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Abstract

Alice&Bob notation is frequently used to describe security protocols, while proto-
col verification tools use their own protocol specification languages. One such protocol
verification tool is TAMARIN. We are interested in a converter that translates a proto-
col specified in TAMARIN’s protocol specification language to an extended Alice&Bob
notation. The tool we develop takes TAMARIN security protocol theory .spthy files as
input and produces the respective Alice&Bob .anb files. It is implemented in Python.

The approach we use has three main steps. We first parse the TAMARIN input
and create an internal representation of all the building blocks of the protocol that
are important for the conversion. TAMARIN’s protocol specification language is based
on rules. In the second step, we search for an executable sequence of these rules, by
making use of an execution graph we create for each protocol. We simulate possible
executions of the protocol by assigning values to variables in the rules. We use the
tool Maude for unification modulo equations. Finally, in the third step, we use the
executable sequence of rules and the respective assignments to create an Alice&Bob
specification of the protocol.

Our tool correctly converts a subset of protocols that are created automatically by
an already existing tool that converts Alice&Bob specifications to TAMARIN ones.
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1 Introduction

When considering security protocols, proving that their behaviour is as expected for all
scenarios, is essential to the security of our computer systems and the communication of
information. Protocol verification tools, such as Proverif [1], Scyther [4] and TAMARIN [6]
are used for this purpose. These tools all use their own protocol specification languages.
In this thesis we focus on TAMARIN. A TAMARIN protocol specification consists of a set
of rules. Their order is arbitrary and they can be executed if their preconditions are
met. This is very convenient for analyzing properties of the protocol, but it is neither
very readable nor intuitive. Consequently, it is difficult to spot errors in a TAMARIN
specification.

An Alice and Bob, or A&B, text-book style specification is frequently used while
discussing security protocols. Alice&Bob is an intuitive way of representing a protocol
that resembles a narrator’s description of a discussion between two or more communicating
parties. We follow the extended Alice&Bob notation described in [2] and [5]. It goes
beyond text-book style A&B and specifies the sender and receiver of each message, the
messages that were sent, the necessary fresh values the senders need in order to send the
messages, the knowledge the senders and receivers initially have, and the functions they
are allowed to use in their interactions.

As intuitive as the A&B notation is, it is ambiguous and makes implicit assumptions.
For example, it gives no information about how a receiver processes a message or what he
does when the message does not have the expected form. The adversary behaviour is also
not taken into consideration, unless if we are specifically explaining an intrusion scenario.
Furthermore, it typically does not specify properties. If we were to use an Alice&Bob-like
notation as our input language in a verification tool, we would have to define all these
aspects through additional formalisms, which would change the language so much that we
might as well introduce a new language that better fits our purposes of proving properties
of the protocols. Thus, we use the previously mentioned verification tools.

Ideally we would want to be able to automatically switch between one specification
and the other. This way we would get the best of what the two specifications have to
offer. There already exists a tool for converting Alice&Bob specifications to TAMARIN
specifications [5], but not one that does the reverse. Therefore, in this thesis, we develop
a converter of TAMARIN specifications to extended Alice&Bob specifications.



2 Preliminaries

In order to explain how we convert TAMARIN specifications to Alice&Bob specifications, we
first introduce these two protocol specification languages. These preliminaries are found in
Section 2.1 and Section 2.2 respectively. Additionally, since the Maude tool [3] is used for
an essential part in our project, we will also give a quick overview of Maude in Section 2.3.
These overviews have a strong focus on the actual usage of the respective tools in our
project and are not to be seen as general descriptive summaries of the tools.

2.1 Introduction to TAMARIN

TAMARIN is a security protocol verification tool. The inputs to the tool are the TAMARIN
security protocol theory files, which are the relevant files for this project. They contain
the protocol specifications, which are the specifications we want to convert to Alice&Bob
specifications. Every such file consists of a theory. The theory is encapsulated between
the begin and end keywords. A theory includes a signature specification, a protocol spec-
ification, and property specifications. The signature specification may include functions,
built-ins and equations declarations, respectively signalized by the TAMARIN keywords
functions, builtins, and equations. The protocol specification contains rules and ax-
ioms. The properties are expressed through lemmas.

We are interested in the protocol specification. Additionally, we need to also extract
the signature specification, because it introduces the functions used in the protocol. The
security properties of the protocol, however, are not our main interest in this project. One
can express the properties one wants the Tamarin-prover to analyze in lemmas. They are
necessary for the tool, whereas, to our conversion, the lemmas are irrelevant and we do
not consider them or axioms in this project.

Definition 1. Let a and b be strings. We define the following representation for string
concatenation with space: a + b := a b. We use the ‘+’ symbol in infix notation. We
define the following representation for string concatenation without space: a * b := ab.
We use the ‘x’ symbol in infix notation.

Definition 2. In the rest of this thesis, whenever we describe the form of a construct in
a language, we put keywords and other symbols of the language inside quotation marks:
"keywords". All other terms that are used inside a description are to be seen as variables
that can be replaced as explained in each case, and are represented in the description in
italics: variables.

Terms and Facts

Definition 3. A term in a TAMARIN theory is either a variable, a function applied to
terms or a constant function.

Definition 4. The sort structure of terms in TAMARIN.
Every term in TAMARIN is a message. Public messages and fresh messages are subsorts of
the sort message.

A fact in a TAMARIN theory is of the form

name + ||(|| + a,'r‘gs + II)II



where name is the fact name. A fact can have the property of being persistent, in which
case name starts with the symbol !’. Facts are either persistent or linear. A persistent
fact can be consumed repeatedly, as opposed to linear facts, which can only be consumed
once. args is a list of zero or more arguments. The arguments of a fact are terms. In a
TAMARIN theory, if two facts have the same name, they must have the same number of
arguments.

Definition 5. Let F be a fact in a TAMARIN theory. Then name(F) denotes the name
part of F and args(F) denotes the args part of F.

Variables consist of only their names. There are different types of variables. Two
examples are public variables, in which case their names may start with the symbol ‘$’
and fresh variables, in which case their names may start with the symbol ‘~’.

The signature specification

Function declarations consist of the functions keyword, the ¢:’> symbol, followed by a

list of function names with their arities. These are represented in the form
name + "/" + arity

These are the functions that can be used to build terms. They are used inside the facts
of rules and in the equations of the theory. The rules and equations are defined later in
this Section. If a function is used in any fact of a rule or any term of an equation and it
is not already an internally defined TAMARIN function, then it needs to be declared.

Equation declarations consist of the equations keyword, the ‘:’ symbol, followed by
a list of equations. An equation is of the form

term + "=" + term

where term; and terms are both terms.

Built-ins can be words from the following list: signing, symmetric-encryption,
asymmetric-encryption, hashing, diffie-hellman. When a built-in is declared, a list
of corresponding equations and functions are additionally internally declared. Built-ins
are declared following the builtins keyword and a ‘:’ symbol.

The protocol specification

Rules are a TAMARIN construct that is very important for this thesis. They represent
participants’ actions. Rule declarations are of the form

"rule" + name + ":" + I + n[u + left + n]u + n_[u + a + u]_>[n + T’Lght u]

where rule is the TAMARIN keyword that signalizes a rule declaration. name is the name
of the rule. L is either empty or it has the form

"let" + replacements + "in"



In this case, replacements consists of a list of bindings. These bindings are descrip-
tions of syntactic replacements. Starting from bottom-up, one can replace everything in
the left hand side of the bindings with the terms in the right hand sides in the left, a
and right parts of the corresponding rule. The variable a is either empty or it contains
facts, which are only needed for property specifications. Thus, we ignore this part of a
rule. Finally, the 1left and right parts of the rule consist of lists of facts. They may be
of arbitrary length.

There are two special facts in TAMARIN named In and Out. Their arguments represent
input and output respectively. For a meaningful protocol the In facts must always be in
the left part of a rule and the Out facts must be in the right side of a rule.

Definition 6. Let R be a rule in a TAMARIN theory. Then name(R) is the name part of
R, let(R) is the L part of R, left(R) is the 1left part of R and right(R) is the right part
of R.

Definition 7. The names of facts, rules, variables, and functions in TAMARIN can be
chosen from a set of valid names. The set of valid names includes strings composed of
letters, numbers, and the underscore symbol that start with a letter, or one of the following
prefix symbols: {$,!,~}. Aslong as they do not clash with the name of another construct,
names can be chosen freely from this set of valid names.

The protocol execution

To understand how a security protocol can be specified with the previously mentioned
constructs we need to give an intuition of how the rules in TAMARIN execute. As we have
seen the rules have a left and a right side. We can see each rule as a mechanism that, given
the facts in its left side, produces the facts in its right side. The scope of the variables
used in each rule is local to the rule.

In order to be able to talk about the execution of a rule let us consider a set of facts,
which we call general state. This state starts out empty and includes certain facts at a
certain point in time. These are facts that are created by rules and are consumed by other
rules. If they are not persistent they will be removed from the general state at the moment
they are consumed.

The sending and receiving of messages in TAMARIN is achieved by the In and Out
facts. TAMARIN follows a Dolev- Yao model. In such a model the adversary can hear and
intercept every message. Additionally, if her knowledge allows it, she can synthesize the
messages.

Since we are interested in Alice&Bob equivalent protocols, we can assume that when a
message is in an Out fact, the adversary intercepted it and then put it back in the network.
At this point the message can be received inside an In fact.

Consider the set of exchanged messages. Let us call it messages state. Here we have
all messages that were at some point inside an Out fact in the right side of a rule that
was executed. If a rule has an In fact in its left side, it will try to find one of these
messages that matches the form of the term inside that fact. Only then will it have met
its preconditions.

In order to specify a security protocol in TAMARIN we need to create certain rules,
such that their execution is only possible in certain orders. The way we can do this is by
setting up an initial identity fact for each participant in the protocol, which we will call



the initial state of the participant. We have a state for each participant, which can be
thought of as his knowledge at the point of execution of a rule. We update this state after
every rule execution and enforce in this way an order of execution for each set of rules
that belong to a participant. We need to do this, since there are no restrictions on what
order In and Out facts can be produced and consumed and we can not rely on any naming
of messages. It is important to note that in the rule that created the message and in the
rule that is consuming it, the message does not need to look the same to the participants.
Intuitively we can think of it in the following way. The consuming rule has other facts in
its left side, which could be thought of as its knowledge. The rule will thus see a message
and try to express the message in the terms it knows. The other rule, which produced the
message can have another knowledge set, thus has expressed the message in its terms.

