
Bachelor’s Thesis

Converting Alice&Bob Protocol
Specifications to Tamarin

Michel Keller
mickell@student.ethz.ch

Supervisor: Dr. Ralf Sasse
Professor: Prof. Dr. David Basin
Issue Date: February 10th, 2014
Submission Date: August 8th, 2014

Abstract

Security protocols are cryptographic protocols that achieve certain properties such as secrecy and
authentication. These properties should be guaranteed even if the security protocol is executed over
an insecure network with potential interference of an adversary. A flaw in such a protocol can have
disastrous impact on both business and civil infrastructure. It is therefore desirable to have formal
proofs of the security goals of a protocol, a task for which automated verification tools are often
used. All of the available verifiers use their own input language for specifying both the protocol and
its desired properties. While this has the advantage that protocol specifications can be tailored to
specific properties of the proving theory, it comes at the cost that using more than one verifier can
be a cumbersome and time-consuming process.

Protocols are often outlined in so-called Alice&Bob notation that describes the messages that
are exchanged between honest principals in successful protocol runs. Alice&Bob notation aims at
brevity and readability, not formal preciseness, and therefore its meaning is usually only clear when
considered in a context. This makes it unsuitable as an input language at first glance. Still, some
researchers have investigated ways of formalizing it and proposed concrete semantics for Alice&Bob
notation.

In this thesis, we present the tool-independent A&B protocol specification language that closely
resembles Alice&Bob notation and is based on the results of previous work. We try to find a balance
between the expressiveness, flexibility and simplicity of Alice&Bob notation and the unambiguous
semantics of other protocol specification languages. In particular, a protocol is usually much shorter
in A&B than in other languages.

Furthermore, we implement a translator that takes A&B protocol specifications and translates
them to the input language of Tamarin. The translator first compiles the A&B input to the
intermediate representation format (IR) that specifies the actions that principals have to take during
a run of the protocol. The IR is designed as a basis for convenient translation to any protocol
specification language. In our case, the IR is then translated to the input language of Tamarin.

Acknowledgements

First and foremost, I would like to thank my supervisor, Dr. Ralf Sasse. His support went far
beyond what I could have expected. The advice he gave in our regular meetings was very valuable
and he managed to keep me motivated during the last six months. His expertise has spared me quite
some research, the write-up is better because of his proof-reading and our discussions were often
enlightening and brought new insights and ideas. His help and dedication has improved the final
result with certainty. Thank you!

I would also like to express my thanks to the Information Security Group at ETH Zurich and
Prof. David Basin in particular for providing me with the opportunity to write this thesis. It has
been a highly interesting topic and I was granted a lot of freedom.

Contents

1 Introduction 7

1.1 Related Work . 7

1.2 Structure . 8

1.3 Contributions . 8

2 The Semantics of Alice&Bob Protocol Specifications 9

2.1 Overview . 9

2.2 Messages and Message Model . 10

2.2.1 Messages . 10

2.2.2 Message Model . 11

2.3 Alice&Bob Notation . 12

2.3.1 Knowledge and Basic Sets . 12

2.3.2 Initial Knowledge . 12

2.3.3 Alice&Bob Protocol Specifications . 13

2.3.4 Notational Conventions . 13

2.4 Capabilities . 14

2.4.1 Synthesization Capabilities . 14

2.4.2 Analysis Capabilities . 16

2.4.3 Ghost Symbols . 16

2.4.4 Multiset Representation of Multiplication and Canonical Form of Messages 17

2.5 Synthesizing Messages . 19

2.5.1 Constructive Form . 19

2.5.2 Division, Left and Right Reduction . 20

2.5.3 Multiplicative and Exponential Terms . 22

2.6 Analyzing Messages . 23

2.7 Checks . 25

2.8 Wrap-up . 26

2.8.1 Actions, Roles and Protocols . 26

2.8.2 Example . 27

3 The A&B Input Language 29

3.1 Basics . 29

3.2 Messages . 29

3.2.1 Operator Precedence . 31

3.2.2 Associativity of Operators . 31

3.2.3 Influencing Operator Precedence and Associativity 31

3.3 Specifying a Protocol . 31

3.3.1 Declaring Functions . 32

3.3.2 Declaring Initial Knowledge . 32

3.3.3 Declaring Message Exchange Steps . 33

3.4 Declaring Security Goals . 33

3.4.1 Overview . 34

3.4.2 Secrecy . 34

3.4.3 Agreement . 35

3.5 Well-formedness Checks . 35

4 The Intermediate Representation Format 37

4.1 Framework . 37

4.2 Representing a Protocol . 38

4.3 Example . 40

5

5 Translation to Tamarin 42
5.1 Tamarin and its Input Language . 42

5.1.1 Messages and Functions . 42
5.1.2 Equations and Built-in Theories . 43
5.1.3 Facts and Rewriting Rules . 43
5.1.4 Lemmas . 44

5.2 Translation from IR to Tamarin . 45
5.2.1 Modeling the Capabilities of Honest Principals . 45
5.2.2 Setting Up the Knowledge . 46
5.2.3 Communication Steps . 47
5.2.4 Security Goals . 48

5.3 Ghost Messages . 49

6 Implementation and Tamarin Output 51
6.1 Outline of the Translator . 51
6.2 Parsing . 51

6.2.1 Parse Trees . 52
6.2.2 Parser . 52

6.3 Rewriter . 53
6.3.1 Representing State . 53
6.3.2 From Parse Tree to Intermediate Representation Format 53

6.4 Well-formedness Checks . 54
6.5 Generation of Tamarin Code . 56

7 Case Study 57
7.1 Intermediate Representation . 57
7.2 Tamarin Output . 58
7.3 Protocol Verification . 60

8 Conclusion 63

Declaration of Originality 64

References 65

A Proofs 66

B Grammar of the A&B Input Language 75

C Intermediate Representation Format 77

D Short Manual for the Translator 78

6

1 Introduction

1 Introduction

In recent years, the amount of data transported over insecure networks such as the internet has increased
enormously and further massive growth can be expected for the time to come. The transmitted data is
often sensitive and protocols that guarantee certain security properties such as integrity and secrecy
of data or authentication of participating entities are therefore widely applied. The correctness of
these protocols is of utmost importance since vulnerabilities can cause severe damage. The design
of security protocols, however, has proven to be a delicate topic. Hundreds of flaws have been discovered
in protocols that used to be widely applied for many years. This has led to the development of a number
of verification theories and automated verification tools such as ProVerif [2], Scyther [4], Maude-NPA [5],
and Tamarin [13] that can handle an ever larger number of protocols. These tools are based on their own
verification theories that come with strengths and weaknesses, and it is therefore often desirable to work
with more than one tool. This can however be a time-consuming process since all of the aforementioned
tools use their own input language. While this allows the specification to be tailored for the internal
verification theory of the concrete tool, it requires that a protocol is specified many times.

It is therefore desirable to have a protocol-independent input language that can be translated to
the input languages of different verification tools. One of the most common ways of describing security
protocols is Alice&Bob notation that specifies a protocol by explicitly stating the message exchange steps
and the involved principals. The following example expresses that Alice sends message to Bob:

Alice→ Bob : message.

Alice&Bob notation is probably the most intuitive, descriptive and readable way of specifying a protocol.
However, the devil is in the details; the meaning of a protocol specification can be ambiguous and
dependent on a context. Several researchers have investigated ways of formalizing the semantics of
Alice&Bob notation and making explicit what is implicit (that is, the context). Caleiro, Viganò and
Basin [3] provide a complete operational semantics based on the spi calculus that formalizes how
principals construct and parse messages and makes explicit what checks can be done by honest principals
for ensuring that there was no involvement of the adversary. They assume a Dolev-Yao style adversary
(we will do the same when generating Tamarin code). Mödersheim [11] provides a more general
approach that is based on a specification of the algebraic properties of the messages that can be used
in a protocol. Their work provides a thorough foundation for devising a concise and tool-independent
protocol specification language that is based on Alice&Bob notation.

1.1 Related Work

Input Languages. All major automated verification tools use their own input language that have
been designed with the verification theory of the tool in mind. Most of these languages look completely
different from Alice&Bob notation at first glance. However, the concepts are often not unlike the core
idea of Alice&Bob notation, namely that communication is modeled by stating the messages that are
sent and received by principals participating in a protocol run. Most input languages do not explicitly
pair sender and receiver as is the case in Alice&Bob notation, though.

In Maude-NPA [5], for instance, protocols are specified by defining strands, a concept very similar
to the roles that we use in this thesis. A strand states a sequence of sending and receiving steps (along
with other information) from the point of view of one participant. Similarly, protocols in Scyther [4]
are specified by explicitly stating which actions (sending, receiving, generation of fresh numbers and
claims of security properties) have to be taken by principals. Scyther-proof [8] is a tool based on a
proof-generating variant [9] of the verification theory underlying Scyther. Its input language uses proper
Alice&Bob-style notation for specifying protocols.

Tamarin’s [13] input language, on the other hand, is based on specifying rewriting rules for multisets
of so-called facts. State is usually expressed with the help of user-defined facts, communication by the
predefined In and Out facts that represent sending and receiving actions; hence, in some sense, Tamarin
also works by stating the sending and receiving actions.

Even if all of the input languages we just discussed have some aspects in common with Alice&Bob
notation, all of them heavily rely on the specification of additional information (such as algebraic
properties and typing rules) that has to be stated explicitly. Mödersheim uses an elegant Alice&Bob-
style language called AnB in a research paper [12] where the algebraic properties of the message model

7

1 Introduction

are assumed to be fixed and consequently do not have to be included in the protocol specification itself.
We try to fuse the different approaches into a more comfortable input language by working with a fixed
message model for honest principals in this thesis (leaving the adversary model unspecified).

Formalization of Alice&Bob Notation. We have indicated that Alice&Bob notation suffers from
ambiguities in many cases and that Caleiro et al. [3] and Mödersheim [11] are among the researchers that
have investigated the semantics of Alice&Bob notation. Let us give a somewhat more detailed overview
of their work here.

Caleiro et al. work with a fixed message model. They first propose the coarse interpretation that
can only cope with a limited number of protocols. Based on the weaknesses of the coarse interpretation,
they then proceed to introduce the fine interpretation that is based on the growing knowledge that
principals have during a run of a protocol. Finally, they provide an operational semantics based on the
spi calculus that makes explicit the actions that a principal has to execute. The most important aspect
of the operational semantics is that it provides the precise checks that a principal has to perform to
ensure that there was no involvement of the adversary.

While Caleiro et al.’s semantics are based on a fixed message model, Mödersheim gives a formalization
of Alice&Bob notation that is defined over an arbitrary algebraic theory. However, his method does not
directly give us the actions that have to be taken by honest principals.

Our semantics of Alice&Bob protocol specifications are based on the work of Caleiro et al. However,
their message model does not contain Diffie-Hellman exponentiation, a feature we would like to include
into our semantics. To do this, we use some of the ideas of Mödersheim.

1.2 Structure

In this thesis, we introduce the Alice&Bob-style A&B protocol specification language and implement a
translator from A&B to the input language of Tamarin.

We first talk about Alice&Bob notation in general. In particular, we specify our message model that
includes Diffie-Hellman exponentiation and introduce and formalize Alice&Bob protocol specifications.

Next, we introduce the A&B protocol specification language that is based on our previous discussion
of Alice&Bob notation. Here, we also introduce the security properties that can be declared in A&B.

We then turn towards the implementation of a translator to the input language of Tamarin. To this
end, we introduce the intermediate representation format (IR) that represents the protocol in a language-
independent way and makes explicit what actions have to be taken by principals. The IR is designed
in such a manner that translation to any protocol specification language (not necessarily Tamarin) is
as straightforward as possible. The actual translator consists of two steps. The first step parses and
analyzes A&B input and generates the IR of the protocol. The second step translates from IR to the
desired output language, in our case the input language of the Tamarin prover.

Finally, we demonstrate the A&B language and its translation to Tamarin by way of a case study.

1.3 Contributions

Summarizing, our contributions are as follows. We introduce and formalize the Alice&Bob-style A&B
language for specifying cryptographic protocols with Diffie-Hellman exponentiation. We present a
language-independent intermediate representation format that is designed as a basis for translation to the
input languages of a wide range of protocol verification tools. What is more, we implement a translator
from A&B to the input language of Tamarin.

