How to use the framework

In this document describe how the framework is implemented and how it is
used in practice. Our framework uses the ;/CRL toolset!, LTSmin?, and JFLAP?.

The pCRL toolset allows manipulation of linear process equations (LPEs),
state space generation, simulations, reduction tools, manipulation of labeled tran-
sition systems (LTS). A linear process equation is a process declaration that does
not contain any parallel operators, encapsulations, or hidings. Using the LPE ma-
nipulation tools, we can declare the mid-point process as the parallel composition
of the two end-points and the environment and compute the LPE corresponding
to the mid-point process. Then, we use the state space generation tool to ex-
pand the mid-point’s state space. LTSmin implements the branching bisimulation
reduction algorithm, which we use to minimize the mid-point’s state space. We
implemented a script which transforms the LTS format output by the ;/CRL toolset
into the format that can be input to the JFLAP tool. Using the JFLAP tool, we con-
vert the mid-point to a deterministic finite state machine by applying a standard
algorithm for transforming a non-deterministic finite automaton with silent steps
to a deterministic finite automaton.

In this example, we assume that the protocol, the environment, and all data sort
specifications are stored in a file example.mcrl. We use the mcrl tool to compute
and transform the mid-point’s specification into a linear process equation:

$mcrl —tbf example. mecrl

The mcrl program produces a file example.tbf, which contains the linear pro-
cess equation of the mid-point. It also checks the syntax and the static semantics
of the CRL specifications stored in example.mcrl. Afterwards, the mid-point’s
state space is generated using the instantiator program as follows:

$instantiator example. tbf

The instantiator program outputs a file example.aut. This file describes the
state space of the mid-point. If the mid-point has an infinite state space, one
can use the msim simulator, which interactively simulates a system described by
an LPE, i.e. the example.tbf file. After expanding the state space, it can be
visualized using the CADP toolset*. To minimize the mid-point’s state space,

Ithe uCRL toolset is available at http: //homepages.cwi.nl/~mcrl/
2LTSmin is available at http://fmt .cs.utwente.nl/tools/ltsmin/
3The JFLAP tool is available at http: //www.cs.duke.edu/csed/jflap/
4The CADP toolset can be downloaded at www . inrialpes.fr/vasy/cadp.

we use the LTSmin tool to apply a branching bisimulation reduction on the mid-
point’s state space.

$1tsmin —b —o example_min.aut example. aut

The minimized mid-point’s state space is stored in the example_min.aut file.
To open the mid-point’s specification using the JFL AP tool, we need to transform
the aut representation of the state space to the format accepted by JFLAP. The
JFLAP tool uses a specific jff format as input. The aut to jff transformation is
carried out by a aut2jff.pl perl script, which we implemented. The script is used
as follows:

$perl aut2jff.pl example min.aut example.jff

The example.jff file can be opened in JFLAP and the mid-point’s state ma-
chine can be converted to a deterministic finite state machine using the “Convert
to DFA” function as shown in Figure .

(@ JFLAP : <untitled2 > @ o ®|

File Input Test View Help lz‘
Editor
i iniminize DFA
i PN)
b \l“@“i“ﬁ il [Convert to Grammar
Convert FA to RE -

Combine Automata
Add Trap State 1o DFA

[4]

Figure 1: The JFLAP tool: converting the mid-point’s state machine to a DFA