Example 1. Let A and B be protocol agents that have participated in the Diffie-Hellman
key exchange protocol. In this protocol both participants agree on a value g and then create
a fresh value each. They send g raised to the power of their fresh value to each other.
Then they can raise the received value to the power of their fresh value and share this way
a secret key. We observe them after this protocol run. A only knows g, z, which is her
fresh value, and v_b, which is the value she received from B. B only knows g, vy, which is
his fresh value, and v_a, which is the value he received from A. Let us assume for the sake
of the example that the participants now send the secret key in the public channel. A has
the message (v_b) "z in the Out fact in her rule. In the messages state, this message will
be the value of g~ (zxy). Say now B has the In fact in his rule telling him he needs the
message (v_a)"y. B can in this case use the value g~ (zxy) from the messages state.

There exist TAMARIN specifications for which there are no equivalent Alice&Bob spec-
ifications. Examples of such specifications can be found in Section 3. We assume that for
an Alice&Bob equivalent protocol the rules which are part of the interaction between the
participants of the protocol are only executed once each per run of the protocol.

2.2 Introduction to extended Alice&Bob

Alice&Bob is a security protocol specification language. It provides an intuitive description
of a communication event between two or more parties. Text-book Alice&Bob specifica-
tions do not include any property specifications. In this thesis we rely on the extended
versions of Alice&Bob, as specified in [2] and [5]. From now on, when we use the term
Alice&Bob, we mean the extended Alice&Bob. These specifications may include an in-
formal Goals section. In this project we are interested in only translating the protocol
specification, thus we do not discuss the goals of a protocol any further.

In an Alice&Bob specification of a protocol there is a fixed number of participants.
These participants are all assumed to have an initial knowledge consisting of their own
identity, public key, and secret key. For a given participant A, these are denoted as
A, pk(A), and sk(A) respectively. In this thesis Alice&Bob is our output language. We use
a different representation of the public key infrastructure. To each participant, we assign
an identifier and another value used for their public and secret keys. Thus, the identity,
the public key, and the secret key of a given participant A is represented as vi4, pk(v24a),
and sk(ve4). Participants may also have additional explicitly declared initial knowledge.
In an Alice&Bob specification the knowledge of each participant is not explicitly declared
in every step of their interaction. It is however assumed that participants expand their
knowledge sets every time they create a new value or receive a message.



An Alice&Bob protocol specification may include a declarations section, a knowledge
section and actions.

Definition 8. Terms in an Alice&Bob protocol specification can either be variables, num-
bers, participants’ names, participants’ knowledge, or functions applied to terms.

The declarations in an Alice&Bob protocol follow the Declarations keyword. Decla-
rations serve to declare all functions that may be used in the protocol. A declaration is of
the form

name + "/" + arity + ";"

Definition 9. Let D be a declaration in an Alice&Bob protocol. Then name(D) is the
name part of D and arity(D) is the arity part of D. name(D) is the name of the function
being declared and arity(D) is its arity.

The knowledge declarations in an Alice&Bob protocol follow the Knowledge keyword.
They are of the form

P + II:II + L%‘st + II;II

where P specifies the name of the participant and 1%st can be a list of terms that comprise
the participant’s initial knowledge.

The actions in an Alice&Bob protocol follow the Actions keyword. A sequence of ac-
tions describes a possible execution of the security protocol; generally, the ideal, successful
scenario. They describe the communication between the participants of the protocol. An
action is of the form

I||:ll + namestep + n]n + Al 4+ N_>n 4 AQ + f’r‘esh + u:u + message + n;n

Definition 10. Let A be an action in an Alice&Bob protocol. Then fresh(A) is the fresh
part of A, message(A) is the message part of A, sender(A) is the 4; part of A, receiver(A)
is the 4y part of A and tag(A) is the nameg,, part of A.

In Alice&Bob, the names used for senders and receivers are identifiers and if a name
is used multiple times in a protocol, it is referring to the same participant. However, our
representation of public key infrastructure implies that the names of participants are not
used inside messages. Instead their assigned identifiers are. In action A, fresh(A) includes
all the new values that are freshly created by sender(A) of the message(A). There can also
be actions were the fresh part is empty.

The messages consist of terms. The used variables are either created as a fresh value
in the current or any of the previous actions, or are elements of the sender’s knowledge
set. The functions can either be functions that are declared in the declarations section or
standard functions, such as hashing, symmetric encryption and decryption, asymmetric
encryption and decryption, exponentiation and multiplication. Note that this list is not
exhaustive.

The variable scopes in an Alice&Bob protocol specification are global, whereas in a
TAMARIN specification the scope of variables is local to each rule.



Example 2. We are referring to Fxample 1. In the Aliceé$Bob specification, A would not
send the message (v-b) "z to B. She would send a message similar to g~ (z+xy). This is the
case, regardless the actual representation of the message that A stores in her knowledge.
Note that A still can not send or use the value y by itself at any point, because she does
not know it.

2.3 Introduction to Maude

Maude is a language and tool based on rewriting logic. One of its functions is formal
verification of properties of a mathematical model. Maude is used by TAMARIN as a
backend for unification modulo equations, which is done in TAMARIN’s protocol analysis.
In this project, we use Maude for its unification modulo equations as well. Note that
Maude version 2.7 is needed.

The Maude module

A Maude module describes a model. The constructs of a Maude module that we need for
our project are the sort, operator, equation and variable declarations.
A sort declaration is of the form

n SOI't n + S + n . n

where sort is the Maude keyword denoting the beginning of a sort declaration. The
S is the name of the sort. A sort defines a type. It is possible to define a subset of a sort
using the subsort construct.

A variable declaration can be of the form

"VaI‘S" + 7] + n . n + sort + n . n

where vars is the Maude keyword denoting the beginning of a variable declaration. The
v part consists of the variable name. The sort part defines the type of the variable. It
must be one of the sort names defined in the module. A variable must only be defined
once in a module.

An operator declaration is of the form

"op" + 0o + ":" + sort] + sorty + ... + sort, + "->" + sort + "."

where op is the Maude keyword denoting the beginning of an operator declaration. The
o part is the name of the operator. n is the arity of the operator. sort; is the sort of
the i-th argument of the operator and sort is the sort the operator returns. An operator
must only be defined once in a module.

One can specify properties of an operator, such as commutativity and associativity by
including the keywords [comm] and [assoc] respectively in the operator’s declaration.

Definition 11. A term in a Maude module is either a variable or an operator application.

An equation declaration is of the form

Iqull + te,r,ml + l|:|| + te,r.mz + n . n



where eq is the Maude keyword denoting the beginning of an equation declaration. term;
and termp are terms. All variables and operators used inside these terms must be de-
clared in the same module. If an equation declaration has the [variant] keyword in it,
the unification command takes that equation into consideration.

The variant unify command

The variant unify command in Maude is of the form
"variant unify" + term + "=7" + termy + "."

where term and termy are terms. The variant unify command is executed within
the context of a module. All operators and variables used inside its terms must be defined
in that module.

Maude tries to unify the two terms modulo the equations in the corresponding module.
Given a supported equational theory, Maude computes a complete set of unifiers, if the
two terms are unifiable.
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3 Converting TAMARIN to extended Alice&Bob

For every Alice&Bob protocol specification there exists a TAMARIN protocol specification.
But the other direction is not necessarily true. There exist TAMARIN specifications for
which there are no equivalent Alice&Bob specifications.

Example 3. Protocols with loops or branches can be specified in TAMARIN, but not in
Alice€$Bob.

There are also other TAMARIN specifications for which there is more than one equivalent
Alice and Bob specification. We are talking about different specifications, considering two
specifications different, if they represent different protocols.

Example 4. Consider a protocol where participant A sends out two different messages.
Participants B and C receive these messages. Depending on which participant receives
which message, we have two different protocol specifications.

This is the case because protocols are specified through rules in TAMARIN and there
is no fixed order of rules. Additionally, rules can be executed multiple times. In an
Alice&Bob specification, there is one clear sequence of actions which specify the protocol.

Thus, for our conversion we need to find at least one possible executable sequence of
rules in TAMARIN and calculate the equivalent Alice&Bob sequence of actions. Finding
this executable sequence of rules is therefore not a trivial problem. To tackle this problem
we create an execution graph, which acts like a guideline for our search for an executable
sequence. We follow different heuristics in order to minimize our search domain. To check
if a sequence of rules is executable, for each rule in the sequence we try to unify facts
that are produced by previous rules with facts that need to be consumed by the current
rule. For this unification we use Maude. Additionally, in a TAMARIN specification it
is not necessarily clear who the participants in the protocol are, while in an Alice&Bob
specification, they are stated clearly in every action. To extract the participants we use
the execution graph and further heuristics.

The conversion from TAMARIN to the extended Alice&Bob protocol specification is
done in three steps. In the first step the input is the input of the project, a TAMARIN theory
file. We parse this TAMARIN input file and save the information relevant for the conversion
in an internal representation. In the second step we use the internal representation to
create an execution graph, test multiple execution sequences and check if they can be
unified using Maude. At the end of this step our output is a successful sequence of rules
and the information on their execution. In the last step we translate such an executable
trace to an Alice&Bob specification and create the respective output file.

We now explain these steps in detail. In order to make this description more intuitive
and clear, we choose a running example, the Diffie-Hellman key exchange protocol.

3.1 Parsing TAMARIN input and the internal representation

In this first step our input is a TAMARIN file and our desired output is the internal repre-
sentation of the protocol constructs. In order to do this we use the two python modules,

text_modifier.py and tamarin_parser.py.
Here we have the TAMARIN file for our Diffie-Hellman protocol. This is a TAMARIN
file generated by the tool [5] that converts A&B specifications to TAMARIN specifications.

