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Abstract. Online monitors for first-order specifications may need to store many
domain values in their state, requiring significant memory. We propose an approach
that compresses the monitor’s state using randomized hash functions. Unlike input
sampling, our approach does not require the knowledge of distributions over traces
to achieve low error probability. We develop algorithms that insert hash functions
into temporal–relational algebra specifications and compute upper bounds on the
resulting error probability. We employ a special hashing scheme that allows us to
merge values across attributes, which further reduces memory usage. We evaluated
our implementation and achieved memory reductions up to 33% when monitoring
traces with large domain values, with error probability less than two in a million.
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1 Introduction

Online monitors must run in diverse environments that possibly offer limited computing
resources. For instance, the monitoring of operating system kernels [37] competes with
the user’s applications, embedded hardware is often underpowered and not easily ex-
tendable (e.g., in unmanned aerial systems [43]), and so forth. However, online monitors
for first-order specification languages may use a significant amount of memory, which
hampers their applicability in such environments. One reason is that they store domain
values from the trace in their internal state. These values can be large in some applications
(consider events that are parametrized by natural language texts or URLs).

To address this problem, we develop a monitoring algorithm that compresses the
domain values using randomized hash functions. Large values such as strings are replaced
by hash values which have more compact in-memory representations. Hashing may incur
a loss of accuracy: because of collisions, the algorithm’s output may be incorrect with
non-zero probability. Our monitor therefore satisfies a probabilistic correctness property.
Thanks to the randomization, collisions are independent of the domain values in the
trace. Crucially, we demonstrate how to compute an a priori upper bound on the error
probability for any given specification from the hash functions’ collision probability.

Simple specification languages permit very efficient monitors, e.g., every past-time
LTL specification can be monitored in constant space [24]. Some applications demand
more complex specifications. We focus on a temporal–relational algebra (TRA, see
Sect. 2), which corresponds to a fragment of metric first-order temporal logic monitorable
using finite relations. First-order languages such as TRA are more concise and, assuming
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an infinite domain of event parameters, more expressive than propositional languages
such as LTL. However, monitoring a fixed TRA specification requires space polynomial
in the size of the trace [6]. Specifically, the space usage depends linearly on the size of
the domain values’ representation. We show that hashing removes this dependency for
a nontrivial fragment of TRA and traces whose rate is bounded by a constant.

Randomization and hashing are well-established in algorithm design. Previous
research has mostly focused on simpler problems, such as approximate set membership [9,
35, 40]. First-order monitors often operate on structured sets, which cannot be easily
encoded using the existing space-optimal data structures. We present compact data
structures that provide the operations needed by monitors for expressive languages, but we
do not aim at optimality. Moreover, hashing has been used succesfully in model checkers
to reduce space [13, 27]. In that domain, the error analysis generally depends on the
number of reachable states, whereas in our case the specification’s structure is significant.

Core ideas. Let us illustrate our approach on the example specification, “every 𝑎(𝑥, 𝑦)
event must be preceded by a corresponding 𝑏(𝑥, 𝑦) event not more than 10 time units
ago.” We assume that simultaneous events are possible. We represent, at every point
in time recorded in the trace, the 𝑎 events at that time by a relation that stores tuples
(𝑥, 𝑦) with the events’ parameters; the 𝑏 events are handled similarly. To evaluate the
specification, our monitor maintains in its memory another relation 𝑅 that is equal to the
union of all 𝑏 relations from the past 10 time units, relative to the trace position that the
monitor is currently processing. The set difference of the current 𝑎 relation and 𝑅 yields
(𝑥, 𝑦) tuples that witness violations of the specification.

We reduce a specific factor of the memory usage: the representation of domain values
in the monitor’s state (for our example, in the 𝑅 relation). This representation usually adds
a factor linear in the binary size of the largest value. The basic idea is to replace the domain
values 𝑥 with their images ℎ(𝑥) under a hash function ℎ, which is sampled randomly from
a suitable collection at the start of monitoring. As an additional optimization, we merge
multiple attributes (tuple elements) into a single hash value whenever the attributes are
used consistently as a group. Merged hashes over disjoint attribute sets can be combined
in an order-independent way. This hashing scheme repurposes a well-known construction
that extends the domain of universal hash functions [49]. To the best of our knowledge,
the construction’s merging property has not been used before to compress relations.

Hashing is possible because many of the TRA’s operators continue to give correct re-
sults up to ℎ. For instance, hashing the domain values in a relation commutes with the union
operation. However, some operations may randomly introduce errors with a small proba-
bility, which manifest themselves as added or missing tuples. Such errors occur whenever
hashes ℎ(𝑥) are compared for equality, e.g., in an intersection. It is important to bound the
error probability; otherwise, the monitor would be of little use. Therefore, we develop an al-
gorithm that computes upper bounds for these probabilities by taking the TRA expression’s
structure and information about the trace into account. Specifically, the algorithm expects
as inputs upper bounds on the cardinalities of the relations consumed and computed by the
monitor. For the above example and a hash size of 63 bits, the error probability is computed
to be at most 3.3 · 10−19 · 𝑛𝑎 · 10𝑛𝑏 per time-point (position) in the trace, where 𝑛𝑎 and 𝑛𝑏
are the maximum number of 𝑎 and 𝑏 events per time unit. This is the only information we
require about the trace; in particular, we do not assume a probabilistic model explaining the
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trace distribution. Our approach and the error analysis are independent of implementation
details, such as the data structure used to implement the 10 time unit sliding window.

Some operators are incompatible with hashing, specifically order comparisons. We
handle them on a best-effort basis: values are not hashed if they are used by the problematic
operators. However, we still demonstrate an overall reduction of memory usage on
relevant traces empirically. For TRA expressions with bounded intervals, no functions, no
aggregations except for counting, and no order comparisons, we show that the linear factor
can indeed be eliminated if the number of events per time unit is bounded by a constant.

Summary. We make the following contributions.

– Our space-efficient monitor (Sect. 3) relies on the key observation that many temporal–
relational operations can be computed on relations containing hashed values, with
low error probability. As an additional space optimization, we provide a hashing
scheme that merges hashes from different attributes within a relation.

– We analyze the error probabilities of TRA expressions with hashing operators
(Sect. 4). Our analysis is compositional and yields upper bounds. One can thus
estimate the error probability for every hash size by observing or estimating these
cardinalities, or alternatively, minimize the error given a space constraint.

– We implement our space-efficient monitor as an extension of MonPoly (Sect. 5). The
extended tool automatically inserts hash operators into user-provided specifications
and it outputs error bounds for individual input traces. We discuss the specifications
most amenable to our optimization and evaluate the memory usage and accuracy of
our tool. In a case study with real data, we could reduce the memory usage by 33% with
an error probability below 2 · 10−6. Our evaluation demonstrates that the technique
is particularly effective for traces with large domain values, such as long strings.

This paper is accompanied by an artifact that consists of the monitor implementation
and the evaluation scripts. The artifact is available at https://bitbucket.org/jshs/
hashmon. This extended report augments the conference version [42]. It provides the full
rewriting algorithm (Appendix A), proofs for all lemmas and theorems (Appendix B),
and the “fake review detection” expression (Appendix C).

2 Temporal–Relational Algebra

Our monitoring algorithm extends MonPoly’s, which has been designed for specifications
expressed in metric first-order temporal logic (MFOTL) with aggregations [5,6]. MonPoly
translates MFOTL to a temporal–relational algebra (TRA), which it then evaluates using
finite relations over an infinite domain. To simplify the presentation, we focus on the
TRA, as our algorithms work directly with its operators, which do not map one-to-one
to MFOTL’s operators. We note that other variants of TRA exist in the literature [38, 46].

We assume a countably infinite set A of attributes and a domain D of constants
totally ordered by ≤. A tuple 𝑢 over a finite set𝑈 ⊂ A of attributes is a mapping from𝑈

toD. We write att(𝑢) for 𝑢’s attributes𝑈, and 𝑢(𝑎) for 𝑢’s value at 𝑎 ∈ att(𝑢). A relation
𝑅 over 𝑈 is a finite set of tuples over 𝑈; overloading notation, we define att(𝑅) = 𝑈.

https://bitbucket.org/jshs/hashmon
https://bitbucket.org/jshs/hashmon
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A schema 𝑆 is a collection of relation names 𝑟 with associated attribute sets att𝑆 (𝑟).
A database 𝐷 over 𝑆 is a mapping from 𝑟 ∈ 𝑆 to relations 𝐷 (𝑟) over att𝑆 (𝑟).

The following grammar defines the expressions 𝑒 of TRA. We write 𝑧 for a list of
elements derived from nonterminal 𝑧. The nonterminals 𝑎 and 𝑎′ range over attributes; 𝑐
is a constant in D; and 𝐼 and 𝐼∞ are finite and infinite intervals over IN, respectively.1

𝑡 F 𝑎 | 𝑐 | 𝑓 (𝑡) ◦F = | ≠ | ≤ | < 𝜔 F COUNT | SUM | MIN | MAX
𝑒 F 𝑅 | 𝑟 | 𝜋(𝑎) 𝑒 | 𝜚(𝑎 ← 𝑎′) 𝑒 | 𝜎(𝑡1 ◦ 𝑡2) 𝑒 | [(𝑎 ↦→ 𝑡) 𝑒
| 𝑒1 𝑒2 | 𝑒1 𝑒2 | 𝑒1 ∪ 𝑒2 | Y𝐼∞ 𝑒 | 𝑒1 S𝑚𝐼∞ 𝑒2 | X𝐼∞ 𝑒 | 𝑒1 U𝑚𝐼 𝑒2 | 𝜔(𝑎′ ↦→ 𝑡; 𝑎) 𝑒

Terms 𝑡 are either attributes, constants, or function applications; we do not further specify
the available function symbols 𝑓 . An expression can be a constant relation 𝑅, a relation
name 𝑟 ∈ 𝑆, or a compound expression. We sometimes write 𝑟 (𝑎) to indicate that
att𝑆 (𝑟) = 𝑎. The projection operator 𝜋(𝑎) preserves only the attributes 𝑎 and removes
all other attributes. The renaming operator 𝜚(𝑎 ← 𝑎′) replaces the attributes in the list
𝑎′ simultaneously by the corresponding attributes in 𝑎. The selection operator 𝜎(𝑡1 ◦ 𝑡2)
filters tuples according to the condition 𝑡1 ◦ 𝑡2. The assignment operator [(𝑎 ↦→ 𝑡)
computes a new attribute 𝑎 from the term 𝑡. The natural join 𝑒1 𝑒2 contains exactly those
tuples that are in 𝑒1 and 𝑒2 when restricted to 𝑒1’s and 𝑒2’s attributes, respectively. The
anti-join 𝑒1 𝑒2 is similar, except that the restrictions to 𝑒2’s attributes must not be in 𝑒2.

The metric previously (Y) and since (S) operators are as in MTL [29]. We write [𝑙, 𝑢]
for the interval {𝑥 ∈ IN | 𝑙 ≤ 𝑥 ≤ 𝑢}. The superscript 𝑚 ∈ { , } indicates whether S’s
left operand is negated or not. We also support the future counterparts next (X) and until
(U) with finite intervals. The derived connective O𝐼∞ 𝑒 abbreviates {()} S

𝐼∞ 𝑒, where
() is the unique tuple with an empty domain. Finally, 𝜔(𝑎′ ↦→ 𝑡; 𝑎) is an aggregation
of type 𝜔 over 𝑡 with grouping attributes 𝑎 and result in 𝑎′. For SUM aggregations, we
assume that D is equipped with an associative and commutative addition operator. We
usually omit the term 𝑡 in COUNT aggregations as it is not used.

Table 1 defines the well-formedness, attributes, and semantics of expressions. The
semantics, which implicitly depends on the trace b, assigns to every well-formed
expression 𝑒 an infinite sequence of relations J𝑒K𝑖 , where 𝑖 ∈ IN. A trace is an infinite
sequence of time-stamped databases over the schema associated with 𝑒. We model
time-stamps as natural numbers and make the standard assumption that the time-stamps
are non-strictly increasing and always eventually increasing. The attributes att(𝑒) of 𝑒
coincide with att(J𝑒K𝑖) for all 𝑖. The following notation is used in Table 1: We write b𝑖 for
the 𝑖th database in the trace, which additionally carries the time-stamp 𝜏𝑖 ∈ IN. We write
𝑢 |𝑈 for the tuple 𝑢 restricted to the attributes 𝑈. Terms 𝑡 are interpreted as mappings
𝑡 (𝑢) from tuples 𝑢 over supersets of att(𝑡), the attributes occuring in 𝑡, to D. By 𝑥 ∈𝑚 𝐴

we mean 𝑥 ∈ 𝐴 if 𝑚 = and 𝑥 ∉ 𝐴 if 𝑚 = . The notation {|. . .|} denotes a multiset. The
aggregation operators COUNT and SUM account for multiplicities of tuples.

Example 1. Suppose that the trace b describes product reviews submitted by customers
to a webshop, with time-stamps expressed in days. The trace is over the schema 𝑆 = {p, r},
where att(p) = {pid, b} and att(r) = {rid, pid, rating}. The relations p contain products

1 The meta-variable 𝐼 will later be used for both types of intervals.
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Table 1. Syntax, well-formedness, attributes, and semantics of TRA expressions

𝑒 𝑒 is well-formed iff att(𝑒) ∀𝑢, 𝑖. 𝑢 ∈ J𝑒K𝑖 iff att(𝑢) = att(𝑒) and

𝑅 no restriction att(𝑅) 𝑢 ∈ 𝑅
𝑟 𝑟 ∈ 𝑆 att𝑆 (𝑟) 𝑢 ∈ b𝑖 (𝑟)
𝜋(𝑎) 𝑒1 𝑎 ⊆ att(𝑒1) 𝑎 ∃𝑢′ ∈ J𝑒1K𝑖 . 𝑢 = 𝑢′ |𝑎
𝜚(𝑎 ← 𝑎′) 𝑒1 𝑎′ = att(𝑒1) 𝑎 ∃𝑢′ ∈ J𝑒1K𝑖 .