8

2 The Semantics of Alice&Bob Protocol Specifications

2 The Semantics of Alice&Bob Protocol Specifications

In this section we discuss and formalize the semantics of Alice&Bob notation. First, we point out some
of the problems that come with Alice&Bob notation and explain the general idea of the formalization.
After that we specify the notation that is used in this thesis and its semantics.

2.1 Overview

In Alice&Bob notation, a protocol is specified as a list of message exchange steps of the form:

A→ B : msg.

Such a protocol specification describes the actions that are performed by honest principals in a successful
protocol run. While this is intuitive, it leaves implicit or even unspecified what happens if a protocol
run is not successful, for example when the message received by B does not match the expected pattern
(this can be due to involvement of the adversary or a transmission error in the network). Moreover, the
actions taken by honest principals can be ambiguous; it is not clear how A can construct the message
msg or what checks B can perform to ensure that the received message has the expected shape. Caleiro,
Viganò and Basin have investigated the semantics of Alice&Bob protocol specifications [3] and provide
an operational semantics based on the spi calculus. The semantics of Alice&Bob notation that we use
in this thesis is based on their work.

(cr1) C → R : {n}apkR
(cr2) R→ C : h(n)

Figure 1: The CR protocol.

Let us give a simple example to demonstrate the problems mentioned above. Consider the CR protocol
specified in Figure 1. At first glance, the meaning of this protocol seems quite clear. The principal in
role C sends the nonce n, asymmetrically encrypted (hence the superscript a) with the public key of R,
and the principal in role R then responds by returning the hash of n. However, this is only an intuitive
interpretation. What the principals have to do in detail is not clear and open to interpretation. In
order to send the message {n}apkR in message exchange step (cr1), (the principal in role) C first needs to
possess {n}apkR. Intuitively, one would assume that C knows both n and pkR and can therefore construct
the message. But this is not stated explicitly; it is possible that the designer of the protocol had in mind
that C knows neither n nor pkR, but only the message {n}apkR as a whole; the specification simply does
not tell. Apart from that, it is also not clear if n actually is a nonce (even though the choice of name
seems to suggest this), and if pkR is the public key of R. The variable n could just as well be a constant,
or a publicly known value (which we would not assume of a nonce).

When writing down a protocol in Alice&Bob notation, one usually does this in a context and provides
explanations that can help a human reader understand the meaning. Since we want to design a protocol
specification language, we cannot allow ambiguities such as in the CR protocol. If we do not want to
narrow the family of protocols that can be expressed with our language, we have to allow the specification
to provide some additional information about the protocol. Therefore, the Alice&Bob notation that we
describe in this section is based on the notion of a knowledge that describes the values (we refer to values
as messages) that are known to a principal at any time during protocol execution. In particular, it is
possible to specify what messages are known to a principal at the very beginning, before the first message
exchange step happens.

Another aspect that is left implicit in the CR protocol is what the principals do with the messages they
receive. If we assume that pkR actually denotes the public key of R and that R knows the corresponding
secret key, skR, then she should extract the value of n by decrypting {n}apkR with this secret key. If
we additionally assume that she does not know n initially, this is the only way she is able to get the
value of n in order to construct h(n) for performing her sending action in (cr2); otherwise, she could
not execute the action. For this reason, we need to formalize what new information can be gained by
analyzing incoming messages based on the knowledge that a principal has. Furthermore, we introduce
the notion of executability that determines if a protocol can be performed by honest principals if there

9

2 The Semantics of Alice&Bob Protocol Specifications

is no adversary interference. Another aspect that we have to consider is what kinds of messages there
are and what capabilities honest principals have when constructing and analyzing messages.

If we return to the receiving action of R at (cr1), then we can see that there is no way for her to
check if the received message was actually sent by C; it might have been changed, replaced or injected
into the network by the adversary. There are situations though, where a principal can detect that the
adversary has fiddled with a message. For instance, C knows n and can hence construct h(n) to check
if the message he receives in (cr2) matches the expected value. If the values do not match, C should
abort protocol execution.

These checks are essential since they can make it impossible for an adversary to attack an otherwise
vulnerable protocol. If we assume a Dolev-Yao adversary model and that the adversary does not know
the secret key of R, then he cannot decrypt the message sent by C and, consequently, if C receives the
expected answer from the network he can be sure that R now possesses the value n.

From the points illustrated by the example above, we can conclude that a formalization of Alice&Bob
notation should be based on the notion of a knowledge that gradually grows during protocol execution,
when new messages are received or fresh numbers are generated. It should explicitly state what
information is stored, how incoming messages are parsed and compared to the existing knowledge and
how messages are composed for sending. Note that Alice&Bob notation is completely independent of
the adversary model. What we need to define is not the capabilities of the adversary but the capabilities
(and, duties) of the honest principals. The adversary capabilities can be independently specified.

In the rest of this section, we provide a complete formalization of Alice&Bob notation which is the
basis for the semantics of the A&B input language and the translation to the intermediate representation
format that follow later.

2.2 Messages and Message Model

The exchange of messages is at the very core of Alice&Bob protocol specifications and before we can
discuss the actual communication, we have to introduce what types of messages we work with in this
thesis and define their properties.

2.2.1 Messages

There are two types of atomic messages: Agent names and numbers. The set of all agent names is
denoted by Agent, the set of numbers by Num. We assume both sets to be infinite which means that
we never run out of fresh symbols. The two sets are disjoint and the set Num contains the symbol 1.
Agent names identify principals that can participate in a protocol run; we assume that all principals are
uniquely defined by such an agent name. Numbers are values that are taken by variables such as n or
pkR in the CR protocol. Furthermore, there is the set Fun of function symbols that is assumed to be
infinite, too. Based on Num, Agent and Fun, we can now define what a message is:

Definition 2.1. A message is defined by the following rules:

� m is a message if m ∈ Agent or m ∈ Num.

� Let m1 and m2 be messages. Then the concatenation of m1 and m2, denoted by 〈m1 . m2〉, is a
message. The angles (‘〈’ and ‘〉’) can be omitted if this does not lead to ambiguities.

� Let m and k be messages. Then the symmetric encryption of m with k, denoted by {m}sk, is a
message.

� Let m and k be messages. Then the asymmetric encryption of m with k, denoted by {m}ak, is a
message.

� Let m be a message. Then the hash of m, denoted by h(m), is a message.

� Let m1 and m2 be messages. Then the multiplication of m1 with m2, denoted by m1 �m2, is a
message.

� Let m1 and m2 be messages. Then the exponentiation of m1 with m2, denoted by mm2
1 , is a

message.

10

2 The Semantics of Alice&Bob Protocol Specifications

� Let m be a message. Then the inverse of m, denoted by m−1, is a message.

� Let m1, . . . ,mi be messages, i ∈ N, and let fun ∈ Fun. Then the application of fun on m1, . . . ,mi,
denoted by fun(m1, . . . ,mi), is a message.

The message 1 is contained in Num but cannot be used in Alice&Bob protocol specifications directly.
Nonetheless, we need it when it comes to synthesizing messages. We denote the set of all messages by
Msgs. We would like to mention here that the Alice&Bob notation that is used in this thesis does not
support the specification of arbitrary inverse messages like 〈m1 . m2〉−1 even though the definition above
is more general and allows such messages. We only work with one public and one private key per role
that are mutual inverses. We have introduced inversion of messages because it allows us to represent the
message model more nicely. Note that this implies that messages can only be encrypted asymmetrically
with public and private keys; general keys just make no sense since such messages cannot be decrypted.

Let us now define which messages are atomic before we move on to the properties of our message
model:

Definition 2.2. A message m is called atomic if m ∈ Agent, or if m ∈ Num.

For instance, the public key pkR, the nonce n and the role names C and R from the CR protocol
above are all atomic messages; {n}apkR and h(n) on the other hand are not atomic.

2.2.2 Message Model

Let us now introduce the empty equational theory S in which two messages are equal if and only if
they have equal shape (that is, if they are syntactically the same). For example, m1 �m2 =S m1 �m2

but m1 �m2 6=S m2 �m1. The examples show that equality by shape does not capture all properties
that we would expect of our messages; for instance, we can assume that Diffie-Hellman multiplication is
commutative. For this reason, we additionally introduce the equational theory M that specifies a more
sophisticated message model. Two messages are equal in equational theory M if they have the same
shape, or if one of the following properties applies:

〈m1 . 〈m2 . m3〉〉 =M 〈〈m1 . m2〉 . m3〉 (1)

{{m}sk}sk =M m (2)

{{m}ak}ak−1 =M m (3)

(k−1)
−1

=M k (4)

m1 �m2 =M m2 �m1 (5)

(m1 �m2)�m3 =M m1 � (m2 �m3) (6)

(mm2
1)

m3 =M mm2�m3
1 (7)

m1 � 1 =M m1 (8)

(m1)
1

=M m1 (9)

1m1 =M 1 (10)

We generalize =M and =S in the natural way for sets. We will use equational theory M for messages in
this thesis. Nonetheless, sometimes we want to make explicit that two messages have equal (or do not
have equal) shape, in which case we use =S or 6=S to emphasize this. We have m1 =S m2 ⇒ m1 =M m2.

In our model, we use the same function for encryption and decryption. Note that there is no explicit
way given for signing messages. This can be achieved by using asymmetric encryption with a secret key.

Concatenation is associative according to property (1). Property (2) expresses that a message m
that is symmetrically encrypted with a key k can be decrypted with that same key k. Property (3)
states that a message m that is asymmetrically encrypted with a key k can be decrypted with the
inverse of that key, k−1. Properties (3) and (4) combined imply that {{m}ak−1}ak =M m, that is, if m
is asymmetrically encrypted with the inverse of key k, then the message can be decrypted with the key
k itself. From now on, we use pk(A) and sk(A) as our notation for the public and the secret key of A
where (sk(A))−1 =M pk(A) holds, and k(A,B) to represent the shared symmetric key of A and B. We
talk about the notational conventions we use in this thesis in more detail in Section 2.3.4

11

2 The Semantics of Alice&Bob Protocol Specifications

Properties (5) and (6) express that multiplication is associative and commutative and property (7)
brings multiplication and exponentiation into a relationship. Note that properties (5) and (7) imply that
(mm2

1)
m3 =M (mm3

1)
m2 , a property that lies at the heart of the Diffie-Hellman key exchange protocol.

The last three properties, (8), (9), and (10) express that the 1 message is the neutral element of
multiplication.

2.3 Alice&Bob Notation

Based on our notion of a message, we can now give a definition of Alice&Bob notation. Before we do
this, however, we would like to talk about the knowledge that a principal has during protocol execution
and, in particular, about the initial knowledge.

2.3.1 Knowledge and Basic Sets

We have indicated at the beginning of this section that the principals need to remember the messages
they acquire during protocol execution. We call the messages that are known to a principal the current
knowledge of that principal. Knowledge is essential when it comes to constructing messages for sending,
analyzing received messages, and performing checks to ensure that there was no involvement of the
adversary.

The knowledge of a principal in general is infinite; if Alice acquires only one message m, she can
immediately form infinitely many messages, for example by concatenating arbitrarily many m. This is no
problem from a mathematical point of view; however, since we need to store this knowledge in memory
when translating from an A&B protocol specification to the intermediate representation format, it is
necessary to have a finite representation. To achieve this, we use basic sets like proposed by Caleiro et
al. [3] to represent the knowledge of the principals that participate in a protocol.

Let us start with an example. Principals get hold of new knowledge either by receiving messages
from the network or by generating new numbers themselves. When Alice receives a new message, she
can analyze it using her current knowledge. Let us assume that she receives the message {m}ask(Bob),
where sk(Bob) denotes the secret key of Bob. If she possesses the public key of Bob, pk(Bob), she
can decrypt the message and obtain m. If she additionally knows sk(B) (which is unlikely in a useful
protocol), she can reconstruct {m}ask(Bob) from m and sk(Bob). In this case, there is no reason for Alice

to store {m}ask(Bob) as a whole since this would not allow her to construct any more messages. If she

does not know sk(Bob), on the other hand, she needs to store both m and {m}ask(Bob) because otherwise,

she would “forget” the value of {m}ask(Bob). The idea behind a basic set is to analyze messages as far
as possible and to store only those messages that are necessary so that we never lose the ability to
construct a message. We have seen that sometimes (in the case of asymmetric encryption), we have to
keep a message even though we can further analyze it (since we cannot reconstruct it otherwise).