11



theory DIFFIE_HELLMAN
begin
functions: pk/1, sk/1, aenc/2, adec/2, g/0
builtins: diffie-hellman, symmetric-encryption
equations:
adec(aenc(x.1, sk(x.2)), pk(x.2)) = x.1,
adec(aenc(x.1, pk(x.2)), sk(x.2)) x.1
rule Asymmetric_key_setup:
[ Fr("f) 1 -—> [ !Sk($A, sk("£)), !Pk($A, pk("£)) ]
rule Publish_public_keys:
[ 'Pk(A, pkA) 1 -—> [ Out(pka) ]
rule Symmetric_key_setup:
[ Fr("symK) 1 --> [ !'Key($A, $B, “symK) ]
rule Init_Knowledge:
[ 'Pk($A, pk(k_A)), 'Pk($B, pk(k_B)), !Sk($A, sk(k_A)),
ISk($B, sk(k_B)) 1]
[ 1->
[ St_init_A($A, sk(k_A), pk(k_A)), St_init_B($B, sk(k_B),
pk(k_B)) 1
// ROLE A
rule dh_1_A:
[ St_init_A(A, sk(k_A), pk(k_A)), Fr("x) ]
-0 1->
[ Out((g() ~ "x)), St_dh_1_A(A, “x, sk(k_A), pk(k_A)) ]
rule dh_2_A:
[ St_dh_1_A(A, x, sk(k_A), pk(k_A)), In(alpha) ]
-—[ 1->
[ St_dh_2_A(A, x, sk(k_A), pk(k_A), alpha) ]
rule dh_3_A:
[ Sst_dh_2_A(A, x, sk(k_A), pk(k_A), alpha), Fr("n) ]
—-[ Secret_key_secret_A((alpha ~ x)),
Secret_key_secretA_A((alpha ~ x)) 1->
[ Out(senc{"n}(alpha ~ x)),
St_dh_3_A(A, "n, x, sk(k_A), pk(k_A), alpha) ]
// ROLE B
rule dh_1_B:
[ St_init_B(B, sk(k_B), pk(k_B)), In(alpha) ]
-—[ 1->
[ St_dh_1_B(B, sk(k_B), pk(k_B), alpha) ]
rule dh_2_B:
[ St_dh_1_B(B, sk(k_B), pk(k_B), alpha), Fr(“y) ]
-[ 1->
[ Out((g() =~ ~y)), St_dh_2_B(B, “y, sk(k_B), pk(k_B), alpha) ]
rule dh_3_B:
[ st_dh_2_B(B, y, sk(k_B), pk(k_B), alpha),
In(senc{n}(alpha ~ y)) 1]
—-[ Secret_key_secret_B((alpha ~ y)),
Secret_key_secretB_B((alpha "~ y)) 1->
[ St_dh_3_B(B, n, y, sk(k_B), pk(k_B), alpha) ]
lemma key_secret:
" not( Ex msg #il #i2 #j
Secret_key_secret_A(msg) @ #il &
Secret_key_secret_B(msg) @ #i2 &
K(msg) @ #j )"
lemma key_secretA:
" not( Ex msg #il #j
Secret_key_secretA_A(msg) @ #il &
K(msg) @ #j )"

12



lemma key_secretB:
" not( Ex msg #il #j .
Secret_key_secretB_B(msg) @ #il &
K(msg) @ #j )"
end

The input to our program is such a TAMARIN file. We first modify this file in such a
way that it is ready to be parsed easily.

3.1.1 Modifying the TAMARIN file

This is what the text_modifier.py does. First of all, it removes all single-line and multi-line
comments. Comments in TAMARIN are C-style. ‘/*’ denotes the beginning of a multi-line
comment and ‘*/’ the end. Multi-line comments allow bracketing. One line comments are
denoted by ‘//’ at their beginning.

The next task is to replace some TAMARIN constructs that would cause problems to
our parsing algorithm, if they were not replaced. These are:
e the list representation: < el,e2,e3,... >
e the infix exponentiation representation
e the functions of the form: func{zl,22,..}(yl).

Notation 1. We use the symbol ‘— "’ in this Section to represent the transformation our
modifier applies. This is not to be mistaken for the type of arrow in the rules of TAMARIN,
the arrow in the actions of Alice€IBob, or the arrow in the operator definitions of Maude.

Instead of a list, we create a function LIST of arity two. This way we can represent a
list of one element as the element itself and a list of multiple elements as a LIST, where
the first argument is the first element of the original list and the second argument is the
function applied to the list containing all the elements except for the first.

Example 5. < el >— el
<el,e2 >—LIST(el,e2)
<el,e2,e3 >—LIST(el,LIST(e2,€3))

We replace the infix representation of exponentiation with the prefix representation,
creating the equally-named function ~ of arity two. The first argument of the function is
the base and the second one is the exponent.

Example 6. b'n — "(b,n)

For the third problem, we replace the representation with one of a function with the
exact same name, which takes two arguments, the first one being the output of the list
replacing function with the list of the terms inside the curly brackets as an argument and
the second one being the term inside the normal brackets. The list of functions we are
supporting this representation for in this thesis is: aenc, senc, sign, adec, sdec.

Example 7. aenc{zl,22}(yl) —aenc(LIST(x1,22),yl)

Next we find all the 1lemma keywords and remove their declarations from our file, since
they may include formal comments, which could cause problems to the parsing algorithm,
because we do not parse this type of comment. As explained earlier, we are not considering
the lemmas in this thesis. We mentioned that we do not consider axioms either. Axioms

13



can however be relevant for the protocol specification. In this thesis we remove them, too,
but warn the user if a protocol specification contains axioms.

Finally we find the end keyword and remove everything that comes after it. We are
now ready to parse the file. This is done by tamarin_parser.py. It takes the modified
TAMARIN input file as input and produces an internal representation.

3.1.2 The internal representation

Let us first explain our internal representation mechanism. The parts we are interested
in, in a TAMARIN file, when the task is to convert it to extended Alice&Bob specification
are the functions, equations, built-ins and the rules, for which it is important to know the
facts of their left and right sides. We also read the Theory name and the file name, but
decide not to parse any other parts of a TAMARIN file.

To represent the previously mentioned constructs we create three types of objects in
our Python implementation: Operators, Rules, and Equations.

Observation 1. The Operators in our internal representation can correspond to both
facts and terms in TAMARIN. The Operators that are found in the array of Operators in
either part of a Rule correspond to facts in TAMARIN. All Operators that are found in the
arguments of Operators and either part of an Equation correspond to terms in TAMARIN.

An Operator has a name, which is a string and arguments, which are also Operators.
The arguments correspond to the arguments of the fact or term in TAMARIN. One can
easily get the arity of the Operator, as well as get and set its name and its arguments.
Each Operator also has a multiplicity and a type. The multiplicity of an Operator is only
relevant for Operators that correspond to facts in TAMARIN. It represents the number
of times in a protocol that the fact appears on the left side of a rule. It is important to
know the multiplicity of these Operators to determine the multiplicity of the Rules they
belong to. This is described in more detail in Section 3.2.1. The type of the Operator is
relevant for Operators that correspond to terms in TAMARIN. It can be a function with
its arity or it can be Nome. This distinction is important when we need to distinguish
between Operators that correspond to function applications and those that correspond to
variables.

A Rule has a name, a left part, a right part, connections and a multiplicity. The name
is a string and it corresponds to the name (R) of a TAMARIN rule R. The left and right parts
are arrays of Operators and respectively correspond to left(R) and right (R). The con-
nections of a Rule are an array of Rules and the multiplicity is an integer. The definitions
and the purpose of the connections and multiplicity can be found in Section 3.2.1.

An Equation only has a first and a second part, both of which are Operators. These
correspond to the two terms of the equation in TAMARIN.

Now that we have explained what our input and output is, we can explain how we
obtain the output from the input.

3.1.3 Parsing the modified TAMARIN file

First we parse the functions. These consist of all functions listed after the functions
keywords. They are represented as a function name, followed by a slash, followed by the
function’s arity. Internally, the functions are represented as an array of tuples. The first
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element of each tuple is the function’s name and the second element of each tuple is the
function’s arity.

Next we parse the built-ins. These we save internally as an array of strings. After
having looked up manually all the functions and equations that belong to a built-in, we
hard-code what the program should do in case such a built-in is in the file. It adds all the
functions to the existing function array and attaches a string consisting of the equations
TAMARIN keyword and the listing of equations to the file. This way we can treat them as
we would any other equations and we do not have to worry about the functions any more.
Note that the diffie-hellman built-in is special. One can specify the equational theory
of other built-ins in a TAMARIN theory file, but not that of diffie-hellman. In the case
of the diffie-hellman built-in, we also need to additionally add an equation to account
for the property:

(ab)c — ab*c.
Except for adding this equation we of course also add the the function * of arity two.

Next, we parse the equations. These consist of a left term, followed by an equal sign,
followed by a right term. These terms are internally represented as Operators. In case
the term is a function, its arguments are the Operator’s arguments and its function name
is the Operator’s name. In case the term is a variable, the corresponding Operator has
the same name as that variable and no arguments. Equations can be found in a listing
after the equations keywords. Internally they are represented as an array of Equations,
the first part of each Equation being the Operator corresponding to its left term and the
second part being the Operator corresponding to its right term.

In order to parse the rules, we first have to add a new rule which is internally existent
in TAMARIN and therefore not in our file. This rule is the Fresh rule. The Fresh rule is
used to create new variables and has no preconditions. Thus it can always be executed. It
is very important in an execution simulation, since as mentioned we start with an empty
state. To account for the missing Fresh rule, we write a string that consists of all necessary
parts of this rule and attach it to the file.

rule Fresh_rule:

0 -—> [Fr("x)]

Finally we parse the rules. To refer to parts of a rule we use Definition 6.

While parsing rule R, we first take care of the potential 1et(R). We conduct the
necessary replacements of terms in both left(R) and right(R). Inside left(R) and
right (R) there can be no, one or multiple facts. Thus we represent these facts internally
as Operators. R is represented as a Rule with name (R) as the Rule’s name, the arrays of
Operators corresponding to the facts from left (R) and right (R) as left and right parts
respectively and for the moment nothing as connections and 0 as multiplicity.

Figure 1 shows a visual representation of a Rule, where the Rule and the Operators
are denoted by their names. In this rule there are two facts in the left side and two in
the right side, which are represented by Operators. All Operators may have a connection
to a list of other Operators. These are their arguments. Note that no Operator has an
Operator that corresponds to a fact as an argument. If an Operator does not have any
arguments it may correspond in TAMARIN to a variable, such as k_A or a unary function,
such as g.

We now have the output of this program section and our internal representation: an
array of rules, an array of functions and an array of equations. We have fully consumed

15



dh 1A
left right

St_init A
i T,

U

] ] ] [
\ \

o L

I
!—I
L

rule dh_1_A:
[ St_init_A(A, sk(k_A), pk(k_A)), Fr("x) 1]
-—[ 1->

[ Out((g() =~ "x)), St_dh_1_A(A, "x, sk(k_A), pk(k_A)) ]

Figure 1: The internal representation of the Rule corresponding to the rule dh_1_A from
the Diffie-Hellman key exchange protocol

the input and from now on we only rely on our internal representation as the input for
our next task: finding an executable sequence of the rules.

There is one last decision we make in this section. We delete all rules which only have
an ‘Out’-Fact on the right hand side and only have persistent facts and/or Fresh facts on
the left hand side. In our example the following is such a rule:

rule Publish_public_keys:
[ 'Pk(A, pkA) ] -—> [ Out(pkAd) ]

In general, these are rules which are not part of the interaction between the participants
of the protocol, since those rules usually have either another fact in their right hand side
to represent the participant’s state at the moment of execution and/or a non-persistent
fact in their left hand side, for the same reason. We do understand that this decision
may affect the solutions for some protocols, but if we do not make it, we will get many
orders as a solution and we will then have to use a heuristic. Since these rules that
should not contribute to an Alice&Bob interaction may be the reason why we even find
an executable ordering of the rules in such a case, we reckon that our chosen heuristic
is safer to use. In the worst case, however, we are removing a rule that was relevant
for the communication between parties and we fail to get a correct equivalent Alice&Bob
specification. An example of such a case is the protocol where participant A only sends
participant B her public key. One can write the TAMARIN specification in such a way that
our heuristic would cause us to remove the rules corresponding to this interaction. More
about this decision can be found in Section 4.3.