∧
𝑘 𝑢(𝑎𝑘 ) = 𝑢′(𝑎′𝑘 )

𝜎(𝑡1 ◦ 𝑡2) 𝑒1 att(𝑡1) ⊆ att(𝑒1),
att(𝑡2) ⊆ att(𝑒1)

att(𝑒1) 𝑢 ∈ J𝑒1K𝑖 and 𝑡1 (𝑢) ◦ 𝑡2 (𝑢)

[(𝑎 ↦→ 𝑡) 𝑒1 att(𝑡) ⊆ att(𝑒1) att(𝑒1) ∪ {𝑎} ∃𝑢′ ∈ J𝑒1K𝑖 . 𝑢 = 𝑢′[𝑎 ↦→ 𝑡 (𝑢′)]
𝑒1 𝑒2 no restriction att(𝑒1) ∪ att(𝑒2) 𝑢 |att(𝑒1) ∈ J𝑒1K𝑖 and 𝑢 |att(𝑒2) ∈ J𝑒2K𝑖
𝑒1 𝑒2 att(𝑒1) ⊇ att(𝑒2) att(𝑒1) 𝑢 ∈ J𝑒1K𝑖 and 𝑢 |att(𝑒2) ∉ J𝑒2K𝑖
𝑒1 ∪ 𝑒2 att(𝑒1) = att(𝑒2) att(𝑒1) 𝑢 ∈ J𝑒1K𝑖 ∪ J𝑒2K𝑖
Y𝐼 𝑒1 no restriction att(𝑒1) 𝑖 > 0 and 𝜏𝑖 − 𝜏𝑖−1 ∈ 𝐼 and 𝑢 ∈ J𝑒1K𝑖−1
𝑒1 S𝑚

𝐼
𝑒2 att(𝑒1) ⊆ att(𝑒2) att(𝑒2) ∃ 𝑗 ≤ 𝑖. 𝜏𝑖 − 𝜏𝑗 ∈ 𝐼 and 𝑢 ∈ J𝑒2K 𝑗 and

∀𝑘. 𝑗 < 𝑘 ≤ 𝑖 ⇒ 𝑢 |att(𝑒1) ∈𝑚 J𝑒1K𝑘
X𝐼 𝑒1 no restriction att(𝑒1) 𝜏𝑖+1 − 𝜏𝑖 ∈ 𝐼 and 𝑢 ∈ J𝑒1K𝑖+1
𝑒1 U𝑚

𝐼
𝑒2 att(𝑒1) ⊆ att(𝑒2) att(𝑒2) ∃ 𝑗 ≥ 𝑖. 𝜏𝑗 − 𝜏𝑖 ∈ 𝐼 and 𝑢 ∈ J𝑒2K 𝑗 and

∀𝑘. 𝑗 > 𝑘 ≥ 𝑖 ⇒ 𝑢 |att(𝑒1) ∈𝑚 J𝑒1K𝑘
𝜔(𝑎′ ↦→ 𝑡; 𝑎) 𝑒1 att(𝑡) ⊆ att(𝑒1),

𝑎 ⊆ att(𝑒1), 𝑎′ ∉ 𝑎
𝑎 ∪ {𝑎′} 𝑀 ≠ {| |} and 𝑢(𝑎′) = 𝜔(𝑀), where

𝑀 = {|𝑡 (𝑢′) | 𝑢′ ∈ J𝑒1K𝑖 , 𝑢 |𝑎 = 𝑢′ |𝑎 |}

with identifier pid and brand b whenever they are first added to the webshop. The relations
r contain the reviews of product pid by a reviewer rid with the given rating. We want to
detect review spam campaigns that target specific brands. The expression 𝑒rb ≡ r (OIN p)
augments each review with the brand, using the OIN operator as the reviewed product must
have been added before the review; we have att(𝑒rb) = {rid, pid, rating, b}. The expres-
sion 𝑒ex ≡ 𝜋(b) 𝜎(𝑛1 ≥ 3𝑛2)

(
(COUNT(𝑛1; b)O[0,6] 𝑒rb) (COUNT(𝑛2; b)O[7,27] 𝑒rb)

)
obtains the set of brands that received at least three times as many reviews in the previous
week than in all of the three weeks before. These brands are possible targets of spam.

The evaluation of individual TRA operators is described elsewhere [6]. We reuse
their implementation from MonPoly and briefly explain the evaluation of 𝑒1 S

𝐼
𝑒2. For

this operator, the algorithm stores a list containing pairs of time-stamps and relations.
This list is continuously updated so that at time-point 𝑖, J𝑒1 S

𝐼
𝑒2K𝑖 is equal to the union

of the relations in the list whose time-stamp difference to the current time-stamp 𝜏𝑖 is in
the interval 𝐼. For every new time-point 𝑗 , the algorithm first intersects all relations in the
list with J𝑒1K 𝑗 and then adds (𝜏𝑗 , J𝑒2K 𝑗 ) to it. Elements that are too old with respect to
𝐼 are removed. We note that there exists a faster algorithm [4], but we believe that it has
little or no advantage in terms of space as it stores more (redundant) information to obtain
a better time complexity. Confirming this intuition empirically is left as future work.

3 Algorithmic Details

Our monitoring algorithm has two phases. In the initialization phase, the monitor
randomly chooses a hash function, and it rewrites the TRA expression to introduce
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explicit hashing operators. The rewriting will be explained in Sect. 3.2. In the main phase,
the rewritten expression is evaluated over the incoming trace. The main phase is mostly
the same as MonPoly’s algorithm and we will only discuss how our modifications affect it.

3.1 Hash Abstractions

We begin by describing the hashing operators that we added to the TRA and how they
are evaluated. We first focus on the simpler case where attributes are hashed individually
before we generalize to merged attributes. Our monitoring algorithm is parametrized by
a familyH of hash functions from D to 2𝑘 , where 𝑘 ∈ IN is the hash size in bits. The
monitor samples a single function ℎ ∈ H uniformly at random in the initialization phase.
We assume a set A# denoting hashed attributes, disjoint from A. The set contains an
attribute named #𝑎 for every 𝑎 ∈ A. Let 𝑢 be a tuple and 𝑋 ⊆ att(𝑢) − A#. We define
ℎ𝑋 (𝑢) as the tuple over (att(𝑢) − 𝑋) ∪ {#𝑣 | 𝑣 ∈ 𝑋} satisfying

ℎ𝑋 (𝑢) (𝑎) = if 𝑎 = #𝑏 for 𝑏 ∈ 𝑋 then ℎ(𝑢(𝑏)) else 𝑢(𝑎).

For a relation 𝑅 and 𝑋 ⊆ att(𝑅) − A#, let ℎ𝑋 (𝑅) be the image of 𝑅 under ℎ𝑋 . We call
ℎ𝑋 (𝑢) and ℎ𝑋 (𝑅) hash abstractions, as many different tuples and relations map to the
same value. We could now add ℎ𝑋 as a new operator to TRA, with the semantics just
described. All other operators would be extended to attributes from the set A ∪A#.

Consider the example 𝑝(𝑎, 𝑏) S[0,9]
(
(O[0,9] 𝑞(𝑎)) (O[0,9] 𝑟 (𝑏))

)
. Intuitively, all

atomic expressions should be hashed, as the temporal operators O and S store their results
for some time. Therefore, we would monitor ℎ{𝑎,𝑏}𝑝(𝑎, 𝑏) S[0,9]

(
(O[0,9] ℎ{𝑎}𝑞(𝑎))

(O[0,9] ℎ{𝑏}𝑟 (𝑏))
)
. Observe that both arguments to the top-level S operator have at-

tributes {#𝑎, #𝑏}. The operator compares the equality of tuples over these attributes, i.e.,
it always compares the values of both #𝑎 and #𝑏 simultaneously. If we hashed these
values again into a single 𝑘-bit hash, we would only need half the number of bits to store
a tuple in S’s state while still being able to correctly test equality with high probability.
However, the following example shows that generalizing this idea is not straightforward.

Example 2. In the expression(
𝑝(𝑎) OIN 𝑞(𝑏, 𝑐)

)
S[0,9]

(
(𝜚(𝑐 ← 𝑎) 𝑝(𝑎)) OIN 𝜚(𝑎 ← 𝑏, 𝑏 ← 𝑐) 𝑞(𝑏, 𝑐)

)
,

it is impossible to hash every atomic expression into a single attribute and to do the same
with the relations going into the S operator. The reason is that the left operand’s values
would have the shape ℎ(𝑎, ℎ(𝑏, 𝑐)) whereas for the right operand it is ℎ(𝑐, ℎ(𝑎, 𝑏)).

We solve this problem by employing special hash functions on tuples. Functions from
this family have the property that the hash of a tuple 𝑢 over𝑈 can be computed even if
for some disjoint subsets 𝑈 ′ ⊆ 𝑈 only the hashes of 𝑢 |𝑈 ′ are available. Specifically, it
is possible to merge hashes of tuples over disjoint attribute sets such that the result is
independent of the merging order. The construction works in two steps: First, a single
hash function as above compresses the values of each attribute to 𝑘 bits. Second, we
combine these “pre-hashes” using a linear form over the finite field GF(2𝑘 ), whose
elements are in a bijection with 𝑘-bit strings. The coefficients of the linear form, one for
every attribute, are chosen uniformly at random in the initialization phase.
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The second (combining) step is a well-known method [34] for extending the domain
of universal hash functions that was proposed by Wegman and Carter [49]. Accordingly,
we assume that the “pre-hash” familyH is 𝜖 ′-almost universal:

Definition 1 ([45]). A finite family H of functions D → 2𝑘 is 𝜖 ′-almost universal iff
|{ℎ ∈ H | ℎ(𝑥) = ℎ(𝑦)}|/|H | ≤ 𝜖 ′ for all distinct 𝑥, 𝑦 ∈ D.

We generalize the combining step to tuples over any subset of attributes. The resulting
hashes for different attribute sets are not related in a meaningful way. This is not an
issue: the monitoring algorithm always compares hashes over the same attributes. To
merge hashes for disjoint attribute sets, we simply add them in GF(2𝑘 ). As a further
modification, pre-hashes are not multiplied with their coefficients until they are about
to be merged for the first time. Thus, the hash values for different nonmerged attributes
remain comparable. This allows us to evaluate a selection operator that compares two
different hashed attributes, for example. We arrive at the following definition for our hash
family derived fromH . Fix a finite set of attributes A𝑒 ⊂ A, which will be instantiated
with the set of all attributes that occur in the monitored expression 𝑒.

Definition 2. The distribution H ∗ is obtained by sampling ℎ ∈ H and 𝑓 ∈ A𝑒 →
GF(2𝑘 ) uniformly and independently at random, then mapping (ℎ, 𝑓 ) to the function

ℎ∗ (𝑢) = if att(𝑢) = {𝑎} for some 𝑎 then ℎ(𝑢(𝑎)) else
∑
𝑎∈att(𝑢) 𝑓 (𝑎) · ℎ(𝑢(𝑎))

defined on tuples 𝑢 over subsets of A𝑒. All arithmetic is over GF(2𝑘 ).

Lemma 1. Suppose thatH is 𝜖 ′-almost universal. Define 𝜖 = 𝜖 ′ + 2−𝑘 . For all tuples
𝑢1 ≠ 𝑢2 over the same attributes in A𝑒, Prℎ∗∈H∗ [ℎ∗ (𝑢1) = ℎ∗ (𝑢2)] ≤ 𝜖 .

As before, we would like to control which attributes are hashed and also how they are
merged. We generalize A# to attributes of the form #𝑋 , where 𝑋 is a finite, nonempty
subset of A. A hash specifier 𝑌 is a set of disjoint and nonempty subsets of A𝑒 ⊂ A.
We then generalize hash abstractions as follows, where 𝑢 is a tuple with

⋃
𝑌 ⊆ att(𝑢):

ℎ∗𝑌 (𝑢) (𝑎) = if 𝑎 = #𝑋 for 𝑋 ∈ 𝑌 then ℎ∗ (𝑢 |𝑋 ) else 𝑢(𝑎).

The bound on the collision probability from Lemma 1 carries over to hash abstractions:
ℎ∗
𝑌
(𝑢1) is equal to ℎ∗

𝑌
(𝑢2) for two distinct tuples 𝑢1 and 𝑢2 with probability at most 𝜖 .

The next lemma is a key property ofH ∗. It allows us to extend the domain of ℎ∗
𝑌

to
tuples that already contain hashed values, as long as they are compatible with 𝑌 . This
restriction is captured by the relation 𝑌1 v 𝑌2 defined by ∀𝑋1 ∈ 𝑌1. ∃𝑋2 ∈ 𝑌2. 𝑋1 ⊆ 𝑋2.

Lemma 2. Let 𝑌1 v 𝑌2 be hash specifiers. Then ℎ∗
𝑌2
(𝑢) can be computed from ℎ∗

𝑌1
(𝑢).

We conclude with a summary of the augmented TRA. We add the hashing operator
ℎ∗
𝑌
𝑒 to the syntax introduced in Sect. 2. It is well-formed iff𝑌 is a hash specifier satisfying

hsp(𝑒) v 𝑌 , where hsp(𝑒) = {𝑋 | #𝑋 ∈ att(𝑒)} is the unique hash specifier induced by
𝑒’s attributes. We have att(ℎ∗

𝑌
𝑒) = (att(𝑒) − A# −

⋃
𝑌 ) ∪ {#𝑋 | 𝑋 ∈ 𝑌 }. There are new

well-formedness requirements for the other operators: Hashed attributes may be renamed
only if they have not been merged. If a hashed attribute occurs in a selection or assigment



8 J. Schneider

operator, it must be nonmerged and both terms must consist of a single hashed attribute
or a constant; the selection must be of type = or ≠. Hashed attributes must not occur in an
aggregation’s term. For binary operators, the operands’ induced hash specifiers must be
equal on the operands’ common attributes. The semantics Jℎ∗

𝑌
𝑒K𝑖 is obtained by applying

the computation from Lemma 2 to each tuple in the input relation J𝑒K𝑖 , which is interpreted
as a hash abstraction over hsp(𝑒). The hash function ℎ∗ used in these computations is
sampled from the distributionH ∗ during the monitor’s initialization phase.