Note that messages may be removed from a basic set as it evolves; if Alice does not know sk(Bob) at
first but obtains it some time later, she can remove {m}ask(Bob) since it has become synthesizable from

m and sk(Bob).
We revisit basic sets later when we have defined how messages can be analyzed and constructed and

formalize the intuition given here.

2.3.2 Initial Knowledge

We have seen that the knowledge that principals have is essential for the meaning of an Alice&Bob
protocol specification. It makes sense in almost all situations that all participants know their own name
as well as their own public and private key which is why we define the initial knowledge of a principal
to be:

Definition 2.3. The initial knowledge of a principal in role P is defined to be the basic set corresponding
to the set

χinitP := {P,pk(P), sk(P)} ∪ χexplicitP .

where χexplicitP ⊆Msgs, and χexplicitP needs to be stated explicitly.

12

2 The Semantics of Alice&Bob Protocol Specifications

The initial knowledge is the basic set of messages that a principal knows before he or she performs
any actions, that is, before the first sending or receiving action. From the definition above, we can see
that every participant initially knows his or her own name as well as the public and the secret key.
Additional knowledge is added if χexplicitP is not empty.

One important aspect of the initial knowledge is that it allows honest principals to get hold of
authenticated information. It is a well-known fact that there is no way to construct an authenticated
channel from an insecure network without any initial authenticated information. The purpose of the
CR protocol is for C to authenticate R; this is only possible if C possesses an authenticated copy of the
public key of R so he can be sure that really only R can decrypt the message containing n.

Alice&Bob notation is independent of the adversary model and consequently it does not make sense
to talk about the initial knowledge of the adversary here. Still, in most sensible models (for example a
Dolev-Yao adversary) one can assume that the identities of the honest principals as well as their public
keys are known to the adversary. The A&B protocol specification language that we introduce in the next
section is such that the adversary knows exactly this information in the beginning.

2.3.3 Alice&Bob Protocol Specifications

We can now give a definition of Alice&Bob protocol specifications. Such a protocol specification must
of course contain the message exchange steps that define the communication in the protocol. We have
seen that it is also necessary to include the initial knowledge to achieve a complete specification of the
protocol. Since we have defined the initial knowledge to contain some implicit knowledge, only the
additional knowledge needs to be declared explicitly.

Definition 2.4. An Alice&Bob protocol specification is a pair (Spec,X) where

� Spec is a finite sequence step1, . . . , stepn of message exchange steps, where the message exchange
step stept, t ∈ {1..n}, has the form

(labelt) S → R (n1, . . . , nv) : M,

where R and S are distinct role names (symbols from Agent) and n1, . . . , nv are distinct variable
names. labelt is a unique name given to this message exchange step and M is a message.

� X is a mapping Agent→Msgs from role names to sets of messages representing the explicit initial
knowledge of that role in the protocol, that is, X(P) = χexplicitP .

Note that we require fresh numbers (n1, . . . , nv) to be stated explicitly. They are assumed to be
generated randomly by the sender at the beginning of the step, before the message is constructed and
sent. This information is redundant in some sense; since we know the initial knowledge, we can find out if
a number is fresh. Nonetheless, we have decided to state fresh numbers explicitly to improve readability
and it should also help prevent errors.

The definition says that the fresh numbers need to have distinct variable names. This does not only
include the current message exchange step, but the complete protocol. No two fresh variables with the
same name must appear in a protocol, nor must a variable that appears in the initial knowledge of a
principal be redefined as a fresh variable. What is more, a fresh variable name should not coincide with
any role name.

The labels have no special purpose, they are there for reference and we omit them in many cases.
Also, we drop the parentheses enclosing the fresh variable names if there are none.

2.3.4 Notational Conventions

Alice&Bob protocol specifications rely heavily on implicit notational conventions. In the CR example
at the very beginning of this section, the public key of R was denoted by pkR and n indicated that the
value was a nonce.

Another example that demonstrates this nicely is the sample implementation of the (flawed) NSPK
protocol for ProVerif [7]. While ProVerif does not use Alice&Bob-like notation, many examples contain
comments with the protocol in Alice&Bob notation to improve readability. The first two messages
exchange steps are denoted as follows:

13

2 The Semantics of Alice&Bob Protocol Specifications

Message 1: A -> S : (A, B)
Message 2: S -> A : { pkB, B }skS

It is implicitly clear that pkB denotes the public key of B and skS the secret key of S. There is also
no need to explicitly mention that S is the server and A and B are clients. We need to be a little bit
more formal to achieve a computer-interpretable input language, but notational conventions and some
short-hands help keep our Alice&Bob notation compact and still precise.

We work with the following notational conventions on messages with regard to an Alice&Bob protocol
specification in this thesis:

� Variables representing numbers (elements from the set Num) are denoted by lower case letters,
where subscripts may be added. For example, n in message exchange step (cr1) in Figure 1 on
page 9 represents a number. Other variable names that we use include m1,m2, a, and b.

� Variables representing principals (elements from the set Agent) are denoted by the name of the
corresponding role. Role names (and hence variable names representing principals) are denoted as
a single capital letter. In the following example the principal in role A sends her own name to the
principal in role B.

A→ B : A.

Note that the ‘A’ before the colon denotes the name of a role while the ‘A’ after the colon denotes
the name of the principal that executes role A during a execution of the protocol.

� Constant numbers (the same in every run) are denoted as strings in single quotes. In the following
example, the principal in role A sends the constant string ‘Hello!’ to the principal in role B:

A→ B : ‘Hello!’.

Constants are taken from the set Num. Note that constants are de-facto public because they
are the same in every run of the protocol (in the spirit of Kerckhoffs, we usually assume that all
principals, including the adversary, know the complete protocol specification).

� The secret key of the principal in role A is denoted by sk(A), the corresponding public key is
defined as (sk(A))−1 and denoted by pk(A).

� The shared symmetric key of the principals in the roles A and B is denoted by k(A,B).

� M denotes any message, where subscripts may be added.

It is important to note that symmetric, public and private keys are atomic, that is, pk(A), sk(A)
and k(A,B) are atomic messages for any A and B.

2.4 Capabilities

We can now talk about how principals can construct messages for sending or analyze newly obtained
messages based on their knowledge. We introduce what capabilities honest principals have when working
with messages and point out some of the challenges that have to be met, in particular when it comes to
constructing messages. We are working towards an automated translator and therefore design our model
in such a way that it can later be turned into a computer program in a straightforward way.

2.4.1 Synthesization Capabilities

When performing a sending action, a principal first generates the fresh numbers and adds them to
his knowledge. After that, he constructs the message (i.e., the fresh values can be used immediately).
Messages are constructed by concatenation, symmetric and asymmetric encryption, hashing, function
application, exponentiation and multiplication. We now define the set of messages that a principal can
construct from his knowledge.

14

2 The Semantics of Alice&Bob Protocol Specifications

(dh1) A→ B (g, a) : 〈g . ga〉
(dh2) B → A (b) : gb

(dh3) A→ B (n) : {n}sga�b
Figure 2: The Diffie-Hellman key exchange protocol. The principals have no additional initial knowledge.

Definition 2.5. Let χ be a set of messages. The set synth(χ) is the least superset closed under the rules

m1 m2
Sconcat 〈m1 . m2〉

m1 m2
Saenc {m1}am2

m1 m2
Ssenc {m1}sm2

fi(·) m1 ... mi
Sappl

fi(m1, . . . ,mi)
m1 m2

Sexp
mm2

1

m1 m2
Smul

(m1 �m2)

m1
Shash

h(m1)

where m1 and m2 are messages and fi is a function symbol. We denote manifold application of synth(.)
to a set of messages by synth∗(.).

The above definition formalizes which messages a principal can construct. Note that in our model,
principals cannot construct inverse messages; all inverse messages that appear in a protocol need to have
been in the initial knowledge of a principal. This goes nicely with the restriction that we only allow
public and private keys of the form pk(P) and sk(P) for asymmetric encryption. Since a principal knows
his own public and private key implicitly via his knowledge, they are in the system automatically.

We would now like to point out some of the challenges we have to master when formalizing
explicitly how a message can be constructed. Let the knowledge of A be the standard knowledge of
{sk(A),pk(A), A}. From the rules above, we know that she can execute the action

A→ B (n) : {n}ask(A)

by constructing the message by applying the rule Saenc to n (generated before the construction step)
and sk(A).

However, it is not always so clear how a message can be constructed from the current knowledge. Let
us take the well-known Diffie-Hellman key exchange protocol for another example. A modified version
of it is listed in Figure 2.

In message exchange step (dh1), A randomly chooses the generator g and her private number a and
then sends both g and ga to B. B receives these numbers and randomly generates his own private
number, b, in (dh2), and returns gb.

A now possesses gb and a and can therefore compute (gb)
a

while b possesses ga and b from which

(ga)
b

can be computed. With the properties (6) and (7) from our message model we can conclude that

(ga)
b (7)

=M ga�b
(6)

=M gb�a
(7)

=M (gb)
a
, in other words, both A and B know ga�b. Therefore, it is now

possible for A to execute the sending action of (dh3) by generating the new secret number n and then
symmetrically encrypt it with (gb)

a
. At the receiving side, B can extract n by decrypting the message

with key (ga)
b
.

We can conclude from the Diffie-Hellman protocol that it is not sufficient to compare messages by
pattern matching (equational theory S), we also have to take the message model (equational theory M)
into account. This is because the synthesis rules are based on pattern matching while equational theory
M specifies that messages can be equal even if they do not have the same shape. We have to discuss
how we can determine if a message is constructible from the current knowledge, where we work with
=M , and, if the message is constructible, how it can by synthesized. The view that a principal has of
synthesizing a message given the current knowledge is expressed by the constructive form that we will
soon introduce.

Before we continue, let us give the definition of the basic set property that we promised earlier:

15

2 The Semantics of Alice&Bob Protocol Specifications

Definition 2.6. A set of messages χ is called a basic set if for all m ∈ χ we have m /∈M synth∗(χ\{m}).

In other words, a set is a basic set if no message in the set can be synthesized from the other messages
in the set and m is therefore not redundant information. The following proposition states that basic sets
are unique.

Proposition 2.7. Let χ1 and χ2 be sets of messages and let χ′1 and χ′2 be basic sets with synth∗(χ1) =M

synth∗(χ′1) and synth∗(χ2) =M synth∗(χ′2). Then synth∗(χ1) =M synth∗(χ2) if and only if χ′1 =M χ′2.

We provide proof sketches for the propositions we state in this thesis in Appendix A. In these we
argue why the statements we make are correct. However, we do not give formal proofs.

Proposition 2.7 provides us with a way for comparing sets of messages. We have mentioned that
in the typical case, the knowledge is infinite and have introduced basic sets as a finite representation.
Proposition 2.7 tells us that this representation is unique and consequently we can compare knowledge
by representing it as basic sets and then comparing the individual elements. We will later show that
there is a basic set representation for every set of messages and provide an explicit way of constructing
it.

2.4.2 Analysis Capabilities

When a principal receives a message from the network, he or she often not only learns the message itself,
but can also extract more information, for example by taking concatenated messages apart or decrypting
a message when he knows the corresponding key. Principals have the following analysis capabilities:

Definition 2.8. Let χ be a set of messages. The set analyze(χ) is the least superset of M closed under
the rules

{m1}sm2
m2

Asenc m1

{m1}am2
m−12

Aaenc1 m1

{m1}am−1
2

m2

Aaenc2 m1

〈m1 . m2〉
Aconcat1 m1

〈m1 . m2〉
Aconcat2 m2

where m1 and m2 are arbitrary messages. We denote manifold application of analyze(.) to a set of
messages by analyze∗(.).

