Nattr Equation (5) attacker nodes

Protocol
Parameters

used in concr.
model

ψ Equation (10) cryptographic check of HV

auth-restrict Equation (11) restriction on authorized paths

extract Equation (13) extracts HI-path from HV

ik+0 Equation (14) additional attacker knowledge

TABLE 2: Our models’ parameters. Used in §6 to express assumptions (ASM) and conditions (COND).

to specify such events, where x̄ are the event’s parameters (the bar representing a vector), v̄ are the
state record’s fields, g(x̄, v̄) is the guard predicate defining the executability of the event, w̄ ⊆ v̄ are
the updated fields, and ū are update functions (one for each variable in w̄). This notation denotes the

transition relation defined by s
e(x̄)−−→ s′ iff g(x̄, s(v̄)) holds, s′(w̄) = ū(x̄, s(v̄)) and, for the state fields

z̄ = v̄ − w̄ that are not updated, s′(z̄) = s(z̄). We often use updates of parameterized channel fields
holding sets of messages. For example, the event send(A, B,m) : dest(m) = B ▷ ch(A, B) += m
adds the message m to the channel ch between A and B if m’s destination is B, i. e., the intended update
is ch(A, B) := ch(A, B) ∪ {m}. There are no other changes to the state, in particular, ch(A′, B′) :=
ch(A′, B′) for all (A′, B′) ̸= (A, B). If the guard dest(m) = B is false, then the event cannot be executed.

3.2. Parametrization

Our models’ generality rests on their parametrization. A parametrized model may make assumptions
on its parameters. An instance must define the parameters and prove all assumptions. For easy identifica-
tion, we will highlight parameters in gray when they are first introduced. Parametrization is independent
of refinement. For instance, a model can be parametrized and concrete at the same time (as is the case in
our framework). In our Isabelle/HOL formalization we implement parametrization using locales [38].

4. Abstract model

We define an event system that models the abstract data plane of a path-aware network architecture.
This model includes neither cryptography nor an attacker. We prove that it satisfies path authorization
and detectability in Theorem 1. The environment parameters introduced here and the concrete model’s
protocol parameters are summarized in Table 2.

To distinguish this abstract model, Ea, from the concrete model Ec (§5) refining it (§6), we use the
subscripts ‘a’ and ‘c’, respectively. Formally, we will define for i ∈ {a, c} the event systems Ei =

(Si, s0i , Ei, {
e−→i}e∈Ei). We will define Si and s0i in the sections below, and Figure 4 will define both Ei,

and e−→i for all e ∈ Ei.

4.1. Environment parameters

We model the Internet as a multigraph, where nodes represent ASes and edges represent the network
links between them. More precisely, a network topology is a triple (N ,I , tg), where N is a set of
nodes, I is a set of interfaces, and tg (target) is an environment parameter to our model with the type

tg : N × I ⇀ N × I , (2)

which models links between ASes. We say that an interface i is valid for a node A, if (A, i) ∈ dom(tg),
whereby tg(A, i) = (B, j) denotes the node B and interface j at the other end of the link. Our definition
thus allows for multiple links between a given pair of nodes, with possibly different routing policies.

We often reason about paths in the network, defined in terms of both nodes and their interfaces, rather
than the network topology itself. We define a path to be a finite sequence of hop info fields (called
info fields and abbreviated HI below) from the set

HI = (| id ∈ N, prev ∈ I⊥, next ∈ I⊥ |). (3)

Each info field contains the local routing information of a node, i. e., its node identifier and the interfaces
that identify the links to the previous and the next hop on the path. Both interfaces are defined as option
types, indicated by the subscript ⊥. When there is no previous or next hop, we assign ⊥ to the respective
interface. The hop fields that will be introduced in the concrete model below augment the info fields with
a cryptographic validator. Since our abstract model does not contain an adversary, such authenticators
are not required here.

Our model’s second environment parameter is the set of authorized paths

autha ⊆ HI∗, (4)

along which packets are authorized to travel. Packets can also traverse just a part of an authorized path.
To account for these partial paths, we define auth⇄

a , the fragment closure of autha, as the set of paths his
such that there exist a his′ ∈ autha and paths his1, his2 ∈ HI∗ such that his′ = his1 · his · his2.

We will later introduce an assumption that neighboring hop fields in authorized paths must point to
valid links in the network topology defined by the function tg. However, there is an exception for the
interfaces of neighboring compromised ASes, since attackers in the control plane can arbitrarily set these
interface fields and disseminate beacons out-of-band. Such wormholes [39] are unavoidable in routing
protocols. We introduce our control plane assumptions in §6.1.

Our third parameter is the set of compromised nodes (also called attacker or adversary nodes)

Nattr ⊆ N . (5)

All other nodes are called honest. This environment parameter only becomes relevant after introducing
the adversary in the concrete model (§5.3), where the attacker has access to the keys of compromised
nodes. We nevertheless introduce it here, since using the same environment parameters in all of our mod-
els simplifies our presentation. The environment assumptions (ASM) expressed over these parameters
are introduced for the refinement of the abstract to the concrete model (§6.1).

dispatch-inta(A,m) :

fut(m) ∈ auth⇄
a ∧ hist(m) = ⟨⟩

▷ int(A) += m

dispatch-intc(A,m) :

m ∈ DY(ik) ∧ hist(m) = ⟨⟩
▷ int(A) += m.

dispatch-exta(A, i,m) :

fut(m) ∈ auth⇄
a ∧ hist(m) = ⟨⟩ ∧ (A, i) ∈ dom(tg)

▷ ext send(A, i) += m.

dispatch-extc(A, i,m) :

m ∈ DY(ik) ∧ hist(m) = ⟨⟩ ∧ (A, i) ∈ dom(tg)

▷ ext send(A, i) += m.

senda(A,m, hi, i) :

hi = hd(fut(m)) ∧ hi ̸= ⊥ ∧ A = id(hi) ∧
i = next(hi) ∧ m ∈ int(A) ∧ (A, i) ∈ dom(tg)

▷ ext send(A, i) += fwda(m).

sendc(A,m, hf, i) :

hf = hd(fut(m)) ∧ hf ̸= ⊥ ∧ A = id(hf) ∧
i = next(hf) ∧ m ∈ int(A) ∧ (A, i) ∈ dom(tg) ∧
ψ(hf, hd(tl(fut(m))), tok(m))

▷ ext send(A, i) += fwdc(m).

recva(A,m, hi, i) :

hi = hd(fut(m)) ∧ hi ̸= ⊥ ∧ A = id(hi) ∧
m ∈ ext recv(A, i) ∧ (A, i) ∈ dom(tg)

▷ int(A) += m.

recvc(A,m, hf, i) :

hf = hd(fut(m)) ∧ hf ̸= ⊥ ∧ A = id(hf) ∧
m ∈ ext recv(A, i) ∧ (A, i) ∈ dom(tg) ∧
i = prev(hf) ∧ ψ(hf, hd(tl(fut(m))), tok(m))

▷ int(A) += m.

delivera(A,m, hi) :

fut(m) = ⟨hi⟩ ∧ A = id(hi) ∧ m ∈ int(A)

▷ int(A) += fwda(m).

deliverc(A,m, hf) :

fut(m) = ⟨hf⟩ ∧ A = id(hf) ∧ m ∈ int(A) ∧
ψ(hf,⊥, tok(m)) ∧
▷ int(A) += fwdc(m).

FIGURE 4: Events of the abstract (left) and concrete (right) model, with differences highlighted.

4.2. State

We model packet forwarding from a node’s internal network to an inter-node link, and vice-versa,
using two types of channels: internal channels (one per node) and external channels (two per interface-
node pair, one in each direction). We model these channels as sets of packets. We will define our for-
warding events as reading from and placing new packets into channels, but without removing the existing
packets. Hence, we model asynchronous communication with message reordering and replay.

We will define packets (PKTa) below, and first define the state as

Sa = (| int ∈ N → P(PKTa), ext ∈ N × I × N × I → P(PKTa) |).

In the initial state s0a , all channels are empty. We overload the set membership operator to apply to
states: A packet m is in a state s, written m ∈ s, iff m ∈ ran(int(s)) ∪ ran(ext(s)). For a valid interface i
of A with tg(A, i) = (B, j), we define ext send(A, i) = ext(A, i, B, j) and ext recv(A, i) = ext(B, j, A, i).

We define packets without their payload, only consisting of the forwarding state and a history:

PKTa = (| past ∈ HI∗, fut ∈ HI∗, hist ∈ HI∗ |).

A packet consists of the desired future path fut, and the (presumed) traversed path past, stored in the
reverse direction. The full path is rev(past(m)) · fut(m). While this splitting of the path simplifies our
proofs, the forwarding path could equivalently be defined as a single sequence with a moving pointer
indicating the current position. Additionally, each packet records a path hist, also in the reverse direction,
which represents its actual trajectory. This can be seen as an auxiliary history variable [40], meaning
that it is not part of the protocol, but serves to specify and prove properties of protocol executions.

4.3. Events

The events of the abstract model are given on the left-hand side of Figure 4. The life cycle of a
packet is captured by the following events: dispatch-inta creates a new packet containing an authorized
future path in the internal channel of a node. The packet is transferred with alternating senda and recva

events between internal and external channels, according to the forwarding path contained in the packet.
Finally, the packet is delivered to the end host with an event delivera. The events dispatch-inta and
delivera model the interaction with end hosts, whereas senda and recva represent the border routers’
packet forwarding actions. The additional dispatch-exta event creates and sends a packet directly to
an ext channel. This event is not required for normal data plane operations, but serves to introduce a
malicious sender at an inter-AS link in the refinement.

We now describe these events in more detail. The dispatch-inta and dispatch-exta events create a new
packet with an authorized future path and insert it into an internal or external channel. The history is set
to the empty sequence in both events, and the past path can be set arbitrarily to allow the refinement
into attacker events, where the attacker may disguise the packet’s origin. The senda and recva events
both use the current info field at the head of the future path to determine where the packet should be
forwarded. Hence, they require a non-empty future path. The recva event transfers a packet from the
external channel at (A, i) to A’s internal channel. The senda event takes a packet m from the internal
channel and places the transformed packet fwda(m) on the external channel at (A, i). The partial function
fwda : PKTa ⇀ PKTa moves the current info field of m into the past path and adds it to the history.

fwda(m) = (|past = hd(fut(m))# past(m), fut = tl(fut(m)), hist = hd(fut(m))# hist(m)|).

This function is only defined when fut(m) ̸= ⟨⟩. We define head hd : HI∗⊥ → HI⊥ and tail tl : HI∗⊥ →
HI∗⊥ functions by hd(x# xs) = x and tl(x# xs) = xs and by mapping ⟨⟩ and ⊥ to ⊥ in both functions.

The delivera event models delivering a packet m containing a single info field in its future path to an
end host. Since we do not explicitly model end hosts and their state, we simply add the packet fwda(m)
to the internal channel of the AS and thereby push the last info field into the past and hist paths.

4.4. Properties

Path authorization states that packets can only traverse the network along authorized paths. This
ensures that the data plane enforces the control plane’s routing policies. Formally, for all packets m in a
state s, rev(hist(m)) ∈ auth⇄

a . Recall that the order of nodes is reversed in hist. We strengthen this to an
inductive invariant by adding the future path,

path-auth = {s ∈ Sa | ∀m ∈ s. rev(hist(m)) · fut(m) ∈ auth⇄
a }. (6)

We formalize detectability: all traversed hops are recorded on (i.e., a prefix of) the past path,

detectability = {s ∈ Sa | ∀m ∈ s. hist(m) ⩽ past(m)}. (7)

Theorem 1. The abstract model satisfies path authorization and detectability, i.e., Ea |= path-auth and
Ea |= detectability.

Proof. The proofs in this abstract model are straightforward. For path authorization, new pack-
ets are required to have an authorized future path and an empty history and for existing packets,
rev(hist(m)) · fut(m) remains invariant during their forwarding. The past path is irrelevant for path au-
thorization. Detectability is independent of autha and follows directly from the events’ definitions. □

5. Concrete model

We refine the abstract forwarding protocol into a concrete model. In this model, the packets’ hop fields
include (generic) cryptographic hop validation fields to secure the authorized paths against a Dolev–Yao
attacker (§5.3). We present the concrete model’s events in §5.4 and the refinement in §6.

The concrete model retains the environment parameters of the abstract model (§4.1), and adds four
protocol parameters, which we introduce below. One of them is the cryptographic check that ASes apply
to their validators, which allows us to abstract from the concrete cryptographic mechanism used.

Our presentation will focus on path authorization, specifically in the directed setting. We defer the
treatment of undirected path authorization to §8.5. We compare both classes of protocols in Appendix B.

5.1. Cryptographic terms, hop fields, packets and states

We introduce an algebra T of cryptographic terms:

T = N | I⊥ | N | KN | ⟨T, T, . . . , T⟩ | H(T).

Terms consist of node identifiers, interfaces, natural numbers (e. g., for timestamps), keys (one per node),
as well as finite sequences, and cryptographic hashes of terms. We define message authentication codes
(MACs) using hashing by MACk(m) = H(⟨k,m⟩). IsaNet also supports encryption and signatures, which
we do not use here.

Hop fields (HF), used in the concrete model, extend the (hop) info fields (HI), used in the abstract
model, with a cryptographic (hop) validator (HV) that authenticates the info field.

HF = (| id ∈ N, prev ∈ I⊥, next ∈ I⊥, HV ∈ T |). (8)

In the concrete model, path refers to a sequences of HFs. We define the function abstr-hf : HF → HI
projecting concrete hop fields to abstract info fields by dropping HV and we lift it element-wise to paths.
To keep our notation succinct, we write hfA and hfs to denote the application of abstr-hf.

We next define concrete packets as follows:

PKTc = (| tok ∈ T, past ∈ HF∗, fut ∈ HF∗, hist ∈ HI∗ |). (9)

The past and future paths are sequences of hop fields, while the history remains a sequence of HI fields.
Concrete packets contain an additional packet token field (tok), which is used by instances for various
purposes, for instance as a source-supplied unique packet identifier.

The concrete state space Sc has the same record structure as the abstract Sa, but the channels now carry
concrete packets. The initial state s0c is defined similarly to s0a as the empty channel state.

We define the overloaded function terms for hop fields as the projection to HV, for paths as the union
of terms for all hop fields on the path, and for packets as terms(pkt) = {tok(pkt)} ∪ terms(past(pkt)) ∪
terms(fut(pkt)). For a set T of terms and for a path or packet x, we write x ∈ T for terms(x) ⊆ T . We
will leave the conversion of HI fields to terms implicit below.