3.2 Finding an executable sequence of rules

In this part of the project, our input is the internal representation of rules, equations
and functions, that we created in the previous step. At the end of this step we want our
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output to be a list of rules representing an executable sequence of the rules, a list of all
facts consumed by rule executions, and a list of all facts produced by rule executions.

In order to achieve this, we first create an execution graph. This graph shows us which
rules need to be executed before each given rule and how many times we need to execute
each rule. It also gives us an idea about which rules correspond to different participants
of the protocol and which rules are used for set up purposes. Then we try to run an
execution of different possible sequences of rules. We test if a sequence is executable using
Maude’s unification function. As soon as we find one executable sequence of all rules we
terminate this step. We acknowledge that there may be multiple executable sequences of
rules, but we decide to only consider one.

We explain in detail how we create the graph in Section 3.2.1, how we find an exe-
cutable sequence of all rules in Section 3.2.2, and how we use Maude for the unification in
Section 3.2.3.

3.2.1 Creating the execution graph

This part of the solution is implemented in the module graph_maker.py.

We create a directed acyclic graph. Let us call the graph G, the set of nodes, V(G)
and the set of edges E(G).

The graph’s nodes are Rules. A graph has a connection between R; € V(G) and Ry €
V(G) if there is an Operator in the left side of Ry that has the same name and arity as an
Operator in the right side of R; and if they unify.

Definition 12. Let Ry, Ro € V(G).

(R1,R2) € E(G) <= dF € left(Ry), F’ € right(R;) s.t. name(F) = name(F’),
arity(F) = arity(F’) and the two Operators and their arguments are unifiable, as
checked by Maude.

The graph shows us which rules we potentially need to have already executed in order
to be able to execute a given rule.

We do not consider protocols for which the graph contains cycles any further. Gener-
ally, these protocols do not have equivalent Alice&Bob specifications.

We create .dot files for the graphs and then .png versions of them. Creating these
graphs as an intermediate step is a good way of getting an idea of how the right execution
order of the rules in the protocol looks like. Note that these graphs are created, even in
the cases of protocols for which our program fails to produce an Alice&Bob specification.

An example of such a graph for the Diffie-Hellman key exchange protocol is shown in
Figure 2. Note that in the graphical representation, we denote each node R by name (R)
only, in order to make the graph understandable for a human viewer.

Calculating Rule multiplicities

Building the graph helps us in calculating the Rule connections and multiplicities.

Definition 13. Let R be a Rule. Then connections(R) is the set of all Rules that are
children of node R in the execution graph.

The connections of a rule correspond to the rules which potentially consume facts
produced by the given rule and thus are executed after the given rule. We are ignoring
all In-s and Out-s in this step. We go through the Operators in the right side of a rule
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Asymmetric_key_setup

Symmetric_key_setup

Figure 2: The execution graph of the Diffie-Hellman key exchange protocol

and then check that an Operator with the same name is on the left side of another Rule.
However, we cannot be sure that we can connect the Rules yet. It could happen that there
are two Operators with the same name and arity, but non-unifiable arguments, such as in
Example 8. That is why in order to convince ourselves that the Rules should indeed be
connected, we use Maude and try to find a unifier for the two Operators. If such a unifier
exists we are content for now and without looking more into it, we add a connection.

Example 8. Two TAMARIN facts that have the same name and the same arity, but non-
unifiable arguments:

St_dh(‘1’,<A, sk(k_A), pk(k_A)>)
St_dh(‘2’,<B, sk(k_B), pk(k_B)>)

Strings are constants in TAMARIN and thus are represented as nullary operators, i.e.,
constant operators, in Maude. Therefore, the unification attempt for these two facts is
rightfully unsuccessful in Maude.

Calculating the multiplicity is more complicated, because of the nature of the rules.
There can be multiple facts on each side of a rule and different facts produced by the
same rule could be consumed by different rules or different executions of different rules.
The multiplicity is supposed to tell us how many times a rule needs to be executed for
the protocol specification to be executable. Finding the multiplicity is not trivial. We can
easily calculate an upper bound. Since the multiplicity of a rule denotes the number of
times the rule is executed in an execution simulation, using that upper bound increases
the complexity of finding our solution a lot.
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calculate_multiplicities_of_rules(G):
for each rule R in V(G):
multiplicity = calculate_multiplicity(R)
if multiplicity is O:
multiplicity = 1
multiplicity(R) = multiplicity

calculate_multiplicity(R):
if connections(R) is empty:
multiplicity = O
else:
multiplicity = max([multiplicity(F) | F in second(R)])
for connection C in connections(R):
multiplicity_of_connection = calculate_multiplicity(C)
if multiplicity_of_connection > 1:
multiplicity += multiplicity_of_connection - 1
return multiplicity

Figure 3: The algorithm for calculating multiplicities or rules

Thus, we are making the assumption that a rule that produces the facts Fy, Fo, ..., F,
needs to be executed only as many times as the maximum number of rules having the same
fact F € Fi, Fs, ..., F, as a premise. In order to achieve this, we assign multiplicities
to Operators that correspond to facts. As explained in Section 3.1.2, the multiplicities of
Operators simply denote the number of rules in the TAMARIN specification that have the
corresponding fact in their left side. By additionally using the Rules’ connections, we can
calculate the multiplicity of each rule. This is at least one, since even the rules that have
no connections are potentially executed once. For other rules we first take the maximum
multiplicity of its produced facts and then add to it the multiplicities of all the rules that
are in its connections subtracting one each time.

Let us explain the intuition behind this algorithm. Let R be the rule we are calculating
the multiplicity of. Let F be the fact with the highest multiplicity among the facts that
R produces. Then R needs to be executed at least as many times as the multiplicity of
F, since the multiplicity of F represents how many times F is consumed by other rules.
Since we take the maximum we account for all rules that consume a fact produced in
R being executed once. Additionally, we should take into consideration that each rule
that consumes a fact that R produces has a multiplicity of its own. If such a rule R’
has a multiplicity higher than one, which means it will be executed more than once, we
execute R one less than multiplicity(R’) more times too. The algorithm for calculating
the multiplicities of rules is shown in Figure 3. Note: connections(R) includes every
connection of rule R once.

These multiplicities of rules are in most cases the exact number of times the rule needs
to be executed. They are an upper bound for rules that produce persistent facts and for
different rules that produce the same fact. Having higher than needed multiplicities of
rules does not cause a problem to executability, since the calculations are done bottom
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up. Thus if we overestimated the multiplicity of a rule, the rules that need to be executed
before it will also be executed more times than needed.

With the approach we use, it could happen that the multiplicity for a rule is un-
derestimated. In example 9, we present a setting for which our multiplicity calculation
would most probably hinder executability. We do not observe this setting very often in our
TAMARIN protocol specifications and since it is very often the case that different facts that
are produced by one rule get consumed by multiple rules, we decide to use our approach.
We discuss the calculation of multiplicities of rules once more in Section 4.3.

Example 9. Let Ry be the rule that consumes fact Fi and produces facts Fy and Fs.
Let Ry be the rule that consumes fact Fo and produces fact Fy. Let Rs be the rule that
consumes fact F3 and produces fact Fs.

Ri: N — FQ, F3

RQ: Fg — F4

Rs: F3 — Ij

Let us assume that Fy and F5 are not consumed by any other rule. We calculate the
multiplicities of these rules. The multiplicity of Ro and the multiplicity of Rs are both
1, since they have mo connections. The multiplicity of Ri1 would also be 1, since the
multiplicities of its two produced facts are both 1. It could happen however, that rules Ro
and Rz need instances of Fy and F3 that were created in two different executions of R.
This means essentially that Fo and F3 are unifiable with the facts in the left side of Re and
Rs respectively, but need different unifiers. In such a case the multiplicity of Ry should
have been 2.

Finding the rules that belong to participants

We need to determine at some point which rules are part of the actual interaction between
the participants of the protocol. Let us call these rules interaction rules. We addition-
ally need to determine which rules belong to which participant. We do this based on
information we extract from the execution graph.

First we decide which rules could potentially be interaction rules. Our first clue is that
all these rules contain In or Out facts. Let us call the set of such rules relevant rules. Note
that initialisation rules may also contain Out facts.

Next we cluster the relevant rules. We create a cluster for each participant. Since
we do not consider In-s and Out-s in the graph, we expect rules that belong to different
participants to be unconnected in the graph and rules that belong to the same participant
to be. In case one or more of the relevant rules are initialisation rules, we expect to
only get one cluster. In such a case we topologically sort the rules of the graph and take
the relevant rule that comes first in the topological sort out of the set of relevant rules.
We choose this heuristic, because initialisation rules generally need to be executed before
interaction rules and thus come before interaction rules in a topological sort. Then we start
the clustering procedure from the beginning. At the end we will have multiple clusters of
rules and the union of all the rules in these clusters is the set of interaction rules. Note
that for a protocol with only one participant this approach would cause problems. We do
not consider this case any further, since such protocols are trivial.

3.2.2 Running a successful execution of the protocol

This part of the solution is implemented in the module graph_maker.py.
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In this section we are trying to simulate a successful execution of the protocol. We
tackle this problem in the following way. We test if different sequences of rules are ex-
ecutable. To determine the sequence, we try to guess the right order of execution of
the rules and use our calculated multiplicity to define how many times a rule should be
executed, deciding to perform these executions of the same rule consecutively.

For each given sequence, we start with an initially empty state, represented by an
empty array. We always take the first rule from the sequence and we try to execute it. It
will be executable if there exists a unifier of all the facts in its left hand side with existing
facts in the state. Note that this is a 1-sided unification, which in principle is equivalent
to matching. If a unifier is found, the facts that were in the state are removed from the
state, if they are not persistent facts, and the facts that the rule produces are added to
the state. If we manage to execute all rules in the order they are given in the sequence,
then we had guessed a correct order and we continue with the conversion to Alice&Bob
in the next section. We do not try to find all existing executable orders. If the attempt is
unsuccessful, we try out another order.

Now let us describe this process in detail. We need to explain how we choose the
sequences of rules and how we find a sequence that is executable by running a simulation
of the rules in each sequence.

Choosing the sequences of rules

The execution graph we create gives us a first idea of how the execution order of the rules
might look like. A topological sort of the graph is one such possible rule execution order.

Observation 2. We are talking about a rule order instead of a rule sequence because
a topological sort does not tell us anything about how many times a rule needs to be
executed. That is dealt with by our multiplicity calculations.