3.2 Expression Rewriting

We now describe how the hash operators are inserted in the initialization phase. Ideally,
this transformation should result in a space-optimal evaluation while keeping the worst-
case error probability below a used-defined threshold (or vice versa). Achieving this
objective is a hard optimization problem. For example, it might not be optimal to hash a
temporal operator’s operand that always evaluates to a small relation. The error incurred
by later operators may be comparatively large and it would be more effective to spend
the error budget elsewhere. It is impossible to compute exact bounds on the relations’
sizes because the satisfiability of relational algebra queries is already undecidable [1].
Therefore, one must relax the optimization, and it is not clear how to do that in a
principled manner. We defer the analysis of this problem to future work and instead rely
on a heuristic to rewrite the expression. The heuristic is based on the following principles:

– The expression’s structure does not change except that hash operators are inserted.
– Every attribute is hashed greedily in the operands of temporal connectives, as these

connectives contribute the most to the monitor’s state. Operands of the other binary
connectives may be hashed so that they have the same hashed attributes. An attribute
cannot be hashed if any operator on the path to the expression’s root performs an
operation other than equality testing with the attribute’s value. The equality test may
be implicit, e.g., as part of a join. The reason is that other operations, such as orderings,
cannot be evaluated on hashed values (which incidentally hampers the expressiveness
of BDD-based monitors [21, 22]). Order-preserving perfect hash functions are not
suited for our purpose because of their superlinear space lower bound [17].

– Any set of hashed attributes is merged greedily whenever it is used homogeneously
by all operators on the path to the root, i.e., all attributes’ values are always com-
pared together. For instance, 𝑎 and 𝑏 cannot be merged in the join’s operands in
𝑝(𝑎, 𝑏) 𝑞(𝑎) because 𝑎’s but not 𝑏’s values are compared.

– In general, the greedy approach assumes that it is better to hash and merge than not.
Other objectives may be more appropriate in specific applications. For example, if
specification violations must always be detected but false alerts are acceptable, a
different heuristic taking the predicted error (Sect. 4.1) into account should be used.

We implemented the heuristic as a bottom-up rewriting procedure (Algorithm 1).
We only show the 𝜋 and S cases due to space constraints; see Appendix A for the full
algorithm. The projection case illustrates how the connectives’ parameters are adjusted,
and S imposes the most interesting constraints on its operands.

The main function rw(apx, Y , 𝑒) transforms the expression 𝑒. Its result is a pair
(𝑒,𝑌 ′), where 𝑒 is the rewritten expression and 𝑌 ′ = hsp(𝑒) is the hash specifier induced



Randomized First-Order Monitoring With Hashing 9

Algorithm 1 Expression rewriting
let addHash((𝑒,𝑌 ), 𝑌 ′) = if 𝑌 ′ = 𝑌 then 𝑒 else ℎ∗

𝑌 ′𝑒

let rec rw(apx, Y , 𝑒) = match 𝑒 with
| 𝜋(𝑎) 𝑒1 ⇒ let (𝑒1, 𝑌1) = rw(apx, Y ∪ {att(𝑒1) − 𝑎}, 𝑒1) in

let 𝑎′ = {if 𝑎 ∈ ⋃𝑌1 then #𝑋 for unique 𝑋 ∈ 𝑌1 s.t. 𝑎 ∈ 𝑋 else 𝑎 | 𝑎 ∈ 𝑎} in
(𝜋(𝑎′) 𝑒1, {𝑋 ∩ 𝑎 | 𝑋 ∈ 𝑌1})

| 𝑒1 S𝑚
𝐼
𝑒2 ⇒ let 𝐾 = att(𝑒1), apx′ = apx ∧ (|𝐼 | < ∞) in

let 𝑌 ′ =
(
{𝑋 − 𝐾 | 𝑋 ∈ Y} ∪ (if apx′ then {𝑋 ∩ 𝐾 | 𝑋 ∈ Y} else ∅)

)
in

(addHash(rw(apx′, 𝑌 ′, 𝑒1), 𝑌 ′) S𝑚𝐼 addHash(rw(apx′, 𝑌 ′, 𝑒2), 𝑌 ′), 𝑌 ′)
| · · ·

by 𝑒. The constraints apx and Y represent the restrictions imposed by the operations on
the path from the root to the current expression 𝑒. The boolean apx indicates whether
𝑒 may introduce errors. There can be hash operators in 𝑒 even if errors are disallowed,
but the hashed attributes must not be tested for equality. The hash specifier Y partitions
the sub-expression’s attributes. Attributes not in

⋃
Y are excluded from hashing, and

the partitioning in Y indicates which attributes may be merged. For the root expression,
we set apx to true, and the specifier Y is the empty set: as the relations computed for the
root are output to the user, there should not be any hashed values in that output.

For projections 𝜋(𝑎) 𝑒1, the sub-expression 𝑒1 is rewritten using the same constraints,
except that the removed attributes att(𝑒1) − 𝑎 can be hashed and merged (but not with
other attributes). The rewriting function computes a new list 𝑎′ of projected attributes to
account for the new names of the hashed attributes. The order of this list does not matter,
hence we define it using set notation. Note that the heuristic is not greedy for projections:
no hash abstraction is inserted if {𝑋 ∩ 𝑎 | 𝑋 ∈ 𝑌1} differs from the constraint Y .

For 𝑒1 S𝑚
𝐼
𝑒2, the key 𝐾 consists of the attributes att(𝑒1) that the connective tests for

equality internally. The operands are rewritten recursively. The apx flag is propagated
unless 𝐼 is unbounded. In this case, it could be possible to force an error at a sufficiently
large time-point if the operands are not exact. The specifier 𝑌 ′ is derived from Y: If errors
are allowed, the sets in Y are split into key and non-key attributes. Otherwise, all key
attributes are removed, as the equality test on hashed keys might introduce errors. Finally,
the rewritten operands are wrapped in hashing operations so that both operands have
compatible hashed attributes (namely 𝑌 ′).

Example 3. The expressions from Ex. 1 are rewritten to 𝑒rb ≡ ℎ∗𝑌2

(
(ℎ∗
𝑌1

r) (OIN ℎ
∗
𝑌1

p)
)

and 𝑒ex ≡ 𝜋(b) 𝜎(𝑛1 ≥ 3𝑛2)
(
(COUNT(𝑛1; b)O[0,6] 𝑒rb) (COUNT(𝑛2; b)O[7,27] 𝑒rb)

)
.

The attribute b representing the brand is never hashed because it is part of the monitor’s
output, which evaluates 𝑒ex. At first only 𝑌1 = {pid} is hashed, as pid is the only
attribute apart from b exposed to a temporal connective in 𝑒rb. After the join in 𝑒rb,
𝑌2 = {pid, rid, rating} can be merged, as all three attributes are discarded by the
aggregations.
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4 Analysis of the Algorithm

In this section, we analyze the error probability of our monitor and comment on its space
complexity. Our analysis relates the error probability to the size of the hash values, which
affects the algorithm’s space complexity. Specifically, we show how to compute an upper
bound on the error probability for a given expression. This results in a symbolic expression
whose variables refer to the collision probability 𝜖 , the maximum number of time-points
per unit of time, and the maximum relation sizes that may occur during the expression’s
evaluation. Based on this information, the user can adjust the hash size to achieve the de-
sired level of accuracy. Additionally, we show that a concrete error bound can be computed
by the monitor for a particular trace. This may provide a more precise error estimate.

4.1 Error Bounds

We first establish a formal framework in which we carry out our analysis. To this end,
we introduce the notion of randomized monitoring, which allows us to quantify the
monitor’s accuracy in terms of its worst-case error probability. A randomized monitor
𝑀 is modeled as a mapping from finite trace prefixes to discrete probability distributions
over finite sequences of relations. We assume that 𝑀 satisfies the following completeness
property. For every (infinite) trace b there exists a look-ahead function ℓb , which maps
any desired length of the monitor’s output to a sufficient length of the monitor’s input.
More precisely, the length of the sequences in the support2 of 𝑀 (𝑥) is at least 𝑛 for every
prefix 𝑥 of b with length |𝑥 | ≥ ℓb (𝑛). In other words, outputs may be delayed, but the
monitor must always eventually compute a verdict. Our monitor inherits its look-ahead
function from MonPoly; it depends only on the upper bounds of the future operator’s
intervals and on the time-stamps in b.

We parametrize the monitoring problem by a nonempty, possibly infinite set 𝑋 of
traces, which represents the application-specific knowledge about the possible inputs
to the monitor. We also fix a TRA expression 𝑒 and perform the following random
experiment: for any trace b ∈ 𝑋 and time-point 𝑖 ∈ IN, the monitor is run on a sufficiently
long prefix of b using fresh randomness. We are interested in the worst-case probability
(over the choice of b and 𝑖) of the 𝑖th output deviating from the correct relation. Let 𝑥 � b

denote that 𝑥 is a finite prefix of b, and let 𝑥𝑖 denote the 𝑖th element in the sequence 𝑥.
We make the semantics’ dependency on the trace explicit: from now on, we write J𝑒Kb

𝑖

instead of J𝑒K𝑖 , where b is the trace.

Definition 3. The error probability of 𝑀 on 𝑋 is

err𝑋 (𝑀) = supb∈𝑋, 𝑖∈IN, 𝑥�b , |𝑥 | ≥ℓb (𝑖) Pr𝑀 [𝑀 (𝑥)𝑖 ≠ J𝑒Kb
𝑖
] .

Similarly, the false-positive probability fp𝑋 (𝑀) and the false-negative probability fn𝑋 (𝑀)
are defined by

fp𝑋 (𝑀) = supb∈𝑋, 𝑖∈IN, 𝑥�b , |𝑥 | ≥ℓb (𝑖) Pr𝑀 [𝑀 (𝑥)𝑖 * J𝑒Kb
𝑖
]

fn𝑋 (𝑀) = supb∈𝑋, 𝑖∈IN, 𝑥�b , |𝑥 | ≥ℓb (𝑖) Pr𝑀 [𝑀 (𝑥)𝑖 + J𝑒Kb
𝑖
] .

2 The support of a discrete probability distribution is the set of values with nonzero probability.
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Lemma 3. max{fp𝑋 (𝑀), fn𝑋 (𝑀)} ≤ err𝑋 (𝑀) ≤ fp𝑋 (𝑀) + fn𝑋 (𝑀).

The error probability is our measure of the monitor’s accuracy. The false-positive
and false-negative probabilities provide more information about the nature of the errors.
In some applications it may be more tolerable to have errors of the one kind than of the
other. No probability distribution is associated with 𝑋; the probabilities are taken solely
with respect to the internal coin flips of the algorithm implementing 𝑀 .

According to Def. 3, the trace b cannot depend on the randomness of 𝑀. Such a
dependency would be incompatible with our hashing approach, as one could construct
an adversarial input that causes an error with certainty at sufficiently large time-points
(by trying different values until a hash collision is found). However, the probability of an
error at some time-point can be 1 even if err𝑋 (𝑀) < 1, as for many specifications it is
unavoidable that a collision occurs somewhere in an infinite trace if the domain is large
enough. Therefore, we consider the probability for each time-point in isolation in Def. 3.

The following design decisions guide our error analysis: (1) It should be compositional
so that the bounds can be computed by recursion over the expression’s structure. (2) The
set of traces is parameterized by the maximum rate and the maximum relation sizes
for each sub-expression, as defined below. We need to bound these quantities because
the worst-case error probability would otherwise be 1 for most expressions. Moreover,
relying on concrete numeric upper bounds makes the analysis more precise. (3) We
analyze the false-positive and false negative probabilities separately; by Lemma 3, this
allows us to approximate the overall error probability within a factor of 2.

The first step is to adapt the notions of false-positive and false-negative probabilities
to rewritten expressions 𝑒. To this end, we recover the original, exact expression 𝑒 from 𝑒

by removing all hash operators. We perform the analysis on 𝑒 instead of 𝑒 to decouple it
from the heuristic used by Algorithm 1.

Definition 4. Let 𝑋 be a set of traces. Suppose that 𝑒 is the unique expression obtained
by removing all hash operators from 𝑒 and flattening attributes of the form #𝑋 into an
enumeration of 𝑋 (see Appendix B for details). Writing ℎ∗

𝑌
(𝑅) for the image of 𝑅 under

ℎ∗
𝑌

, the false-positive and false-negative probabilities of 𝑒 are

fp(𝑒) = sup
b ∈𝑋,𝑖∈IN

Pr[J𝑒Kb
𝑖
* ℎ∗hsp(�̃�) (J𝑒K

b

𝑖
)], fn(𝑒) = sup

b ∈𝑋,𝑖∈IN
Pr[ℎ∗hsp(�̃�) (J𝑒K

b

𝑖
) * J𝑒Kb

𝑖
] .

The applications of ℎ∗hsp(�̃�) ensure that the relations are over the same attributes. It
may be surprising that a hash collision in J𝑒Kb

𝑖
(i.e., two tuples 𝑢, 𝑣 ∈ J𝑒Kb

𝑖
such that

ℎ∗
𝑌
(𝑢) = ℎ∗

𝑌
(𝑣)) does not count as an error. Definition 4 is nonetheless useful as hsp(𝑒)

is forced to be ∅ at the monitored expression’s root. Our main result follows.