5.2. Protocol parameters and authorized paths

We define four protocol parameters. The first is a cryptographic validation check

ψ : HF × HF⊥ × T → B, (10)

which each border router performs to check the validity of its hop field. This parameter abstracts the
cryptographic structure of the validator, which is only determined in concrete protocol instances. Here,
ψ(hfA, hfB, u) holds iff the hop field hfA is valid given the next hop field hfB (if any, and ⊥ otherwise) and
the packet’s tok field u.

We also define a function Ψ : HF∗ × T → HF∗, which we apply to the future path hfs of a packet to
obtain the longest prefix of hfs such that for every hop field hfA on the path, and its successor hop field
hfB (⊥, if none exists) and the tok field u, ψ(hfA, hfB, u) holds:

Ψ(hfA # hfB # hfs, u) = hfA #Ψ(hfB # hfs, u) if ψ(hfA, hfB, u)

Ψ(⟨hfA⟩, u) = ⟨hfA⟩ if ψ(hfA,⊥, u)

Ψ(hfs, u) = ⟨⟩ otherwise.

We use this function in the mapping of future paths from the concrete model to the abstract model
(§6.3) to truncate the path at the first invalid hop field. As demonstrated by our successful refinement,
this does not reduce the system’s possible behavior. This is because forwarding is performed by honest
agents that do not forward packets along invalid hop fields. We call a path hfs or a packet pkt with
fut(pkt) = hfs cryptographically valid (for u) if Ψ(hfs, u) = hfs.

Instances can restrict the set of concrete authorized paths to incorporate assumptions on the control
plane. The second parameter of our model is a predicate over a given concrete path and tok field.

auth-restrict : HF∗ × T → B. (11)

We define the set of concrete authorized paths, authc ∈ T → P(HF∗), as the set of paths hfs that are
cryptographically valid for a tok field u, satisfy the restriction, and whose projection to HI∗ is authorized:

authc(u) = {hfs | Ψ(hfs, u) = hfs ∧ auth-restrict(hfs, u) ∧ hfs ∈ autha}. (12)

We overload authc and define the set authc ⊆ HF∗ as the union of authc(u) over all u.
Protocols use the HV to protect the future (abstract) path. The third protocol parameter is

extract : T → HI∗, (13)

which is intended to extract this path from a given HV. For instance, consider the SCION-11 path given
in Figure 3. The validator consists of a MAC over the hop’s info field and the next hop’s HV, allowing
for a recursive extraction. Concretely, extract would be defined such that extract(hvD) = ⟨hiD, hiB, hiA⟩.
This function is only required in proofs and not in the definition of the event system. Hence it may use
features that would be infeasible to implement in the actual system, such as inverting hashes and MACs.

We lift extract to hop fields by extract(hf) = extract(HV(hf)) and to paths by defining extract(⟨⟩) = ⟨⟩
and extract(hf# hfs) = extract(hf). In §6.2, we will define a condition (to be discharged by each instance
model) that implies that extract coincides with · on those paths that are both cryptographically valid
and derivable by the attacker.

The fourth protocol parameter is a set of additional cryptographic terms

ik+0 ⊆ T, (14)

given to the attacker in the definition of the intruder knowledge below. The parameters ik+0 and
auth-restrict do not play an important role in the concrete model. We will return to them in the instances,
where they allow modeling control plane assumptions and protocol-dependent intruder knowledge.

5.3. Attacker model

We model a Dolev–Yao adversary who can eavesdrop on and inject new packets in all int and ext
channels, but only has access to the keys of compromised nodes. We first define the attacker’s message
derivation capabilities, which are used in the attacker events introduced in §5.4.

As usual, we model the attacker’s knowledge as a set of terms and her message derivation capabilities
as a closure operator DY : P(T) → P(T) on sets of terms. Our formalization of DY is based on
Paulson [41] and defines DY(H) = DY↑(DY↓(H)) for a set of terms H as the composition of two
closure operators defined by the rules in Figure 5. The decomposition closure DY↓(H) closes H under
the projection of sequences to their elements and the composition closure DY↑(H) includes all public
terms (e. g., interfaces) and closes H under the construction of sequences and hashes.

We define the intruder knowledge in a state s ∈ Sc as the Dolev–Yao closure (DY) of ik(s), defined by

ik0 =
⋃

{terms(x) ∪ {u} | x ∈ authc(u)} ∪ {Ki | i ∈ Nattr}, (15)

ik(s) = ik0 ∪ ik+0 ∪
⋃
m∈s

terms(m). (16)

t ∈ H

t ∈ DY↓(H)

⟨t1, . . . , tn⟩ ∈ DY↓(H)

ti ∈ DY↓(H)
1 ⩽ i ⩽ n

t ∈ H

t ∈ DY↑(H)

t ∈ N ∪ I⊥ ∪ N
t ∈ DY↑(H)

t ∈ DY↑(H)

H(t) ∈ DY↑(H)

t1 ∈ DY↑(H) · · · tn ∈ DY↑(H)

⟨t1, . . . , tn⟩ ∈ DY↑(H)

FIGURE 5: Rules for Dolev–Yao message decomposition (DY↓) and composition (DY↑).

The set ik(s) is the union of the initial intruder knowledge ik0, additional terms ik+0 , and all terms in the
packets of state s. The set ik0 consists of authorized paths (the HV of their hop fields and the tok field
for which they are valid) and compromised nodes’ keys.

5.4. Events

Each event of the abstract model is refined into a similar event of the concrete model (Figure 4, right).
The concrete model retains the packet life-cycle of the abstract model (§4.3). The dispatch-intc and
dispatch-extc events can send arbitrary attacker-derivable packets, instead of just packets containing an
authorized path like in the abstract model. To defend against the attacker, we introduce interface and
cryptographic checks in sendc, recvc, and deliverc. We now discuss the events in more detail.

5.4.1. Attacker events
The two attacker events dispatch-intc and dispatch-extc model that the attacker is active and can send

a packet on an internal or external channel of any AS. This is regardless of whether the AS is honest or
compromised. In both events, the packet m created by the attacker may contain arbitrary past and future
paths. However, its validators and packet token field must be derivable from the intruder knowledge,
i. e., terms(m) ⊆ DY(ik(s)). In the events’ guards, we write ik and omit the state. Note that the event
dispatch-intc still covers honest senders, as the attacker knows all authorized paths.

Similar to their abstract counterparts, both events set the history hist to ⟨⟩. We do this to exclude attacks
where the attacker modifies a packet’s forwarding path en-route, since these attacks are unavoidable
in the presence of a sufficiently strong on-path adversary. For example, suppose that the attacker in
Figure 2a has access to D’s external channels. Then D may receive a packet arriving on the left path
from F, exchange its forwarding path by the right path, and forward the modified packet to C. This would
(trivially) violate path authorization. By resetting the history, we effectively consider all packets sent by
the attacker as new ones. An additional reason for this modeling choice is that an on-path attacker can
not only re-route packets, but also modify their contents arbitrarily. This makes it generally impossible to
correlate packets sent by the attacker with those the attacker has previously received. Consequently, path
authorization must hold separately for the packets before and after the replacement of the forwarding
path by the attacker.

Note that in the dispatch-extc event, the attacker’s info field is not recorded in the history. This is
because the attacker could modify her own hop field in arbitrary ways, and even omit it entirely. The
attacker node is still identifiable in the history via the tg function because the interface identifier prev of
the next hop points to the link between it and the packet’s source AS.

5.4.2. Honest events
To secure the protocol against the attacker introduced in this model, honest events now perform

two validation checks. First, upon receiving a packet from another node, recvc includes the guard
i = prev(hf) to check that the interface i over which the packet is received matches the interface prev of
the packet’s current hop field hf. Second, all honest events check the validator using ψ(hf, hf′, u), where
hf, hf′, and u are the packet’s current hop field, next hop field, and tok field, respectively. This check
ensures that the hop field and subsequent path are authorized. The events sendc and deliverc use the
function fwdc to forward a packet, which is defined similarly to fwda. The tok field is not modified by
fwdc, and the current hop field is converted from HF to HI using · before it is added to hist(m).

5.4.3. Constant intruder knowledge
The dispatch events only add packets to the network that are derivable from the intruder knowledge.

Furthermore, all other events only add packets that already exist in the network or can be easily de-
rived from them using fwdc. Hence we can prove inductively that all packets in the network are already
derivable from the initial intruder knowledge, which is known to the attacker in the initial state.

More precisely, under the Dolev–Yao closure DY, the intruder knowledge ik(s) for reachable states s
and the initial intruder knowledge are identical. We prove this as an invariant:

Lemma 1. For all reachable states s, DY(ik(s)) = DY(ik0 ∪ ik+0). □

Since the attacker does not learn any new messages during the protocol execution, we can drop the
state-dependent part of the intruder knowledge under DY, which greatly simplifies reasoning about the
intruder.

6. Refinement

We prove that the concrete event system refines the abstract one. Our proof rests on several global
assumptions (ASM) about the control plane and on a set of conditions (COND) on the authentication
mechanism used. These will be defined later in this section, as are the refinement mappings π0 and π1.

Theorem 2. Ec refines Ea under the refinement mappings π0 : Sc → Sa on states and π1 : Ec → Ea on
events, assuming ASM and COND.

To establish that a concrete protocol satisfies the path authorization and detectability properties, it
suffices to define the protocol’s authentication mechanism by instantiating the protocol parameters and
discharging the associated conditions, which we do for several protocols in §7.

We first introduce the assumptions and conditions and then define the refinement mappings. Finally,
we show the interesting cases in the attacker events’ refinement, which is the crux of Theorem 2’s proof.

6.1. Control plane assumptions

We define two types of environment assumptions about the authorized paths autha constructed by the
control plane. First, we assume the correct functioning of the control plane, which is independent of the
data plane. Second, we make assumptions about the control plane attacker’s behavior in order to exclude
trivial attacks on the routing policies of colluding ASes. These provide upper and lower bounds on the
set autha, respectively.

6.1.1. Correctness assumptions
We assume that authorized paths are interface-valid: interfaces of adjacent info fields on a path point

to the same link, except when both hop fields belong to attacker nodes. With this exception, we account
for unavoidable out-of-band communication by adversaries, so-called wormholes [39]. To formalize
interface validity, we introduce the predicate ϕ : HI × HI⊥ → B, which checks the validity of two adja-
cent info fields. In the following, we let hiA (respectively hiB) denote an info field for which id(hiA) = A
(respectively id(hiB) = B). Given the current info field hiB and a preceding info field hiA, we define
ϕ(hiB, hiA) = (tg(A, next(hiA)) = (B, prev(hiB))) ∨ (A ∈ Nattr ∧ B ∈ Nattr). If there is no previous hop
field, no interface must be checked, i.e., ϕ(hiB,⊥) = true.

We define a function Φ : HI∗ × HI⊥ → HI∗ that returns the longest interface-valid prefix of a
sequence his. Concretely, Φ(his, hiprev) returns the longest prefix of his such for all fields hiB on his and
their respective predecessor hiA on his, ϕ(hiB, hiA) holds. For the first info field on his, ϕ must hold with
hiprev as the predecessor. We write Φ(his) as a shorthand for Φ(his,⊥). Formally, we define

Φ(hi# his, hiprev) = hi#Φ(his, hi) if ϕ(hi, hiprev)

Φ(his, hiprev) = ⟨⟩ otherwise.

We furthermore assume that authorized paths are terminated: the first info field’s prev is ⊥ and the
last info field’s next is ⊥, except for when the respective info field belongs to the attacker. ASM 1 and
ASM 2 formalize the correctness of the control plane.

ASM 1: Interfaces valid: All paths his ∈ autha are interface-valid, namely Φ(his) = his.
ASM 2: Terminated: An info field hi with id(hi) /∈ Nattr on hi# his ∈ autha (resp. on his·⟨hi⟩ ∈ autha)

has prev(hi) = ⊥ (resp. next(hi) = ⊥).

6.1.2. Assumptions to rule out artificial attacks
Recall that path authorization protects ASes’ routing policies from malicious end hosts. This property

only holds for the policies of honest ASes. We must exclude artificial attacks, in which the sender
violates the policies of compromised ASes.

The honest ASes’ routing policies govern the dissemination of beacons, and hence the creation of
authorized paths. In the directed setting, an honest AS A sending a beacon to a neighbor AS B implicitly
consents that B and all subsequent ASes may extend the path at their discretion. This is in contrast to the
undirected setting, which requires all ASes to explicitly agree on the entire path.

The data planes of directed protocols allow the attacker to perform the following actions, which at
first glance seem to violate path authorization: a malicious AS on a path discovered by a beacon can
arbitrarily extend the path with additional compromised ASes in the data plane by crafting additional
validators using the compromised keys – even if the extended paths are not authorized in the control
plane. However, the control planes of the directed setting allow all ASes to similarly disseminate beacons
that they receive and the resulting extended paths can be considered as authorized by the mentioned
implicit consent. Hence, the “malicious path extensions” in the data plane are artificial attacks that have
the same outcome as legitimate control plane actions, and that furthermore do not violate the policy of
any honest AS. We thus assume that the paths extended in this way are authorized as well.

For example, assume that ASes E and F in Figure 2 are compromised. Since E is on the right path
G–E–D–C–A, she can take the suffix E–D–C–A, change her own hop field (and issue a new HV us-
ing the compromised key) such that prev points to F, and prepend a new hop field for F to obtain the

path F–E–D–C–A. None of these changes require consent from other on-path nodes, since each AS im-
plicitly authorizes path extensions by its customer ASes. Hence, this does not impact the policy of any
honest AS.

We characterize the attacker’s possible and permitted behavior via the following assumptions. First,
taking into account the path reversal of the data plane, the extension of paths becomes: prepending a
compromised AS to an authorized path starting with an attacker results in an authorized path (ASM 4).
We furthermore consider authorized paths shortened by the attacker to be authorized in ASM 5, allow
the attacker who is first on a path to change its info field in ASM 6, and assume that the empty path and
singleton paths consisting of an attacker are authorized in ASM 3.

ASM 3: Empty & Single: ⟨⟩ ∈ autha and ⟨hi⟩ ∈ autha for all id(hi) ∈ Nattr.
ASM 4: Prepend: If the first info field belongs to the attacker, she can prepend another attacker

info field. Formally, if hiB # his ∈ autha, B ∈ Nattr, and A ∈ Nattr then hiA # hiB # his ∈
autha.