Definition 14. Let O and O2 be two different orders of rules. Then O; is equivalent
to Oq if in the execution simulations of both orders the same messages are exchanged
between the same rules through In and Out facts.

For each order of rules we create one sequence of rules.

Definition 15. Let O be an ordering of rules. S is the corresponding sequence of rules,
if all rules have the same relative order in S as in O, and each rule appears in S as many
times as its multiplicity.

Thus for the order:
O = Rl, RQ, ey Rn,
we get the sequence:

S:= Ry, ...,R, Ry ....Ry, .... Rn, ..., Rn .
—_———
multiplicity of R1  multiplicity of Ra multiplicity of Rn

Next, we briefly argue why executing the same rule many times consecutively is a
sound choice. We explained why we execute rules as many times as their multiplicity in
the previous section. Since our graph is a directed acyclic graph, it cannot happen that
different executions of two rules need to be interleaving. The alternative to our approach
would be to only execute rules when they are needed. The important principle that both
these approaches follow is that all facts that are needed for the execution of a rule need
to have been produced beforehand by other rules.
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Since we do not include the connections between In-s and Out-s in the graph, the
topological sorts we get have the rules including them sorted only considering the other
facts of the rules. Thus, our goal at this part is to find all possible topological sorts that
could give us the right execution order, while keeping their number as small as possible.

We want to briefly argue why we use topological sorts.

Observation 3. In a successful execution of all rules we need the following property to
hold: All rules that produce facts which are consumed by a given rule R in a successful
execution, need to be executed before R.

The graph we have built has all the connections between a rule R and all the rules
that produce facts that it consumes in a successful execution. The graph potentially
includes other connections, too, but we are sure that the connections we are referring to
in Observation 3 are a subset of the connections in the graph.

From the definition of a topological sort we know that in a topological sort of our
graph the partial order of the rules is preserved. This way the rules that produce facts
that could later be consumed by other rules come before them in a topological sort. So
do, in particular, also the connections which are part of the successful execution. We
conclude that a real successful execution needs to be a topological sort of the graph.
Hence, considering only such orders saves us time.

Finding one topological order does not suffice. To make this clear, we take the following
example of a topological sort of our Diffie-Hellman example graph.

Example 10. [Fresh_rule, Asymmetric_key_setup, Symmetric_key_setup,
Initial_Knowledge, dh_1_A, dh_2_A, dh_3_A, dh_1_B,

dh_2_B, dh_3_B]

A human can directly notice that this initial topological order is not the one we are look-
ing for, because the rules corresponding to A and the ones corresponding to B are not
interleaved.

At the same time, we do not want to find all possible topological sorts. Finding
one topological sort of a graph is a task that can be solved in O(n?) steps. Finding all
topological sorts, however, is a task that needs O(n™) steps in the worst case. Additionally,
since the algorithm that tests executability of a sequence is costly on its own, especially
when the order being tested is a wrong one, we want to test as few topological orders as
possible. Luckily, we are able to derive all the topological sorts relevant to us if we have
one initially calculated topological sort. Additionally we are able to judge to some extent
how good a topological order is at this point.

We find an initial topological sort and then we make use of the knowledge on interaction
rules. Since finding all topological sorts of a graph is a very hard and resource consuming
task, we interleave the interaction rules and leave the rest of the rules in the same order as
in the first discovered topological sort. Note that the rest of the rules are rules generally
used for initialisation purposes. Thus, it is many times the case that we can permute these
rules and get new topological sorts even if the interaction rules are left in the same order.
These different sorts either all unify or none of them does. This is why we do not consider
them any further.

The interleaving process can be imagined as follows: We find all permutations of
interaction rules. For each permutation we take the rules in the permuted order and
put them back in the places where the rules were found in the original topological sort.

22



Then we only consider the new orders that are topologically sorted. Example 11 shows
all topological sorts we get from one initial topological sort for the Diffie-Hellman key
exchange protocol.

Example 11. From the execution graph of the Diffie-Hellman key exchange protocol in
Figure 2 we can see that one initial topological sort of rules could be the following:

[Fresh_rule, Asymmetric_key_setup, Symmetric_key_setup,
Initial_Knowledge, dh_1_A, dh_2_A, dh_3_A, dh_1_B,
dh_2_B, dh_3_B]

The interaction rules in this example are:
[dh_1_A,dh_2_A,dh_3_A,dh_1_B,dh_2_B,dh_3_B]

We now discuss the new orders of these rules that if placed in the initial topological sort
give us a mew topologically sorted order. These are interleavings of the two sequences:
[dh_1_A,dh_2_A,dh_3_A] and [dh_1_B,dh_2_B,dh_3_B]. The rules inside one sequence must
remain in this relative order to one another in the final sequence. Thus, in this example
we have 6 possible positions for rules and if we choose 3 of them for the rules that belong
to A, there is only one correctly ordered sequence we get. Consequently, we get (g) =20
different new orders.

Considering only these orders instead of all topological sorts is a good start, but we
can do better. We have already determined the rule clusters and we know if a given rule is
a sending and /or receiving rule. A rule is sending if it contains an Out fact and receiving if
it contains an In fact. We observe the ordered list of interaction rules. We decide to only
consider orders for which for all pairs of consecutive rules in the ordered list interaction
rules, if a rule that contains an In fact follows a rule that contains an Out fact, those two
rules are in different clusters.

Example 12. The list of orders that are still relevant after applying our new constraints
i our Diffie-Hellman key exchange protocol.

[dh_1_A,dh_1_B,dh_2_A,dh_2_B,dh_3_A,dh_3_B]
[dh_1_A,dh_1 B,dh_2 B,dh_2_A,dh_3_A,dh_3_B]
[dh_1_A,dh_1_B,dh_2_B,dh_2_A,dh_3_B,dh_3_A]
[dh_1 B,dh_1_A,dh_2 B,dh_2_A,dh_3_A,dh_3_B]
[dh_1_B,dh_1_A,dh_2_B,dh_2_A,dh_3_B,dh_3_A]
[dh_1_B,dh_2 _B,dh_1_A,dh_3_B,dh_2_A,dh_3_A]

There could be an executable order of rules in which the above property does not
apply. In such a case, there exists an equivalent order that respects the above property.
Simulating a successful execution of rules

Now we explain how our unification algorithm works. We create a state. This is an initially
empty array that is later filled with produced facts. Note that all variables in these facts
are assigned to constants. There will at no point be any fact in the state which contains an
unassigned variable, public variables included. This is the case, because we are trying to
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try_to_execute(sequence,state):
if sequence is empty:
executable = True
else:
first_rule = first rule in the sequence
checked_possibilities = )
while I possibility ¢ checked_possibilities:
unifiable, updated_state =
try_to_unify(first_rule,state,checked_possibilities)
if unifiable:
updated_sequence = sequence\first rule
executable =
try_to_execute(updated_sequence,updated_state)
else:
executable = False
checked_possibilities =
checked_possibilities U current unification details
return executable

Figure 4: The algorithm for the execution of a sequence in a state

run a simulation of an execution of rules. Thus, we assume that when a rule is executed,
it produces concrete results.

Here is how we are testing if a sequence is executable. We start with all rules that
have no facts in their left side. These are rules, such as the Fresh rule, which can create
facts without needing to consume anything. We let them execute as many times as their
multiplicity and for each execution we instantiate all created variables with new constants.
These constants, the facts and the functions are converted to Maude notation. More about
this can be found in the next section. We add the newly created facts in our state array.
We want to stress that all facts in the state are in Maude notation. This first step is
always done and is always the same for all the sequences we are testing. The rules that
do not consume any facts can always be executed first, independent of where they appear
in a sequence, since they do not depend on the execution of any other rules.

Then we take the next rule that appears in the sequence we are considering, and try
to unify the facts in its left side with facts that are in the state array. If such a unification
attempt is successful, we temporarily replace the consumed facts from the state array
with the new facts that the rule produces, after having made the necessary substitutions
of its variables. Then we recursively test that the rest of the rules can also be executed
successfully in the given order. If this is the case, then we have found our order and
we are done. We make the changes in the state definite. If the attempt fails, then we
backtrack until we find a solution or until we can conclude that the sequence is simply not
executable.

The algorithm is shown in Figure 4.

It can happen in a sequence that we manage to successfully execute one or more
interaction rules and then fail to execute any further rule. In such a case we backtrack
and try out different executions of previously executed rules. If in this backtracking
procedure we reach an initialisation rule, we decide to stop our execution attempt in order
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to get a shorter runtime. We observe that for most protocols if the initialisation rules are
executed, and the execution fails at some later point, then it is an ordering problem of the
interaction rules. Even if the initialisation rules were not executed as we want them to,
for the right order of the interaction rules the protocol should be able to execute, possibly
with wrong results. But if such an execution can not be run, then we conclude we have
the wrong order of interaction rules.

If a sequence is not executable, we need to test if our next sequence is. This will only
be the case if the next sequence does not start with the same Rg;, Rio, Ri3, ..., Bin
rules as any of the previously tested orders that failed, £ being the order of the failed
order, , being the order of the rule in an execution, for which the unification failed. We
take the maximum depth of execution that was reached for the order. This way we do not
waste time in testing if an order is executable, if we already know it is not. The maximum
denotes the best possible execution attempt for a sequence. It may seem counter-intuitive,
but if we do not take the maximum we risk ignoring sequences that might be executable.
Let us explain this through an example.

Example 13. Let us consider the sequence Ri, Rs, R3, R4, Rs, Rg of 6 rules. Let us
assume that in the execution attempt the unification once failed at rule R3 and once at
rule Ry. Note that the execution attempt indeed failed once at the third rule, but that does
not mean that the rule is not executable at that order. The unification succeeded for that
rule when it failed at the fourth. Consider sequence R1, Ra, Rs, Ry, R4, Rg. This may
be executable, but any sequence that starts with Ry, Ro, Rz, R4 is not.

Next we explain how we determine if there exists a set of facts in the state that can unify
successfully with the facts of the left hand side of a given rule. Our state array includes
at any point in time all facts that were created until that point and not yet consumed
by another rule, and all persistent facts that were created until that point. When we get
a set of new facts, we try to find a subset of the facts in the state that can be used to
instantiate them. If we could unify this subset of facts with the new facts in Maude, then
we understand that the rule we are considering at this moment is indeed executable at this
point in time. This means that the facts that we were able to use for the unification will
be taken out of the state array and the facts in the right side of the considered rule will be
added to the state array, after going through the variable substitution procedure. How we
substitute in this case is different from the case of the rules with empty left sides, because
in this case we need to use the result the Maude unification gives us for the variables that
are used on the left side of the rule. Only if there are other new variables in the right side,
will we apply the same substitution algorithm for them.