Theorem 1. Suppose thatH is an 𝜖 ′-almost universal hash family with 𝑘 bits. Then the
bounds in Table 2 follow, where 𝜖 = 𝜖 ′ + 2−𝑘 , |𝑒 | = supb ∈𝑋,𝑖∈IN |J𝑒K

b

𝑖
| is the maximum

size of the relations computed for 𝑒, and maxRate = supb ∈𝑋,𝑥∈IN |{𝑖 | 𝜏𝑖 = 𝑥}| is the
traces’ maximum rate per time unit. If upper bounds on maxRate and on |𝑒 | for every
sub-expression 𝑒 of 𝑒0 are given, one can compute constants 𝑐 and 𝑐′ in polynomial time
such that fp𝑋 (�̃�) ≤ 𝜖 · 𝑐 and fn𝑋 (�̃�) ≤ 𝜖 · 𝑐′, where �̃� is our monitor for 𝑒0 andH .
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Table 2. Upper bounds on false-positive and false-negative error probabilities, per time-point

𝑒 fp(𝑒) ≤ . . . fn(𝑒) ≤ . . .

𝑅, 𝑟 0 0
ℎ∗
𝑌
𝑒1, 𝜋(_) 𝑒1, 𝜚(_) 𝑒1, [(_) 𝑒1,

𝜎(𝑡1 ◦ 𝑡2) 𝑒1, Y𝐼 𝑒1, X𝐼 𝑒1

fp(𝑒1) fn(𝑒1) (1)

𝜎(#{𝑎} = 𝑡) 𝑒1 fp(𝑒1) + 𝜖 |𝑒1 | fn(𝑒1)
𝜎(#{𝑎} ≠ 𝑡) 𝑒1 fp(𝑒1) fn(𝑒1) + 𝜖 |𝑒1 |
𝑒1 𝑒2 fp(𝑒1) + fp(𝑒2) + 𝜖 |𝑒1 | |𝑒2 | fn(𝑒1) + fn(𝑒2) (2)
𝑒1 𝑒2 fp(𝑒1) + fn(𝑒2) fn(𝑒1) + fp(𝑒2) + 𝜖 |𝑒1 | |𝑒2 | (2)
𝑒1 ∪ 𝑒2 fp(𝑒1) + fp(𝑒2) fn(𝑒1) + fn(𝑒2)
𝑒1 S

𝐼
𝑒2, 𝑒1 U

𝐼
𝑒2 𝑎𝐼 · fp(𝑒1) + 𝑏𝐼 · fp(𝑒2) +

𝜖 · 𝑏𝐼 |𝑒1 | |𝑒2 |
𝑎𝐼 · fn(𝑒1) + 𝑏𝐼 · fn(𝑒2) (2)

𝑒1 S
𝐼
𝑒2, 𝑒1 U

𝐼
𝑒2 𝑎𝐼 · fn(𝑒1) + 𝑏𝐼 · fp(𝑒2) 𝑎𝐼 · fp(𝑒1) + 𝑏𝐼 · fn(𝑒2) +

𝜖 · 𝑐𝐼 |𝑒1 | |𝑒2 |
(2)

𝜔(𝑎′ ↦→ 𝑡; 𝑎) 𝑒1 fp(𝑒1) + fn(𝑒1) +
𝜖 ( |𝑒1 |2 − |𝑒1 |)/2

fp(𝑒1) + fn(𝑒1) +
𝜖 ( |𝑒1 |2 − |𝑒1 |)/2

(3)

𝑎𝐼 = (maxRate · 𝑢) − 1 and 𝑏𝐼 = maxRate · (𝑢 − 𝑙) and 𝑐𝐼 = 𝑏𝐼 ·
(
maxRate · 𝑙 + (𝑏𝐼 + 1)/2

)
for

any half-open interval 𝐼 = {𝑥 ∈ IN | 𝑙 ≤ 𝑥 < 𝑢}. Set 𝑎𝐼 = 𝑏𝐼 = 𝑐𝐼 = ∞ if 𝐼 is unbounded.
Side conditions and remarks: (1) no hashed attribute in 𝑡1 nor in 𝑡2; (2) replace 𝜖 by 0 if there
is no hashed attribute in att(𝑒1) ∩ att(𝑒2); (3) replace 𝜖 by 0 if: 𝜔 ∈ {MIN,MAX} and no hashed
attribute in 𝑎, or 𝜔 ∈ {COUNT,SUM} and no hashed attribute in 𝑒1.

The factors 𝑎𝐼 , 𝑏𝐼 , and 𝑐𝐼 in Table 2 are estimates of the number of time-points or
pair of time-points that may be the source of errors of a particular kind. The derivation
of the factors is explained in Appendix B. The asymmetry between fp(𝑒1 S

𝐼
𝑒2) and

fn(𝑒1 S
𝐼
𝑒2) and similarly for U is noteworthy. It is possible to construct examples that

show that the false-negative probability of the operators may exceed the tighter bound
that uses 𝑏𝐼 instead of 𝑐𝐼 .

Table 2 can be used to calculate error bounds given 𝜖 , or to calculate the largest 𝜖
such that the error is below a given threshold. The collision probability 𝜖 is a proxy for
the hash values’ size, and thereby a factor of the randomized monitor’s space complexity.
Although the bounds in Table 2 are not tight, our empirical evaluation (Sect. 5) shows
that they are useful. Moreover, as the size of the hash values is logarithmically related
to 𝜖 , achieving a tight bound is not critical in practice.

Example 4. For 𝑒ex from Ex. 1, we compute using Table 2 that fp(𝑒ex), fn(𝑒ex) ≤
𝜖 ·
(
28·maxRate· |r | · |OIN p|+(|O[0,6] 𝑒rb |2+|O[7,27] 𝑒rb |2−|O[0,6] 𝑒rb |−|O[7,27] 𝑒rb |)/2

)
.

Our implementation (Sect. 5) achieves a collision probability of 𝜖 ≈ 2−61 with 63-bit
hashes. Now assume that there are 106 products in total (|OIN p| = 106), and at most 105

reviews are received per day (maxRate · |r | ≤ 105, |O[0,6] 𝑒rb | ≤ 7 · 105, etc.). This yields
an upper bound of around 2.3 · 10−6 for each error type, or 4.6 · 10−6 for the probability of
any error occuring, per time-point. Conversely, we can compute that 𝜖 ≤ 9.6 ·10−17, which
roughly corresponds to 55 hash bits, is sufficient to achieve an error rate below 0.1%.

The size bounds |𝑒 | referred to by Theorem 1 are for the original, non-rewritten
sub-expressions. Nonetheless, extensive domain knowledge might be necessary to obtain
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such bounds prior to monitoring, e.g., to choose the hash size appropriately. There is an
alternative use of Table 2: The monitor may compute estimates of fp(𝑒0) and fn(𝑒0) for
the specific trace it monitors. These can be more precise than the a priori estimates using
Theorem 1. Our implementation computes trace-specific error bounds and presents them
to the user. This can aid the user in judging the reliability of these verdicts. However, one
challenge is that the observed relation sizes may be smaller than the bounds |𝑒 |, namely
if there are false negatives, or hash collisions such that |ℎ∗

𝑌
(J𝑒Kb

𝑖
) | < |J𝑒Kb

𝑖
|. Calculating

with observed sizes could result in estimates that are too small. (Larger observed sizes
do not affect correctness because all our error bounds are monotonic.) We circumvent
this by falling back to conservative upper bounds (e.g., the sum of the operands’ sizes for
a union) for those sub-expressions with hashed attributes and/or possible false negatives.

4.2 Space Complexity

We focus on data complexity [47] and characterize a subset of expressions on which our ap-
proach works best, in that the monitor state contains only hashed values. An expression 𝑒 is
called simple if it is closed (i.e., att(𝑒) = ∅), all intervals are finite, no functions appear in
terms, all selections have the form𝜎(𝑡1 = 𝑡2) or𝜎(𝑡1 ≠ 𝑡2), and all aggregations have type
COUNT. Then the temporal connectives in the rewritten expression involve only hashed
(not necessarily merged) attributes, which eliminates the influence of the domain value’s
encoding as follows. Let 𝑋𝑚,𝑛 be the class of traces for which maxRate ≤ 𝑚, |𝑟 | ≤ 𝑚 for ev-
ery relation name 𝑟 ∈ 𝑆, and all domain values are represented by at most 𝑛 bits. It is known
that 𝑒 can be monitored over prefixes of 𝑋𝑚,𝑛 using polynomially many (in𝑚) relations [6].
These relations have polynomially bounded cardinality as every interval in 𝑒 is finite. A typ-
ical monitor for 𝑒would store all domain values that occur in the relations, and therefore the
space complexity is multiplied by 𝑛. In contrast, our monitor works exclusively with rela-
tions over 𝑘-bit hashes. The polynomial bound on the number and cardinality of these rela-
tions persists, but it suffices to choose 𝑘 on the order of log(poly(𝑚)) − log 𝑥 = 𝑂 (log𝑚−
log 𝑥) to achieve an error probability below 𝑥. This follows from Theorem 1 and the fact that
every sub-expression of 𝑒 has polynomially bounded size. Therefore, 𝑘 is independent of 𝑛.

Theorem 2. Simple expressions can be monitored over traces in 𝑋𝑚,𝑛 in𝑂 (poly(𝑚) +𝑛)
space (with a fixed error bound).

5 Implementation and Evaluation

We implemented our randomized monitor as an extension of the MonPoly tool [6], written
in OCaml. The extension is transparent to the user: hashing can be enabled by setting
a single command-line option. We performed experiments, using both Amazon review
data [36] and randomly generated data, to answer the following questions: (Q1) Are there
non-trivial specifications and data for which monitoring benefits from our approach?
(Q2) How much does it reduce the monitor’s peak memory usage in practice? (Q3) How
do our theoretical error bounds compare to the empirically observed error probability?

We added a module to MonPoly that implements the rewriting algorithm described
in Sect. 3.2. Merging of attributes can be disabled to study its impact. For H we use
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the CLHASH family [32] truncated to 𝑘 = 63 bits, the size of native integers in OCaml.
Truncated CLHASH is 𝜖 ′-almost universal with 𝜖 ′ = 2.004/263 for strings up to 264

bytes [32, Lemmas 1 and 9], requiring only around 1 KiB to represent an element ofH .
We modified MonPoly’s relation data type to keep track of the error and size bounds as
described in Sect. 4. OCaml programs rely on a garbage collector (GC), which makes it
difficult to measure peak memory usage in a meaningful way. However, we found OCaml’s
GC to be conservative. Measured differences above a few MB were generally robust.

Our experiments were performed on two groups of expressions and data. The first
group focused on a realistic use case, specifically the detection of fraudulent customer
reviews. We used review data from Amazon spanning a period of over 20 years [36].
We restricted our attention to the “gift cards” category, which had the smallest number
of products (1548) and a moderate number of reviews (147 194). We monitored Ex. 1
(adjusted to ignore additional attributes) and a formalization 𝑒frd of the first stage of
Heydari et al.’s fake review detection system [25], shown in Appendix C. The latter
detects weeks and product brands with suspicious review counts. (The second stage would
require some natural language processing, which is outside of our scope.) We modified
the fake detection example to use a one-year sliding window for the review average per
brand, whereas the original uses a global average, which would require offline monitoring.

The second group was based on the expressions 𝑒1 ≡ 𝜋() (𝑝(𝑎) O[0,9] 𝑞(𝑎)), 𝑒2 ≡
𝜋() (𝑝(𝑎) S[0,9] 𝑞(𝑎)), 𝑒3 ≡ 𝜋() ((𝑝(𝑎)U[0,9] 𝑞(𝑎, 𝑏)) 𝑞(𝑎, 𝑏)), and the one from Ex. 2
with all attributes projected away as 𝑒4. In 𝑒3, the hash abstraction of 𝑞 is computed twice:
once for each of 𝑞’s occurrences. The expression 𝑒′3 is a modification of 𝑒3 in which the
hash abstraction is shared by both occurrences. We generated pseudorandom trace prefixes
with consecutive, non-repeating time-stamps over 100 time units with 20 000 tuples each,
which were assigned randomly and uniformly to the relation names in the expression. For
𝑒4, we generated only 50 tuples per time-point because the formula computes a Cartesian
product, resulting in a large blow-up. The domain values were random alphanumeric
strings with exactly 100 characters. The second group’s purpose was to determine the
impact of the expressions’ structure on the memory usage. It is clear that hashing is less
effective for smaller values, so we did not perform further experiments with such values.

We performed additional experiments with data suitable for the DejaVu tool [21, 22].
DejaVu is a monitor for first-order past LTL with time constraints, implemented using
binary decision diagrams (BDDs) instead of finite relations. DejaVu is the only other tool
handling a large subset of TRA that we are aware of. Of our expressions, only 𝑒1, 𝑒2, and 𝑒4
are supported by DejaVu because it lacks aggregation and future operators. It also cannot
process simultaneous events. Therefore, we generated a separate set of traces (the “thin”
set) with 2 000 time-points per time-stamp (50 for 𝑒4), each consisting of a single tuple.