ASM 5: Suffix: The attacker can take a path’s suffix if her info field is the suffix’ head. Formally, if
his′ · hiA # his ∈ autha and A ∈ Nattr then hiA # his ∈ autha.

ASM 6: Modify: If the first HI field belongs to the attacker, she can modify its prev. Formally, if
hiA # his ∈ autha, next(hi′A) = next(hiA), and A ∈ Nattr then hi′A # his ∈ autha. Note that
id(hi′A) = id(hiA) = A.

These are not merely assumptions of our protocol model but are inherent to the path authorization
mechanism of directed protocols. Undirected protocols require that the entire path is authorized by each
on-path AS. As we show in §8.5, ASM 3–ASM 6 can then be replaced by weaker assumptions.

Note that all these assumptions are only required since we assume a very strong attacker model where
the end host attacker colludes with on-path ASes. We emphasize that this is in stark contrast to BGP,
which does not achieve security even when there are only off-path attackers. When all compromised
ASes are off-path, then the above closure assumptions are not needed.

6.2. Conditions on authentication mechanisms

We define five conditions that relate the protocol parameters ψ, auth-restrict, extract, and ik+0 intro-
duced in Equations (10), (11), (13), and (14) with each other and with the environment parameters Nattr
and autha (via authc). These conditions are used in the refinement proof in §6.4. We will need to prove
these conditions for any instance of the concrete model.

COND 1 and COND 2 together require that the attacker cannot derive valid hop fields for honest nodes
that are not already contained in authc. They also constrain the parameter ik+0 , such that instances cannot
provide the attacker with terms that allow her to create valid but unauthorized hop fields.

COND 1: Attacker knowledge derivation:
hf ∈ DY(ik0 ∪ ik+0), ψ(hf, hf′, u), and id(hf) /∈ Nattr imply hf ∈ DY↓(ik0 ∪ ik+0).

COND 2: Attacker knowledge decomposition:
hf ∈ DY↓(ik0 ∪ ik+0) and ψ(hf, hf′, u) imply ∃hfs ∈ authc. hf ∈ hfs.

Valid hop fields that belong to attacker-controlled nodes and are derivable using her keys are already
contained in the set of authorized paths by ASM 3–ASM 6, hence COND 1 does not cover them.

COND 3 and COND 4 relate Ψ(hfs, u), the longest cryptographically valid prefix of hfs, to
extract(hfs), which extracts the subsequent path from the first hop field in hfs.

COND 3: Path prefix of extract: Ψ(hfs, u) ⩽ extract(hfs).
COND 4: Extract prefix of path: If Ψ(hfs, u) = hfs and auth-restrict(hfs, u), then extract(hfs) ⩽ hfs.

Finally, COND 5 requires the HV to protect the tok field. This ensures that a hop field that is valid for a
certain value for tok cannot be used to forward a packet with a different value.

COND 5: tok protected: ψ(hf, hf′, u) and ψ(hf, hf′′, u′) imply u′ = u.

6.3. Refinement mappings

We define the refinement mapping π0 : Sc → Sa on states as the element-wise mapping of the int and
ext channels under the function toa : PKTc × HI⊥ → PKTa that maps concrete to abstract packets.

toa(m, hiprev) =(| past = past(m), fut = Φ(Ψ(fut(m), tok(m)), hiprev), hist = hist(m) |).

Because of the interface and cryptographic checks that we introduce in the concrete model, no forward-
ing occurs on invalid hop fields, and they may be safely truncated. Since the abstract model does not
have such checks, the abstraction function must truncate them in order to establish a refinement relation.

For int channels, we map all concrete packets m to abstract packets toa(m,⊥). For packets in ext chan-
nels (A, i, B, j), we must check that the first info field is interface-valid with the channel that carries the
packet (i.e., id = B, prev = j). We do so by giving the parameter hiprev = (| id = A, prev = ⊥, next = i |)
in the toa mapping of each packet. Hence, if the first info field does not have the correct interface and id,
then the packet’s future path is mapped to ⟨⟩.

The refinement mapping π1 : Ec → Ea maps each event on the right side of Figure 4 to the corre-
sponding event on the left side, where parameters are transformed using toa and · .

6.4. Refinement proof

In the refinement proof, we first show that the concrete initial state maps to the abstract initial state
under π0, i.e., π0(s0c) = s0a . This holds trivially, since neither initial state contains any packets.

We then show that each concrete event e can be matched by its abstract counterpart π1(e). This is
straightforward for the honest events, since the concrete model only adds guards and the concrete guards
imply the validity of the first hop field (ensuring that fut is not mapped to ⟨⟩ under toa). The state
updates of these events preserve the refinement relation. The difficult cases are the attacker events. In
particular, we must show that the concrete dispatch events’ guards imply their abstract counterparts. This
is formalized as Theorem 3 below, stating that the attacker can only derive paths that, restricted to their
valid prefix, are authorized.

To improve readability, we will often omit the parameter tok from ψ, auth-restrict, and Ψ .

6.4.1. Lemmas
We prove two lemmas that are helpful for the attacker refinement proof below. The first lemma states

that a valid path that satisfies auth-restrict coincides with its extraction (modulo the projection ·).
The second lemma asserts that the valid prefix of any extension of an attacker-extractable hop field
is authorized.

Lemma 2. If Ψ(hfs) = hfs and auth-restrict(hfs), then extract(hfs) = hfs.

Proof. By COND 3 and COND 4. □

Lemma 3. Suppose hf ∈ DY↓(ik0 ∪ ik+0) for a hop field hf. Then Ψ(hf# hfs) ∈ auth⇄
a for all paths hfs.

Proof. If hf is invalid, i. e., ¬ψ(hf, hd(hfs)), then Ψ(hf# hfs) = ⟨⟩ and the conclusion holds by ASM 3.
Otherwise, we can apply COND 2 and obtain hfs′, hfs0, hfs1, and hfs2 such that hfs′ ∈ authc, hfs′ =

hfs0·hfs1, and hfs1 = hf# hfs2. Since hfs′ ∈ authc,Ψ(hfs′) = hfs′ and thus alsoΨ(hfs1) = hfs1. Then we
can apply Lemma 2 and obtain extract(hfs1) = extract(hf) = hfs1. Since hfs1 is a suffix of the authorized
path hfs′, we have extract(hf) ∈ auth⇄

a . Finally, from COND 3, we have Ψ(hf# hfs) ⩽ extract(hf).
Since auth⇄

a is closed under prefixing, Ψ(hf# hfs) ∈ auth⇄
a . □

6.4.2. Attacker refinement proof
Theorem 3. If a packet m is derivable by the attacker, i.e., m ∈ DY(ik0 ∪ ik+0), then the interface- and
cryptographically-valid prefix of its future path is authorized, i.e., for all hiprev, Φ(Ψ(fut(m)), hiprev) ∈
auth⇄

a .

Proof. We prove this theorem by induction over hfs = fut(m). Here, we only sketch the proof and focus
on the interesting cases where at least two hop fields are left, i. e., hfs = hfA # hfB # hfs′, and both have
valid validators and interfaces. We again let the subscript identify the node; i. e., we write hfA to denote
a hop field for which id(hfA) = A holds.

• A ̸∈ Nattr: In this case, the attacker can derive hfA without KA. Then by COND 1 hfA must already
be in DY↓(ik0 ∪ ik+0). Then by Lemma 3, we have Ψ(hfs) ∈ auth⇄

a and by fragment closure also
Φ(Ψ(hfs), hiprev) ∈ auth⇄

a as required.
• A ∈ Nattr and B ̸∈ Nattr: This is the most difficult case. By COND 1, hfB ∈ DY↓(ik0 ∪ ik+0),

and by COND 2, we obtain hfsgen such that hfsgen ∈ authc and hfB ∈ hfsgen. Paths in autha and,
by extension, paths in authc are terminated (ASM 2). However, by the case assumption, hfB is
interface-valid with hfA as the preceding AS and thus cannot be terminated. Hence, there must be
a hf’ preceding hfB on hfsgen. As hfsgen ∈ authc, there exist hfspre and hfspost such that

hfsgen = hfspre · hf’# hfB # hfspost ∈ authc.

Since hf’ ∈ DY↓(ik0 ∪ ik+0), we can apply Lemma 3 and therefore have Ψ(hf’# hfB # hfs′) ∈
auth⇄

a . Also, as hop fields in authc are valid, ψ(hf’, hfB). Hence for some his′pre and his′post

his′pre · (hf’#Ψ(hfB # hfs′)) · his′post ∈ autha.

Finally, we use the assumptions on authorized paths to show that the attacker can remove the
info fields his′pre preceding hf’ (ASM 5) and swap out hf’ for hfA (ASM 6). To apply these as-
sumptions, we must show that id(hf’) ∈ Nattr and, respectively, that hf’ and hfA have the same id
and next. hfB is interface-valid with the predecessor hfA (by the case assumption) and with the pre-
decessor hf’ (by the assumption on the interface-validity of authorized paths, ASM 1). Thus hfA

and hf’ must have the same AS identifier id(hf’) = A ∈ Nattr and interface next(hf’) = next(hfA).
Hence, we have Ψ(hfs) ∈ auth⇄

a and by fragment closure also Φ(Ψ(hfs), hiprev) ∈ auth⇄
a .

• A ∈ Nattr and B ∈ Nattr: This case uses the suffix and prepend assumptions on authorized paths
of §6.1. By the induction hypothesis Φ(Ψ(hfB # hfs′), hiprev) ∈ auth⇄

a . By the case assumption
of the validity of hfB, there is a hispre, hispost such that

hispre · hfB #Φ(Ψ(hfs′), hfB) · hispost ∈ autha.

By ASM 5, the suffix without hispre is also in autha. Finally, ASM 4 allows prepending hfA to this
authorized path.

COND 5 is required to show that hfs and hfsgen are valid for the same tok in the second case above
(however, we have elided packet token fields from the presentation). □

7. Instances

We now instantiate the concrete parametrized model to several protocols from the literature and vari-
ants thereof. To do so, we instantiate the model’s protocol parameters and prove the associated con-
ditions. Since refinement and instantiation preserve properties, the path authorization and detectability
security properties proven for the abstract model also hold for these instance models.

7.1. SCION-11

In SCION-11, hvA for a hop A without successor is hvA = MACKA(hiA), where KA is a key shared by
all border routers in A. If there is a next hop B, then hvA also includes its info and validator field of B,

hvA = MACKA(⟨hiA, hiB, hvB⟩) . (17)

We instantiate ψ with the check of Equation (17) and set ik+0 = ∅. In SCION-11, the tok field is not
used. We simply set auth-restrict(hfs, u) = (u = 0) (where 0 is a term representing the natural number
"0") to ensure that this field does not leak any new terms that the intruder cannot otherwise derive. In all
instances, we only define extract for valid patterns and all other patterns are mapped to ⟨⟩.

extract(MACKA(hiA)) = hiA

extract(MACKA(⟨hiA, hiB, hvB⟩)) = hiA # extract(hvB)

To show that this model of SCION-11 inherits the security properties proven in the parametrized
models, we prove the parametrized model’s conditions. First, we observe that the intruder knowledge
only contains keys and MACs, which cannot be decomposed, and hence DY↓(ik0∪ ik+0) = ik0. With this
simplification in place, we easily prove COND 1, COND 2, and COND 5 by unfolding the definitions
of ik0, authc, and ψ. We establish COND 3 and COND 4 by routine inductions over hfs.

Variants. By dropping hiB from Equation (17) we obtain the variant described in §2.5 where we in-
stantiate ψ with the check given by Equation (1). The proof of the conditions is almost identical.

7.2. EPIC

EPIC Level 1 uses a hop authenticator σ (which is a static authenticator almost identical to Equa-
tion (1)) to compute the segment identifier S , which is static, and VA, which changes with each packet.
Packets contain a packet origin, which is a triple of the source address, path timestamp, and packet
timestamp offset. The time given by the timestamp and the offset is precise enough to guarantee that the
origin of each packet is unique.

We define the validator hvA and the values σA, S A and VA as follows:

hvA = ⟨S A,VA⟩, σA = MACKA(⟨hiA, S B⟩) , VA = MACσA
(tok) , S A = H(σA).

If A has no successor, then σA = MACKA(hiA). In the EPIC protocol specification, S A is defined to be the
first few bytes of σA. Here, we model truncation as a hash function. We discuss this and other differences
between protocols and their models in §9.2.

End hosts first obtain the public hop authenticators for a path. For each packet they compute the
timestamp offset, embed it in the tok field and compute for each hop field the packet-specific HV. To
check the validity of the HV, a border router A re-computes its own σA (using its key KA and S B from
the successor hop field) and then re-computes hvA from σA and the tok included in the packet.

Two mechanisms in EPIC limit the effects of brute-force attacks on the validator: First, the HV is
bound to a packet’s origin. Second, a replay-suppression system at each border router prevents multiple
packets with the same packet origin from being forwarded. Consequently, a successful brute-force attack
on the HV can result in at most a single packet being forwarded along an unauthorized path.

Only by brute-forcing the underlying static hop authenticator σ could the attacker dynamically create
valid but unauthorized HVs for arbitrary tok fields and thus send an unlimited number of packets. How-
ever, σ is a long authenticator. Hence, the success probability of such a brute-force attack is negligible.

Formalization. We formalize EPIC similarly to SCION-11. However, we additionally account for the
attacker’s ability to brute-force individual validator fields by introducing a strong attacker model, which
gives the attacker access to an oracle. We discuss this extension of our framework and its use in the EPIC
formalization in §8.4.

We use another extension (introduced below) to define the type of tok as a natural number. This public
value represents the packet origin. The function auth-restrict always returns true. We instantiate the
predicate ψ with the conjunction of the four equations given above. We define extract such that it first
extracts the hop authenticator, and then the path. Patterns not covered below map to ⟨⟩.

extract(⟨S A,MACσA
(tok)⟩) = extract’(σA)

extract’(MACKA(hiA)) = hiA, extract’(MACKA(⟨hiA,H(σB)⟩)) = hiA # extract’(σB).

According to our definition of the intruder knowledge given in Equation (15), the attacker knows the
HV values of all authorized paths. We define ik+0 such that the attacker additionally knows all hop
authenticators of authorized paths, since these are public in the EPIC protocols.

We show that EPIC is an instance of our concrete parametrized model, and thus inherits the security
properties proven in the abstract model. The proof is similar to that of the SCION-11 instance, but
requires additional case distinctions since ik+0 provides the attacker with more ways to derive terms, i. e.,
from hop authenticators. We also need to prove a lemma stating that if a hop authenticator from ik+0 is
used to create a valid HV of a hop field, then that hop field is contained in an authorized path.