Let us again demonstrate some of the rules above on the Diffie-Hellman protocol to point out a few of
the aspects we have to take into consideration when giving a more explicit description of how principals
analyze messages. In message exchange step (dh1), B receives 〈g . ga〉 on which he can apply the rule
Aconcat1 to extract g and Aconcat2 to learn ga. He can then try to analyze ga even further to
extract a too. However, there is no rule for this (honest principals can of course not solve the discrete
logarithm problem).

In (dh3), B receives {n}sga�b ; he can obtain n by decrypting it with the key ga�b. We have shown
above that he can construct this message from the knowledge he has at that time. We can see here that
synthesis and analysis of messages are not at all independent of each other but may be intertwined; it
may well be necessary to synthesize a message in order to analyze another message. This leads to the
following definition:

Definition 2.9. Let χ be a set of messages. The least superset of χ that is closed under both the analysis
and the synthesis rules is denoted by close(χ).

2.4.3 Ghost Symbols

Let us stay with the last message exchange step of the Diffie-Hellman key exchange protocol in Figure 2
yet a little longer. There, A has to construct the message (gb)

a
. In step (dh2), A received gb from B.

Since we assume that honest principals cannot solve the discrete logarithm problem (that is, the analysis
rules we have defined do not provide honest principals this capability), there is no way for A to get hold

16

2 The Semantics of Alice&Bob Protocol Specifications

of b and therefore, the knowledge of A (a basic set) contains the message gb. A can then construct (gb)
a

by taking gb to the power of a.
From (gb)

a
alone, however, we cannot read off how A constructs the message. A could just as well

possess g, a and b and compose the message by first taking g to the power of b and taking the resulting
message to the power of a. As a remedy for this ambiguity, we introduce the ghost abstraction. From
now on, we write every non-atomic message M that occurs in the knowledge of a principal as γM , where
γ is called the ghost symbol. Using this notation, the message that is sent by A would be represented as
(γgb)

a
. This tells us that A possesses γgb and a and constructs (gb)

a
by calculating the exponentiation

of γgb with a. The purpose of ghost abstraction is to express how a message can be constructed, it does
not change the message itself. Therefore, we have for every message M that M =S γM .

Caleiro et al. [3] use a very similar construct of the same name. However, ghost symbols are used in
a slightly different manner in this thesis since we additionally work with a more complex message model.

2.4.4 Multiset Representation of Multiplication and Canonical Form of Messages

We have indicated that we cannot work with pattern matching alone when it comes to synthesizing
and analyzing messages but have to include the equality properties of our message model as well. We
tackle this challenge by introducing a canonical form for messages. First, we note that multiplication is
both associative and commutative. In other words, the order in which the terms are multiplied does not
matter at all and it is consequently sufficient to know which terms are to be multiplied with one another.
We exploit this property by using a multiset representation for multiplication from now on in this thesis.
This multiset representation is also used in our data structure for protocols in the implementation of
the translator. Let us illustrate this with an example. Suppose, the message (a � (b � c)) � a appears
somewhere in a protocol. We represent this as �{|a, a, b, c|}, where {|.|} denotes a multiset. This multiset
representation works very well with properties (5) and (6), namely commutativity and associativity of
multiplication.

Note that in multisets the multiplicity of an element matters ({|a|} 6= {|a, a|}) while the order in which
the elements are listed does not matter ({|a, b|} = {|b, a|}). Equality with respect to equational theories S
and M is extended to multisets in the natural way . For example, we have {|a, a� 1, 1� a|} 6=S {|a, a, a|}
but {|a, a� 1, 1� a|} =M {|a, a, a|}.

To cope with the exponentiation property (7), we require that all messages of the form (ab)c are

written as ab�c. Using these conventions, we write all of (ab)
c�d

, ((ab)
c
)
d
, and ((ad)

b
)
c

as a�{|b,c,d|},
making obvious that they are equal.

Let us now formalize this.

Definition 2.10. A message m is in its canonical form if and only if any of the following holds:

� m is an atomic message.

� m has the shape 〈m1 . m2〉 and both m1 and m2 are in canonical form and m1 is no concatenation
(i.e., concatenation is represented in a right-associated way).

� m has the shape {m1}am2
and both m1 and m2 are in canonical form and m1 does not have the

shape {m3}am4
with m4 the inverse message of m2 (e.i., no asymmetric encryptions that cancel

each other).

� m has the shape {m1}sm2
and both m1 and m2 are in canonical form and m1 does not have the

shape {m3}sm2
(i.e., no symmetric encryptions that cancel each other).

� m has the shape h(m1) and m1 is in canonical form.

� m has the shape foo(m1, . . . ,mi), i ≥ 0, for a function symbol foo, and all m1, . . . ,mi are in
canonical form.

� m has the shape �{|m1, . . . ,mi|}, i ≥ 2, and all m1, . . . ,mi are in canonical form and none of
m1, . . . ,mi is a multiplicative term or equal to the message 1 (in equational theory M).

� m has the shape m1
m2 and both m1 and m2 are in canonical form and m1 is no exponential message

and neither m1 =M 1 nor m2 =M 1.

17

2 The Semantics of Alice&Bob Protocol Specifications

� m has the shape m−11 and m1 does not have the shape m−12 (i.e., no double inversion).

Note that the multiset representation of multiplication is required to involve at least two terms. The
term �{|m|} is therefore illegal and has to be represented as m.

We have demonstrated above that (ab)
c�d

, ((ab)
c
)
d
, and ((ad)

b
)
c

all have the same canonical form
a�{|b,c,d|}. In general, the following procedure can be applied to transform any message m into its
canonical form canonical(m), where we assume that no empty multiplications (�{||}) occur:

� canonical(m) = m if m is atomic.

� canonical(〈m1 . m2〉) = canonical(〈m′1 . 〈m′′1 . m2〉〉) if m1 =S 〈m′1 . m′′1〉, else
canonical(〈m1 . m2〉) = 〈canonical(m1) . canonical(m2)〉.

� canonical({m}ak) = canonical(m′) if m =S {m′}ak′ and k−1 =M k′, else
canonical({m}ak) = {canonical(m)}acanonical(k).

� canonical({m}sk) = canonical(m′) if m =S {m′}sk′ and k =M k′, else
canonical({m}sk) = {canonical(m)}scanonical(k).

� canonical(h(m)) = h(canonical(m)).

� canonical(foo(m1, . . . ,mi)) = foo(canonical(m1), . . . , canonical(mi)).

� canonical(�{|m|}) = canonical(m), else
canonical(�{|m1, . . . ,mj−1,mj ,mj+1, . . . ,mi|}) = canonical(�{|m1, . . . ,mj−1,mj+1, . . . ,mi|}) if
mj =M 1 (note that this gets repeated until there are no more 1 factors or only one single factor
remains), else
canonical(�{|m1, . . . ,mj−1,mj ,mj+1, . . . ,mi|}) = canonical(�{|m1, . . . ,mj−1,m

1
j , . . . ,m

k
j ,mj+1,

. . . ,mi|}) if mj =S �{|m1
j , . . . ,m

k
j |} (note that this gets repeated until there are no more

multiplicative factors or only one single factor remains), else
canonical(�{|m1, . . . ,mi|}) = �{|canonical(m1), . . . , canonical(mi)|}.

� canonical(mm2
1) = canonical(m1) if m2 =M 1, else

canonical(mm2
1) = 1 if m1 =M 1, else

canonical(mm2
1) = canonical((m′1)

�{|m′′1 ,m2|}) if m1 =S (m′1)
m′′1 , else

canonical(mm2
1) = canonical(m1)canonical(m2).

� canonical(m−1) = canonical(m′) if m =S (m′)
−1

, else
canonical(m−1) = (canonical(m))−1.

The most interesting aspect here is how we transform a multiplicative message into its canonical
form. We have defined that a multiplicative message must not contain a message that is equal to
the message 1. However, we cannot just remove all the messages that are 1 from a multiplication.
Consider the message �{|1, 1|}. If we just removed all of the 1-messages, we would get �{||}, the empty
multiplication which is no legal message. For this reason, the above definition only removes one 1 at a
time, leading to the evaluation chain canonical(�{|1, 1|}) = canonical(�{|1|}) = canonical(1) = 1. It is
important to note that the check if a message is equal to 1 is performed on the canonical form of that
message. For example, canonical({{11}apk(A)}

a
sk(A)) = canonical(11) = canonical(1) = 1 and therefore

canonical(�{|{{11}apk(A)}
a
sk(A), 1|}) = canonical(�{|1|}) = canonical(1) = 1.

The canonical form and the function canonical are very useful when it comes to implementing the
translator. Therefore, we would like to state a few properties of them explicitly and investigate how they
are related. Let us start with the following lemma:

Lemma 2.11. Let m be an arbitrary message. Then canonical(m) is in canonical form and
canonical(m) =M m.

We can further show that the canonical form is unique:

Lemma 2.12. Let m be an arbitrary message. Then the canonical form of m exists and is unique, i.e.,
there is exactly one message m′ in canonical form such that m =M m′.

18

2 The Semantics of Alice&Bob Protocol Specifications

The following is a direct corollary of Propositions 2.11 and 2.12.

Proposition 2.13. Let m1 and m2 be messages. We have m1 =M m2 if and only if canonical(m1) =S

canonical(m2).

As a consequence, we can compare messages by pattern matching if they are in canonical form. This
significantly simplifies matters when implementing the translator.

2.5 Synthesizing Messages

We can now state explicitly how messages are constructed by principals. We first introduce the
constructive form that represents the view that a principal has of synthesizing a message, given his or
her knowledge. The most challenging part here is how we can synthesize multiplicative and exponential
messages with respect to the equational theory M . The canonical form of messages simplifies this
significantly.

2.5.1 Constructive Form

Caleiro et al. [3] provide operational semantics for Alice&Bob protocol specifications that are based on
the spi calculus. In this context, they introduce the constructive form that describes how a message can
be constructed from the current knowledge. We take up the same idea here, even though we have to adapt
it a little bit since our message model is more complex. Furthermore, our version of the constructive
form is not defined if the message cannot be constructed.

We have already introduced the basic idea behind the constructive form in the section about ghost
symbols. It is based on the current knowledge of a principal and tells us the view he or she has of
constructing that message.

Definition 2.14. Let χ be a set of messages (usually, but not necessarily a basic set) with synth∗(χ) =M

close(χ) and let m be a message represented in canonical form. The constructive form cfχ(m) is the view
that a principal has of constructing m from knowledge χ. It is defined as follows (constrMultTermχ

and constrExpTermχ are defined later in Section 2.5.3):

� cfχ(m) = m, if m is atomic and m ∈S χ, else
cfχ(m) is undefined.

� cfχ(〈m1 . m2〉) = 〈cfχ(m1) . cfχ(m2)〉 if cfχ(m1) and cfχ(m2) are defined, else
cfχ(〈m1 . m2〉) is undefined.

� cfχ({m1}am2
) = {cfχ(m1)}acfχ(m2)

if cfχ(m1) and cfχ(m2) are defined, else

cfχ({m1}am2
) = γm with m =S {m1}am2

if m ∈S χ, else
cfχ({m1}am2

) is undefined.

� cfχ({m1}sm2
) = {cfχ(m1)}scfχ(m2)

if cfχ(m1) and cfχ(m2) are defined, else

cfχ({m1}sm2
) = γm with m =S {m1}sm2

if m ∈S χ, else
cfχ({m1}sm2

) is undefined.

� cfχ(h(m1)) = h(cfχ(m1)) if cfχ(m1) is defined, else
cfχ(h(m1)) = γm with m =S h(m1) if m ∈S χ, else
cfχ(h(m1)) is undefined.

� cfχ(fun(m1, . . . ,mi)) = fun(cfχ(m1), . . . , cfχ(mi)) if cfχ(m1), . . . , cfχ(mi)
are defined, else
cfχ(fun(m1, . . . ,mi)) = γm with m =S fun(m1, . . . ,mi) if m ∈S χ, else
cfχ(fun(m1, . . . ,mi)) is undefined.

� cfχ(�{|m1, . . . ,mi|}) = constrMultTermχ(�{|m1, . . . ,mi|}).

� cfχ(mm2
1) = constrExpTermχ(mm2

1)

We call a message m synthesizable from knowledge χ whenever cfχ(m) is defined.