Memory usage and runtime. We measured the peak memory usage and runtime using
MonPoly’s original algorithm (B), a special mode (ID) where the hash function is replaced
by identity, and nonmerged (H) and merged (Hm) hashing. The purpose of ID was to
determine whether our expression rewriting, the added operators, and the error tracking
code had any effect on their own. Measurements were obtained on a laptop with an Intel
i5-7200U CPU (2.5 GHz, Turbo Boost disabled) and 8 GB RAM (no swap) under Linux
5.15.13. MonPoly was compiled with OCaml 4.12.0 and default GC settings. We used
the UNIX time command to measure elapsed real time (“runtime”) and the maximum
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Table 3. Performance evaluation (B = baseline, Hm = merged hashes; percentages relative to B)

Memory (MiB) Runtime (s) Max. error bound
B ID H Hm B Hm fp fn

𝑒ex 13.7 13.7 (−0%) 12.9 (−6%) 12.0 (−12%) 20.5 17.2 (−16%) 1 · 10−5 1 · 10−5

𝑒frd 35.4 39.6 (+12%) 28.8 (−19%) 23.9 (−33%) 22.7 22.2 (−2%) 2 · 10−10 2 · 10−10

𝑒1 81.0 74.7 (−8%) 63.1 (−22%) 63.3 (−22%) 12.5 14.3 (+14%) 3 · 10−10 0
𝑒2 56.0 56.0 (+0%) 44.5 (−21%) 44.6 (−20%) 28.9 26.1 (−9%) 0 1 · 10−9

𝑒3 80.9 104.2 (+29%) 81.0 (+0%) 81.1 (+0%) 9.3 15.9 (+70%) 1 · 10−9 3 · 10−10

𝑒′3 80.8 81.0 (+0%) 56.1 (−31%) 56.4 (−30%) 9.3 12.7 (+31%) 1 · 10−9 3 · 10−10

𝑒4 30.3 47.3 (+56%) 50.0 (+65%) 37.7 (+24%) 12.0 14.3 (+19%) 2 · 10−9 0

resident set size (“memory”). We computed the arithmetic mean over 3 repetitions. We
compared against DejaVu revision 1e1f4eb0, running under OpenJDK 11.0.13 with an
initial heap size of 8 MB. The BDD size was set to 15 bits based on the expected number
of distinct domain values within the expressions’ intervals.

Table 3 shows the results. The percentages are relative to the baseline B. Hashing
reduced the amount of memory needed for all formulas except 𝑒3 and 𝑒4, and merging re-
duced it further for the Amazon examples. The effect was small for 𝑒ex because there the rel-
evant domain values were fairly short (at most 14 bytes each). The memory for 𝑒3 increased
under ID because the added hashing operators prevent the sharing of nodes in the im-
mutable AVL trees that MonPoly uses to represent relations. Under B, the two occurences
of 𝑞 share these trees. They are hashed twice in 𝑒3, resulting in independent copies, but not
in 𝑒′3, where memory improved. This sensitivity to the expression structure demonstrates
the complexity of the optimization problem from Sect. 3.2. We conjecture that the gener-
ally bad behavior of 𝑒4 is also due to the loss of sharing, specifically in the O operators.

We could not draw definite conclusions about the impact on runtime. Computing
hashes and transforming the relations obviously incurs some overhead, whereas comparing
hash values in the search tree implementation might be faster than comparing long strings.
The last two columns of Table 3 show the largest error bound output by the monitor
(maximum across time-points and repetitions). For our test data, we find that the accuracy
loss is very small and errors are highly unlikely. For example, the error bounds for the
𝑒frd experiment correspond to a probability of less than 2 · 10−6 for an error occurring
anywhere in the trace prefix, which consisted of 2 889 time-points.

DejaVu generally used much more memory than MonPoly on the “thin” traces:
984 MiB for 𝑒1 (MonPoly Hm: 26.2 MiB) and 972 MiB for 𝑒2 (Hm: 12.1 MiB). Memory
usage exceeded 2 GiB for 𝑒4, hence we decided to exclude this expression from the
experiments. Further research is necessary to determine whether the large memory
footprint is due to the implementation or a fundamental consequence of using BDDs. We
note that the runtimes of DejaVu and MonPoly are highly incomparable, the latter being
more than 6 times faster on 𝑒1 but 81 times slower on 𝑒2. Hashing is ineffective on the
“thin” traces, resulting in an increase by 1% over B for 𝑒1 and a decrease by 8% for 𝑒2,
which are likely just noise. However, these traces are one order of magnitude smaller than
those used for Table 3, so factors that are independent of the domain values dominate.
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Fig. 1. Error probabilities and bounds for truncated hashes (𝑥 = number of bits)

Error probabilities and bounds. We artificially truncated hash values to simulate the
impact of their size. The left plot in Fig. 1 shows the error probability observed over 100
repetitions with different hash function seeds. We computed the midpoint of a Wilson
score interval [50] at 95% confidence for every time-point, and took the maximum over all
time-points. The right plot in Fig. 1 shows the corresponding error bounds output by the
monitor (fp and fn added together, mean across all repetitions, then the maximum over time-
points). The error bounds are almost tight for 𝑒1: as true positives are extremely unlikely
for our pseudorandom traces, every collision in 𝑒1’s join is observed as a false positive. For
𝑒ex, the bounds overestimate the observed error by a large margin. This partially due to the
projection operator, which hides deviations in the count aggregations as long as they do not
affect the selection, and the fact that our worst-case analysis for aggregations holds for one
large group, whereas the Amazon data has many groups. For 𝑒2 and 𝑒4, we never observed
any error because uniformly random traces are not the worst case for these expressions.
For example, we can trigger errors for 𝑒2 by generating much fewer 𝑞 than 𝑝 tuples.

6 Related Work

Approaches for monitoring parametrized events can be classified into several cate-
gories [23]. We focus on the bottom-up evaluation of specifications using finite rela-
tions [10, 20], which has been implemented in the MonPoly tool [6] for a fragment of
metric first-order temporal logic (MFOTL) formulas. Our temporal–relational algebra
(TRA) described in Sect. 2 is a direct encoding of that fragment. The principle of hashing
event parameters could be applied to some of the other monitoring approaches as well,
e.g., parametric trace slicing [41] and automatic structures [22]. Our error probability
analysis is specific to TRA.

Some specifications can be monitored in constant space even on streams with
parametrized events and unbounded rate [12, 16, 33]. Hashing allows us to reduce the
memory needed for a class of specifications that falls outside of the constant-space
fragment. Alternatively, monitoring performance can be improved by sampling from the
input trace and interpolating over the gaps [3, 28]; a hidden Markov model represents the
prior knowledge about the monitored system and it plays an important role for achieving
high accuracy. Unlike our approach, sampling usually reduces the time overhead of
monitoring. Grigore and Kiefer [18] studied optimal event sampling strategies for systems
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modeled as Markov chains. In contrast to these works that rely on sampling, we do not
require any prior knowledge about the monitored system. Only for bounding the error
probability we assume that certain trace statistics are available.

Statistical model checking [31,44] is concerned with the verification of stochastic
systems. The checked properties are quantitative: they express constraints on probabilities.
Statistical model checking uses randomized simulations and thus yields approximate
results. It is different from the randomized monitoring we consider, as our monitor checks
individual traces, not system models, for safety properties with nonprobabilistic semantics.

There exists an extensive body of research on randomized algorithms and lower
bounds related to data storage and retrieval. The standard example is the Bloom filter [8],
which approximately answers set membership queries for static sets. There are variants
supporting deletion [15] and dynamic resizing [2]. Set membership queries on dynamic
sets can be reduced to the monitoring problem for sufficiently expressive specifications,
but the latter is clearly more general. Intersections [19] and Cartesian products [48] of
Bloom filters do not scale well to complex queries over relations with varying attributes,
which frequently occur in first-order monitoring.

Bloom filters have been used successfully to save space in model checking algorithms,
e.g., in the bitstate method [13, 27], where the filters are used to track visited states. The
only operation performed on the filter is a membership test, whereas first-order monitors
apply complex transformations to their state. Therefore, we cannot hash the relations in
the state as a whole, and the error analysis becomes more intricate. A different line of work
in the model checking domain uses lossless compression schemes for states [7, 26, 30].
To our knowledge, such schemes have not yet been applied to monitoring, with the
exception of BDDs [22]. Some of the ideas could prove fruitful, e.g., the work by Laarman
et al. [30], which enforces sharing in a systematic way.

Another family of probabilistic data structures [14, 39] represents the elements of a
finite set using compact hash values. The work by Naor and Yogev [35] on membership
queries over sliding windows is perhaps the closest to monitoring. Unlike them, we do not
aim at achieving close-to-optimal memory usage, but rather we consider more richly struc-
tured sets (relations). Probabilistic data structures have been analyzed in adversarial envi-
ronments [11], which can be relevant in the context of monitoring security policies. We do
not consider an adversary model in this paper. Instead, we assume that there is no feedback
from the monitor’s output to a possible adversary who could influence the trace adaptively.

7 Conclusion

We presented a randomized monitoring algorithm that compresses domain values using
hash functions. We analysed its error probability and showed that useful upper bounds can
be obtained in practice. Based on the evaluation results, we believe that hashing is a useful
optimization in space-constrained applications where a small error probability can be toler-
ated. There are three main limitations: First, the focus on domain values means that the ap-
proach is ineffective for traces with small domain values. Second, the current implementa-
tion within MonPoly is not optimized for memory usage, and its immutable data structures
sometimes exhibit unpredictable behavior. We plan to reimplement and optimize the mon-
itor using imperative data structures. Third, the structure of the specification may prevent
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hashing of some or all attributes, e.g., if functions are computed over the attributes. Open
questions include: Can expressions be rewritten to allow more hashing, and how could this
optimization problem be solved? What are space lower bounds for the operations relevant
to first-order monitoring, going beyond basic set membership and sliding windows?
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Appendix

A Rewriting Algorithm

Below we give a complete listing of Algorithm 1, which inserts hash operators into a
TRA expression 𝑒. The entry point is the recursive function rw(apx, Y , 𝑒). The boolean
flag apx indicates whether the rewritten expression may introduce errors, and Y is a
hash specifier that indicates which attributes may be hashed and merged. Recall that a
hash specifier for 𝑒 is a disjoint partition of a subset of 𝑒’s attributes. This subset may
be empty, in which case no attribute is hashed. The specifier is represented as a set of
disjoint sets of attributes.

To clarify the rewriting of renaming operators 𝜚(𝑎 ← 𝑎′), we replace the mapping
𝑎 ← 𝑎′ by an injective function 𝑓 satisfying 𝑓 (𝑎) = 𝑎′. We write 𝑓 (𝑋) for the image of
the set 𝑋 under 𝑓 , and 𝑓 −1 (𝑋) for the preimage.

let addHash((𝑒,𝑌 ), 𝑌 ′) = if 𝑌 ′ = 𝑌 then 𝑒 else ℎ∗
𝑌 ′𝑒

(adds a hash operator with specifier 𝑌 ′ to 𝑒, which has already been hashed according to 𝑌 )

let hashAtt(𝑌, 𝑎) = if 𝑎 ∈ ⋃𝑌 then #𝑋 for the unique 𝑋 ∈ 𝑌 such that 𝑎 ∈ 𝑋 else 𝑎
(returns the attribute that subsumes 𝑎 after applying ℎ∗

𝑌
)

let sift(𝐾, apx, 𝑌 ) = if apx then {𝑋 − 𝐾 | 𝑋 ∈ 𝑌 } ∪ {𝑋 ∩ 𝐾 | 𝑋 ∈ 𝑌 }
else {𝑋 − 𝐾 | 𝑋 ∈ 𝑌 }

(modifies the hash specifier 𝑌 so that it is compatible with a join-like operation with key 𝐾)

let combine(𝑌1, 𝑌2) = {𝑋1 ∈ 𝑌1 | �𝑋2 ∈ 𝑌2. 𝑋1 ( 𝑋2} ∪ {𝑋2 ∈ 𝑌2 | �𝑋1 ∈ 𝑌1. 𝑋2 ( 𝑋1}
(combines two hash specifiers)
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let rec rw(apx, Y , 𝑒) = match 𝑒 with
| 𝑅 ⇒ (𝑅, ∅)
| 𝑟 ⇒ (𝑟, ∅)
| 𝜋(𝑎) 𝑒1 ⇒ let (𝑒1, 𝑌1) = rw(apx, Y ∪ {att(𝑒1) − 𝑎}, 𝑒1) in

let 𝑏 = {hashAtt(𝑌1, 𝑎) | 𝑎 ∈ 𝑎} in
(𝜋(𝑏) 𝑒1, {𝑋 ∩ 𝑎 | 𝑋 ∈ 𝑌1})

| 𝜚( 𝑓 ) 𝑒1 ⇒ let 𝐵 = {𝑎 ∈ dom( 𝑓 ) | 𝑓 (𝑎) ≠ 𝑎} in
(attributes whose names change must not be merged)
let Y ′ = { 𝑓 (𝑋 − 𝐵) | 𝑋 ∈ Y} ∪ {{ 𝑓 (𝑎)} | 𝑎 ∈ 𝐵 ∩⋃Y} in
let (𝑒1, 𝑌1) = rw(apx, Y ′, 𝑒1) in
let 𝑔(𝑏) = hashAtt(𝑌1, 𝑓 (𝑎)) where 𝑎 satisfies hashAtt(𝑌1, 𝑎) = 𝑏 in
(𝜚(𝑔) 𝑒1, {𝑔−1 (𝑋) | 𝑋 ∈ 𝑌1})

| 𝜎(𝑡1 ◦ 𝑡2) 𝑒1 ⇒ let allowHash = apx ∧ (match 𝑡1 ◦ 𝑡2 with
| 𝑎1 = 𝑎2 | 𝑎1 = 𝑑 | 𝑑 = 𝑎2
| 𝑎1 ≠ 𝑎2 | 𝑎1 ≠ 𝑑 | 𝑑 ≠ 𝑎2 where 𝑎1, 𝑎2 ∈ A, 𝑑 ∈ D ⇒ true
| _⇒ false) in