A

B

D

. . .

tokA

tokB

tokD

RND

RND ⊕ MACKA(⟨hfA,RND⟩)

RND ⊕ MACKA(⟨hfA,RND⟩)⊕
MACKB(⟨hfB,RND ⊕ MACKA(⟨hfA,RND⟩)⟩)

FIGURE 6: Values that the mutable tok field has in SCION-22 as a packet traverses the network from D to A.
The tok field is updated by the receiving router according to Equation (18). The tok displayed next
to each AS i is used to compute the HV of AS i according to Equation (19).

Variants. We verify EPIC level 1 and level 2 in the strong attacker model (see §8.4).

7.3. SCION-22

The SCION-22 protocol substantially revises the SCION packet header, and in particular changes
how the forwarding path is used to compute the HV. The HV of each hop field is a MAC over the local
routing information hi and the tok field. The tok field is updated by routers during packet forwarding and
combines the HVs of all subsequent hops with exclusive-or (XOR), thereby including the upstream path
similar to the MAC chaining of SCION-11 and EPIC.

7.3.1. Protocol description
The control plane creates forwarding paths such that for each hop on the path, the tok value embedded

in its HV is the XOR of the HVs of all previous hops in the beaconing direction and of a random
initialization value RND. Paths are reversed on the data plane, where the HVs of all following hops in
the forwarding direction are included in the tok field. During forwarding along authorized segments, the
updates of the tok field by routers successively remove (by the cancellation property of XOR) the HVs
that were added during beaconing until finally, only RND remains in tok.

We will use the topology and tok fields given in Figure 6 as a running example.

Motivation. In the original SCION-11 protocol, there are a number of different cases for switching
between different segments. In our models, these cases are not visible, since we abstract from segment
switching. However, when implementing the SCION router, engineers found that fields in multiple vari-
able memory locations needed to be fetched depending on the type of segment switching occurring. In
particular, not only the location of the current hop field, but also the locations of other hop fields used to
compute the HV change. Implementations needed to either (i) first fetch the fields that allow making the
required case distinction and then only load the memory locations required for the case at hand or (ii)
already from the start load all the fields that are required in any of the cases. Neither option is efficient,
in particular in hardware implementations.

This motivated creating the SCION-22 protocol, where only the location of the current hop field
changes, and the locations of all other fields needed for forwarding are fixed in the packet header. This
simplifies the protocol by reducing the number of case distinctions and allows routers to process packets
more quickly.

While the implementation of SCION-22 may indeed be simpler, formally proving its security is more
difficult than for the other instances and requires the use of several extensions presented below.

Protocol details. The packet token field is mutable. When an AS receives a packet from an inter-AS
channel, it updates its tok field using the following function, which takes the current tok field u and the
current hop field hf:

upd-tok(u, hf) = u ⊕ HV(hf), (18)

where ⊕ is exclusive-or. The receiving router first updates the tok field and then proceeds normally by
checking the interface and the HV. The tok field update only needs to be performed once per AS. Hence,
the sending router (which forwards an intra-AS packet to an inter-AS channel) does not need to perform
the update before computing the HV. The HV is computed as:

hvA = MACKA(⟨hiA, tok⟩) . (19)

Example. Assume that, given the topology in Figure 6, an end host in AS D sends a packet to an end
host in AS A. The packet is initialized by the end host with tokD as the tok field. The sending router
at D checks hvD based on the initial tok value. It then pushes the current hop field into the past path
and forwards the packet to the inter-AS channel between D and B. The receiving router at AS B first
checks the interface over which the packet was received. It then updates the tok field by XORing the
current tokD field with the (unvalidated) hvB embedded in the packet, yielding tokB. Only after updating
the tok field can the router check the validity of the hvB field, by recomputing the MAC based on tokB.
The forwarding between AS B and AS A proceeds similarly. Note that the initial value RND, which is
random, does not need to be checked by AS A.

7.3.2. Formalization
Required extensions. In order to formalize this instance, we needed to extend the framework presented
in the previous section in three ways. First, we add an abstract XOR operator, second, we parametrize
the type of tok, and third, we allow tok fields to be updated en-route.

Since our focus here is on the SCION-22 protocol, we only briefly introduce these extensions, and
present further details in Sections 8.1–8.3.

• We extend IsaNet with a model of XOR by adding a constructor ⊕ for finite sets of terms (of type
Pfin(T)) to the datatype T, where ⊕ H represents the XORing of all elements of H. We overload
the operator ⊕ and define a binary version ⊕ : Pfin(T) × Pfin(T) → Pfin(T), for combining two
finite sets of terms with XOR, as the symmetric difference of these sets and the identity element
{} as the empty set. Our XOR model captures the algebraic properties of XOR while simplifying
the interface with the attacker. The XOR extension requires changes to the Dolev–Yao model
formalization, but no other changes in the concrete model.

• We parametrize the type of tok. Instead of T it is of the abstract type ’TOK. This requires an
additional protocol parameter to extract the intruder knowledge from a given tok field, but requires
no extra proof effort.

• We allow for updatable packet token fields by adding the update function upd-tok : ’TOK×HF →
’TOK as a new parameter to the concrete model. This requires adding two simple conditions. The
definitions and proofs of the concrete model must be changed to account for the mutable field.

With these extensions in place, the formalization of the update function upd-tok as in Equation (18)
is straightforward. We instantiate the type of ’TOK with Pfin(T), i.e., finite sets of terms, since tok
accumulates terms using XOR. We instantiate ψ with the check of Equation (19). Note that the next hop
field hfB is not required in this definition.

Restriction. As in the other protocols, we need to ensure that the tok field of authorized paths does not
leak arbitrary terms to the attacker. According to the protocol specification, this tok field is initialized in
the control plane by some random value RND. The randomness in the initialization is not required to
achieve the security properties, and it is unclear why the protocol designers chose to include it.

In our model, we verify a simplified version where we assume that tok fields are initialized with the
identity element {}. We define auth-restrict as follows:

auth-restrict(hfs · ⟨hfZ⟩, u) = ψ(hfZ ,⊥, {})

auth-restrict(⟨⟩, u) = (u = {})

We require that the last hop field on the path is valid for the tok field with the identity element. This
implies for paths hfs that are valid, i.e., where Ψ(hfs, u) = hfs holds, that u does not contain any terms
besides the HVs of subsequent hop fields. For an empty path, u itself has to be the identity element. This
ensures that no unintended terms are leaked to the attacker via the set of authorized paths.

Extract. The extract function for SCION-22 is more difficult to define than in the other instances. It
requires the use of the definite description operator THE, which returns a unique value satisfying a given
condition. For instance, THE x. x = 3 + 5 is 8. We show the existence and uniqueness of the value
separately. Using the THE operator and the is-next predicate defined below, we define extract as follows:

extract(MACKA(⟨hiA, u⟩)) = hiA #(if ∃hfB. is-next(hfB, u)

then extract(HV(THE hfB. is-next(hfB, u))) else ⟨⟩).

As in the other models, extract first takes the current HV, and if it is of the form defined in Equation (19),
the HI embedded in the HV’s MAC is extracted. If there is a next hop field hfB, then extract recursively
calls itself on that next hop’s HV embedded in the MAC. If there is no such element, the extract function
does not recurse. In contrast to SCION-11, the next hop’s HV is not directly embedded in the MAC
of the current HV. Instead, the tok field is embedded, which accumulates via XOR all HVs remaining
on the path. The extract function needs to identify and select the next hop’s HV among this set. The
difficulty in formally defining extract is determining the next hop field. Below, we define the predicate
is-next : HF × ’TOK → B, where is-next(hfB, u) holds if hfB is the next hop field on the tok field u. As
we show, there is at most one hop field that satisfies this predicate for a given u. Hence, if this hop field
exists, we can use the definite description operator THE to refer to it.

We observe that on paths that are valid and satisfy auth-restrict, if the tok field is not empty, then it
contains exactly one element hvB that is a MAC created using all other elements of the tok set, i.e., hvB =
MACKB(hiB, tok \ {hvB})) (where \ is set difference). Let hfB be the hop field such that HV(hfB) = hvB

and hfB = hiB. This hop field satisfies the predicate is-next(hfB, tok), defined as

is-next(X, u) = (HV(X) = MACKid(X)

(
X, upd-tok(u, X)

)
).

The predicate can only hold if HV(X) ∈ u, in which case upd-tok(u, X) is equivalent to u \ {HV(X)}.
To see this, assume, HV(X) ̸∈ u. Then HV(X) contains itself under a constructor, HV(X) =
MACKid(X)

(
X, u ∪ {HV(X)}

)
, leading to a contradiction with is-next(X, u) if we consider the size of

the term.

Example. Consider in Figure 6 that we extract the path from hvD = MACKD(⟨hiD, tokD⟩). Given tokD,
a value X such that is-next(X, tokD) holds is the hop field hfB, where HV(hfB) = hvB, hfB = hiB and
hvB = MACKB(⟨hiB, tokB⟩), since upd-tok(tokD, hvB) = tokB. This is not just some value that satisfies
is-next given tokD, but it is the only value to do so. Hence, extract(hvD) = hiD # extract(hvB). If we
repeat these steps, we obtain extract(hvD) = ⟨hiD, hiB, hiA⟩, as expected.

Proofs. We first show that if a term t is contained in a tok field u, and authc(u) is not empty (i.e., there
exists a path with u as the tok field), then t is a HV of an authorized path, and hence already contained
in the intruder knowledge. We thus do not need to consider tok fields in the initial intruder knowledge.
After this simplification is proven, the use of XOR does not complicate the proofs in the instance model.
Yet, proving the conditions is more difficult in SCION-22 than in other protocol instances, in particular
COND 3 and COND 4, due to the complex definition of extract.

7.4. ICING

Among the protocols we study, ICING [22] provides the strongest security properties, albeit at the
cost of the highest overhead [21]. In particular, ICING allows ASes to authorize the entire path and is
thus an instance of the undirected setting. This requires a separate concrete model, whose parameters,
assumptions, and conditions slightly differ from those presented above. We discuss this model in §8.5.

ICING uses proofs of consent (PoCs) to achieve path authorization. These are created by applying a
pseudorandom function (PRF) using a tag key on the entire forwarding path. The tag key for each AS is
derived from its master key KA, and the info field hiA.

Formalization. In our symbolic model, PRFs and MACs are modeled identically and we thus formalize
PoCs as validators using MACs. We define ik+0 = ∅. The function extract requires extracting the entire
path (past and future) in the undirected setting. Formally,

hvA = MAC⟨KA, hiA⟩(rev(past(m)) · fut(m))

extract(MAC⟨KA, hiA⟩(hfs)) = hfs.

Variants. We verified three versions of the protocol. The first is presented above. In the second version,
the validator consists of ICING’s path authenticator, which includes an expiration timestamp and a path
hash besides the PoC. These additional details are not essential for achieving path authorization and
detectability but reduce the gap between the model and proposed protocol. We define ik+0 to consist of
all authorized PoCs, since the attacker cannot extract them directly from the packets in this version.

The third version is a further simplified variant of ICING compared to the one presented first, which
omits the info field in the key input of the MAC computation. Proving the concrete model’s conditions
is straightforward for all three versions. However, the simplest one requires the additional assumption
that an AS cannot have two different hop fields on the same path, since otherwise they would have the
same MAC, despite having different local forwarding information.

8. Extensions

We now describe a number of features of our formalization that we previously elided to simplify the
presentation. Figure 8 in Appendix A lists which extensions are used in the individual protocol models.

8.1. Type parametrization in parametrized models

While we have presented all definitions of the concrete model with specific types for simplicity, our
formalization uses type parameters for some fields. This allows for greater flexibility when modeling
protocols. When the type of a field is only determined by the instances, defining the intruder knowledge
in the parametrized model requires an additional protocol parameter. This parameter defines what terms
an attacker can learn from analyzing the field. For instance, the type of tok is the abstract type ’TOK. We
add a parameter that captures what an attacker can learn from analyzing a tok field:

analz-tok : ’TOK → P(T). (20)

We change the definition of terms for packets to use analz-tok(tok(pkt)) instead of {tok(pkt)}.

Instances. In SCION-22, the tok field contains the XOR of different terms. For reasons that will be-
come clear below, we instantiate the type of tok to finite sets of T and define analz-tok as the identity
function. In SCION-11, ’TOK is T and analz-tok(t) = {t}. We note that for all valid hop fields in EPIC
(and in SCION-11), tok is a natural number, which the attacker can already derive. Hence, we simplify
the model when formalizing the EPIC protocols and set ’TOK to N and analz-tok(t) = {}.

8.2. Exclusive-or abstraction

We extend IsaNet with an abstraction of exclusive-or (XOR), which is used in the SCION-22 instance.
The XOR operator ⊕ can be characterized by the following equations for associativity (A), commuta-
tivity (C), the identity element 0 (I) and self-inverse (S).

(x ⊕ y)⊕ z = x ⊕ (y ⊕ z) (A) x ⊕ y = y ⊕ x (C)

x ⊕ 0 = x (I) x ⊕ x = 0. (S)

Existing modeling approaches. The XOR operator is difficult to support in symbolic protocol analysis.
Most automated protocol verifiers that support equational theories cannot straightforwardly implement
XOR using the above equations, as these equations do not form a subterm-convergent equational the-
ory [42]. Simply speaking, this means that XOR cannot be characterized by a set of equations that each
simplify a given term by replacing it with a subterm or a constant. This is in contrast to, for instance,
symmetric encryption, which can be modeled by a subterm-convergent equational theory described by
the single equation dec(k, enc(k,m)) = m. While there are security protocol verifiers that support XOR
and other non-subterm-convergent theories, verifying protocols that make use of this constructor remains
difficult.

A generic approach to incorporating a large class of equational theories into verifiers is provided by
Escobar et al. [43], who propose folding variant narrowing. Automated protocol verifiers such as Maude-
NPA [44] and Tamarin [45] follow this approach. While this technique is powerful and applicable to a
wide range of equational theories, modeling and reasoning about equality modulo axioms, as required by
their approach, involves considerable effort in protocol verification using interactive theorem proving.