19

2 The Semantics of Alice&Bob Protocol Specifications

This deserves some explanation. The constructive form is defined exactly when the message can be
constructed. Atomic messages cannot be constructed from other messages and hence, if a principal wants
to construct an atomic message, he can only do this if this message is in his knowledge. For this reason,
the constructive form is only defined if the message is actually contained in the current knowledge χ.

For composed messages, it may be possible to construct them from other messages in the knowledge.
Let us start with concatenation; if a principal wants to construct the message 〈m1 . m2〉, the only way
to go is to first construct m1 and m2 and then concatenating them. If this is not possible (that is, the
constructive form of m1 or m2 is not defined) then the message cannot be synthesized. Note that there
will never be be a ghost symbol of the form γ〈m1 . m2〉 since concatenation can always be analyzed and
the original message can always be reconstructed from the sub-messages. Therefore, it would make no
sense to check if 〈m1 . m2〉 as a whole is in χ.

In the case of symmetric encryption, we can construct the message if we know both the encryption
key and the message that should be encrypted. If either is not in the knowledge, there is still the chance
that the principal knows the message as a whole, i.e., γ{m1}sm2

is in χ. The case of asymmetric encryption

is analogous.
Hashing and function application are very similar as well. The hash of a function or the application

of functions can be constructed if we can construct all the arguments. If this is not the case, it is still
possible that the message as a whole is in the knowledge, that is, γh(m1) or γfun(m1,...,mi), respectively,
is in χ. Otherwise, it is not possible to construct the message and the constructive form is undefined.

The final two cases are dedicated to exponentiation and multiplication which are a little bit more
involved. We will soon define constrMultTermχ and constrExpTermχ, but before we do that, we need
to talk about division and reductions.

We should mention here that, in general, the constructive form of a message is not uniquely defined,
even when applied to a basic set. For instance, χ = {a, γga , b, γgb} is a basic set since no message can be

constructed from the others. In this case, g�{|a,b|} can be constructed either as γga
b or γgb

a. We will later
see that constrMultTermχ and constrExpTermχ are not deterministic in such cases and consequently
cfχ is not deterministic.

2.5.2 Division, Left and Right Reduction

We have already seen in the Diffie-Hellman example that it is not obvious how exponential and
multiplicative messages can be constructed. To relieve this problem, we have introduced the canonical
form for messages that ensures that they are always represented in the same way. However, we have
not yet completely defined the constructive form since constrMultTermχ and constrExpTermχ are
still missing. Before we can give the corresponding definitions, we have to discuss multiplication and
exponentiation in some more detail. Namely, if we want to construct a multiplicative or exponential
message, we have to do this with respect to properties (5), (6) and (7) on page 11. To this end, we make
a distinction between multiplication, left exponentiation and right exponentiation. Let us explain this:

Construction by Multiplication. Consider the message �{|a, b, c|}. Depending on the knowledge,
there are several ways of how a principal can construct this message. Let us approach this systematically
by looking at the messages that are in the knowledge of that principal. If he knows a, he can construct
the message if he also possesses �{|b, c|}, that is, if he either has γ�{|b,c|} in his knowledge or he is able
to construct �{|b, c|} from other messages by forming the multiplication a � (�{|b, c|}). This is a form
of division; if we want to construct the message m and know the message d, we can construct m if we
also know m÷ d since m = d� (m÷ d). Let us therefore formalize division with respect to our message
model:

Definition 2.15. Let m and d be messages in canonical form. The division of m by d, denoted by m÷d,
is defined as follows:

� m÷ d =S 1 if m =S d, else

� m÷ 1 =S m, else

� (�M)÷ (�D) =S canonical(�(M\D)) if D ⊂S M (where M and D are multisets), else

� (�M)÷ d =S canonical(�(M\{|d|})) if d ∈S M (where M is a multiset), else

20

2 The Semantics of Alice&Bob Protocol Specifications

� m÷ d is undefined.

We call m divisible by d if and only if m÷ d is defined.

Note that we treat messages under ghost abstraction like normal messages, for instance, γ�{|a,b,c|} ÷
�{|b, c|} = a. We require that the operands of the division are in canonical form because this allows
us to always use =S instead of =M (compare Proposition 2.13 on page 19) which simplifies matters for
the implementation. If the messages are not in canonical form, this can easily be corrected by applying
canonical. The result of a division is again in canonical form.

Construction by Left Exponentiation. We can apply a similar idea in the case of exponentiation.
We call a message m left reducible by a message r if there is a message a such that m =M ra. Let
us illustrate this with an example. Consider the message b�{|c,d|} and the message bd; b�{|c,d|} is left
reducible by bd since b�{|c,d|} =M (bd)c. In this case, we call c the left reduction of b�{|c,d|} and bd. Let
us put this in a definition:

Definition 2.16. Let m and r be messages in canonical form. The left reduction of m by r, denoted by
m / r, is defined as follows:

� mm2
1 / rr21 = m2 ÷ r2 if m1 =S r1 and m2 is divisible by r2, else

� mm2
1 / r = m2 if m1 =S r, else

� m / r is not defined.

We call m left reducible by r if and only if m / r is defined.

Again, we require that the operands of the left reduction are in canonical form and guarantee that
the result is in canonical form.

Construction by Right Exponentiation. Right reduction is the symmetrical case of left reduction.
While b�{|c,d|} is left reducible by bd and the left reduction is c, b�{|c,d|} is right reducible by c and the
right reduction is bd. That is, a message m is right reducible by a message r if there is a message a such
that m =M ar (compare to ra in the case of left reduction).

Definition 2.17. Let m and r be messages in canonical form. The right reduction of m by r, denoted
by m . r, is defined as follows:

� mm2
1 . r = mm2÷r

1 if m2 is divisible by r, else

� m . r is undefined.

We call m right reducible by r if and only if m . r is defined.

Again, we require that the operands are in canonical form and guarantee that the result is in canonical
form as well. Let us put the most important properties of division, left and right reduction in a lemma:

Lemma 2.18. Let m and r be two messages in canonical form. Then we have:

(i) If m is divisible by r, then we have m = r � (m÷ r) and m÷ r is in canonical form.

(ii) If m is left reducible by r, then we have m = r(m/r) and m / r is in canonical form.

(iii) If m is right reducible by r, then we have m = (m . r)
r

and m . r is in canonical form.

21

2 The Semantics of Alice&Bob Protocol Specifications

2.5.3 Multiplicative and Exponential Terms

We finally come to the point where we can devise algorithms for constructing multiplicative and
exponential messages. We heavily rely on the definitions of division and left and right reduction for
that. We first discuss multiplication and then exponentiation.

Suppose we want to construct the message �{|m1,m2,m3|} from the knowledge {γ〈m1 . m2〉,m3} which
is obviously possible. To this end, we can just iterate over our knowledge and see that �{|m1,m2,m3|}
is divisible by γ〈m1 . m2〉 and that we can construct �{|m1,m2,m3|} as γ〈m1 . m2〉 �m3 (Lemma 2.18).

However, it is not always sufficient to iterate over the knowledge and look for a message that divides
the message we want to construct. Consider the message �{|〈m1 . m2〉, 〈m3 . m4〉|}. Obviously, we
can construct this message from knowledge {m1,m2,m3,m4} even though it is divisible by none of the
messages in the knowledge. We can conclude that in the case of division, it is additionally necessary to
check if we can construct any of the factors. If we check if 〈m1 . m2〉 is constructible, we can immediately
see that this is possible. Similarly, we can construct �{|〈m1 . m2〉, 〈m3 . m4〉|}÷〈m1 . m2〉 =S 〈m3 . m4〉.

Of course, it is also possible that a multiplicative message is stored as a ghost term in the knowledge.
The three cases we have just discussed lead to the following algorithm that finds out if a message m in
canonical form can be constructed from the knowledge χ and returns the constructive form if possible.

constrMultTermχ(m):
if m ∈S χ then:

return γm
else:

for all r in χ:
if m divisible by r and m÷ r is synthesizable from χ:

return �{|r, cfχ(m÷ r)|}
for all factors f of m:

if both f and m÷ f are synthesizable from χ:
return �{|cfχ(f), cfχ(m÷ f)|}

// We arrive here if m cannot be synthesized.
return undefined.

We now come to synthesizing exponential messages. Our main tool here are left and right reduction.
The idea here is similar to the idea behind constrMultTermχ. We again first check if m ∈S χ, that is,
if m is in χ directly. If this is not the case, we try to construct the message by synthesizing the direct
sub-messages. If this is not possible, we resort to left and right reduction. This leads to the following
algorithm:

constrExpTermχ(m):
if m ∈S χ then:

return γm
else if m1 and m2 are both synthesizable from χ:

return cfχ(m1)cfχ(m2).
else:

for all r in χ:
if m left reducible by r and m / r is synthesizable from χ:

return rcfχ(m/r)

else if m right reducible by r and m . r is synthesizable from χ:
return (cfχ(m . r))r

// We arrive here if m cannot be synthesized.
return undefined.

The order in which the algorithms constrMultTermχ and constrExpTermχ iterate over the
knowledge is not determined which means that the result of the algorithms is not deterministic. Anyhow,
if there is a way of constructing a message, the algorithms find it. With them, we have now completed
our definition of the constructive form and have hence a complete specification of how a message can
be constructed by a principal. The constructive form is defined if and only if a message m can be
constructed from knowledge χ:

Proposition 2.19. Let m be a message in canonical form and let χ be a basic set with synth∗(χ) =
close(χ). Then cfχ(m) is defined if and only if m ∈ synth∗(χ). If defined, then cfχ(m) is composed of
messages that are in χ and describes a valid way of constructing m from χ.

22

2 The Semantics of Alice&Bob Protocol Specifications

The requirement that χ needs to be completely analyzed (synth∗(χ) = close(χ)) is important.
Suppose, the knowledge χ contains the messages γ〈m1 . m2〉 and m3 but not the messages m1 and m2

(which are analyzable from γ〈m1 . m2〉). In this case, cfχ(〈m1 . 〈m2 . m3〉〉) would not be defined since
the sub-message 〈m2 . m3〉 cannot be constructed directly from χ.

2.6 Analyzing Messages

Analyzing messages is significantly simpler than synthesizing, we can basically just apply our analysis
rules to the message that has been received. We still provide an explicit way of analyzing a message
(compare to Definition 2.8 on page 16).

Definition 2.20. Given a set of messages χ and a message m, the set analyzeOnceχ(m) is defined as
follows:

� analyzeOnceχ(m) = {m} if m is atomic.

� analyzeOnceχ(〈m1 . m2〉) = analyzeOnceχ(m1) ∪ analyzeOnceχ(m2).

� analyzeOnceχ({m1}sk) = {γ{m1}sk} ∪ analyzeOnceχ(m1) if k ∈M synth∗(χ), else
analyzeOnceχ({m1}sk) = {γ{m1}sk}.

� analyzeOnceχ({m1}ak) = {γ{m1}ak} ∪ analyzeOnceχ(m1) if k−1 ∈M synth∗(χ), else
analyzeOnceχ({m1}ak) = {γ{m1}ak}.

� analyzeOnceχ({m1}ak−1) = {γ{m1}a
k−1
} ∪ analyzeOnceχ(m1) if k ∈M synth∗(χ), else

analyzeOnceχ({m1}ak−1) = {γ{m1}a
k−1
}.

� analyzeOnceχ(h(m1)) = {γh(m1)}.

� analyzeOnceχ(fun(m1, . . .mi)) = {γfun(m1,...mi)}.

� analyzeOnceχ(mm2
1) = {γmm2

1
}.

� analyzeOnceχ(m1 �m2) = {γm1�m2
}.

The set analyzeOnceχ(m) contains all messages that can be extracted in one step from m given the
knowledge χ with the help of the analysis rules (Asenc, Aaenc1, Aaenc2, Aconcat1 and Aconcat2).
The extracted information is not used for further analysis (hence the function name). For example,
analyzeOnce∅(〈{m}sk . k〉) = {{m}sk, k}. With the message k, we could actually extract m by decrypting
{m}sk, but analyzeOnceχ works with constant knowledge. In the translator, we apply analyzeOnceχ
repeatedly (each time adding the new information to the knowledge) until nothing new can be extracted.