(the comparison is either exact or between nonmerged hashes)
let Y ′ = sift(att(𝑡1), allowHash, sift(att(𝑡2), allowHash, Y)) in
let (𝑒1, 𝑌1) = rw(apx, Y ′, 𝑒1) in
(𝜎(𝑡1 ◦ 𝑡2) 𝑒1, 𝑌1)

| [(𝑎 ↦→ 𝑡) 𝑒1 ⇒ let (𝑒1, 𝑌1) = rw(apx, sift(att(𝑡), 𝑡 ∈ A, Y), 𝑒1) in
([(𝑎 ↦→ 𝑡) 𝑒1, 𝑌1)

| 𝑒1 𝑒2 ⇒ let Y ′ = sift(att(𝑒1) ∩ att(𝑒2), apx, Y) in
let (𝑒1, 𝑌1) = rw(apx, Y ′, 𝑒1); (𝑒2, 𝑌2) = rw(apx, Y ′, 𝑒2) in
let Y ′′ = combine(𝑌1, 𝑌2) in
(addHash((𝑒1, 𝑌1), Y ′′) addHash((𝑒2, 𝑌2), Y ′′), Y ′′)

| 𝑒1 𝑒2 ⇒ analogous to the case
| 𝑒1 ∪ 𝑒2 ⇒ let (𝑒1, 𝑌1) = rw(apx, Y , 𝑒1); (𝑒2, 𝑌2) = rw(apx, Y , 𝑒2) in

let 𝑌 ′ = combine(𝑌1, 𝑌2) in
(addHash((𝑒1, 𝑌1), 𝑌 ′) ∪ addHash((𝑒2, 𝑌2), 𝑌 ′), 𝑌 ′)

| Y𝐼 𝑒1 ⇒ let (𝑒1, 𝑌1) = rw(apx, Y , 𝑒1) in (Y𝐼 𝑒1, 𝑌1)
| X𝐼 𝑒1 ⇒ analogous to the Y case
| 𝑒1 S𝑚

𝐼
𝑒2 ⇒ let apx′ = apx ∧ (|𝐼 | < ∞) in

let 𝑌 ′ = sift(att(𝑒1), apx′, Y) in
(addHash(rw(apx′, 𝑌 ′, 𝑒1), 𝑌 ′) S𝑚𝐼 addHash(rw(apx′, 𝑌 ′, 𝑒2), 𝑌 ′), 𝑌 ′)

| 𝑒1 U𝑚
𝐼
𝑒2 ⇒ analogous to the S case

| 𝜔(𝑎′ ↦→ 𝑡; 𝑎) 𝑒1⇒ let 𝐴 = if 𝜔 = COUNT then att(𝑒1) − 𝑎 else att(𝑒1) − 𝑎 − att(𝑡) in
(the attributes 𝐴 are removed by the aggregation operator)
let Y ′ = if apx then {𝑋 ∩ 𝑎 | 𝑋 ∈ Y} ∪ {𝐴}

else (match 𝜔 with MIN | MAX⇒ {𝐴} | _⇒ {}) in
let (𝑒1, 𝑌1) = rw(apx, Y ′, 𝑒1) in
let 𝑏 = {hashAtt(𝑌1, 𝑎) | 𝑎 ∈ 𝑎} in
(𝜔(𝑎′ ↦→ 𝑡; 𝑏) 𝑒1, {𝑋 ∩ 𝑎 | 𝑋 ∈ 𝑌1})
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B Proofs

We will frequently use two basic facts from probability theory: monotonicity of probabil-
ities (Pr[𝐴] ≤ Pr[𝐵] if 𝐴 ⊆ 𝐵), and the union bound (Pr[⋃𝑖∈𝐼 𝐴𝑖] ≤

∑
𝑖∈𝐼 Pr[𝐴𝑖] for

countable 𝐼). Whenever we calculate with probabilities, we assume that we are working
in IR∞≥0, the nonnegative reals extended with infinity. This domain has the advantage
that the natural ordering is also a complete lattice; in particular, the supremum of an
unbounded set is well-defined and equal to ∞, so we do not need to handle this case
separately. Moreover, we get the following obvious properties.

Lemma B1. Let 𝑓 and 𝑔 be functions from some set 𝐵 to IR∞≥0, and 𝐴 ⊆ 𝐵. We have

1. sup𝑥∈𝐴 𝑓 (𝑥) ≤ sup𝑥∈𝐴 𝑔(𝑥) if 𝑓 (𝑥) ≤ 𝑔(𝑥) for all 𝑥 ∈ 𝐴,
2. sup𝑥∈𝐴( 𝑓 (𝑥) + 𝑔(𝑥)) ≤ (sup𝑥∈𝐴 𝑓 (𝑥)) + (sup𝑥∈𝐴 𝑔(𝑥)),
3. sup𝑥∈𝐴( 𝑓 (𝑥) · 𝑔(𝑥)) ≤ (sup𝑥∈𝐴 𝑓 (𝑥)) · (sup𝑥∈𝐴 𝑔(𝑥)).

Next, we turn to the proofs of the claims from the main text.

Proof (for Lemma 1). Let 𝑢1 ≠ 𝑢2 be two tuples over 𝑈 ⊆ A𝑒. If 𝑈 = {𝑎}, we
have PrH∗ [ℎ∗ (𝑢1) = ℎ∗ (𝑢2)] = PrH [ℎ(𝑢1 (𝑎)) = ℎ(𝑢2 (𝑎))] ≤ 𝜖 ′ < 𝜖 by the 𝜖 ′-almost
universality ofH . Therefore, we focus on the case |𝑈 | ≠ 1.

Let 𝑏 be an arbitrary attribute such that 𝑢1 (𝑏) ≠ 𝑢2 (𝑏). For every choice of the hash
function ℎ∗ ∈ H ∗, there are two cases: either ℎ(𝑢1 (𝑏)) = ℎ(𝑢2 (𝑏)), which by the same
argument as above happens with probability at most 𝜖 ′, or ℎ(𝑢1 (𝑏)) ≠ ℎ(𝑢2 (𝑏)) but
ℎ∗ (𝑢1) = ℎ∗ (𝑢2), i.e.,∑︁

𝑎∈𝑈
𝑓 (𝑎) · ℎ(𝑢1 (𝑎)) =

∑︁
𝑎∈𝑈

𝑓 (𝑎) · ℎ(𝑢2 (𝑎))

⇐⇒ 𝑓 (𝑏) · (ℎ(𝑢1 (𝑏)) − ℎ(𝑢2 (𝑏))) =
∑︁

𝑎∈𝑈−{𝑏}
𝑓 (𝑎) · (ℎ(𝑢2 (𝑎)) − ℎ(𝑢1 (𝑎)))

⇐⇒ 𝑓 (𝑏) =
∑
𝑎∈𝑈−{𝑏} 𝑓 (𝑎) · (ℎ(𝑢2 (𝑎)) − ℎ(𝑢1 (𝑎)))

ℎ(𝑢1 (𝑏)) − ℎ(𝑢2 (𝑏))
.

The last step is justified because ℎ(𝑢1 (𝑏))−ℎ(𝑢2 (𝑏)) ≠ 0, so it has a multiplicative inverse.
Recall that 𝑓 is chosen uniformly at random from the set of functions A𝑒 → GF(2𝑘 ).
The last equation above states that 𝑓 (𝑏) must have a particular value in GF(2𝑘 ) that
depends only on 𝑓 (𝑎) for 𝑎 ≠ 𝑏, so the probability for the second case is 2−𝑘 . By the
union bound, PrH∗ [ℎ∗ (𝑢1) = ℎ∗ (𝑢2)] ≤ 𝜖 ′ + 2−𝑘 . ut

Proof (for Lemma 2). It suffices to consider attributes of the form 𝑎 = #𝑋2, where
𝑋2 ∈ 𝑌2. All other attributes of ℎ∗

𝑌2
(𝑢) can be copied directly from ℎ∗

𝑌1
(𝑢) by the

assumption 𝑌1 v 𝑌2. If 𝑋2 = {𝑏}, we either copy ℎ𝑌1 (𝑢) (#𝑋2) (if 𝑋2 ∈ 𝑌1) or compute
ℎ(ℎ𝑌1 (𝑢) (𝑏)) = ℎ(𝑢(𝑏)).

So suppose that |𝑋2 | ≠ 1. Let 𝑍 = {𝑋1 ∈ 𝑌1 | 𝑋1 ⊆ 𝑋2} and 𝑋 ′2 = 𝑋2 −
⋃
𝑍 . We

calculate, using disjointness of 𝑍 inherited from 𝑌1,

ℎ∗𝑌2
(𝑢) (𝑎) =

∑︁
𝑏∈𝑋2

𝑓 (𝑏) · ℎ(𝑢(𝑏)) =
∑︁
𝑋1∈𝑍

∑︁
𝑏∈𝑋1

𝑓 (𝑏) · ℎ(𝑢(𝑏)) +
∑︁
𝑏∈𝑋 ′2

𝑓 (𝑏) · ℎ( 𝑢(𝑏)︸︷︷︸
=ℎ∗

𝑌1
(𝑢) (𝑏)

).
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The terms
∑
𝑏∈𝑋1 𝑓 (𝑏) · ℎ(𝑢(𝑏)) are either equal to 𝑓 (𝑏) · ℎ∗

𝑌1
(𝑢) (#𝑋1) or to ℎ∗

𝑌1
(𝑢) (#𝑋1),

depending on whether 𝑋1 is a singleton set {𝑏}. ut

Proof (for Lemma 3). This follows from a repeated application of Lemma B1(1). ut

Before we move to the proof of the main theorem, we make Def. 4 more precise,
specifically the relation between 𝑒 and 𝑒. To this end, we define a function ↓𝑒 that recovers
𝑒 from 𝑒. First, we specify how attributes are “unhashed”:

↓𝑎 = 𝑎 if 𝑎 ∉ A#, ↓#{𝑎1, . . . , 𝑎𝑛} = 𝑎1, . . . , 𝑎𝑛.

We assume some total ordering over the attributes so that ↓#{𝑎1, . . . , 𝑎𝑛} is well-defined.
The function ↓ extends homomorphically to terms. Moreover, we define

↓𝑅, ↓𝑟 = 𝑅, 𝑟
↓(ℎ∗𝑌 𝑒) = ↓𝑒
↓(𝜋(𝑎) 𝑒) = 𝜋(↓𝑎) ↓𝑒

↓(𝜚(𝑎 ← 𝑎′) 𝑒) = 𝜚(↓𝑎 ← ↓𝑎′) ↓𝑒
↓(𝜎(𝑡1 ◦ 𝑡2) 𝑒) = 𝜎(↓𝑡1 ◦ ↓𝑡2) ↓𝑒
↓([(𝑎 ↦→ 𝑡) 𝑒) = [(𝑎 ↦→ ↓𝑡) ↓𝑒

↓(𝑒1 ~ 𝑒2) = ↓𝑒1 ~ ↓𝑒2

for ~ ∈ { , ,∪, S𝑚𝐼 ,U𝑚𝐼 }
↓(Y𝐼 𝑒) = Y𝐼 ↓𝑒
↓(X𝐼 𝑒) = X𝐼 ↓𝑒

↓(𝜔(𝑎′ ↦→ 𝑡; 𝑎) 𝑒) = 𝜔(𝑎′ ↦→ 𝑡;↓𝑎) ↓𝑒

The notation ↓𝑎, where 𝑎 is a list 𝑎1, . . . , 𝑎𝑛 of attributes, stands for the concatenation
of the lists ↓𝑎1, . . . , ↓𝑎𝑛. For the renaming operator, ↓𝑎 ← ↓𝑎′ is formed by “zipping” the
lists ↓𝑎𝑖 and ↓𝑎′

𝑖
for every pair 𝑎𝑖 ← 𝑎′

𝑖
in 𝑎 ← 𝑎′, then concatenating the results. Note

that the operation ↓ is only a partial function. For example, ↓(𝜚(𝑎 ← #{𝑏, 𝑐}) 𝑟) is not
defined. However, ↓ is defined for every expression returned by the rewriting algorithm.
Let rewrite(𝑒) return the first component of rw(true, ∅, 𝑒). We have

Lemma B2. J↓rewrite(𝑒)K𝑖 = J𝑒K𝑖 for all 𝑖.

Proof (sketch). By induction over the structure of 𝑒. We show the more general property
that J↓𝑒K𝑖 = J𝑒K𝑖 if rw(apx, Y , 𝑒) = (𝑒,𝑌 ), where Y is any hash specifier over 𝑒’s
attributes. The proof requires some additional properties of the specifier 𝑌 ′ returned by
rw, which can be shown simultaneously: 𝑌 ′ = hsp(𝑒) and 𝑌 ′ v Y . ut

Now we can restate Def. 4 in terms of ↓:

fp(𝑒) = supb ∈𝑋,𝑖∈IN Pr[J𝑒K𝑖 * ℎ∗hsp(�̃�) (J↓𝑒K𝑖)]
fn(𝑒) = supb ∈𝑋,𝑖∈IN Pr[ℎ∗hsp(�̃�) (J↓𝑒K𝑖) * J𝑒K𝑖] .

Proof (for Theorem 1, part I). We begin with the first part of the theorem, which concerns
the inequalities from Table 2 on page 12. We focus on the false-positive probabilities. The
proofs for the false-negative probabilities are symmetric in most cases; we will discuss
the exceptions. Each inequality is proved using the same basic strategy:

1. Fix a trace b ∈ 𝑋 and a time-point 𝑖 ∈ IN. The goal is to relate Pr[J𝑒K𝑖 * ℎ∗hsp(�̃�)J↓𝑒K𝑖]
to the corresponding probabilities of 𝑒’s direct sub-expressions, where all expressions
are evaluated over b. This suffices because Lemma B1 allows us to transfer the bound
for fixed b, 𝑖 to the supremum over all traces in 𝑋 and all time-points.
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2. Show that the event J𝑒K𝑖 * ℎ∗hsp(�̃�) (J↓𝑒K𝑖) implies a disjunction over corresponding
events of 𝑒’s direct sub-expressions, together with an event for any additional false
positives introduced by 𝑒’s outermost operator op. For the sub-expressions, we might
switch to false negatives if op involves negation (e.g., ). Then apply the union bound
to the disjunction. This step is essentially a case distinction on whether there is an
error in the operands. If yes, we simply assume the worst case, namely that the error
propagates to 𝑒’s result.