An alternative way of modeling XOR is to use term normalization to ensure that any two terms that are
equal under the equational theory are identical under normalization. With this approach, if we normalize
all terms under consideration, then equality does not require equational theories. For a binary ⊕ operator,

such a normalization could be solved by (i) removing parentheses from terms being XORed and putting
them into a sequence, (ii) linearly ordering the sequence and (iii) applying (I) and (S) exhaustively as
simplification rules. For instance, assuming that x, y and z are non-XOR terms and that x < y < z, the
term (z⊕x)⊕(y⊕z) would be successively transformed to (i) ⊕⟨z, x, y, z⟩, (ii) ⊕⟨x, y, z, z⟩, (iii) ⊕⟨x, y, 0⟩
and finally ⊕⟨x, y⟩. Since terms are enumerable, one can define a linear order on them. This approach of
modeling XOR as a binary operator and defining normalization is taken by Schaller et al. [46] in their
Isabelle/HOL formalization.

Our XOR model. In our framework, we follow a different approach. We introduce a term representation
and an attacker model that simplify our reasoning about protocols using XOR. Instead of using term
normalization, we directly model the canonical representations of XOR terms based on a new term
constructor

⊕ : Pfin(T) → T,

which we add to the definition of T. Given a finite set X of terms from T, the term ⊕ X represents the
XORing all elements of X. In particular, the term ⊕{} represents the identity 0. Provided that the terms
in X are not themselves of the form ⊕Y for some finite set Y , the properties of finite sets make ⊕ X
a canonical normal form representation with respect to the four equations (A), (C), (I), and (S) of the
theory of XOR. For example, we represent the term t = (x⊕ (0⊕ z))⊕ (y⊕ x) in an algebra with binary
XOR as ⊕{y, z} in T. The latter is a canonical representation of t’s equivalence class, namely, it is unique
with respect to (A) and (C) and reduced with respect to (I) and (S). To rule out nested XOR terms like
⊕{x,⊕{x, y}}, we define a predicate normal, which holds if no directly nested ⊕ constructors occur.

normal(H(x)) = normal(x)

normal(⟨x0, . . . , xn⟩) = ∀t ∈ {x0 . . . , xn}. normal(t)

normal(⊕{x0, . . . , xn}) = ∀t ∈ {x0 . . . , xn}. normal(t) ∧ ∀Y. t ̸= ⊕Y

normal(x) = true (for atomic x).

Note that, for instance, ⊕{x,H(⊕{y, z})} is normal, provided x, y and z are normal, non-⊕ terms, since
no direct nesting occurs.

In order to combine two given terms ⊕ X and ⊕Y using XOR, we overload ⊕ and define a binary
XOR function ⊕ : Pfin(T)× Pfin(T) → Pfin(T) as the symmetric set difference:

X ⊕ Y = (X ∪ Y) \ (X ∩ Y). (21)

The XOR of ⊕ X and ⊕Y is thus ⊕ (X ⊕ Y), which satisfies the four properties (A), (C), (I), and (S).
Note also that ⊕ (X ⊕ Y) is normal whenever ⊕ X and ⊕Y are.

Rather than defining a normalization function that turns an arbitrary term into a normal term, we
define our event systems such that all terms in reachable states are already normal, i.e., they do not
contain directly nested ⊕ constructors. We show this below for the SCION-22 instance.

X ⊆fin DY↑(H)

⊕ X ∈ DY↑(H)
∀Y. ⊕ Y /∈ X

⊕ X ∈ DY↓(H)

t ∈ DY↓(H)
t ∈ X

FIGURE 7: Rules added to the Dolev–Yao message decomposition (DY↓) and composition (DY↑) presented
in Figure 5. The composition rule excludes directly nested ⊕ constructors.

Attacker models for XOR. We propose a novel overapproximation of the attacker capabilities that
greatly simplifies reasoning about the composition and decomposition of XOR terms. This overapprox-
imation is based on the observation that, broadly speaking, XOR is utilized in security protocols for
two different purposes. First, XOR is used to achieve secrecy. Plaintext values can be masked using
XOR with values unknown to the attacker. The prototypical example of this is the one-time pad en-
cryption scheme, where a plaintext message is XORed with a fresh random key (of equal length) to
obtain the ciphertext. Second, XOR is used as a compression function. As opposed to one-way com-
pression functions, XOR is trivial to invert if one of the inputs is known. However, many authentication
and integrity-protecting protocols either do not need one-wayness or even require an invertible function.
XOR is also popular in protocols, as it is simple. Moreover, implementations in hardware are highly
efficient. We now discuss attacker models for each of these two use cases.

In both cases, the attacker can compose messages using the rule on the left-hand side of Figure 7. This
rule’s side condition ensures that it preserves term normality (as do the existing rules from Figure 5). The
difference is with the decomposition rules. The following rule reflects an attacker’s standard capabilities
to decompose XOR terms in our setting (cf. [45]):

⊕ X ∈ DY↓(H) ⊕ Y ∈ DY(H)

⊕ (X ⊕ Y) ∈ DY↓(H)
. (22)

Note that, for completeness, ⊕Y can be derived using both decomposition and composition rules. This
rule is suitable for the secrecy use case. However, the decomposition of a term ⊕ X using this rule
introduces the difficulty that what we can derive from ⊕ X depends on other terms, namely those in Y .
For instance, for X = {x, y} and Y = {y}, we can derive ⊕{x}, while with Y = {y, z} we get ⊕{x, z}.

In the case, where XOR is used as an invertible compression function only, we propose the simpler
decomposition rule on the right-hand side of Figure 7. This rule overapproximates a realistic attacker’s
behavior by allowing them to learn any term t ∈ X from a given term ⊕ X. This substantially simplifies
reasoning since the dependence on the derivability of a second XOR term is removed. This overapprox-
imation is sound, as the derivation rule in Equation (22) is admissible1 in the system with the rules in
Figures 5 and 7. We can also show that the side condition of the composition rule is without loss of
generality. Since our data plane protocols only use XOR as an invertible compression function, we only
implemented the attacker model for this setting.

Protocol instances. We use our XOR formalization based on finite sets and our attacker overapproxi-
mation in the SCION-22 instance. We show that all terms occurring during the execution of the protocol

1A rule R is admissible in a derivation system if it does not add any deductive power, i. e., any proof using R can be converted
into one not using R.

are normal. To see this, we observe that all messages in a state are contained in the intruder knowl-
edge ik(s). By Lemma 1, we can reduce the normality of terms in ik(s) to the normality of terms in
DY(ik0 ∪ ik+0), which we prove in the instance model.

Discussion. Our finite set representation of XOR makes our formalization substantially more man-
ageable, as explicit reasoning modulo equational theories is not required. Rather than a normalization
function that re-orders terms using associativity and commutativity and applies identity and self-inverse
simplification rules, we only require preventing directly nested ⊕ operators, which we do via the normal
predicate. Note that our representation distinguishes the terms ⊕{t} and t, which one would expect to
map to the same bitstring in the implementation. However, collisions in general seem unavoidable for
bitstring representations of XOR terms, e.g., the terms 1 ⊕ 3, 5 ⊕ 7, and 2 would commonly map to
the same bitstring. Still, we must be careful to avoid protocol models that exhibit different observable
behaviors based on a distinction between such terms, e. g., by sending two different messages, since such
models would be unimplementable. Our model of SCION-22 does not have this problem. We will further
discuss the general problem of message representation and implementation in the context of symbolic
models in §9.3.

Our overapproximation of the attacker derivation capabilities also greatly simplifies reasoning about
the intruder knowledge and the derivation of terms. Consequently, the use of XOR only adds a moderate
amount of complexity in the SCION-22 instance. This is surprising since security protocol verification
typically becomes much harder when XOR is used. While we have only used XOR in one instance,
we believe that our XOR theory is applicable to a large class of security protocols, including several
protocols studied in [47, 48].

Lastly, our XOR theory itself is very concise: all definitions and lemmas, including those related to
the normal predicate, add less than 300 lines of code to the term algebra theory. In contrast, the XOR
theory proposed by Schaller et al. [46] adds thousands of LoC.

8.3. Mutable packet token fields

This extension is used to model protocols in which routers receiving a packet from an inter-AS channel
update the tok field. We extend IsaNet by an update parameter

upd-tok : ’TOK × HF → ’TOK. (23)

This function updates a tok field u given a hop field hf, resulting in the new tok field upd-tok(u, hf).
We introduce a function upd-pkt : PKTc → PKTc, that applies upd-tok to update a packet’s tok field

using the first hop field of the future path. It is defined as

upd-pkt(m) = m(| tok := upd-tok(tok(m), hf) |) if fut(m) = hf# hfs

upd-pkt(m) = m otherwise.

The recvc event’s guard is changed as follows: instead of requiring that ψ holds on (fields of) m, we
require the check to hold on upd-pkt(m). Furthermore, the update of the event is changed and instead of
m, upd-pkt(m) is added to int(A). Hence, the receiving router updates the tok field prior to processing,
whereas the sending router pushes the first hop field of the future path into the past path post processing.

This extension requires a number of changes to our framework, such as modifying the definition of
Ψ to account for the tok update. Additional conditions are needed, in particular: (i) The update function
does not reveal anything that the attacker could not already derive, and (ii) auth-restrict is closed under
updates. The refinement proof presented in §6 requires a number of modifications to keep track of
changes in the tok field.

Lifting updates to paths. Our proofs often involve reasoning about path fragments. For instance,
the suffix hf# hfspost of an authorized path hfsfull = hfspre · hf# hfspost ∈ authc(u) is valid, i.e.,
Ψ(hf# hfspost, u

′) = hf# hfspost for some u′. Since the packet’s tok field changes as the packet is for-
warded, hf# hfspost and hfsfull are potentially valid for different values u′ ̸= u. In order to obtain the
correct tok value u′ for hf# hfspost given the tok value u for the full path hfsfull, we define a function that
lifts upd-tok to paths. We can use this function to apply the tok field update given the preceding path
hfspre. Unfortunately, obtaining u′ given the original u valid for hfsfull does not simply involve applying
upd-tok iteratively for each hop field on hfspre. When we reason about hop field validity (and valid pre-
fixes of hop field sequences), we assume that the update function has already been applied to the current
head of the path. Hence, assuming that hfspre = hf′ # hfs′, we need to update tok for each hop field on
hfs′ · ⟨hf⟩, i.e., we drop the first hop field of hfspre and add the next hop field after hfspre in the sequence
of hop fields for which an update must be performed. This “shifted” reasoning requires additional case
distinctions and adds some complexity to our definitions and proofs.

Instances. SCION-22 updates the tok field using XOR, as defined in Equation (18). The other protocol
instances do not update the tok field and hence define upd-tok to return a given tok field unmodified.
Discharging the three additional conditions is straightforward for all instances.

8.4. Strong attacker model

Legner et al. [21] propose a strong attacker model for EPIC, which reflects that an adversary can, with
some effort, brute-force correct hv fields for individual tok values. We model this attacker capability with
an oracle. We add a predicate

O : ’TOK → B (24)

as an additional environment parameter of the concrete parametrized model, which is true for all tok
values for which the attacker queried the oracle. In instances that make use of the strong attacker model
(i.e., EPIC), the ik+0 set is defined to additionally contain all valid HV fields of (possibly unauthorized)
paths that are created over tok values such that O(tok) holds.

While this addition strictly strengthens the attacker, her events must be restricted to rule out trivial
attacks where the attacker sends a packet with a tok value for which she queried the oracle. We add the
guard ¬O(tok(m)) to the dispatch-intc and dispatch-extc events to prevent the attacker from sending
packets whose HV fields are directly obtained from the oracle. We also add ¬O(tok(m)) to the premises
of COND 1 and COND 2.

The instance proofs for the EPIC protocols are similar to the proof in the basic attacker model. How-
ever, they must additionally account for the attacker obtaining valid hop fields from the oracle.

8.5. Undirected authorization schemes

For brevity, we have focused on directed authorization schemes, where each AS only controls the
authorization of the traversal of subsequent ASes (in the forwarding direction) and the traversal of pre-
vious ASes is outside of its control. This setting allows the attacker to legitimately extend and change
her own path in the control plane without consent by subsequent ASes, and hence requires the control
plane assumptions ASM 3–ASM 6.

We have a separate parametrized model for the undirected authorization scheme, where the entire
path must be approved by all on-path ASes. The control plane assumptions can be relaxed, and ASM 3–
ASM 6 are replaced by the following weaker assumption stating that an attacker can create authorized
paths consisting entirely of compromised nodes.

ASM 7: Fully compromised paths: his ∈ autha if id(hi) ∈ Nattr for all hi ∈ his.

In this model, the cryptographic check parameter has the entire path (including the past path) as an
argument: ψ : HF × HF∗ × T → B. The parameter extract retains its type, but returns the entire
path (including past path) instead of just the future path. Since each validator contains the entire path,
COND 3 and COND 4 are replaced by COND 6, which states that for a valid hf, extract returns the entire
path. Formally,

COND 6: Undirected extract: ψ(hf, hfs, tok) implies extract(hf) = hfs.

Formalization and proofs. In the undirected setting, the entire path is embedded in each HV and cannot
be modified unless it is completely under the attacker’s control. Induction is neither required to show the
refinement of the dispatch events in the concrete model nor to show the conditions in the ICING instance
model. Hence, proofs are substantially easier than in the directed setting.

We again utilize parametrization to avoid redundancy and duplicated proof efforts in our models.
Rather than having one concrete model for the directed setting and another concrete model for the
undirected setting, we use an intermediate model that generalizes the definitions in the directed and
undirected models. The concrete model’s event system definition, invariant proof, and refinement proof
all belong to this common intermediate model, which interfaces with the directed and undirected con-
crete models via a number of parameters and conditions. In particular, it interfaces with these models by
assuming Theorem 3. The proof of this theorem is done separately, since it differs between the directed
and undirected setting.

8.6. Additional authenticated fields

To allow for more accurate modeling of protocols and to future-proof our framework, our formaliza-
tion includes additional per-hop and per-packet fields, which are included in autha and must thus be
included in the authentication mechanisms defined by instances. We use the authenticated per-packet
field to model SCION’s path expiration time that is fixed in the control plane and is included in the MAC
computation of the validator. We use the per-hop authenticated fields to model ICING’s tag.

This extension requires changes to the definitions, parameters, assumptions, conditions and lemmas
of both the models presented in the previous sections and in the above extensions. Nevertheless, the use
of these additional fields does not add significant complexity and is not essential to the insights provided
by our models and proofs. Hence, we have elided their presentation above.

9. Discussion

In this section, we discuss some additional aspects of our formalization (§9.1), we point out differences
between our models and the actual protocol specifications or implementations (§9.2), and we discuss the
representation of messages in our models and in the implementations (§9.3).