Let us walk through the definition of analyzeOnceχ. The first rule tells us that we cannot analyze
an atomic message. The only thing we can therefore learn from an atomic message is the message itself.
The second rule is based on the analysis rules Aconcat1 and Aconcat2 that enable honest principals
to decompose concatenation. The messages under the concatenation are then recursively analyzed.

The next three rules handle encryption; a principal always learns the message he analyzes. We can
also extract the message under the encryption if we we can synthesize the decryption key. The case of
symmetric encryption is based on Asenc (which is in turn related to rule (2) on page 11 of the message
model). The rules for asymmetric encryption are based on the rules Aaenc1 and Aaenc2 (which are
related to properties (3) and (4) of the message model). The messages that can be extracted are then
recursively analyzed. In all other cases, we get no information except for the messages themselves.

Note that in the definition of analyzeOnceχ, there are cases where we have to check if a message is
in synth∗(χ) which is in general infinite. Therefore, the analyzeOnceχ function cannot be implemented
on a computer in the form that is given above. However, thanks to proposition 2.19, we know that
m ∈M synth∗(χ) whenever cfχ(m) is defined and consequently we can replace m ∈M synth∗(χ) by a
check if cfχ(m) is defined.

Whenever a principal obtains a new message, he should analyze it and update his knowledge with the
newly obtained messages. However, by doing so he may violate the basic set property of the knowledge
if he does not take care.

23

2 The Semantics of Alice&Bob Protocol Specifications

Initial Knowledge:

A : {m,pk(B)}
B : {pk(A)}

Actions:

(asw1) A→ B (n1) : {pk(A) . pk(B) . m . h(n1)}ask(A)

(asw2) B → A (n2) : {{pk(A) . pk(B) . m . h(n1)}ask(A) . h(n2)}ask(B)

(asw3) A→ B : n1

(asw4) B → A : n2

Figure 3: The ASW protocol.

The ASW protocol is perfectly suited for demonstrating how an honest principal can analyze an
incoming message. It was proposed by Asokan, Shoup and Waidner [1] and has various applications in
the context of authentication and non-repudiation such as contract signing or exchange of certified mail.
A simplified version (the sub-protocols for resolving conflicts and aborting have been omitted) of it can
be found in Figure 3.

Here, B can look under the encryption of the message he receives in message exchange step (asw1)
since he knows the public key of A and consequently he learns h(n1). Since B does not know n1, he
has to remember h(n1) and therefore adds it to his knowledge. Later though, in message exchange step
(asw3), he is sent n1 and therefore he can construct h(n1) – he should remove h(n1) from his knowledge.

To simplify matters we allow principals to temporarily violate the basic set property of their
knowledge. In the case above, B adds n1 to his knowledge and then applies the following algorithm
that converts an arbitrary set S of messages back into a basic set:

basicSet(S):
while S contains a message m that is synthesizable from S\{m}:

remove m from S
return S.

The following lemma claims that basicSet does indeed establish the basic set property and, more
importantly, that the same messages can be synthesized from the basic set as from the original set.

Lemma 2.21. Let S be a set of messages. Then χ := basicSet(S) is a basic set and synth∗(χ) =
synth∗(S).

Lemma 2.21 implies that there is a basic set S′ for every set S with synth∗(S) =M synth∗(S′). From
Proposition 2.7, we know that this basic set is also unique. Based on these results, we can now formulate
the following useful proposition:

Proposition 2.22. Let Q and R be two sets of messages. Then there are unique basic sets Q′ and
R′ with synth∗(Q) =M synth∗(Q′) and synth∗(R) =M synth∗(R′). For these, we have synth∗(Q) =M

synth∗(R) if and only if Q′ =M R′.

Recall Lemma 2.12 that states that the canonical form of a message exists and is unique. If we
combine this with Proposition 2.22, we get a very convenient way of checking for two sets of messages Q
and R whether synth∗(Q) =M synth∗(R). The check works as follows: First, we construct the basic set
of Q as Q′ := basicSet(Q) and the basic set of R as R′ := basicSet(R). We have to make sure that all
messages in Q′ and R′ are in canonical form (we can use the function canonical for this purpose). Then
we can check if synth∗(Q) =M synth∗(R) simply by checking Q′ =S R

′.
When a principal receives a new message from the network he can analyze it under his current

knowledge by using the function analyzeOnceχ. We have already demonstrated that computing
analyzeOnceχ once is not always sufficient. The example we gave was analyzeOnce∅(〈{m}sk . k〉) =

24

2 The Semantics of Alice&Bob Protocol Specifications

{{m}sk, k}. We can see that not all information is extracted since, with the message k, we could extract m
from {m}sk. If the principal runs analyzeOnceχ a second time, now with the newly obtained knowledge,
he can extract all information: analyzeOnce{{m}sk,k}(〈{m}

s
k . k〉) = {{m}sk, k,m}. However, it is not

sufficient to analyze only the newly received messages. Suppose a principal knows {m}sk but only learns
k at a later time; then {m}sk, an “old” message, becomes synthesizable.

We can see that whenever we receive a new message, we need to analyze all messages in the knowledge.
Therefore, we treat a newly received message m as follows. Firstly, we add m to the knowledge (note
that this may violate the basic set property). Then we check if there is a message from which new
messages can be extracted (we can use analyzeOnceχ for this). If this is the case, then we add them
to our knowledge. This process is repeated until no more new knowledge can be analyzed. Finally, we
restore the basic set property. Let us give this algorithm in explicit form:

addKnowledgeχ(m)
let χ := χ ∪ {m}
while there is m′ ∈S χ s.t. analyzeOnceχ(m′) 6⊆M χ

let χ := χ ∪ analyzeOnceχ(m′).
return basicSet(χ) // Removes synthesizable messages

The following proposition expresses that the knowledge produced by analyzeKnowledge is correct:

Proposition 2.23. Let m be a message and χ a basic set. Then addKnowledgeχ(m) is a basic set and
synth∗(addKnowledgeχ(m)) =M close(χ ∪ {m}).

2.7 Checks

Explicitly stating which checks a principal can execute is an essential part of the semantics of Alice&Bob
protocol specifications. A principal that does not perform a check as foreseen by the designer of the
protocol might open a door for attacks. Which checks are possible was investigated by Caleiro et al. [3].
They give three different types of checks; we will now illustrate the checks that are possible on examples.
However, we will not make this distinction between three types of checks. We also do not give a formal
specification of checks since we never need them explicitly in this thesis. We can rely completely on
the internal proving theory of Tamarin in which fact rewriting rules can only be applied if they meet
certain preconditions; this has the same effect as principals that perform checks. Therefore, we refer to
the work of Caleiro and his colleagues for details and a formal specification.

A check should ensure that the knowledge of a principal is consistent, as far as this is possible. Suppose
a principal has the knowledge {a, γga}. We can see that the principal does not know g and consequently
there is no way for him to ensure that ga and a are actually consistent. The message γga could be
a dummy value generated by the adversary. This demonstrates that it is possible that inconsistencies
in the knowledge cannot be detected since a principal lacks information. When the message g is now
received, ga becomes synthesizable. In this case, the principal should construct ga from the a from the
knowledge and the newly received g and ensure that the value agrees with γga ; if this is not the case,
he should abort protocol execution. Note that γga is removed from the knowledge since it has become
synthesizable; this shows that checks and analysis are intertwined and should be performed together.

It is also possible that a newly received message renders another message in the knowledge analyzable.
If a principal has the knowledge {m, {m}apk(A)} and then receives sk(A), he still cannot synthesize

{m}apk(A); but now, he can ensure that m and {m}apk(A) agree since {m}apk(A) can now be decrypted
and the two m compared.

Let us now illustrate some of the checks that are possible on the ASW protocol that we gave earlier
(Figure 3 on the preceding page). In message exchange step (asw1), B receives a message that is
encrypted with the secret key of A. Since B possesses the corresponding public key for decryption,
he can extract the message under the encryption and consequently can extract pk(A), pk(B), m and
h(n1). B already possesses pk(A) and pk(B) and can therefore check if the received values match with
his own view of these messages. Later, in message exchange step (asw3), B receives the message n1.
The message γh(n1) which he has in his knowledge is synthesizable from n1. Therefore, he should now
check if γh(n1) agrees with the n1 that has just been received.

25

2 The Semantics of Alice&Bob Protocol Specifications

2.8 Wrap-up

We are now at a point where we have developed all the tools that we need to formalize Alice&Bob
protocol specifications. Our goal is to give a description of the exact actions that a principal that
executes a specific role has to perform.

2.8.1 Actions, Roles and Protocols

Alice&Bob protocol specifications describe the messages that are exchanged during a successful run of
the protocol with honest principals; in each communication step, we have somebody who sends and
somebody who receives. In the rest of this section, we specify the actions that are executed by both the
sender and the receiver, and we do this by defining the role that has to be executed by a principal.

Let us recall what a message exchange step looks like in Alice&Bob notation:

S → R (n1, . . . , nv) : M.

The role of a principal that executes some role P (S or R) can be described by giving an initial state
(that is, the initial knowledge) and a sequence of actions act1, act2, . . . actn that need to be performed
by the principal. We denote the knowledge that a principal has after executing action acti by χi, where
χ0 := χinitP denotes the initial knowledge. What we do now is to introduce the actions that define what
a principal has to do in a protocol execution step. Afterwards, we define the roles which are based on
our notions of actions and knowledge. Finally, we can define what a protocol is. Let us make a case
distinction based on whether a principal is the sender or the receiver in a message exchange step:

� If a principal is the sender S, then he first has to generate the fresh values n1, . . . , nv. For
each variable ni, a value is chosen (pseudo-)randomly from Num. The new variable n is then
immediately added to the knowledge. The basic set property is not violated since n is atomic and,
being fresh, it cannot appear in other messages. The old knowledge χi−1 is updated in one step
by adding all new knowledge at once and producing the new knowledge χi.

After generating the fresh values, the principal builds the constructive form cfχi(m) based on the
knowledge with the fresh values χi. If cfχi(m) is undefined then the sending action cannot be
executed. Otherwise, the principal constructs the message from his knowledge and sends it to the
receiving principal R via the network. The sending itself does not influence the knowledge.

� If a principal is the receiver R, then he first receives the message m from the network, apparently
from sender S. He then first performs the checks as explained above on this message to ensure
that it has the expected shape. The principal aborts the execution of his run of the protocol if any
check fails.

Finally, the knowledge is updated. This is done by calculating addKnowledgeχ on the old
knowledge χi−1 which then gives us the new knowledge χi.

Caleiro et al. [3] gives an operational semantics for Alice&Bob notation based on the spi calculus.
We are not as formal here, even though we use a similar idea by defining a role as a sequence of actions.
There is an action type for sending and another one for receiving along the lines of the explanation above:

Definition 2.24. An action is one of the following:

� Send(F,R,m). Here, F is the set of fresh variables, R is the name of the receiver and m is the
message that needs to be sent. The following actions are performed in the given order:

1. Randomly choose values from Num for the fresh variables in the set F . Determine the new
knowledge as χi := χi−1 ∪ F .

2. If m is synthesizable from χi, then synthesize the message according to cfχi(m) from χi and
send it to R via the network. Otherwise, Send(F,R,m) is undefined.

� Recv(S,m). Here, S denotes the sender by whom the message was apparently sent. The expected
message is denoted by m. The following actions are performed in the given order:

1. Receive the message m from the network.

26

2 The Semantics of Alice&Bob Protocol Specifications

2. Execute the checks that are possible. If any check fails, abort the execution of the role.

3. Set the new knowledge to χi := addKnowledgeχi−1
(m).

The definition of a role is now straightforward. A role is defined by the initial knowledge that a
principal has and a sequence of the actions that need to be performed by that principal.

Definition 2.25. The role of P is a pair (χinit,Σ), denoted by roleP , where

� χinit denotes the knowledge that a principal executing this role has before any actions are executed,
i.e., χinit := χinitP .

� Σ is a finite sequence act1, . . . , actn of actions.

Finally, a protocol is nothing but the set of all the roles that appear in a protocol. Hence, a protocol
can be defined by the following very simple definition.

Definition 2.26. A set of roles is called a protocol.