The algorithm is shown in Figure 5. For all the facts in the left side of the rule we first
try to unify separately with facts in the state, every time using a fact from the state that is
not yet used. In the case of persistent facts, we first try to unify with the fact that was not
used before, but if that does not work allow the fact to be used twice, as is the case in a
real execution. This is a heuristic we apply in order to avoid the instantiation of different
public variables with the same name. Such public variables are used to represent the
participants’ identities and are often produced inside persistent facts. For this unification
step we first check that the names of the facts are the same, and if that is the case we use
Maude to unify the two facts. If we manage to unify all the facts in the left side of the
rule with facts in the state separately, we use Maude to unify all the facts together. If it
succeeds, we use the substitutions we derive from Maude’s unifier on the facts on the right
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try_to_unify(rule,state,checked_possibilities):
facts = facts in left(rule)
for £ in facts:
find fact f_state in state, s.t. name(f_state) = name(f)
Maude unify f and f_state
backtrack until (able to unify separately for all f-s in facts)
and (the unification is not in checked_possibilities)
Maude unify all facts together
backtrack until able to unify all facts together
if possible:
unifiable = True
apply Maude’s unification in facts to the facts in right(rule)
state = state U facts in right(rule)
for each fact that was unified from state:
if it is not persistent:
remove the fact from state
else:
unifiable = False
return unifiable, state

Figure 5: The algorithm for the unification of facts in a rule with facts in the state

side of the rule. We then add these facts to the state array and remove all non-persistent
consumed facts from the state array. We mark the used persistent facts. If no unifier can
be found, we backtrack and try to find new separate unifiers for the facts in the left side
of the rule.

Finally, we explain how we are substituting for the new variables. In Section 3.2.3, we
mention that after parsing the Maude answer we get as an output a list of variables and
their new assignments. We need to substitute these variables, that were matched in the
left side of a rule, in the terms in the right side of the rule. We sort the list of substitutions
in decreasing order according to the length of the terms that should be substituted. This
way we avoid wrong substitutions of terms that have a name that is included in another
term’s name.

3.2.3 Using Maude

We use Maude both in the creation of the graph, as well as to find an executable sequence
of rules. In both cases we use Maude to test if two or more facts are unifiable. For this
we need to have a Maude module and a unification command. Note that there is only
one Maude module per protocol, but we need to create many unification commands, since
we want to unify facts of different rules and the unifications are dependent on previous
unification results. Finally, we also need to take different actions for different types of
Maude answers.
We use the python module maude_file_maker.py for all Maude-related purposes.
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Creating the Maude module

What we have at this moment is our internal representation. From that we would like to
generate a Maude module. As mentioned in the introduction, every operator or variable
that is used in the unification command needs to be declared in the module. The same goes
for functions and variables used in the equation declarations. Additionally, every type that
is used in the declarations of variables and operators also needs to be declared as a sort in
the module. So we first define our sorts. We observe that there is a distinction in TAMARIN
between facts and functions, but none in Maude. In Maude both these constructs would
be operators. In order to distinguish between them, we define a sort F for facts and a sort
M for functions and variables. Note that functions and variables indeed are supposed to
be of the same sort. Additionally we also define a subsort of M, PVar for public variables.

sort M .

sort F .

sort PVar .
subsort PVar < M .

Next we need to define operators. These correspond to facts and functions in TAMARIN.
We use different prefixes while defining different Maude constructs. These are important
for our conversion to the Alice&Bob specification language later. For now it is important
that we define and use the constructs consistently in Maude. To find all facts we need to
iterate through rules. For a rule R we check left(R) and right (R). For each Operator 0
in left(R) and right (R) we define a Maude operator o
op name(o) : M M ... M — F .

arity(0)
where we prefix the name with "tamX" to avoid name-clashes with Maude keywords:
name (o) = tamX * name(0)

Example 14. Consider the declaration of our example fact St_dh_1_4 in Maude.
op tamXSt-dh-1-A : MMM M -> F .

Note that the underscores have been replaced by dashes. This is a measure we need to take,
since the underscore symbol is a special symbol in Maude. We understand that this may
be an issue for protocol specifications where two constructs have the names a_b and a-b.

There is one case where we do not follow the above procedure and that is the case of
In-s and Out-s. In both these cases the operator declaration is:

op tamXInOut : M > F .

We need to keep in mind that there should be no duplicates of declarations. Thus we
create a definition of an operator for a fact, the first time we come across the fact and
ignore it in the future. Note that if there was a mistake and two facts with the same
name appear twice in the TAMARIN file having two different arities, then in the unification
attempt the number of arguments of one of them will not match the fact declaration
signature, in which case the program exits with an error. Such a file is an invalid input
for TAMARIN as well.
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The other operators that need to be defined are the ones corresponding to functions.
In TAMARIN, functions need to all be declared after the functions keywords or exist
implicitly because of a built-in. There must be no functions that are used as fact arguments
without being defined before. Thus we only go through the functions array to create the
corresponding operator declarations. If a function is then illegally used in a fact without
being declared, we exit with an error at the first occasion where this function appears
in a unification attempt. For every function fun in our functions array, we declare the
following operator in Maude:
op name(o) : M M ... M — M.

arity(fun)

where we prefix the name with "tamX":
name (o) = tamX * name(fun)

Example 15. Two examples of operator declarations corresponding to functions from our
Diffie-Hellman protocol:

op tamXsenc : M M -> M .
op tamXg : > M .

We mentioned before that in the case of the diffie-hellman built-in we addition-
ally need to define a multiplication function and the equation which states the property:
(a®)¢ = a’*¢. This has already been done. What we also need Maude to know is that it
does not matter if we first calculate (a?) and then raise it to the power of c or if we first
calculate (a€) and then raise it to the power of b. We cannot state this as an additional
equation because it will cause an infinite loop in Maude. What we do instead is define the
multiplication function as being commutative.

op prod : M M -> M [comm]

Additionally, we use a special prefix for the list function, which is represented as a
binary operator, and the string function, which is represented as a constant operator.

Next we declare our variables. These can be public variables, for which we use the sort
PVar or non-public variables, for which we use the sort M. Variables can appear for the
first time in equations or rules. In both these cases, in our internal representation, they
will be Operators with no arguments, whose name is not in the list of functions. Thus
we need to go through all equations and all rules and search for all variables. When we
find one we declare it in Maude. Since in TAMARIN variables have a local scope, different
rules or equations may use the same variable names. In our Maude module we want to
acknowledge this and consistently rename the variables to be different. This is done by
prefixing. The definition of a variable v in Maude for each variable V of our internal rep-
resentation is of the form:
vars name(v) : M.
where we prefix the name with "e" or "r", depending on if it is found in an equation or
rule respectively, concatenated with the index of that equation or rule, and "tamX":
name(v) = e * index(E) * tamX * name(V), for non-public variable V inside the equa-
tion E, and
name(v) = r % index(R) * tamX % name (V) for non-public variable V inside the rule R.

For the public variables we follow the same procedure. The only part that is different
is that instead of the sort M, they are declared to have the sort PVar.
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Example 16. Here is an example from our Diffie-Hellman key exchange protocol of the
declarations of two variables of the same name appearing in two different equations.

vars eOtamXx.1 : M .
vars eltamXx.1 : M .

Finally we declare the equations. For that we need to go through all equations in our
equations array and this time create an equation declaration that is very similar to the
one that we parsed from TAMARIN. The main difference is that here we use the newly
defined terms as names of functions and variables. In the case of variables we create the
names in exactly the same way as in the variable declarations. Everything that is not a
variable but is an Operator inside the terms of an Equation is a function.

An equation declaration starts with the eq Maude keyword and for our purposes end
with [variant]. This is necessary in order to be able to unify modulo the equations. If we
do not add the [variant] description, the unification process will ignore the equations.

Example 17. Two examples of equation declarations in Maude corresponding to equa-
tions from our Diffie-Hellman protocol:

TAMARIN version:

adec(aenc(x.1, sk(x.2)), pk(x.2)) = x.1
“(C(x_1, x.3), x.2) = “(x_1, *(x_3,x_2))

Translated Maude version:

eq tamXadec(tamXaenc(eOtamXx.1,tamXsk(eOtamXx.2)) ,tamXpk(eOtamXx.2))
= eOtamXx.1 [variant]

eq tamX~ (tamX~ (e4dtamXx_1,edtamXx_3),edtamXx_2)

= tamX~ (edtamXx_1,prod(edtamXx_3,edtamXx_2)) [variant]

Finally we discuss one last declaration we make in our Maude files. We define two
operators const and constP. Both take a natural number as an argument and respectively
return a construct of sort M, meaning a variable and a construct of sort PVar, meaning a
public variable.

op const : Nat -> M .
op constP : Nat -> PVar .

We need such constants when we try to test if a rule sequence is executable. Whenever we
apply a rule that has a variable in its right side, we want to assign this variable to a fixed
value while keeping track of already set variables. This is the reason for these operators.
Since we need to be able to use new values for new variables, we need to somehow remember
what our already used names were, and having a counter is an efficient way to do that.
Thus our operators take a natural number as an argument. In order to be able to use
natural numbers in a Maude file though, we need to add the following declaration:

protecting NAT .
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Creating the unification command

We create a unification command every time we call Maude for the unification of two
terms. We follow two different approaches based on the nature of the terms we are trying
to unify.

The first time we call Maude is while creating the execution graph. In this case we
need to know if two terms are unifiable. Both terms have unassigned variables in them.
Thus the procedure of rewriting these terms is the same as when we are declaring them.
We use the same prefixes as in the declarations for facts, functions and variables.

The second time we use Maude is while trying to find a successful execution of a
sequence of rules. In this case what we do is essentially matching. One of the terms we
want to unify has no unassigned variables, while the other does. In this case the term with
the assigned variables can be taken as it is, since it is in the desired format and is only
using previously defined Maude operators and variables. This term is taken from the state
and in the state all facts are written in Maude notation. For the other term we follow the
same process as in the first case.

Finally, we explain how the unification command looks like for an attempt of unifying
more than one pair of facts, which we do when trying to find a subset of the terms in the
state that can be unified to all terms in the left side of a rule. In Section 2.3, we already
explained how a unification command is constructed. Here it is once more:
variant unify term; =7 termo
If we need to unify n pairs of facts, it is constructed as a conjunction of queries in the
following way:
variant unify
term;; =7 termjp /\ termg; =7 termge /\ ... /\ term,; =7 termp,

Parsing the Maude answer

When using Maude in creating the execution graph we only want to know if two terms are
unifiable. In that case if the Maude answer includes the string “No unifier”, we conclude
that there exists no unifier and we are done.