9.1. Formalization details

Presentation and statistics. Our formalization in Isabelle/HOL closely follows the models and proofs
described in this paper, modulo differences in notation and changes required for the extensions, as dis-
cussed above. Most of the proof burden is handled in the parametrized models, not the instance models.
In particular, this is true of the crux of the proof, Theorem 3. A substantial portion of the instance models
is boilerplate definitions and proofs that only vary slightly between the instances. Table 3 in Appendix D
gives an overview of the Isabelle/HOL code of IsaNet.

Consistency of environment assumptions and executability of event system. All instance models are still
parametrized by the environment parameters, i.e., the underlying Internet topology defined by tg, the set
of authorized paths autha, the set of compromised nodes Nattr ⊆ N , and the oracle predicate O . We
instantiate these parameters with the topology and authorized paths given in Figure 2, Nattr = {F}, and
an O function that always produces false. We discharge the assumptions ASM 1–ASM 6 in this example
model to show their consistency. Furthermore, we show the executability of the instantiated event system
for the EPIC level 1 protocol in the strong attacker model, showing that it is indeed possible to send a
packet from a source to a destination, i. e., the model’s events can be executed in the correct order.

9.2. Differences between models and real protocols

We discuss the abstractions that we have made in our protocol models, distinguishing generic abstrac-
tions used in the parametric model and instance-specific abstractions.

Generic abstractions. Our models abstract from real protocols in several ways, many of which are
standard in protocol verification. First, we simplify the structure of messages. We omit additional mes-
sage fields and checks that are either irrelevant to path authorization or unnecessary due to our more
abstract message representation (e. g., the protocol version, an explicit path length, and the current hop
field pointer). Moreover, unlike our models, the actual protocols do not include the AS identifier (id) in
the hop fields. Its addition simplifies our proofs. It would however be possible to remove the identifier in
a refinement step since the MAC key used in the HV uniquely identifies the AS for which the hop field
is valid. Second, we abstract the actual protocol behavior. Our models receive, process, and forward
packets in a single atomic step, whereas in implementations these will each correspond to individual
steps. We are confident that an additional refinement step could relax the atomicity of these steps by
introducing ingress and egress buffers along with a finer-grained step interleaving of their constituent
operations. Moreover, in our models, routers can receive and send the same message not just once, but
multiple times. This is also unproblematic as we do not consider liveness properties. Third, we abstract
the environments in which the protocols run. We abstract from the intra-AS network topologies and the
protocols they run, and we do not explicitly model end hosts. We also ignore the fact that real routers will
concurrently execute multiple protocols, for example, SCION-22 alongside different levels of EPIC, as
well as control message protocols. This may give rise to multi-protocol attacks, where different protocols
interfere with each other [49]. We leave the proof of resistance against such attacks for future work.

Instance-specific abstractions. Our instance models additionally differ from the actual protocols in
the following ways. In SCION, forwarding paths can be created by connecting multiple partial paths,
called segments, according to certain rules. In our current formalization, we only consider single up-
segment paths. In EPIC, hop authenticators σ are shortened to reduce space overhead. We model the
σ’s shortening using a hash function. Similar to hashing, shortening makes it difficult to recover the
original value. It also enables brute-force attacks, which we model by the oracle discussed in §8.4. In
SCION-22, our formalization does not include the initialization value RND for the tok field and ignores
the fact that MACs are truncated from six to two bytes before XOR-ing. In ICING we leave out the
proofs of provenance that are combined with PoCs using XOR. These are cryptographic authenticators
used for path validation and are unrelated to path authorization.

9.3. Message representation and implementation

Our verification results hold in a symbolic (Dolev-Yao) attacker model where messages are repre-
sented as terms and cryptography is assumed to be perfect. Note that to simplify verification we use
terms in combination with other Isabelle/HOL datatypes such as records and lists to model parts of net-
work packets (see Equations (8) and (9)). We consider this as unproblematic, since these structures could
be encoded as message terms in a further refinement, where pattern matching in the receive event would
enforce the correct packet structure. Unlike our models, protocol implementations manipulate bitstring
messages and use cryptographic libraries with non-perfect (computational) security guarantees. Hence,
the symbolic model focuses on the security of the main protocol logic, but may miss attacks exploiting
cryptographic weaknesses or problems related to the parsing of bitstring messages. The fundamental gap
between symbolic models and implementations is a general problem of the symbolic approach. Below
we discuss two possible approaches to address it.

Computational soundness. The strongest way to bridge this gap are computational soundness results
(see [50] for an overview). Such results would allow us to deduce cryptographic security guarantees from
our symbolic verification results. However, these results often require rather strong assumptions, which
may be hard to fulfill in practice. For example, in [51, 52], the authors assume an injective mapping
from terms to bitstrings. There are several reasons why the existence of such a mapping may be unreal-
istic. First, distinguishing different types of messages (e. g., SHA-256 hashes from AES-256 ciphertext)
may require systematic tagging, which is often prohibited by implementation constraints. Second, un-
like in the symbolic model, cryptographic hash functions are non-injective by definition. Moreover, for
some primitives and computational models, computational soundness is unachievable. For example, Un-
ruh [53] presents a general impossibility result for XOR.

Perfect cryptography view on bitstrings. A simpler solution to this problem, which essentially keeps
up the perfect cryptography illusion on the bitstring level, is to define the cryptographic library over
an abstract data type of messages and consider two different implementations where messages respec-
tively are instantiated with terms (which is useful for testing) and bitstrings (for the actual implemen-
tation) [54, 55]. Apart from the cryptographic operations, the parsing of (non-cryptographic) message
formats is a common source of implementation errors. Actual protocol message formats are often based
on a combination of fixed-length fields, variable-length fields, and tags (see, e. g., the SCION-22 header
format [20]). Whether provably sound and secure parsing is achievable for the protocols studied here
deserves further investigation, possibly along the lines of [56, 57].

10. Related work

There exists relatively little work on the verification of packet forwarding in path-aware internet ar-
chitectures. We review those works here as well as other research on verifying secure routing (i. e., path
construction) protocols.

Data plane protocols for path-aware architectures. Over the past two decades, several other path-
aware architectures have been developed [7–10]. Several of these use forwarding tables or other kinds
of state on the routers (instead of cryptographic authenticators) to achieve path authorization [9, 10],
which does not fit into our framework. Others are not specified in sufficient detail to allow for formal
verification [8] or only achieve local properties without considering full path authorization over multiple
hops [7]. Finally, some data plane protocols [58], including OPT [59], focus only on source authentica-
tion and path validation, neither of which we verify.

Verification of secure data plane protocols. Chen et al. [24] define SANDLog, a Prolog-style declara-
tive language for specifying both data and control plane protocols. They also present an invariant proof
rule for SANDLog programs and a verification condition generator, which targets Coq. They the verify
route authenticity of S-BGP and both route authenticity (in the control plane) and data path authentic-
ity (in the data plane) of SCION. Hence, their coverage of SCION is more comprehensive than ours.
However, their data plane property is weaker than our path authorization. It only guarantees that each
traversed hop appears on some authorized path, but does not relate successively traversed hops.

Zhang et al. [25] prove source authentication and path validation properties of the OPT forwarding
protocols [59]. These properties differ from those that we formally prove. They use LS2, a logic for rea-
soning about secure systems, in combination with axioms from Protocol Composition Logic (PCL) [60].
They directly embed their logic’s axioms and prove the protocols’ properties in Coq. As PCL does not
have a formal semantics (cf. [61]), the soundness of their approach is questionable. In contrast, we use a
foundational approach that only relies on the axioms of higher-order logic and on definitions.

Verification of secure routing protocols. Cortier et al. [62] propose a process calculus for modeling
routing protocols, including a model of the network topology and a localized Dolev-Yao adversary. They
propose two constraint-based NP decision procedures for analyzing routing protocols for a bounded
number of sessions. The first one analyzes a protocol for any network topology, i.e., it decides whether
there exists a network topology for which there is an attack on the protocol. The second procedure
analyzes a protocol for a given network topology. They also define a logic to express properties such
as loop-freedom and route validity. They analyze two ad-hoc routing protocols from the literature. This
work is extended to protocols with recursive tests in [63].

Cortier et al. [64] prove a reduction result showing that for proving path validity it is sufficient to
consider just five topologies of four nodes. Path validity is similar to our ASM 1 but omitting interfaces.
They then analyze two ad-hoc routing protocols using ProVerif.

Parametrization in security protocol verification. Parametrization is a common abstraction technique.
It has been used in security protocol verification to achieve the verification of more than one protocol. For
instance, Lallemand et al. [65] use parametrization for an abstract realization of channels with different
security properties, also in the context of refinement. Schaller et al. [46] employ parametrization to verify
physical properties of a number of different wireless protocols.

Exclusive-or in security protocol verification. Automated security protocol verifiers, such as Maude-
NPA [44], AKISS [66], and Tamarin [45] have incorporated support for exclusive-or (XOR). Yet it is
widely recognized that XOR is challenging to support in security protocol verification. Some verification
works abstract from XOR, when the protocol’s security properties do not depend on it [67]. This is the
approach that we follow for the ICING protocol instance, which uses additional authenticators that
achieve properties that are unrelated to path authorization. However, it cannot be applied to SCION-22,
since SCION-22’s use of XOR is central to achieving its security properties.

Schaller et al. [46, 68] formalize XOR for a Dolev–Yao model in Isabelle/HOL. Their formalization
models XOR as a binary operator, and uses normalization to reduce equality in the theory of XOR to
syntactic equality on terms.

Escobar et al. [43] provide a generic approach for a wide range of non-subterm-convergent equational
theories. Given an equational theory that satisfies the finite variant property, they divide it up into a set of
oriented equations that can be used as rewrite rules that are safe to perform (for instance, because they are
subterm convergent) and into a set of “axioms” that are not. Equality of terms is decided by narrowing
using the safe rewrite rules, and comparing the resulting terms modulo axioms. In the case of XOR,
which they introduce as an example instance of their generic approach, (A) and (C) are axioms, and (I)
and (S) are rewrite rules. Their approach requires carefully defining the set of equations in order to make
them coherent with the set of axioms. In the case of XOR, this is achieved by adding x⊕ x⊕y = y to the
set of equations. Their approach can be used not only to model XOR, but also to decide the unification
problem for the equational theories that fulfill the finite variant property.

11. Conclusion

The verification of future Internet architectures, and in particular path authorization, is a challenging
problem since (i) automated protocol verification tools lack the expressiveness to reason about arbi-
trary sets of authorized paths and (ii) the relevant protocols are likely to undergo changes before their
eventual standardization and widespread deployment. General guarantees for evolving protocols require
general specifications and proofs that abstract from the idiosyncrasies of particular protocol instances.
Our parametrized framework IsaNet provides a solution to these challenges. It substantially reduces the
per-protocol specification and verification work compared to restarting verification from scratch for each
protocol. For each instance, one must just define the parameters and prove the static conditions to es-
tablish path authorization and detectability. Our abstractions are general enough to cover a large class of
protocols proposed in the literature.

The present work constitutes an important step towards our ultimate goal of verifying a high-
performance implementation of the SCION-22 router written in Go. We are pursuing this goal using
the Igloo methodology [69] to soundly link protocol and code verification. This methodology guaran-
tees that the implementation will inherit the properties we have proven for our model. To achieve this
goal, we are further refining our SCION-22 model, adding more detail such as packet buffering and seg-
ment switching, and we are extracting a program specification of the router’s behavior from the refined
model. This specification will be used for the verification of the router code.

In future work, security properties such as packet authentication and path validation could be included
in the verification framework. Since not all protocols achieve these properties, an interesting question is
how they could be incorporated in a modular fashion without requiring separate parametrized models

with duplicated proof effort. Furthermore, it would be interesting to investigate the existence of a re-
duction result for path authorization and other data plane security properties in the vein of [64], which
would enable the fully automated verification of secure dataplane protocols.

Acknowledgments

We thank Sofia Giampietro and the anonymous reviewers for their insights, careful reading of the
manuscript and helpful suggestions.

References

[1] S. Kent, C. Lynn and K. Seo, Secure Border Gateway Protocol (S-BGP), IEEE Journal on Selected Areas in Communica-
tions 18(4) (2000).

[2] R. Bush, Origin Validation Operation Based on the Resource Public Key Infrastructure (RPKI), RFC, 7115, 2014. ISSN
2070-1721.

[3] M. Lepinski and K. Sriram, BGPsec Protocol Specification, RFC Editor, 2017. doi: 10.17487/RFC8205. https://rfc-editor.
org/rfc/rfc8205.txt.

[4] D. Cooper, E. Heilman, K. Brogle, L. Reyzin and S. Goldberg, On the risk of misbehaving RPKI authorities, in: Proceed-
ings of the ACM Workshop on Hot Topics in Networks (HotNets), 2013, pp. 1–7. doi: 10.1145/2535771.2535787.

[5] Q. Li, Y.-C. Hu and X. Zhang, Even rockets cannot make pigs fly sustainably: Can BGP be secured with BGPsec?, in:
Proceedings of the NDSS Workshop on Security of Emerging Networking Technologies (SENT), Internet Society, 2014.
doi: 10.3929/ethz-a-010189168.

[6] B. Rothenberger, D.E. Asoni, D. Barrera and A. Perrig, Internet Kill Switches Demystified, in: Proceedings of the Euro-
pean Workshop on Systems Security (EuroSec), 2017.

[7] B. Raghavan and A.C. Snoeren, A system for authenticated policy-compliant routing, ACM SIGCOMM Computer Com-
munication Review 34(4) (2004). doi: 10.1145/1030194.1015487.

[8] B. Bhattacharjee, K. Calvert, J. Griffioen, N. Spring and J.P.G. Sterbenz, Postmodern internetwork architecture, NSF Nets
FIND Initiative (2006).

[9] X. Yang, D. Clark and A.W. Berger, NIRA: A New Inter-Domain Routing Architecture, IEEE/ACM Transactions on
Networking (2007).

[10] P.B. Godfrey, I. Ganichev, S. Shenker and I. Stoica, Pathlet Routing, in: Proceedings of ACM SIGCOMM, 2009.
[11] X. Zhang, H.-C. Hsiao, G. Hasker, H. Chan, A. Perrig and D. Andersen, SCION: Scalability, Control, and Isolation On

Next-Generation Networks, in: Proceedings of the IEEE Symposium on Security and Privacy, 2011.
[12] T. Anderson, K. Birman, R. Broberg, M. Caesar, D. Comer, C. Cotton, M.J. Freedman, A. Haeberlen, Z.G. Ives,

A. Krishnamurthy, W. Lehr, B.T. Loo, D. Mazières, A. Nicolosi, J.M. Smith, I. Stoica, R. van Renesse, M. Walfish,
H. Weatherspoon and C.S. Yoo, The NEBULA Future Internet Architecture, in: The Future Internet, Springer, 2013.
doi: 10.1007/978-3-642-38082-2_2.