3. If op can introduce additional errors at all, this must be because of hash collisions.
In this case, compute an upper bound on the number of possibly colliding pairs of
tuples using the size bounds.

4. Use Lemma 1 to bound the probability of each single collision.
5. Use the union bound to obtain the probability that there is at least one collision.

We apply this strategy in detail to a few selected operators and sketch the rest.
Constant relations 𝑅 and relation names 𝑟 are trivial: here we have ↓𝑒 = 𝑒 and

hsp(𝑒) = ∅; note that ℎ∗∅ is the identity function.
For a hash operator 𝑒 = ℎ∗

𝑍
𝑒1, we first show that ℎ∗hsp(�̃�1) (J↓𝑒1K𝑖) ⊆ J𝑒1K𝑖 implies

ℎ∗hsp(�̃�) (J↓𝑒K𝑖) = ℎ
∗
hsp(�̃�) (J↓𝑒1K𝑖)

(1)
= ℎ∗hsp(�̃�) (ℎ

∗
hsp(�̃�1) (J↓𝑒1K𝑖))
(2)
⊆ ℎ∗hsp(�̃�) (J𝑒1K𝑖)

(3)
= ℎ∗𝑍 (J𝑒1K𝑖) = J𝑒K𝑖 .

Step (1) is justified because ℎ∗
𝐴
(ℎ∗
𝐵
(𝑅)) = ℎ∗

𝐴
(𝑅) for all hash specifiers 𝐵 v 𝐴; we have

hsp(𝑒1) v 𝑍 by well-formedness and hsp(𝑒) = 𝑍 by the definition of the attributes of
ℎ∗
𝑍
𝑒1. The latter also justifies step (3). Step (2) follows from the monotonicity of the

image operation (which is used to apply ℎ∗
𝑌

to a relation) and the assumption. From the
above implication it follows that

Pr[J𝑒K𝑖 * ℎ∗hsp(�̃�) (J↓𝑒K𝑖)] ≤ Pr[J𝑒1K𝑖 * ℎ∗hsp(�̃�1) (J↓𝑒1K𝑖)]

by monotonicity of probability, and thus fp(𝑒) ≤ fp(𝑒1) by Lemma B1.
For a projection 𝑒 = 𝜋(𝑎) 𝑒1, we similarly argue that ℎ∗hsp(�̃�1) (J↓𝑒1K𝑖) ⊆ J𝑒1K𝑖 implies

ℎ∗hsp(�̃�) (J↓𝑒K𝑖) = ℎ
∗
hsp(�̃�) {(𝑢 |↓𝑎) | 𝑢 ∈ J↓𝑒1K𝑖}
(1)
= {(𝑢 |𝑎) | 𝑢 ∈ ℎ∗hsp(�̃�1) (J↓𝑒1K𝑖)}

(2)
⊆ {(𝑢 |𝑎) | 𝑢 ∈ J𝑒1K𝑖} = J𝑒K𝑖 .

Step (2) is again monotonicity of the image. For step (1), consider a single tuple 𝑢 ∈ J↓𝑒1K𝑖 .
It suffices to show that ℎ∗hsp(�̃�) (𝑢 |↓𝑎) = (ℎ

∗
hsp(�̃�1) (𝑢)) |𝑎. By the well-formedness of 𝑒,

every attribute 𝑎𝑖 in 𝑎 is either not hashed or of the form #𝑋 , where 𝑋 ∈ hsp(𝑒1).
Clearly, hsp(𝑒) is the collection of those sets 𝑋 , so the two tuples in the equation are
over the same attribute sets. If 𝑎𝑖 ∉ A#, then ↓𝑎𝑖 = 𝑎𝑖 and ℎ∗hsp(�̃�) (𝑢 |↓𝑎) (𝑎𝑖) = 𝑢(𝑎𝑖) =
((ℎ∗hsp(�̃�1) (𝑢)) |𝑎) (𝑎𝑖). If 𝑎𝑖 = #𝑋 , then ↓𝑎𝑖 enumerates all attributes in 𝑋 , and again
ℎ∗hsp(�̃�) (𝑢 |↓𝑎) (𝑎𝑖) = ((ℎ

∗
hsp(�̃�1) (𝑢)) |𝑎) (𝑎𝑖).

Renaming 𝜌, assignment [, and selection 𝜎 (the latter without hashed attributes)
are proved similarly, using suitable variations of the steps (1) and (2) above. All these
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operators commute with hashing modulo the renaming of attributes, and they are clearly
monotone with respect to the subset ordering.

For Y𝐼 and X𝐼 , we cannot directly use monotonicity of the supremum because two
different time-points are involved. Instead, we reason

sup
𝑖∈IN

Pr[JY𝐼 𝑒1K𝑖 * ℎ∗hsp(�̃�) (J↓(Y𝐼 𝑒1)K𝑖)]

= sup
𝑖∈IN

Pr[𝑖 > 0 ∧ 𝜏𝑖 − 𝜏𝑖−1 ∈ 𝐼 ∧ J𝑒1K𝑖−1 * ℎ
∗
hsp(�̃�1) (J𝑒1K𝑖−1)]

= sup
𝑗∈IN

Pr[𝜏𝑗+1 − 𝜏𝑗 ∈ 𝐼 ∧ J𝑒1K 𝑗 * ℎ∗hsp(�̃�1) (J𝑒1K 𝑗 )]

≤ sup
𝑗∈IN

Pr[J𝑒1K 𝑗 * ℎ∗hsp(�̃�1) (J𝑒1K 𝑗 )] .

The derivation for 𝑒 = X𝐼 𝑒1 is similar.
The last operator that does never introduce new errors is the union, 𝑒 = 𝑒1 ∪ 𝑒2. If

neither J𝑒1K𝑖 nor J𝑒2K𝑖 contain false positives, the same must be true for J𝑒1 ∪ 𝑒2K. Taking
the contrapositive, we get

Pr[J𝑒K𝑖 * ℎ∗hsp(�̃�) (J↓𝑒K𝑖)]
≤ Pr[J𝑒1K𝑖 * ℎ∗hsp(�̃�1) (J↓𝑒1K𝑖)] + Pr[J𝑒2K𝑖 * ℎ∗hsp(�̃�2) (J↓𝑒2K𝑖)],

and the corresponding bound fp(𝑒) ≤ fp(𝑒1) + fp(𝑒2) follows readily by Lemma B1.
Next, consider a selection 𝑒 = 𝜎(#{𝑎} = 𝑡) 𝑒1. From well-formedness, we know that 𝑡

must be a nonmerged hashed attribute or a single constant. We also have hsp(𝑒) = hsp(𝑒1).
Even if there are no false positives in the evaluation of 𝑒1, i.e., J𝑒1K𝑖 ⊆ ℎ∗hsp(�̃�1) (J↓𝑒1K𝑖),
there might be a collision between the hash of 𝑎 and 𝑡 in one or more of its tuples. So let
us assume that J𝑒1K𝑖 ⊆ ℎ∗hsp(�̃�1) (J↓𝑒1K𝑖). Then the selection yields a false positive iff there
exists a tuple 𝑢 ∈ J↓𝑒1K𝑖 such that 𝑢(𝑎) ≠ 𝑢(↓𝑡) and ℎ∗hsp(�̃�1) (𝑢) (#{𝑎}) = ℎ

∗
hsp(�̃�1) (𝑢) (↓𝑡).

Note that ℎ∗hsp(�̃�1) (𝑢) (#{𝑎}) = ℎ(𝑢(𝑎)) and similar for ↓𝑡. Therefore,

Pr[J𝑒K𝑖 * ℎ∗hsp(�̃�) (J↓𝑒K𝑖)]
≤ Pr[J𝑒1K𝑖 * ℎ∗hsp(�̃�1) (J↓𝑒1K𝑖)]

+ Pr[∃𝑢 ∈ J↓𝑒1K𝑖 . 𝑢(𝑎) ≠ 𝑢(↓𝑡) ∧ ℎ(𝑢(𝑎)) = ℎ(𝑢(↓𝑡))]
≤ Pr[J𝑒1K𝑖 * ℎ∗hsp(�̃�1) (J↓𝑒1K𝑖)]

+
∑︁

𝑢∈J↓�̃�1K𝑖

Pr[𝑢(𝑎) ≠ 𝑢(↓𝑡) ∧ ℎ(𝑢(𝑎)) = ℎ(𝑢(↓𝑡))]︸                                               ︷︷                                               ︸
=𝑃

The probability 𝑃 is clearly at most 𝜖 ′ < 𝜖 , as we assumedH to be an 𝜖 ′-almost universal
family. Moreover, the cardinality of J↓𝑒1K𝑖 is at most |𝑒1 | = |↓𝑒1 |, which we defined by
supb ∈𝑋,𝑖∈IN |J↓𝑒1K𝑖 |. Hence fp(𝑒) ≤ fp(𝑒1) + 𝜖 |𝑒1 |.

Note that fn(𝑒) is simply bounded by fn(𝑒1) because ℎ∗hsp(�̃�1) (J↓𝑒1K𝑖) ⊆ J𝑒1K𝑖 implies
ℎ∗hsp(�̃�) (J𝜎(𝑎 = ↓𝑡) ↓𝑒1K𝑖) ⊆ J𝜎(#{𝑎} = 𝑡) 𝑒1K𝑖 . Conversely, for a selection of the form
𝜎(#{𝑎} ≠ 𝑡) 𝑒1, the added term 𝜖 |𝑒1 | moves from the false-positive to the false-negative
probability.
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The reasoning for joins and anti-joins proceeds along the same lines, except that
there are two input relations and collisions occur between pairs of tuples, one from each
input. Let us focus on a join 𝑒 = 𝑒1 𝑒2. Following the established pattern, suppose that
J𝑒1K𝑖 ⊆ ℎ∗hsp(�̃�1) (J↓𝑒1K𝑖) and J𝑒2K𝑖 ⊆ ℎ∗hsp(�̃�2) (J↓𝑒2K𝑖). Any false positive in the join, i.e.,
any tuple in J𝑒1 𝑒2K𝑖 but not in ℎ∗hsp(�̃�) (J↓𝑒1 ↓𝑒2K𝑖) must correspond to two tuples
𝑢1, 𝑢2 such that:

– 𝑢1 ∈ J↓𝑒1K𝑖 and 𝑣1 B ℎ∗hsp(�̃�1) (𝑢1) ∈ J𝑒1K𝑖
– 𝑢2 ∈ J↓𝑒2K𝑖 and 𝑣2 B ℎ∗hsp(�̃�2) (𝑢2) ∈ J𝑒2K𝑖
– 𝑢1 and 𝑢2 do not agree on the attributes𝑈 B att(↓𝑒1) ∩ att(↓𝑒2)
– 𝑣1 and 𝑣2 agree on the attributes 𝑉 B att(𝑒1) ∩ att(𝑒2).

Let 𝑍 be the hash specifier hsp(𝑒1) restricted to 𝑈, which by well-formedness must
be equal to the restriction of hsp(𝑒2) to 𝑈. The key observation is that 𝑢1 |𝑈 ≠ 𝑢2 |𝑈 ,
but ℎ∗

𝑍
(𝑢1 |𝑈 ) = 𝑣1 |𝑉 = 𝑣2 |𝑉 = ℎ∗

𝑍
(𝑢2 |𝑈 ). Then there must be 𝑈 ′ ⊆ 𝑈 such that

𝑈 ′ ∈ 𝑍 , 𝑢1 |𝑈 ′ ≠ 𝑢2 |𝑈 ′ , and ℎ∗ (𝑢1 |𝑈 ′) = ℎ∗ (𝑢2 |𝑈 ′). Hence we can invoke Lemma 1: the
probability for the above event is at most 𝜖 for every fixed pair 𝑢1, 𝑢2. The bound in
Table 2 follows by observing that there are at most |𝑒1 | |𝑒2 | such pairs. If 𝑍 is empty, i.e.,
there are no hashed attributes in 𝑉 , then ℎ∗

𝑍
(𝑢1 |𝑈 ) and ℎ∗

𝑍
(𝑢2 |𝑈 ) cannot be equal. In this

case, the term 𝜖 |𝑒1 | |𝑒2 | disappears from the probability bound, which justifies remark (2)
in the table.

A positive3 Since operator 𝑒 = 𝑒1 S
𝐼
𝑒2 can be understood in terms of unions and

joins that span multiple time-points. The approach is therefore comparable to joins, except
that already for the sub-expressions 𝑒1 and 𝑒2 we need to consider multiple time-points,
and it will be important to find a good bound on the number of possibly colliding tuple
pairs.

Consider the evaluation of 𝑒1 S
𝐼
𝑒2 at a time-point 𝑖. The result depends on the

evaluation of the second operand 𝑒2 at most at those time-points 𝑗 ≤ 𝑖 such that the
time-stamp differences 𝜏𝑖 − 𝜏𝑗 are in the interval. Similarly, it depends on the evaluation
of the first operand 𝑒1 at most at time-points 𝑘 ≤ 𝑖 for which there exists such a 𝑗 < 𝑘 .
Therefore, we conservatively assume that any false positive in any of these evaluations
propagates to 𝑒. Now suppose that this does not happen. Any additional false positive must
be caused by two tuples 𝑢2 ∈ J↓𝑒2K 𝑗 (where 𝑗 is restricted as before) and 𝑢1 ∈ J↓𝑒1K𝑘
that do not agree on their common attributes but do so after hashing. We can locate a
unique 𝑘 for which there must exist such a tuple 𝑢1, for example by choosing the smallest
time-point greater than 𝑗 for which J↓𝑒1K𝑘 does not contain the projection of 𝑢2 to the
common attributes.