When using Maude for unifying two terms in the process of finding an executable
sequence of rules, we need to parse the results inside a unifier and output a list of variables
and their new assignments. Note that there can be multiple unifiers. We are parsing the
information for all of them, but are in this thesis only considering the first one.

There are two different types of unifiers that Maude gives us. For some variables it
unifies with a term where all variables are assigned. In such a case we directly add the
variable and its new assignment in the output list. In the other case, Maude assigns
variables to new variables in the following way. The ‘%’ symbol followed by a number is
the assignment. Its type, one of the predefined sorts, follows after the ¢:’ symbol. Note
that this notation can be the whole assignment or it can be an argument of the assignment.
In such a case we assign new const-s or constP-s, according to the type of each assigned
variable. Finally, we add the original variable and its new assignment in the output list.

3.3 Producing an Alice&Bob specification

This part of the solution is implemented in the module tamarin_to_anb.py.

30



At this point in our project we have found an executable sequence of rules and we
know what facts these rules consumed and produced while being executed. Additionally
we have our graph, our participant clusters and our set of interaction rules as well as a list
of all rules, functions and equations in our internal representation. From this information
we need to produce an Alice&Bob specification. A complete specification consists of
the protocol name, all necessary declarations, the initial knowledge of all parties, and
the actions. We explain how we get the necessary information for each construct in
Section 3.3.1. Note that all the produced and consumed facts are in Maude notation.
Thus, so is in particular also the information we extract for the constructs. How we
transform these terms into Alice&Bob suitable terms is explained in Section 3.3.2.

3.3.1 Extracting information for Alice&Bob constructs

We use the same name for the protocol as the name of the theory in the TAMARIN speci-
fication for consistency. In the case of declarations we decide to declare all functions that
are in our function array in our internal representation. This way we are sure that we
are not leaving any used function undeclared and since Alice&Bob ignores duplicates of
function declarations, we allow these cases.

Example 18. An example of such a case from our Diffie-Hellman protocol example is the
declaration: senc/2. This is a predefined function in Alice€IBob for symmetric encryp-
tion..

Next we determine the participants of the protocol and their initial knowledge. To do
this we make use of our graph and the clusters. From the way we separate clusters, we
know that rules from different clusters are not connected in the graph. We assume for this
thesis that there is an initialisation rule that creates the initial states of all participants.
We can find this rule in the graph in the following way. We search for a rule that has
a connection to the first rule in each cluster. Recall that the rules inside one cluster are
topologically sorted. Additionally, we make sure that the rule we find is not one of the
rules that do not consume any fact, such as the Fresh rule. Finally, we create a new
participant for each fact the rule produces. For the participant names we choose capital
letters in increasing alphabetical order. We get the initial knowledge of the participant
that was created for a given fact from the terms inside that fact.

Example 19. In our Diffie-Hellman key exchange protocol the rule specification in TAMARIN
of the rule that creates the initial states of all participants is the following:

rule Init_Knowledge:
[ 'Pk($A, pk(k_A)), !'Pk($B, pk(k_B)), !Sk($A, sk(k_A)),
1Sk ($B, sk(k_B)) ]
-—-[ 1->
[ St_init_A($A, sk(k_A), pk(k_A)), St_init_B($B, sk(k_B),
pk(k_B)) ]

Thus, we create two participants named after the first two letters of the alphabet: A and
B. Their initial knowledge corresponds to the terms that are inside of the produced facts
corresponding to TAMARIN fact St_init_A and St_init_B respectively. We get:

A : v_0,sk(v_1),pk(v_1);
B : v_2,sk(v_3),pk(v_3);
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Note that v_0 and v_2 correspond to the identities of A and B. In Alice€Bob this knowledge
1s implicit. Fvery participant knows their identity and their public and secret key. We are
not using those in our protocol specifications and use our defined terms instead.

The next step is to assign one of these participant names to each cluster. We do this
through comparing the consumed facts of the first rule of each cluster to the initial states
mentioned above. We assign the same name to the cluster that includes a fact as to the
participant that got the initial knowledge from that fact.

Next we describe how we get all the information we need for the actions. Let us refer
to our definition of an action from our introduction.

II[II + na'mestep + n]n + Al 4+ N>n 4 A2 + f'r*esh + ||:n + message + n;n

We instantiate the variables in an action as described below. The name of all actions
is set to the name of the TAMARIN file and the step is increased for each created action.
We can find the information we need for the messages m and fresh variables £ by searching
through the consumed and created facts. We go through the interaction rules and for each
one that contains an In fact, we know that we should create an action. We can get the
message in that action from the term that is inside the In fact. The fresh part consists of
a list of terms that we can get from terms that are found inside Fr facts in the list of facts
that were consumed by the rule. We mark this rule as a receiving rule. We additionally
make sure that the number of Out facts contained in the interaction rules is the same
as the number of In facts. However, for determining the messages, it is enough to only
take in consideration either the terms that are inside the In or those that are inside the
Out facts. We mark the rules containing the Out facts as sending rules. To determine
the sender and receiver in each action, we find the cluster the sending and receiving rules
belong to. The senders and receivers are the participants assigned to the clusters.

3.3.2 Generating the Alice&Bob notation

We have explained how we get the necessary information to instantiate for every construct
in an Alice&Bob specification. We now explain how we transform the Maude terms into
the terms we use. In our input all the facts that were consumed and produced are in our
Maude notation.

The need for this translation is also a reason why we use the prefixes, such as tamX in
our Maude modules. In this step we can use the knowledge we have about these prefixes
to understand how we should transform each term. We are only interested in terms inside
facts. The fact names do not matter for the Alice&Bob specification writing. Most func-
tions have the tamX prefix. We remove that. That gives us the same function name that
the function originally had in the TAMARIN specification. This is important, because in our
declaration we take the function names directly from our internal representation, where
they have those names, too. Special functions are the function that represents strings
and the function that represents lists. For these two functions we use different prefixes.
We then represent strings in A&B in the usual representation of a term encapsulated in
between two "’ " symbols. For lists we use the A&B notation of terms separated by a dot.
For exponentiation, in order to keep the function in prefix notation and to avoid ambigu-
ities, we rename it from ~ to exp. We also take care of the functions aenc, senc, adec,
sdec, sign. We represent these functions in the following form: func{z1,22,...}(yl).
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Then we transform variables. These are represented as const-s and constP-s in Maude.
We replace them with terms of the form v_i where ¢ is a number. We keep track of all
the mappings of the variables and for every new variable that we transform we increase ¢
by one. We do not distinguish between public and non-public variables any more at this
point, since in our Alice&Bob specification language there is no such distinction.

Finally, this is what our program outputs as an Alice&Bob specification for our Diffie-
Hellman example protocol.

Protocol DIFFIE-HELLMAN:

Declarations:

pk/1, sk/1, aenc/2, adec/2, g/0, fst/1, snd/1, pair/2,
exp/2, sdec/2, senc/2;

Knowledge:

A : v_0,sk(v_1),pk(v_1);

B : v_2,sk(v_3),pk(v_3);

Actions:

[dh_0] A -> B (v_4): exp(g,v_4);

[dh_1] B > A (v_5): exp(g,v_5);

[dh_2] A -> B (v_6): senc{v_6}exp(exp(g, v_5),v_4);
end

All the functions used inside the messages are declared and participants are either using
values that are in their initial knowledge or freshly created ones. We also observe that no
participant is sending any message that cannot be derived from their knowledge at that
point. This specification describes the Diffie-Hellman key exchange with a confirmation
message. We see that A sends g** to B and B sends ¢g”5 to A. If B raises A’s message
to the power of vy and A raises B’s message to the power of vs, they both get the same
value: g"4*¥5. This is their shared secret key. In the last action, A sends the first message
encrypted with the shared secret key.

This is the expected result. Recall that our TAMARIN input was generated auto-
matically by tool [5] from an original Alice&Bob specification, which is shown below for
comparison. More about the differences between this original input and our generated
output can be found in the next section.

Protocol DIFFIE_HELLMAN:
Declarations:
g/0;
Actions:
[dh_1] A > B (x) : g(O)~x;
[dh_2] B -> A (y) : gO0"y;
[dh_3] A -> B (n) : senc{n}(g()~(x*xy));
end

Additionally, our generated specification is indeed easily readable, especially compared
to the original TAMARIN protocol specification.

33



4 Discussion

In this section we discuss some cases for which our tool can convert TAMARIN specifications
to equivalent Alice&Bob ones, as well as discuss the difficulties we face in other cases.

4.1 Working examples

In this section we give examples of protocols converted by our tool. The TAMARIN spec-
ifications for these examples have all been created automatically with the tool [5] that
converts Alice&Bob specifications to TAMARIN specifications, before our tool translates
them back to Alice&Bob. Thus, we can compare our generated specifications with the
original ones.

The first example is a signed version of the Diffie-Hellman key exchange protocol. We
are presenting it, since it includes many different constructs, such as strings, lists, and the
function for asymmetric encryption. In this example we can see how the participants used
their initial knowledge in their messages.

Protocol SIGNED-DIFFIE-HELLMAN:
Declarations:
pk/1, sk/1, aenc/2, adec/2, g/0, fst/1, snd/1, pair/2, exp/2;
Knowledge:
A v _0,v_1,sk(v_2),pk(v_2),pk(v_3);
B : v_0,v_1,sk(v_3),pk(v_2),pk(v_3);
Actions:
[signed_dh_0] A -> B (v_4):
aenc{’One’ . v_0 . v_1 . (exp(g,v_4))}sk(v_2);
[signed_dh_1] B -> A (v_5):
aenc{’Two’ . v_1 . v_0 . (exp(g,v_5))}sk(v_3);
end

This is the original A&B specification, before it was converted to TAMARIN. We have
omitted the Goals section.

Protocol SIGNED_DIFFIE_HELLMAN:
Declarations:
g/0;
Knowledge:
A: pk(B), B;
B: pk(A), A;
Actions:
[dh_1] A -> B (x) : aenc{’One’ . A . B . g(O)"x}sk(A);
[dh_2] B -> A (y) : aenc{’Two’ . B . A . g()"y}sk(B);
end

What we notice is that in our specification, we have more declarations. This is because
some of them are not being used in the messages and some are implicitly declared functions.
The initial knowledge of the participants seems to also be greater in our specification, but
this is because the identity, public key and private key of each participant is implicitly
known in the original Alice&Bob specification. As mentioned in Section 2.2, we choose a
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different representation for our public key infrastructure. Thus we need to specify the name
the participant is known with, and the value they use for their public and private keys. We
observe that both variables v_0 and v_2 correspond to A in the original specification. The
same goes for v_1 and v_3, and B. The exponentiation function is also an implicitly declared
function that is represented as the ‘*’ symbol in infix notation. In our specification we
declare the function exp explicitly and use it in prefix notation. This was also our choice.