[13] A. Perrig, P. Szalachowski, R.M. Reischuk and L. Chuat, SCION: A Secure Internet Architecture, Springer, 2017. ISBN
978-3-319-67079-9. doi: 10.1007/978-3-319-67080-5.

[14] J. Naous, M. Walfish, A. Nicolosi, D. Mazieres, M. Miller and A. Seehra, Verifying and enforcing network paths with
ICING, in: Proceedings of the ACM International Conference on emerging Networking EXperiments and Technologies
(CoNEXT), 2011.

[15] S. Meier, B. Schmidt, C. Cremers and D.A. Basin, The TAMARIN Prover for the Symbolic Analysis of Security Protocols,
in: Computer Aided Verification - 25th International Conference, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013.
Proceedings, N. Sharygina and H. Veith, eds, Lecture Notes in Computer Science, Vol. 8044, Springer, 2013, pp. 696–701.
doi: 10.1007/978-3-642-39799-8_48.

[16] B. Blanchet, An Efficient Cryptographic Protocol Verifier Based on Prolog Rules, in: 14th IEEE Computer Security
Foundations Workshop (CSFW-14 2001), 11-13 June 2001, Cape Breton, Nova Scotia, Canada, IEEE Computer Society,
2001, pp. 82–96. doi: 10.1109/CSFW.2001.930138.

[17] T. Nipkow, L.C. Paulson and M. Wenzel, Isabelle/HOL - A Proof Assistant for Higher-Order Logic, Vol. 2283, Springer,
2002. ISBN 3-540-43376-7. doi: 10.1007/3-540-45949-9.

[18] X. Zhang, H.-C. Hsiao, G. Hasker, H. Chan, A. Perrig and D.G. Andersen, SCION: Scalability, control, and isolation on
next-generation networks, in: 2011 IEEE Symposium on Security and Privacy, IEEE, 2011, pp. 212–227.

http://dx.doi.org/10.17487/RFC8205
https://rfc-editor.org/rfc/rfc8205.txt
https://rfc-editor.org/rfc/rfc8205.txt
http://dx.doi.org/10.1145/2535771.2535787
http://dx.doi.org/10.3929/ethz-a-010189168
http://dx.doi.org/10.1145/1030194.1015487
http://dx.doi.org/10.1007/978-3-642-38082-2_2
http://dx.doi.org/10.1007/978-3-319-67080-5
http://dx.doi.org/10.1007/978-3-642-39799-8_48
http://dx.doi.org/10.1109/CSFW.2001.930138
http://dx.doi.org/10.1007/3-540-45949-9

[19] L. Chuat, M. Legner, D. Basin, D. Hausheer, S. Hitz, P. Müller and A. Perrig, The Complete Guide to SCION, Springer,
2022. ISBN 978-3-031-05287-3. doi: 10.1007/978-3-031-05288-0.

[20] Anapaya Systems, SCION Header Specification, 2022, https://scion.docs.anapaya.net/en/latest/protocols/scion-header.
html.

[21] M. Legner, T. Klenze, M. Wyss, C. Sprenger and A. Perrig, EPIC: Every Packet Is Checked in the Data Plane of a Path-
Aware Internet, in: 29th USENIX Security Symposium (USENIX Security), USENIX Association, 2020, pp. 541–558.
ISBN 978-1-939133-17-5. https://www.usenix.org/conference/usenixsecurity20/presentation/legner.

[22] J. Naous, M. Walfish, A. Nicolosi, D. Mazières, M. Miller and A. Seehra, Verifying and enforcing network paths with
ICING, in: Proceedings of the 2011 Conference on Emerging Networking Experiments and Technologies, Co-NEXT ’11,
Tokyo, Japan, December 6-9, 2011, K. Cho and M. Crovella, eds, ACM, 2011, p. 30. ISBN 978-1-4503-1041-3. doi: 10.
1145/2079296.2079326.

[23] T. Klenze, C. Sprenger and D. Basin, Formal Verification of Secure Forwarding Protocols, in: 2021 IEEE 34rd Computer
Security Foundations Symposium (CSF), IEEE, 2021.

[24] C. Chen, L. Jia, H. Xu, C. Luo, W. Zhou and B.T. Loo, A Program Logic for Verifying Secure Routing Protocols, Logical
Methods in Computer Science Volume 11, Issue 4 (2015). doi: 10.2168/LMCS-11(4:19)2015. https://lmcs.episciences.
org/1620.

[25] F. Zhang, L. Jia, C. Basescu, T.H. Kim, Y. Hu and A. Perrig, Mechanized Network Origin and Path Authenticity Proofs,
in: Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, Scottsdale, AZ, USA,
November 3-7, 2014, G. Ahn, M. Yung and N. Li, eds, ACM, 2014, pp. 346–357. doi: 10.1145/2660267.2660349.

[26] T. Klenze and C. Sprenger, IsaNet: Formalization of a Verification Framework for Secure Data Plane Protocols, Archive
of Formal Proofs (2022), https://isa-afp.org/entries/IsaNet.html, Formal proof development.

[27] E. Katz-Bassett, C. Scott, D.R. Choffnes, Í. Cunha, V. Valancius, N. Feamster, H.V. Madhyastha, T.E. Anderson and
A. Krishnamurthy, LIFEGUARD: practical repair of persistent route failures, in: SIGCOMM 2012, L. Eggert, J. Ott,
V.N. Padmanabhan and G. Varghese, eds, ACM, 2012, pp. 395–406. doi: 10.1145/2342356.2342435.

[28] T.G. Griffin and G. Wilfong, An Analysis of BGP Convergence Properties, in: Proceedings of the Conference on Applica-
tions, Technologies, Architectures, and Protocols for Computer Communication, SIGCOMM ’99, ACM, New York, NY,
USA, 1999, pp. 277–288–. ISBN 1581131356. doi: 10.1145/316188.316231.

[29] H. Ballani, P. Francis and X. Zhang, A study of prefix hijacking and interception in the Internet, ACM SIGCOMM Com-
puter Communication Review 37(4) (2007). doi: 10.1145/1282427.1282411.

[30] R. White, Securing BGP through secure origin BGP (soBGP), Business Communications Review 33(5) (2003), 47–47.
[31] T. Wan, E. Kranakis and P.C. van Oorschot, Pretty Secure BGP, psBGP, in: NDSS, 2005.
[32] J. Karlin, S. Forrest and J. Rexford, Pretty good BGP: Improving BGP by cautiously adopting routes, in: Proceedings of

the IEEE International Conference on Network Protocols, IEEE, 2006.
[33] Y. Gilad, A. Cohen, A. Herzberg, M. Schapira and H. Shulman, Are We There Yet? On RPKI’s Deployment and Security,

in: 24th Annual Network and Distributed System Security Symposium, NDSS 2017, San Diego, California, USA, Febru-
ary 26 - March 1, 2017, The Internet Society, 2017. https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/
are-we-there-yet-rpkis-deployment-and-security/.

[34] NIST, RPKI Monitor, 2020, https://rpki-monitor.antd.nist.gov.
[35] L. Gao, On inferring autonomous system relationships in the Internet, IEEE/ACM Transactions on Networking 9(6)

(2001), 733–745.
[36] L. Gao and J. Rexford, Stable Internet Routing without Global Coordination, IEEE/ACM Trans. Netw. 9(6) (2001), 681––

692. doi: 10.1109/90.974523.
[37] N.A. Lynch and F.W. Vaandrager, Forward and Backward Simulations: I. Untimed Systems, Inf. Comput. 121(2) (1995).

doi: 10.1006/inco.1995.1134.
[38] C. Ballarin, Locales: A Module System for Mathematical Theories, J. Autom. Reason. 52(2) (2014), 123–153. doi: 10.

1007/s10817-013-9284-7.
[39] Y.-C. Hu, A. Perrig and D.B. Johnson, Wormhole attacks in wireless networks, IEEE journal on selected areas in com-

munications 24(2) (2006), 370–380.
[40] M. Abadi and L. Lamport, The Existence of Refinement Mappings, Theor. Comput. Sci. 82(2) (1991). doi: 10.1016/

0304-3975(91)90224-P.
[41] L. Paulson, The inductive approach to verifying cryptographic protocols, J. Computer Security 6 (1998). http://www.cl.

cam.ac.uk/users/lcp/papers/Auth/jcs.pdf.
[42] M. Abadi and V. Cortier, Deciding knowledge in security protocols under equational theories, Theoretical Computer

Science 367(1) (2006), 2–32, Automated Reasoning for Security Protocol Analysis. doi: https://doi.org/10.1016/j.tcs.
2006.08.032. https://www.sciencedirect.com/science/article/pii/S030439750600572X.

[43] S. Escobar, R. Sasse and J. Meseguer, Folding variant narrowing and optimal variant termination, The Journal of Logic
and Algebraic Programming 81(7) (2012), 898–928, Rewriting Logic and its Applications. doi: https://doi.org/10.1016/j.
jlap.2012.01.002. https://www.sciencedirect.com/science/article/pii/S1567832612000033.

http://dx.doi.org/10.1007/978-3-031-05288-0
https://scion.docs.anapaya.net/en/latest/protocols/scion-header.html
https://scion.docs.anapaya.net/en/latest/protocols/scion-header.html
https://www.usenix.org/conference/usenixsecurity20/presentation/legner
http://dx.doi.org/10.1145/2079296.2079326
http://dx.doi.org/10.1145/2079296.2079326
http://dx.doi.org/10.2168/LMCS-11(4:19)2015
https://lmcs.episciences.org/1620
https://lmcs.episciences.org/1620
http://dx.doi.org/10.1145/2660267.2660349
https://isa-afp.org/entries/IsaNet.html
http://dx.doi.org/10.1145/2342356.2342435
http://dx.doi.org/10.1145/316188.316231
http://dx.doi.org/10.1145/1282427.1282411
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/are-we-there-yet-rpkis-deployment-and-security/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/are-we-there-yet-rpkis-deployment-and-security/
https://rpki-monitor.antd.nist.gov
http://dx.doi.org/10.1109/90.974523
http://dx.doi.org/10.1006/inco.1995.1134
http://dx.doi.org/10.1007/s10817-013-9284-7
http://dx.doi.org/10.1007/s10817-013-9284-7
http://dx.doi.org/10.1016/0304-3975(91)90224-P
http://dx.doi.org/10.1016/0304-3975(91)90224-P
http://www.cl.cam.ac.uk/users/lcp/papers/Auth/jcs.pdf
http://www.cl.cam.ac.uk/users/lcp/papers/Auth/jcs.pdf
http://dx.doi.org/https://doi.org/10.1016/j.tcs.2006.08.032
http://dx.doi.org/https://doi.org/10.1016/j.tcs.2006.08.032
https://www.sciencedirect.com/science/article/pii/S030439750600572X
http://dx.doi.org/https://doi.org/10.1016/j.jlap.2012.01.002
http://dx.doi.org/https://doi.org/10.1016/j.jlap.2012.01.002
https://www.sciencedirect.com/science/article/pii/S1567832612000033

[44] S. Escobar, C. Meadows and J. Meseguer, Maude-NPA: Cryptographic Protocol Analysis Modulo Equational Properties,
in: Foundations of Security Analysis and Design V: FOSAD 2007/2008/2009 Tutorial Lectures, A. Aldini, G. Barthe and
R. Gorrieri, eds, Springer Berlin Heidelberg, Berlin, Heidelberg, 2009, pp. 1–50. ISBN 978-3-642-03829-7. doi: 10.1007/
978-3-642-03829-7_1.

[45] J. Dreier, L. Hirschi, S. Radomirovic and R. Sasse, Automated Unbounded Verification of Stateful Cryptographic Proto-
cols with Exclusive OR, in: 2018 IEEE 31st Computer Security Foundations Symposium (CSF), 2018, pp. 359–373. ISSN
2374-8303. doi: 10.1109/CSF.2018.00033.

[46] P. Schaller, B. Schmidt, D. Basin and S. Capkun, Modeling and Verifying Physical Properties of Security Protocols for
Wireless Networks, in: 2009 22nd IEEE Computer Security Foundations Symposium, 2009, pp. 109–123. ISSN 2377-
5459. doi: 10.1109/CSF.2009.6.

[47] T. van Deursen and S. Radomirovic, Attacks on RFID Protocols, IACR Cryptology ePrint Archive 2008 (2008), 310.
[48] J. Dreier, L. Hirschi, S. Radomirovic and R. Sasse, Verification of stateful cryptographic protocols with exclusive OR, J.

Comput. Secur. 28(1) (2020), 1–34. doi: 10.3233/JCS-191358.
[49] C. Cremers, Feasibility of Multi-Protocol Attacks, in: Proceedings of the The First International Conference on Avail-

ability, Reliability and Security, ARES 2006, The International Dependability Conference - Bridging Theory and
Practice, April 20-22 2006, Vienna University of Technology, Austria, IEEE Computer Society, 2006, pp. 287–294.
doi: 10.1109/ARES.2006.63.

[50] V. Cortier, S. Kremer and B. Warinschi, A Survey of Symbolic Methods in Computational Analysis of Cryptographic
Systems, J. Autom. Reasoning 46(3–4) (2011), 225–259. http://dx.doi.org/10.1007/s10817-010-9187-9.

[51] D. Micciancio and B. Warinschi, Soundness of Formal Encryption in the Presence of Active Adversaries, in: Theory
of Cryptography, First Theory of Cryptography Conference, TCC 2004, Cambridge, MA, USA, February 19-21, 2004,
Proceedings, M. Naor, ed., Lecture Notes in Computer Science, Vol. 2951, Springer, 2004, pp. 133–151. ISBN 3-540-
21000-8. doi: 10.1007/978-3-540-24638-1_8.

[52] V. Cortier and B. Warinschi, Computationally Sound, Automated Proofs for Security Protocols, in: Programming
Languages and Systems, 14th European Symposium on Programming,ESOP 2005, Held as Part of the Joint Euro-
pean Conferences on Theory and Practice of Software, ETAPS 2005, Edinburgh, UK, April 4-8, 2005, Proceedings,
S. Sagiv, ed., Lecture Notes in Computer Science, Vol. 3444, Springer, 2005, pp. 157–171. ISBN 3-540-25435-8.
doi: 10.1007/978-3-540-31987-0_12.

[53] D. Unruh, The impossibility of computationally sound XOR, IACR Cryptol. ePrint Arch. (2010), 389. http://eprint.iacr.
org/2010/389.