This definition allows for protocols that make absolutely no sense at all. The most important property
of a sensible protocol is that the honest principals can execute their actions as required. While a principal
can always receive a message, it may not be possible to synthesize a message because he lacks the necessary
knowledge. The A&B language does not accept any protocols that cannot be executed even if there was
no involvement of the adversary. If we go back to our definition of the Send-action, we can see that
it is not defined whenever the message to be sent cannot be constructed. This leads to the following
definition:

Definition 2.27. A role is called executable if all of its actions act1, . . . , actn are defined. A protocol
is called executable if all roles are executable.

Note that, even though the checks that a principal performs when receiving a message can lead to
the abortion of protocol execution, checks are completely independent of the concept of executability.
No protocol run can be finished if the adversary controls the network and blocks communication.
Executability only requires that all actions can be performed by principals if there is no involvement of
the adversary.

This concludes our investigation of the semantics of Alice&Bob protocol specifications. We can now
turn our attention towards the A&B protocol specification language. But before we do that we would
like to give a final example that summarizes the results of this section.

2.8.2 Example

We have started this section with the CR protocol (Figure 1 on page 9) on which we have pointed
out that Alice&Bob notation comes with certain ambiguities and have motivated why it is necessary to
explicitly state initial knowledge and fresh numbers. Now that we have specified how we write protocols
in Alice&Bob notation, let us give an improved version of the CR protocol specification. It can be found
in Figure 4.

Initial Knowledge:

C : {pk(R)}

Actions:

(cr1) C → R (n) : {n}apk(R)

(cr2) R→ C : h(n)

Figure 4: The CR protocol that was already specified in Figure 1 on page 9. Here, we obey our notational
conventions and explicitly specify fresh values and initial knowledge to avoid the ambiguities that arose
from the initial specification.

27

2 The Semantics of Alice&Bob Protocol Specifications

The CR protocol specification is now unambiguous and therefore we can extract the roles of C and
R that state the initial knowledge and the actions taken by the principals:

roleC := ({pk(R), sk(C),pk(C), C}, 〈Send({n}, R, {n}apk(R)),Recv(R,h(n))〉)
roleR := ({sk(R),pk(R), R}, 〈Recv(C, {n}apk(R)),Send(∅, C,h(n))〉)

This is the complete specification of the CR protocol, the actions have to be executed as declared
above. Below, we give a detailed list of the actions that should be performed by both principals:

Execution of the Role of C.

� Initial knowledge: χ0 := {sk(C),pk(C), C,pk(R)}. Here, {sk(C),pk(C), C} is the implicit
knowledge. The message pk(R) was explicitly stated in the protocol specification and provides
C with an authenticated copy of R’s public key.

� Execution of action Send({n}, R, {n}apk(R)):

– C (pseudo-)randomly chooses a fresh value for n from Num and adds it to her knowledge.
The updated knowledge then contains n: χ1 := {sk(C),pk(C), C,pk(R), n}.

– The constructive form cfχ1
({n}apk(R)) := {n}apk(R) is defined and therefore, the message can

be constructed and sent to R via the network.

� Execution of action Recv(R,h(n)):

– Checks: h(n) is constructible from χ1 and therefore C can check if the received message
matches the h(n) constructed from χ1. If there is a mismatch, she immediately aborts the
run of the protocol. There are not further checks.

– C analyzes the message: χ2 := addKnowledgeχ1
(h(n)) = χ1. No new messages can be

analyzed from h(n); h(n) does not need to be stored since it can be constructed from n.

Execution of the Role of R.

� Initial knowledge: χ0 := {sk(R),pk(R), R}, that is, R possesses only his implicit knowledge since
no additional knowledge is stated.

� Execution of action Recv(C, {n}apk(R)):

– R possesses sk(R) and can therefore analyze the message and extract n from {n}apk(R).

– No checks are possible.

– There are no checks that can fail and therefore, the extracted n is always added to the
knowledge. The new knowledge is χ1 := addKnowledgeχ0({n}apk(R)) = {sk(R),pk(R), R, n}.

� Execution of action Send(∅, C,h(n)).

– No fresh values are generated, that is, χ2 := χ1.

– The constructive form cfχ2
(h(n)) = h(n) is defined and therefore, the message can be

constructed and sent to C via the network.

We can read from the explanations above that R cannot perform any checks at all. It is therefore clear
that R has no authentication guarantees with respect to C since R would accept absolutely any message
in action Recv(C, {n}apk(R)), even if it is not a valid encryption of a message.

28

3 The A&B Input Language

3 The A&B Input Language

We have used the protocols declared in Figures 2, 3, and 4 to illustrate some aspects of Alice&Bob
protocols in Section 2. The corresponding protocols in the A&B protocol specification language can be
found in Figure 5 (with some changes). All of the A&B protocols that are used in this thesis can be
downloaded from the web page of Tamarin [10].

The semantics of the A&B input language closely follows the semantics and notational conventions of
the Alice&Bob notation introduced in Section 2. We use the same message model and the same overall
structure. Therefore, this section is mostly about defining a slightly different, computer-interpretable
notation for the Alice&Bob protocol specifications introduced above.

The overall structure of A&B protocol specifications is inspired by a similar input format that is used
by Mödersheim [12]. A protocol specification starts with the keyword Protocol followed by an identifier
that names the protocol. After that, the actual protocol specification is given. It is closed with the end
keyword.

We proceed in a similar fashion as in the previous section. First, we talk about the representation
of messages in A&B because they lie at the heart of protocol specifications and then move on to talking
about knowledge and actions. As the examples show nicely, an A&B protocol specification consists of
several blocks. The CR protocol, for instance, contains a Knowledge block in which the initial knowledge
of the roles is specified, an Actions block in which the message exchange steps are given, and, finally, a
Goals block.

In the Goals block, the security properties that a protocol should guarantee can be declared. Such
information is usually not included in Alice&Bob notation (as in our definition of Alice&Bob protocol
specifications). However, it makes sense to be able to at least denote some basic security goals such as
secrecy and (non-)injective agreement in an input language that is translated to the input language of
protocol verifiers. In the last part of this section, we talk about these security goals.

For reference, the specification of the grammar of the A&B input language is attached to this thesis.
It can be found in Appendix B.

3.1 Basics

Before we move on to messages, let us briefly discuss some basics of the A&B protocol specification
language.

Identifiers. Identifiers in A&B start with a letter, followed by any number of letters, digits and
underscores (‘ ’). Additionally, an identifier must not coincide with any keyword. A list of the reserved
keywords can be found in Appendix B.

Case Sensitivity. A&B as such is not case sensitive. For example, the keyword Protocol that starts
a protocol could also be written as PROTOCOL and hence, neither of the two is a valid identifier. However,
since our intermediate representation should be independent of the target language (that may be case
sensitive), we require that there appear no two identifiers in a protocol that are equal in a case insensitive
way but not equal in a case sensitive way. For example, the identifiers message and Message may not
appear both in the same protocol.

Blocks. We have already seen that an A&B protocol specification is composed of blocks. There are
four types of blocks that may be used, namely Declarations, Knowledge, Actions and Goals. Any
of these blocks may be left off if not needed (although protocols without an Actions block are not very
useful). However, no block must occur twice and they must appear in the same order as in the list above.

3.2 Messages

In A&B we use the same messages and the same message model as in the Alice&Bob protocol specification
defined in Section 2.2. A&B uses the following syntax for messages:

� Variables: A variable is denoted by an identifier such as msg. Variables may denote both numbers
and agent names (see the discussion below).

29

3 The A&B Input Language

Protocol CR:
Knowledge:

C: pk(R);
Actions:

[cr1] C -> R (n) : aenc{n}pk(R);
[cr2] R -> C : h(n);

Goals:
[n_secret] n secret of C, R;
[authNonInj] C non-injectively agrees with R on n;
[authInj] C injectively agrees with R on n;

end

Protocol DIFFIE_HELLMAN:
Declarations:

g/0;
Actions:

[dh_1] A -> B (x) : g()ˆx;
[dh_2] B -> A (y) : g()ˆy;
[dh_3] A -> B (n) : senc{n}(g()ˆ(x*y));

Goals:
/* Goal that holds */
[key_secret] g()ˆ(x*y) secret of A, B;
/* Goals that do not hold */
[key_secretA] g()ˆ(x*y) secret of A;
[key_secretB] g()ˆ(x*y) secret of B;

end

Protocol ASW:
Knowledge:

A : m, pk(B), B;
B : pk(A), A;

Actions:
[asw1] A -> B (n_1) :

aenc{ pk(A) . pk(B) . m . h(n_1) }sk(A);
[asw2] B -> A (n_2) :

aenc{ aenc{pk(A) . pk(B) . m . h(n_1)}sk(A) . h(n_2) }sk(B);
[asw3] A -> B :

n_1;
[asw4] B -> A :

n_2;
Goals:

/* Goals that hold */
[weakA] A non-injectively agrees with B on m;
[weakB] B non-injectively agrees with A on m;
[strongA] A injectively agrees with B on m;
/* Goals that do not hold */
[strongB] B injectively agrees with A on m;
[secrecy] m secret of A, B;

end

Figure 5: The three protocols from Section 2 expressed in the A&B input language with security goals.

30

3 The A&B Input Language

� Constants: Constants are identifiers in single quotes. For example, 'I_am_a_constant' represents
a legal constant number.

� Concatenation: The concatenation of messages m1 and m2 is denoted by < m1 . m2 > or simply
m1 . m2.

� Symmetric Encryption: The symmetric encryption of a message m1 with the message m2 is denoted
by senc{m1}m2.

� Asymmetric Encryption: The asymmetric encryption of a message m1 with the public key of
principal A is denoted by aenc{m1}pk(A). The asymmetric encryption of a message m1 with the
secret key of a principal A is denoted by aenc{m1}sk(A).

� Hashing: The hash of message m is denoted by h(m).

� Function Application: Let fun be an i-ary function (other than in Alice&Bob notation we take the
arity of functions into account in A&B; we elaborate on this later) and let m1, . . . , mi be messages.
Then the application of fun to m1, . . . , mi is denoted by fun(m1, ..., mi).

� Multiplication: Let m1 and m2 be messages. Then the multiplication of m1 with m2 is denoted by
m1 * m2.

� Exponentiation: Let m1 and m2 be messages. Then the exponentiation of m1 with m2 is denoted by
m1 ˆ m2.

Note that inverse messages cannot be expressed. We have pointed out earlier that honest principals
cannot construct inverse messages and that the only way for them to get hold of an inverse message is
by either having them in their initial knowledge of by receiving them over the network. For this reason,
we have decided not to include explicit inversion of messages in A&B. All participants have their public
and secret key (which are mutually inverse) in their implicit knowledge and can therefore still sign or
asymmetrically encrypt messages. We also have not included the message 1 in the A&B input language
since it is intended for internal calculations only.

3.2.1 Operator Precedence

The only binary operators are the concatenation, the multiplication and the exponentiation operators.
They have the following precedence in A&B where the operator precedence increases from left to right:

. → * → ˆ

Let us illustrate this with a . b ˆ c * d ˆ e . f. This message in A&B represents the message
〈a . (bc � de) . f〉.

3.2.2 Associativity of Operators

All binary operators (concatenation, multiplication, and exponentiation) are right-associative. This is
of no actual importance for concatenation and multiplication since they are associative. In the case of
exponentiation, however, this is decisive for meaning. a ˆ b ˆ c, for instance, is interpreted as a(b

c).

3.2.3 Influencing Operator Precedence and Associativity

Associativity and precedence can be overruled by using parentheses such as in (a ˆ b) ˆ c. This
represents the message (ab)

c
(ab�c in canonical representation). Concatenation comes with a special

grouping notation. While it is possible to use parentheses like in (a . b) ˆ (a . c), the recommended
notation is the angle notation that looks like < a . b > ˆ < a . c >. This improves readability,
especially if there are many parentheses (and angles).

3.3 Specifying a Protocol

We now come to the actual protocol specifications in A&B. Before the message exchange steps can
be specified, one needs to declare the functions that are used in the protocol and provide the explicit
knowledge of the roles.

31

3 The A&B Input Language

3.3.1 Declaring Functions

In A&B, functions have to be stated explicitly before they can be used in a protocol. This is done in the
first block, Declarations. Let us demonstrate this with a small example of such a block:

Declarations:
foo/2;
public bar/0;
private baz/1;

The example declares three functions, foo, bar and baz. The numbers after the slashes specify the arity;
while bar takes no parameters, baz takes exactly one and foo two.