The next example is the Alice§&Bob representation of the CR protocol, a challenge-
response protocol.

Protocol CR:

Declarations:

pk/1, sk/1, aenc/2, adec/2, fst/1, h/1, pair/2, snd/1;
Knowledge:

A : v_0,sk(v_1),pk(v_1),pk(v_2);

B : v_3,sk(v_2),pk(v_2);

Actions:

[cr_0] A > B (v_4): aenc{v_4}pk(v_2);

[cr_1] B > A : h(v_4);

end

Here is the original protocol specification in Alice&Bob notation, before it was converted
to Tamarin. We observe the same differences as in the previous example.

Protocol CR:

Knowledge:
C: pk(R);

Actions:
[cri]l] C => R (n) : aenc{n}pk(R);
[cr2] R -> C : h(n);

end

Finally, we have a longer protocol, the ASW fair exchange protocol for contract signing.
It uses asymmetric encryptions and hashing.

Protocol ASW:

Declarations:

pk/1, sk/1, aenc/2, adec/2, fst/1, h/1, pair/2, snd/1;

Knowledge:

A : v 0,v_1,v_2,sk(v_3),pk(v_3),pk(v_4);

B : v_0,v_1,sk(v_4),pk(v_3),pk(v_4);

Actions:

[asw_0] A -> B (v_5): aenc{pk(v_3) . pk(v_4) . v_2 . h(v_5)}sk(v_3);
[asw_1] B -> A (v_6):

aenc{aenc{pk(v_3) . pk(v_4) . v_2 . h(v_5)}sk(v_3) . h(v_6)}sk(v_4);
[asw_2] A -> B : v_5;

[asw_3] B -> A : v_6;

end

The original A&B protocol is shown below.
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Protocol ASW:

Knowledge:
A : m, pk(B), B;
B : pk(A), A;
Actions:

[aswl] A -> B (n_1) : aenc{ pk(A) . pk(B) . m . h(n_1) }sk(A);
[asw2] B -> A (n_2)
aenc{ aenc{pk(A) . pk(B) . m . h(n_1)}sk(A) . h(n_2) }sk(B);
[asw3] A -> B : n_1;
[asw4] B -> A : n_2;

end

We again observe the same differences as in the previous examples.

4.2 Restrictions posed by the solution

There is one main issue that causes our conversion attempt to fail for certain protocols. In
these cases, an executable sequence of rules cannot be found. This happens because of the
assignment of public variables. While testing the executability of a sequence, when using
Maude to unify facts on the left side of a rule with facts that are in the state, we assign
all public variables that are created from a rule to new constants. Thus it happens that a
public variable that represents one participant is assigned to two different constants. This
causes the unification to fail in rules where two facts that include these supposedly equal
variables are found. The issue will become clear in the example below.

Unfortunately, this is the case for the TAMARIN specifications similar to the ones that
can be found in the Tamarin-prover examples directory. Let us call these specifications
"the usual specifications" in this section, as opposed to the "automatic specifications",
which we call the ones that are automatically generated by the Alice&Bob to TAMARIN
tool [5]. There are several differences between these two types of specifications.

There exists a rule that creates the initial states of all participants in the automatic
specifications, and each participant takes that initial knowledge with him in each rule,
modifying it when needed. In the usual specifications, the participants are not given any
explicit initial knowledge, nor do they keep track of their knowledge at a given point. They
can multiple times "forget" their identities and keys and they look them up whenever they
need them in a rule.

We can see this clearly in the execution graphs of these rules. In Figure 2, Section 3.2.1
we have the graph for the Diffie-Hellman key exchange protocol. Its TAMARIN specification
is an automatic specification. We can see how in this graph the node that represents
the Init Knowledge rule has two children, such that the descendants of one child have
no connections to the descendants of the other child. The path of each child and its
descendants represent the rules that correspond to each participant. Some of them are
connected to the Fresh_rule, but none of them is connected to other initialisation rules.
In contrast to that we have in Figure 6 the graph for the NSLPK3 protocol as specified in
the examples directory of the Tamarin-prover. We see the paths of rules in this graph that
correspond to each participant, but all these rules have connections to the initialisation
rules, and not only to the Fresh rule.

The problem with the public variables is caused when two rules create a public variable
that is supposed to represent the same identity and the public variable is assigned to a
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Figure 6: The execution graph for the NSLPK3 protocol, for the specification in the
Tamarin-prover examples directory

constant.

Example 20. Let us examine how this happens in the example specification of the NSLPK3
protocol from the Tamarin-prover examples directory. We show only the two rules that
cause a problem when executed.

rule Register_pk:
[ Fr("1tkAa) ]
-—=>
[ 'Ltk($A, ~1tkA), !'Pk($A, pk("1tkA))], Out(pk(~1ltkA)) ]

rule I_1:
let ml = aenc{’1’, “ni, $I}pkR
in
[ Fr("ni)
, 'Pk($R, pkR)
]
--[ OUT_I_1(ml)
1->
[ Out( m1 )
, St_I_1($I, $R, "ni)
]

The rule Register_pk assigns in one of its evecutions a constant to variable $4, that
1s supposed to represent the identity of participant I. We see however that in rule I_1,
the variable $I, that is also supposed to represent the identity of participant I, appears
in the right side of the rule first. Thus it is not bound and will be assigned to a new
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constant. Further in the execution attempt of other rules it will be impossible to unify the
two different constants to the same term.

One can try to solve this issue the following way. One knows how many participants the
protocol has and can decide to only create that many new public variables. This would
be a possible heuristic, since the public variables are often only used to represent the
participant identities. Then one would need to keep track of all other choices one makes
for the other used public variables. To give an idea of the complexity of this solution, let
us consider a two party protocol where there are n appearances of public variables. The
first two would be assigned to constants. We need to consider that these first two might
need to be the same one, but let us assume we do find the first two different ones. Then
for the remaining n — 2 appearances we have every time two options. Consequently, in
the worst case, the procedure needs O(2") steps. We cannot avoid this, as long as we are
using forward substitution for our unification.

Additionally, we want to point out that for the usual specifications one needs to follow
a different procedure in order to determine the initial knowledge of each participant. We
suggest this is also done in the future. A way to do it would be to set the initial knowledge
of a participant to the union of the terms inside the facts that it consumes and produces,
removing all the terms inside the Fr and In facts.

We also suggest a different approach on the division of rule clusters for the usual
specifications. Our approach on this matter is explained in Section 3.2.1. In such speci-
fications frequently all rules that contain In and Out facts are connected. Our approach
works for certain protocols, but it relies on the fact that initialisation rules come before
the interaction rules in a topological sort and this is not necessarily the case for such
protocols.

4.3 Future work

In this section we present suggestions to improve various aspects of the tool. We already
mentioned three of them in the previous section. Those are very important changes, since
they would expand the set of protocols that can be converted. Other important discussion
topics are presented below.

The rule multiplicities we calculate can be essential to the executability of a protocol.
We mentioned before that we do not calculate the upper bound for the multiplicities, but
try to estimate the exact number of times a rule needs to be executed for a successful run.
As the presented example shows us, this could in some cases be underestimated. We choose
our approach because of the added complexity of finding a unifiable execution of rules that
is caused by setting multiplicities to their upper bound. What one could alternatively
do, is calculate the upper bound and then only execute the rules as many times as our
calculated multiplicity. If no solution is found, one could increase the multiplicities as long
as they do not exceed the upper bound. How the multiplicities are increased remains to
be decided. For executable protocols where the upper bound is an overestimation and our
multiplicities are large enough, finding the solution would take the same amount of steps
as it does now. For non-executable protocols, we would be certain that the multiplicity
was not the reason why the simulation failed, but the complexity of the solution would
increase.

Another decision that could cause problems for certain protocols is taking out the rules
that only have an Out fact in the right side and only have persistent and/or Fresh facts in
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the left side. The problem arises because of the difficulty of automatically differentiating
between Out facts that are necessary for the participant interaction and the Out facts that
are there only to build the knowledge of the adversary. Finding a solution for this problem
is suggested as future work.

One could also decide to find multiple solutions for one protocol and then analyze
them. This would help understand where the solution we find fits in the bigger picture.

Our last remark is on trying to make the solution faster. The part of the solution
that takes the longest to compute is the attempt to execute rule sequences, especially
non-executable ones. One could make use of parallel computing techniques, since the
computation for a sequence is not dependent on that of other sequences. Other ways
of making the program faster include trade-offs. Omne has to apply certain heuristics.
We suggest applying a different heuristic than the current one for the multiplicities of
persistent facts. These facts generally need to have lower multiplicities, since they can be
consumed more than once.
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5 Conclusion

In this project, our goal was to build a tool that converts TAMARIN specifications of
security protocols to Alice&Bob. For a security protocol it is important to know what
messages are exchanged between the participants of the protocol. In TAMARIN these
messages are inside In and Out facts. One also needs to know which participant sends
and receives each message. This in TAMARIN is not explicit. There are however certain
facts that appear in the same rules that have In and Out facts, that seem to include a
participant’s knowledge. These are all parts of the protocol one needs to extract in order
to generate an Alice&Bob specification. We followed a systematic approach and clearly
specified the assumptions we made. First, we extracted every information that is necessary
to understand a TAMARIN specification out of the input file. Then we tried to find an
executable sequence of all rules. The simulation of a successful execution of all rules, gives
one all the needed information on the participants and messages. However, there are many
possible rule sequences, so we needed to get some more information about rule executions.
In order to find one executable sequence of all rules, we first created an execution graph.
This graph shows all the possible dependencies each rule has on other rules and gives
a partial order of rules. Additionally, the graph provides a way to distinguish different
participants in a protocol. We calculated the number of participants from the graph and
determined which rules belong to which participant. We generated sequences that are
most likely to be executable and then run simulations of executions of these sequences of
rules. After finding an executable sequence, we continued with the final step. We created
the Alice&Bob protocol specification. While running the simulation, the rules that were
executed consumed and produced facts. These facts include all the information needed to
generate the output A&B files.

Our tool can successfully convert certain protocol specifications, but fails to convert
others. There is a problem with the way we test if a sequence is executable. Every
time we execute a rule, it consumes facts and produces other facts. We assign all new
variables in the newly produced facts to new constants, public variables included. This
causes problems for certain protocol specifications, if in the simulation of an execution
more values are assigned than needed. We strongly suggest a different approach for this
step as the first improvement to our project.

The tool that converts TAMARIN to Alice&Bob protocol specifications and this thesis
is available at http://www.infsec.ethz.ch/research/software/tamarin.html. The
tool’s input is an .spthy file. One can run the tool with the command: "tamarin to_anb
tamarin_file.spthy". The tool’s output is an .anb file that includes the Alice&Bob
equivalent protocol specification, as well as a .png file that shows the execution graph of
the protocol.
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