Using repeated applications of the union bound, we thus obtain

Pr[J𝑒K𝑖 * ℎhsp(�̃�) (J↓𝑒K𝑖)] ≤ 𝑃1 + 𝑃2 + 𝑃3,

where

3 We call S positive and S negative.
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𝑃1 =
∑︁

𝑘≤𝑖, ∃ 𝑗<𝑘.𝜏𝑖−𝜏 𝑗 ∈𝐼
Pr[J𝑒1K𝑘 * ℎhsp(�̃�1) (J↓𝑒1K𝑘 )]

𝑃2 =
∑︁

𝑗≤𝑖, 𝜏𝑖−𝜏 𝑗 ∈𝐼
Pr[J𝑒2K 𝑗 * ℎhsp(�̃�2) (J↓𝑒2K 𝑗 )]

𝑃3 =
∑︁

𝑗≤𝑖, 𝜏𝑖−𝜏 𝑗 ∈𝐼

∑︁
𝑢2∈J↓�̃�2K 𝑗

∑︁
𝑘∈𝛾 ( 𝑗 ,𝑢2)

∑︁
𝑢1∈J↓�̃�1K𝑘

Pr[ℎ∗hsp(�̃�1) (𝑢1) = ℎ∗hsp(�̃�1) (𝑢2 |𝐾 )]

using 𝐾 = att(↓𝑒1) and

𝛾( 𝑗 , 𝑢2) = {𝑘 | 𝑗 < 𝑘 ≤ 𝑖 ∧ 𝑢2 |𝐾 ∉ J↓𝑒1K𝑘 ∧ (∀𝑘 ′. 𝑗 < 𝑘 ′ < 𝑘 =⇒ 𝑢2 |𝐾 ∈ J↓𝑒1K′𝑘 )},

which is either empty or contains the smallest 𝑘 between 𝑗 and 𝑖 such that 𝑢2 |𝐾 ∉ J↓𝑒1K𝑘 .
We bound each of 𝑃1, 𝑃2, 𝑃3 from above independently of 𝑖 and thus obtain an upper

bound for fp(𝑒). Each of the summands in 𝑃1 is at most fp(𝑒1). One can easily verify
that the number of indices 𝑘 is at most 𝑎𝐼 = (maxRate · 𝑢) − 1, where 𝑢 > 𝑥 for all 𝑥 ∈ 𝐼.
Therefore, 𝑃1 ≤ 𝑎𝐼 · fp(𝑒1). Similarly, one has to consider at most 𝑏𝐼 = maxRate · |𝐼 |
different indices 𝑗 in the sum for 𝑃2, so 𝑃2 ≤ 𝑏𝐼 · fp(𝑒2). By Lemma 1, the probability in
𝑃3 for fixed tuples 𝑢1, 𝑢2 is bounded by 𝜖 ; it is zero if hsp(𝑒1) is empty, i.e., there are no
hashed attributes in att(𝑒1). For every 𝑘 , there are at most |𝑒1 | tuples in J↓𝑒1K𝑘 ; for every
𝑗 , there are at most |𝑒2 | tuples in J↓𝑒2K 𝑗 . We have already established that |𝛾( 𝑗 , 𝑢2) | ≤ 1.
Therefore, 𝑃3 ≤ 𝑏𝐼 · |𝑒2 | · 1 · |𝑒1 | · 𝜖 .

As with joins, the positive Since operator does not introduce new false negatives, so
terms corresponding to 𝑃1 and 𝑃2 suffice to bound fn(𝑒1 S

𝐼
𝑒2). The analyis of positive

Until is exactly the same as the one of positive Since, except that all contraints on indices
and time-stamp differences are reversed.

The symmetry between positive and negative operators fails for S
𝐼

and U
𝐼

. The
reason is that we can no longer locate a unique time-point 𝑘 that necessarily has a
collision, for a given choice of 𝑗 and 𝑢2. If there is a false negative, we already know that
the restriction of 𝑢2 cannot occur in J↓𝑒1K𝑘 for any 𝑘 where 𝑗 < 𝑘 ≤ 𝑖 (or 𝑖 ≤ 𝑘 < 𝑗 for
Until). Accordingly, any tuple 𝑢1 ∈ J↓𝑒1K𝑘 for such a 𝑘 could cause the collision. Let us
again look at S in more detail. For its false-negative probability, we obtain the bound

Pr[J𝑒K𝑖 + ℎhsp(�̃�) (J↓𝑒K𝑖)]

≤ 𝑃′1 + 𝑃
′
2 +

∑︁
𝑗≤𝑖, 𝜏𝑖−𝜏 𝑗 ∈𝐼

∑︁
𝑢2∈J↓�̃�2K 𝑗

∑︁
𝑗<𝑘≤𝑖

∑︁
𝑢1∈J↓�̃�1K𝑘

Pr[ℎ∗hsp(�̃�1) (𝑢1) = ℎ∗hsp(�̃�1) (𝑢2 |𝐾 )]︸                                                                                      ︷︷                                                                                      ︸
=𝑃′3

,

where 𝑃′1 and 𝑃′2 are the false-negative variants of 𝑃1 and 𝑃2. The term 𝑃′3 differs from
𝑃3 only in indices that the the third sum ranges over. We have to show that there are at
most 𝑐𝐼 = 𝑏𝐼 ·

(
maxRate · 𝑙 + (𝑏𝐼 + 1)/2

)
many pairs ( 𝑗 , 𝑘) satisfying 𝑗 < 𝑘 ≤ 𝑖 and

𝜏𝑖 − 𝜏𝑗 ∈ 𝐼; it then follows that 𝑃′3 ≤ 𝑐𝐼 · |𝑒2 | · |𝑒1 | · 𝜖 . Let 𝐽 = { 𝑗 < 𝑖 | 𝜏𝑖 − 𝜏𝑗 ∈ 𝐼}. We
have |𝐽 | ≤ maxRate · |𝐼 | = 𝑏𝐼 (note that the inequality is not necessarily strict if 0 ∉ 𝐼). It
remains to count the number of 𝑘s for each 𝑗 ∈ 𝐽. Let 𝑗0 be the greatest time-point in 𝐽
and 𝑙 be the lower bound of 𝐼. If 𝑗0 < 𝑘 ≤ 𝑖, then either 𝜏𝑖 − 𝜏𝑘 ∉ 𝐼, which is equivalent
to 𝜏𝑖 − 𝜏𝑘 < 𝑙 because time-stamps are monotone, or 𝑘 = 𝑖 = 𝑗0 + 1. Therefore, there are
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at most maxRate · 𝑙 + 1 pairs of the form ( 𝑗0, 𝑘). More generally, if we decrease 𝑗0 by
some nonnegative 𝛿, there are at most maxRate · 𝑙 + 1 + 𝛿 pairs ( 𝑗0 − 𝛿, 𝑘). The largest 𝛿
we need to consider is 𝑏𝐼 − 1 because all time-points in 𝐽 are consecutive. The number
of pairs is thus bounded by
𝑏𝐼−1∑︁
𝛿=0
(maxRate · 𝑙 + 1 + 𝛿) = 𝑏𝐼 · maxRate · 𝑙 +

𝑏𝐼∑︁
𝛿=1

𝛿 = 𝑏𝐼 · (maxRate · 𝑙 + (𝑏𝐼 + 1)/2).

Finally, it remains to consider aggregations. Here we deviate from our usual strategy
and bound directly the error probability

Pr[J𝜔(𝑎′ ↦→ 𝑡; 𝑎) 𝑒1K𝑖 ≠ ℎhsp(�̃�) (J𝜔(𝑎′ ↦→ 𝑡;↓𝑎) ↓𝑒1K𝑖)]

in terms of 𝑒1’s error probability, which by Lemma 3 is at most fp(𝑒1) + fn(𝑒1). Lemma 3
also guarantees that the above probability is an upper bound on both the false-positive
and false-negative probability of the aggregation.

As always we proceed by assuming that J𝑒1K𝑖 = ℎ∗hsp(�̃�1) (J↓𝑒1K𝑖). The aggregation
operator first partitions the tuples J↓𝑒1K𝑖 into groups according to the attributes 𝑎. This
is the first opportunity for new errors to occur: a hash collision in these attributes may
result in two groups being indistinguishable in J𝑒1K𝑖 . For every group and every value
of 𝑡, the operator counts the number of distinct tuples that match the group and 𝑡 value.
This is the second opportunity for new errors as hash collisions can reduce the count.
However, this is only relevant for aggregations that are sensitive to multiplicity, namely
COUNT and SUM. These observations explain remark (3) in Table 2.

A tuple in J↓𝑒1K𝑖 can collide with any other distinct tuple in this relation, causing
one of the two types of error, with probability 𝜖 . The number of such unordered pairs is
at most ( |𝑒1 |2 − |𝑒1 |)/2. ut
Proof (for Theorem 1, part II). The number of operators in the expression rewrite(𝑒0)
is linear in the number of operators in 𝑒0. Moreover, one can easily verify that Table 2
provides an upper bound for every operator that rewrite(𝑒0) may contain. Each bound
for 𝑒 is a sum of a constant number of terms that are either fp(𝑒′) or fn(𝑒′), where 𝑒′ is
an immediate sub-expression of 𝑒, or that are of the form 𝜖 · 𝑥, where 𝑥 can be computed
from the operator and the bounds on maxRate and |𝑒′ |. Therefore, 𝑐 ≥ fp(𝑒0)/𝜖 and
𝑐′ ≥ fn(𝑒0)/𝜖 can be computed by a single bottom-up traversal of the rewritten expression
𝑒0 = rewrite(𝑒0).

We conclude the proof by showing that fp𝑋 (�̃�) = fp(𝑒0) and fn𝑋 (�̃�) = fn(𝑒0):

fp𝑋 (�̃�) = supb∈𝑋, 𝑖∈IN, 𝑥�b , |𝑥 | ≥ℓb (𝑖) Pr𝑀 [�̃� (𝑥)𝑖 * J𝑒0K𝑖]
(1)
= supb∈𝑋, 𝑖∈IN Pr[J𝑒0K𝑖 * J𝑒0K𝑖]
(2)
= supb∈𝑋, 𝑖∈IN Pr[J𝑒0K𝑖 * ℎ∗hsp(�̃�0) (J↓𝑒0K𝑖)]

= fn(𝑒0).

Equation (1) follows because �̃� evaluates 𝑒0 according to its semantics at least up to and
including time-point 𝑖. Equation (2) follows from Lemma B2 and because hsp(𝑒0) = ∅.
The equality of fn𝑋 (�̃�) and fn(𝑒0) is shown in the same way. ut
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Proof (for Theorem 2). By Theorem 1 and Lemma 3, the error probability is at most
𝜖 · (𝑐 + 𝑐′). The constants 𝑐 and 𝑐′ computed according to Theorem 1 are bounded
from above by polynomials in 𝑚, which can be verified by a straightforward induction.
We have 𝜖 = 𝜖 ′ + 2−𝑘 , and there exist 𝜖 ′-almost universal hash families achieving
𝜖 ′ = 2−𝑘 , where each instance can be represented using 𝑛 + 𝑘 bits [45]. To achieve an
error probability below 𝑥, it thus suffices to choose 𝑘 such that 𝜖 · poly(𝑚) < 𝑥, i.e.,
𝑘 > log2 (poly(𝑚)) − log2 𝑥 + 1. This sufficient condition on 𝑘 is clearly subsumed by
the 𝑂 (poly(𝑚)) bound on the cardinality of the relations, as argued in Sect. 4.2.

C The “Fake Review Detection” Expression

The trace has the following schema 𝑆:

– att𝑆 (𝑝) = {pid, pb, pn} represents products with ID pid, brand pb, and name pn.
– att𝑆 (𝑟) = {rid, rn, pid, rv, rr, rh, rs, rt} represents reviews by the reviewer with ID

rid and name rn for the product pid. The flag rv shows whether the review is verified,
rr is the rating, and rh is the number of votes that review has received. The review’s
summary is given by the attribute rs and its text by rt.

– att𝑆 (ts) = {𝑡} always contains a single tuple with the current time-stamp. This
relation is inserted by the monitor.

Time-stamps are encoded as UNIX time in seconds, which explains the large numbers in
the intervals below. The functions f2i and i2f convert between floating-point numbers and
integers. The root expression 𝑒frd is defined using some auxiliary expressions:

window ≡ 𝜋(wid) [(wid ↦→ f2i(𝑡)/604 800) ts
review ≡ (𝜋(rid, pid, rr, rt) 𝑟) (OIN 𝜋(pid, pb) 𝑝)

breview ≡ 𝜋(pb) review
tumble ≡

(
𝜋(wid) 𝜎(wid ≠ nwid) (window 𝜚(nwid← wid) window)

)
COUNT(𝑛; wid, pb)O[0,604 800) (window review)

avg ≡ 𝜋(pb, 𝑎) [(𝑎 ↦→ i2f(𝑛)/i2f(wid𝑛 − wid1 + 1))( ( (
OIN ((breview YIN OIN breview)

(𝜚(wid1 ← wid) window))
)

(𝜚(wid𝑛 ← wid) window)
)

COUNT(𝑛; pb)O[0,31 536 000] review
)

The expression 𝑒frd has two attributes: pb is the brand whose reviews were detected
as suspicious, and wts is a time-stamp indicating the start of the week in which those
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reviews occurred.

𝑒frd ≡ 𝜋(wts, pb) [(wts ↦→ wid · 604 800) 𝜋(wid, pb) 𝜎(𝑛2 > 𝑛3) 𝜎(wid3 = wid + 1)( (
𝜎(𝑛1 < 𝑛2) 𝜎(wid1 = wid − 1)( (
𝜋(wid, pb, 𝑛) 𝜎(𝑎 ≤ i2f(𝑛2))(
(𝜚(wid← wid, pb← pb, 𝑛2 ← 𝑛) tumble) avg

) )
{()} S[0,1 209 600] (𝜚(wid1 ← wid, pb← pb, 𝑛1 ← 𝑛) tumble)

) )
{()} U[0,1 209 600] (𝜚(wid3 ← wid, pb← pb, 𝑛3 ← 𝑛) tumble)

)


	Randomized First-Order Monitoring With Hashing