[54] K. Bhargavan, C. Fournet, A.D. Gordon and S. Tse, Verified interoperable implementations of security protocols, ACM
Trans. Program. Lang. Syst. 31(1) (2008), 5:1–5:61. doi: 10.1145/1452044.1452049.

[55] K. Bhargavan, A. Bichhawat, Q.H. Do, P. Hosseyni, R. Küsters, G. Schmitz and T. Würtele, DY*: A Modular Symbolic
Verification Framework for Executable Cryptographic Protocol Code, in: IEEE European Symposium on Security and
Privacy, EuroS&P 2021, Vienna, Austria, September 6-10, 2021, IEEE, 2021, pp. 523–542. doi: 10.1109/EuroSP51992.
2021.00042.

[56] S. Mödersheim and G. Katsoris, A Sound Abstraction of the Parsing Problem, in: IEEE 27th Computer Security
Foundations Symposium, CSF 2014, Vienna, Austria, 19-22 July, 2014, IEEE Computer Society, 2014, pp. 259–273.
doi: 10.1109/CSF.2014.26.

[57] T. Ramananandro, A. Delignat-Lavaud, C. Fournet, N. Swamy, T. Chajed, N. Kobeissi and J. Protzenko, EverParse:
Verified Secure Zero-Copy Parsers for Authenticated Message Formats, in: 28th USENIX Security Symposium, USENIX
Security 2019, Santa Clara, CA, USA, August 14-16, 2019, N. Heninger and P. Traynor, eds, USENIX Association, 2019,
pp. 1465–1482. https://www.usenix.org/conference/usenixsecurity19/presentation/delignat-lavaud.

[58] K. Bu, A. Laird, Y. Yang, L. Cheng, J. Luo, Y. Li and K. Ren, Unveiling the Mystery of Internet Packet Forwarding: A
Survey of Network Path Validation, ACM Comput. Surv. 53(5) (2020). doi: 10.1145/3409796.

[59] T.H.-J. Kim, C. Basescu, L. Jia, S.B. Lee, Y.-C. Hu and A. Perrig, Lightweight Source Authentication and Path Validation,
in: Proceedings of the 2014 ACM Conference on SIGCOMM, Association for Computing Machinery, 2014, pp. 271–282.
ISBN 9781450328364. doi: 10.1145/2619239.2626323.

[60] A. Datta, A. Derek, J.C. Mitchell and A. Roy, Protocol Composition Logic (PCL), Electr. Notes Theor. Comput. Sci. 172
(2007), 311–358.

[61] C. Cremers, On the Protocol Composition Logic PCL, in: Proceedings of the 2008 ACM Symposium on Information, Com-
puter and Communications Security, Association for Computing Machinery, 2008, pp. 66––76. ISBN 9781595939791.
doi: 10.1145/1368310.1368324.

[62] M. Arnaud, V. Cortier and S. Delaune, Modeling and verifying ad hoc routing protocols, Inf. Comput. 238 (2014), 30–67.
doi: 10.1016/j.ic.2014.07.004.

http://dx.doi.org/10.1007/978-3-642-03829-7_1
http://dx.doi.org/10.1007/978-3-642-03829-7_1
http://dx.doi.org/10.1109/CSF.2018.00033
http://dx.doi.org/10.1109/CSF.2009.6
http://dx.doi.org/10.3233/JCS-191358
http://dx.doi.org/10.1109/ARES.2006.63
http://dx.doi.org/10.1007/s10817-010-9187-9
http://dx.doi.org/10.1007/978-3-540-24638-1_8
http://dx.doi.org/10.1007/978-3-540-31987-0_12
http://eprint.iacr.org/2010/389
http://eprint.iacr.org/2010/389
http://dx.doi.org/10.1145/1452044.1452049
http://dx.doi.org/10.1109/EuroSP51992.2021.00042
http://dx.doi.org/10.1109/EuroSP51992.2021.00042
http://dx.doi.org/10.1109/CSF.2014.26
https://www.usenix.org/conference/usenixsecurity19/presentation/delignat-lavaud
http://dx.doi.org/10.1145/3409796
http://dx.doi.org/10.1145/2619239.2626323
http://dx.doi.org/10.1145/1368310.1368324
http://dx.doi.org/10.1016/j.ic.2014.07.004

[63] M. Arnaud, V. Cortier and S. Delaune, Deciding Security for Protocols with Recursive Tests, in: Automated Deduction
- CADE-23 - 23rd International Conference on Automated Deduction, Wroclaw, Poland, July 31 - August 5, 2011. Pro-
ceedings, N. Bjørner and V. Sofronie-Stokkermans, eds, Lecture Notes in Computer Science, Vol. 6803, Springer, 2011,
pp. 49–63. doi: 10.1007/978-3-642-22438-6_6.

[64] V. Cortier, J. Degrieck and S. Delaune, Analysing Routing Protocols: Four Nodes Topologies Are Sufficient, in: Principles
of Security and Trust - First International Conference, POST 2012, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2012, Tallinn, Estonia, March 24 - April 1, 2012, Proceedings, P. Degano and
J.D. Guttman, eds, Lecture Notes in Computer Science, Vol. 7215, Springer, 2012, pp. 30–50. ISBN 978-3-642-28640-7.
doi: 10.1007/978-3-642-28641-4_3.

[65] J. Lallemand, D. Basin and C. Sprenger, Refining Authenticated Key Agreement with Strong Adversaries, in: 2017 IEEE
European Symposium on Security and Privacy (EuroS&P), 2017, pp. 92–107. doi: 10.1109/EuroSP.2017.22.

[66] D. Baelde, S. Delaune, I. Gazeau and S. Kremer, Symbolic Verification of Privacy-Type Properties for Security Protocols
with XOR, in: 2017 IEEE 30th Computer Security Foundations Symposium (CSF), 2017, pp. 234–248. ISSN 2374-8303.
doi: 10.1109/CSF.2017.22.

[67] A. Debant and S. Delaune, Symbolic Verification of Distance Bounding Protocols, in: Principles of Security and Trust,
F. Nielson and D. Sands, eds, Springer International Publishing, Cham, 2019, pp. 149–174. ISBN 978-3-030-17138-4.

[68] B. Schmidt, P. Schaller and D. Basin, Impossibility results for secret establishment, in: 2010 23rd IEEE Computer Security
Foundations Symposium, IEEE, 2010, pp. 261–273.

[69] C. Sprenger, T. Klenze, M. Eilers, F.A. Wolf, P. Müller, M. Clochard and D.A. Basin, Igloo: soundly linking composi-
tional refinement and separation logic for distributed system verification, Proc. ACM Program. Lang. 4(OOPSLA) (2020),
152:1–152:31. doi: 10.1145/3428220.

[70] B. Rothenberger, D. Roos, M. Legner and A. Perrig, PISKES: Pragmatic Internet-Scale Key-Establishment System, in:
Proceedings of the 15th ACM Asia Conference on Computer and Communications Security, ASIA CCS ’20, Associa-
tion for Computing Machinery, New York, NY, USA, 2020, pp. 73––86. ISBN 9781450367509. doi: 10.1145/3320269.
3384743.

http://dx.doi.org/10.1007/978-3-642-22438-6_6
http://dx.doi.org/10.1007/978-3-642-28641-4_3
http://dx.doi.org/10.1109/EuroSP.2017.22
http://dx.doi.org/10.1109/CSF.2017.22
http://dx.doi.org/10.1145/3428220
http://dx.doi.org/10.1145/3320269.3384743
http://dx.doi.org/10.1145/3320269.3384743

Extension SCION-11 EPIC SCION-22 ICING

Type parametrization ✓ ✓ ✓ ✓

Exclusive-or ✗ ✗ ✓ ✗

Mutable tok fields ✗ ✗ ✓ ✗

Strong attacker model ✗ (✓) ✗ ✗

Undirected setting ✗ ✗ ✗ ✓

Additional auth. fields ✓ ✓ ✓ ✓

FIGURE 8: Extensions used by protocol models. (✓) means that the extension is used by some (but not all)
variants.

Appendix A. Extensions Table

Figure 8 gives an overview of the extensions used by protocol instances.

Appendix B. Undirected vs. directed protocols

While undirected protocols achieve path authorization under weaker assumptions (cf. §8.5), undi-
rected protocol have several disadvantages.

In the data plane, existing undirected protocols require each hop to incorporate the entire path into the
hop validity check. This incurs a processing overhead linear in the path length. In contrast, the directed
protocols that we study only need to check a constant number of fields.

In the control plane, the ways paths are authorized in undirected architectures have two drawbacks.
First, the beacons creating paths in undirected protocols must complete a round-trip: the first leg to
discover the path and the second leg to authorize it. In contrast, directed protocols can achieve both of
these in a single leg, where forwarding along a path is in the opposite direction of path construction.
Second, the control plane must mediate between conflicting path policies by ASes. If there is no path
that satisfies the constraints by all on-path ASes, then no forwarding can occur. In directed protocols it
is simpler to exclude this possibility, for instance by mandating that each AS disseminates at least one
beacon from a given AS to each of its neighbors.

In summary, there is a trade-off between these protocol classes that depends on the control plane and
overall architecture.

Appendix C. Unverified data plane security properties

C.1. Source and packet authentication

These properties allow for the identification of a packet’s origin and in some cases its header and
content by ASes or the destination. The challenge in designing protocols that provide these properties
is that they require keys shared between the source and the authenticating entity. Naïve solutions, such

as using public key cryptography per packet, or distributing symmetric keys between each pair of enti-
ties are prohibitively inefficient. Hence, protocols often use dynamic key derivation techniques such as
DRKey [59, 70]. With shared keys in place, authentication by a router or the destination can be easily
implemented, modeled, and verified as a single-message two-party protocol. In contrast to network-wide
properties like path authorization and detectability, the verification of source and packet authentication
does not require any of the special features listed in the introduction. In particular, the set of authorized
paths is irrelevant for this property, the number of protocol participants is fixed, and a protocol run does
not depend on the length of the path. This makes it feasible to use automated tools such as Tamarin
and ProVerif, in which protocol analysis is simpler than in Isabelle/HOL. For these reasons, we exclude
source and packet authentication from our verification framework.

C.2. Path validation

When path validation holds, then subsequent ASes and the destination have the guarantee that all
previous hops on the path embedded in the packet were indeed traversed. While path validation is pro-
vided by some architectures [58], there are several reasons why it is less critical than the properties
presented above. First, path validation only establishes a lower bound on the set of ASes that have been
traversed and it does not stop on-path attackers from sending copies of packets to ASes that are not part
of the sender’s intended path. Second, if there is at most one on-path attacker, then the much simpler
packet authentication property is sufficient to imply path validation for the destination. Third, path val-
idation protects honest end hosts against malicious on-path ASes that re-route their packets. ASes are
legal entities that have business relationships and contracts in defined jurisdictions and could suffer legal
consequences when misbehavior is detected. In contrast, the properties presented above defend against
malicious sources (in some cases, with colluding ASes). Malicious end hosts are a ubiquitous threat to
Internet security and legal rulings are often not enforceable.

For these reasons, we do not verify path validation in this work.

Appendix D. Formalization Details and Statistics

Table 3 gives an overview of the different parts of our framework and the lines of Isabelle/HOL code
associated with them.

Formalization of framework LoC

Infrastructure (Dolev-Yao, Event System, etc.) 2709

Abstract Model & Network Model 694

Concrete Model (w/o Theorem 3) 855

Theorem 3 for directed setting 652

Theorem 3 for undirected setting 263

Total 5173

Formalization of instances LoC

SCION-11 321

SCION-11 simplified 317

EPIC Level 1 Basic Attacker 395

EPIC Level 1 Strong Attacker 437

EPIC Level 2 Strong Attacker 464

SCION-22 567

ICING 330

ICING simplified 258

ICING further simplified 267

Executability proof for EPIC Level 1 SA 406

Total 3762

TABLE 3: Overview of Isabelle/HOL formalization.

	1 Introduction
	Contributions.

	2 Problem Domain and Overview
	2.1 Motivation for future Internet architectures
	2.2 Data planes of future Internet architectures
	2.3 Security properties that we verify
	2.4 Security properties that we do not verify
	2.5 SCION control and data plane
	2.6 Verified data plane protocols

	3 Preliminaries
	3.1 Event systems, invariants, and refinement
	3.2 Parametrization

	4 Abstract model
	4.1 Environment parameters
	4.2 State
	4.3 Events
	4.4 Properties

	5 Concrete model
	5.1 Cryptographic terms, hop fields, packets and states
	5.2 Protocol parameters and authorized paths
	5.3 Attacker model
	5.4 Events
	5.4.1 Attacker events
	5.4.2 Honest events
	5.4.3 Constant intruder knowledge

	6 Refinement
	6.1 Control plane assumptions
	6.1.1 Correctness assumptions
	6.1.2 Assumptions to rule out artificial attacks

	6.2 Conditions on authentication mechanisms
	6.3 Refinement mappings
	6.4 Refinement proof
	6.4.1 Lemmas
	6.4.2 Attacker refinement proof

	7 Instances
	7.1 SCION-11
	7.2 EPIC
	7.3 SCION-22
	7.3.1 Protocol description
	7.3.2 Formalization

	7.4 ICING

	8 Extensions
	8.1 Type parametrization in parametrized models
	Instances.

	8.2 Exclusive-or abstraction
	Existing modeling approaches.
	Our XOR model.
	Attacker models for XOR.
	Protocol instances.
	Discussion.

	8.3 Mutable packet token fields
	Lifting updates to paths.
	Instances.

	8.4 Strong attacker model
	8.5 Undirected authorization schemes
	Formalization and proofs.

	8.6 Additional authenticated fields

	9 Discussion
	9.1 Formalization details
	Presentation and statistics.
	Consistency of environment assumptions and executability of event system.

	9.2 Differences between models and real protocols
	Generic abstractions.
	Instance-specific abstractions.

	9.3 Message representation and implementation
	Computational soundness.
	Perfect cryptography view on bitstrings.

	10 Related work
	Data plane protocols for path-aware architectures.
	Verification of secure data plane protocols.
	Verification of secure routing protocols.
	Parametrization in security protocol verification.
	Exclusive-or in security protocol verification.

	11 Conclusion
	Acknowledgments
	References
	Appendix A. Extensions Table
	Appendix B. Undirected vs. directed protocols
	Appendix C. Unverified data plane security properties
	C.1 Source and packet authentication
	C.2 Path validation

	Appendix D. Formalization Details and Statistics