A possible application of foo might look like foo(m1, m2 . m3). Note that the comma operator
separating the arguments has lowest precedence, that is, there is no need to write < m2 . m3 > in angles.
Since bar accepts no arguments, it is written with empty parentheses like bar() when used in a message.
The parentheses must never be omitted.

We claimed earlier that Alice&Bob notation is independent of the adversary model; however, when it
comes to functions, we make a little exception and allow the specifier of the protocol to declare functions
private. Only honest principals have the ability to apply such functions. By default, functions are
public even though it is possible to explicitly mark them public. In the example given above, foo and
bar are both public while baz is private. We call the private and public keywords access modifiers.

We would like to stress here that the access modifiers have no effect whatsoever on the capabilities
of honest principals – they can always apply all functions like we have defined above in Section 2. Let
us illustrate this with the following two message exchange steps (in Alice&Bob notation):

C → R (n1) : n1

R→ C : fun(n1)

If function fun is declared public, then the adversary can intercept n1 from C and then construct
fun(n1) and send it back to C. R would not even realize that C has sent a message and for C, there is
no possibility to find out if he is talking to the adversary or to R. Conversely, if fun is declared private,
then the adversary cannot construct fun(n1) and C can be sure that the returned value actually comes
from R. It is important to note here that C can check if the message fun(n1) has the correct shape
since she, being an honest principal, can apply fun.

3.3.2 Declaring Initial Knowledge

A&B uses the same semantics as Alice&Bob notation defined in Section 2 when it comes to the initial
knowledge that a principal in some role possesses. A principal implicitly knows his own name and his
own public and private keys; in case he should have more knowledge we can state this explicitly in the
Knowledge block. If we take a glance at the ASW example in Figure 5, we can see that a principal
executing role A knows the message m and the name and public key of the principal in role B, in
addition to the implicit knowledge. While B knows A’s public key and name he does not know m
initially. Summarizing, A and B have the following initial knowledge:

χinitA = {A, sk(A),pk(A), B,pk(B),m}, and

χinitB = {B, sk(B), sk(B), A,pk(A)}.

Properties of Initial Knowledge. It is important to mention that there is an inherent difference
between implicit ({P, sk(P),pk(P)}) and explicitly stated knowledge. While the implicit knowledge is
bound directly to a principal, the explicitly stated knowledge is bound to a specific run of a protocol.

In the case of the ASW protocol, A originally knows m. It is a fresh number in every run of the
protocol, and therefore, even if the adversary could obtain m in one run of the protocol he could not
reuse it later.

In the case of the ASW protocol, it would actually not make any difference if we declared m as a fresh
variable together with n1 in action (asw1). We have chosen to write it in the initial knowledge block
to emphasize that m is not just a protocol variable but that it is the value that should be exchanged
between A and B.

32

3 The A&B Input Language

A more important aspect of the initial knowledge is that it allows us to specify that principals share
some knowledge before the start of protocol execution, for example a password. If we added m to the
initial knowledge of B, A and B would be guaranteed to have the same view of m right from the start.
We can express this as follows:

The values of all atomic messages that appear in the initial knowledge of a principal in a protocol
specification are guaranteed to be equal for all participants. Moreover, all numbers in the explicit initial
knowledge are guaranteed to be unique for every run of the protocol.

Let us give one last example:

Knowledge:
A : senc{m1}m2;
B : m2;

Here, m2 is guaranteed to have equal value for both A and B.

Initial Knowledge, Nullary Functions and Constant Numbers. The A&B language uses strings
in single quotes like 'constant' as its syntax for constant numbers. Nullary functions take no arguments
and are therefore in some sense also constants. Still, there is one little difference, namely, that functions
can be declared private. While constants in A&B are assumed to be generally known (also to the
adversary), private nullary functions are only known to honest principals (however, all of them; this is
not a problem tough since they are honest). If we do not want them to know a message, we have to
declare it as a variable in the initial knowledge (but then it is not a constant).

It is important to be aware of these details because they can have a security-relevant influence on the
meaning of a protocol. For example, assume that we want to model a password p that is shared by two
principals and used many times.

The fact that the password is used multiple times could tempt us to declare it as a constant. However,
this is clearly wrong since constants are public. Declaring the password as a variable in the initial
knowledge would be even worse. Such variables are instantiated with a fresh value in every protocol
execution and consequently, a replay attack might not be discovered! The only appropriate way of
representing p is as a private nullary function.

3.3.3 Declaring Message Exchange Steps

A message exchange step in A&B has exactly the same shape as in Alice&Bob notation. In general, it
has the following shape:

[label] A -> B (n_1, ..., n_v) : message;

or:

[label] B <- A (n_1, ..., n_v) : message;

The label has to be a valid, unique identifier and cannot be omitted. By unique we mean that it must
not collide with any other identifier in the protocol, for example a variable or function name. This label
may be used in the output produced by the compiler, so choosing a sensible name can make the output
more readable.

Fresh variables are specified in parentheses that are located between receiver and the colon. They
may be left out completely if there are no fresh variables like in steps [asw3] and [asw4] of the ASW
protocol in Figure 5 on page 30.

3.4 Declaring Security Goals

The Alice&Bob notation from Section 2 does not provide the possibility to specify the security goals one
wants to achieve with a protocol. A&B, however, is designed to be an input language for protocol verifiers
and therefore it is sensible if one can state at least some of the most common security goals. For this
reason, we have decided to include the Goals block in A&B where three types of goals can be specified,
namely, secrecy, injective agreement and non-injective agreement. Let us start by demonstrating the
three types of secrecy goals on the CR example.

33

3 The A&B Input Language

3.4.1 Overview

The specification of the CR protocol in A&B, including security goals, can be found in Figure 5 on
page 30. In it, C generates the nonce n, asymmetrically encrypts it with the public key of R and sends
it to R. Since the adversary is assumed not to know the secret key of R, he cannot decrypt the message
and obtain n. Therefore, if C receives the hash of n back from the network he can be sure that it was
constructed by R.

Under the usual Dolev-Yao adversary model, there is no way for the adversary to obtain n since he
can neither decrypt {n}apk(R) nor extract n from h(n). One of the objectives of the CR protocol is just
this, namely that n must not be known by the adversary. This is modelled in the first security goal,
[n_secret].

The other major objective of the CR protocol is to ensure that if C terminates a run of the protocol,
she can be sure that R knows the nonce produced by her. This is modelled by the second and the third
security goal, [authNonInj] and [authInj]. [authNonInj] specifies that C should (non-injectively)
agree with R on n. The meaning of this is that if C finishes execution of her protocol, then she is
guaranteed that R has received n and that both R and C have a consistent view of n (that is, they have
the same value for it).

Goal [authInj] requires injective agreement, a stronger version of non-injective agreement.
Additionally to [authNonInj], this security goal demands not only that C and R have the same view
of the message, but also that every run of the protocol is unique. This rules out replay attacks.

3.4.2 Secrecy

The first type of security goal that we discuss are secrecy goals. A&B uses the following syntax:

[label] msg secret of P_1, ..., P_n;

Security goals always start with a label. Like in the case of communication exchange steps, this label
must be a unique and valid identifier and cannot be omitted. The actual security goal specification starts
with the message that we require to be secret followed by the two keywords “secret of”. Finally, a
comma-separated list of one or more role names is given. We define secrecy as follows:

Definition 3.1. Let p be a protocol that contains the roles P1, . . . , Pn. A message msg is called a secret
of the roles P1, . . . , Pn, if whenever there is a run of the protocol in which the honest principals in the
roles P1, . . . , Pn successfully finish the execution of their protocol run, and have the same view of msg,
then the adversary does not possess that value of msg at any time.

Let us take a closer look at this definition. The most important property of our definition of secrecy
that we should notice is that the message only needs to be secret if all of the principals that participate
in a run of the protocol actually finish execution and agree on the same value. Secrecy goals therefore
are meaningless if any of the principals P1, . . . , Pn cannot construct msg.

To point out some aspects that require attention, let us return to the Diffie-Hellman key exchange
protocol that we introduced earlier when we were talking about Alice&Bob notation (see Figure 2). A
similar version in the A&B protocol specification language can be found in Figure 5.

In this protocol, we declare one secrecy goal, namely that the common key gx�y is a secret of A and
B. If we assume an adversary model where the adversary cannot solve the discrete logarithm problem,
this protocol actually satisfies this security goal, since gx�y has to be secret only if both A and B are
honest principals and both finish protocol execution and agree on the same value.

Note that in this particular protocol, there is no common secret knowledge that honest participants
share and consequently there is no way for principals to authenticate one another; the adversary can
easily impersonate either of the roles and there is no way for an honest principal to detect this. This
means that our definition of secrecy is in some sense orthogonal to authentication.

Consider the goals key_secretA and key_secretB. Even though they look very similar to goal
key_secret, neither of them is satisfied. We require the principals in the roles that are mentioned in a
security goal to be honest and since only one of the two roles is mentioned, the adversary can take over
the other role, in which case the adversary obtains the shared key.

34

3 The A&B Input Language

3.4.3 Agreement

The syntax of injective and non-injective agreement security goals is as follows:

[label1] P non-injectively agrees with Q on msg_1, ..., msg_n;
[label2] P injectively agrees with Q on msg_1, ..., msg_n;

Again, the security goal starts with a label that should be a valid and unique identifier. The two principals
that are mentioned, P and Q, have to be distinct. The list of messages msg_1, . . . , msg_n must contain
at least one message, and all of the messages should be synthesizable by both P and Q at the latest at
the end of their roles, since otherwise, authentication goals are meaningless.

Our specification of agreement is based on the definition proposed by Lowe [6]. Concretely, we define
non-injective agreement as follows:

Definition 3.2. Let P and Q be two roles of a protocol p and let m1, . . . ,mn be messages. We say that
P non-injectively agrees with Q on the messages m1, . . . ,mn if and only if whenever (an honest principal
in role) P successfully finishes a run of the protocol, then (an honest principal in role) Q has previously
been running the protocol, apparently with P , and both P and Q agree on m1, . . . ,mn.

The CR protocol in Figure 5 requests that C non-injectively agrees with R on the nonce n. Let us
briefly discuss this. C sends n to R, asymmetrically encrypted with R’s public key. The only principal
that knows sk(R) is R and hence, assuming a Dolev-Yao adversary model, only R can decrypt the message
and obtain n. If C receives the hash of n, he can thus be sure that R has received n. Consequently, C
only successfully finishes his run of the protocol if R has received n and has the same view of it; the CR
protocol achieves the goal [authNonInj].

The nonce n is freshly generated in every run of the protocol which rules out replay attacks. In such
a case, we speak of injective agreement. This is required by the CR protocol in goal [authInj] and is
defined as follows:

Definition 3.3. Let P and Q be two roles of a protocol p and let m1, . . . ,mn be messages. We say that
P injectively agrees with Q on the messages m1, . . . ,mn if and only if Q agrees non-injectively with P
on m1, . . . ,mn, and each such run of P corresponds to a unique run of Q.

3.5 Well-formedness Checks

Even if a protocol meets the requirements of the grammar of the A&B input language and can therefore
be parsed, this does not mean that the specification is valid. Typical problems are functions that are
used in messages but have not been declared or name clashes. We call a protocol that can be parsed but
is still not valid not well formed.

Protocol secrecy:
Declarations:

public fun/-1;
private fun/2;

Knowledge:
A : secr, pk(A), m;

Actions:
[action] A -> A (secr) : aenc{secr}pk(A);
[action] A <- A : fun(secr);

Goals:
[secrecy] bar(secr) secret of B;

end

Figure 6: A parsable A&B specification that is not well-formed.

An example of a protocol that is not well formed can be found in Figure 6. We now provide a list
with all the requirements that a well-formed protocol should fulfill.

� A principal must not send a message to himself or herself. In the example protocol, A does just
this (A -> A).

35

3 The A&B Input Language

� No two functions must have the same name, even if they have different arity. In the example,
public fun/-1 and private fun/2 collide.

� Every function that is used in a message must be declared. In the example, the function bar is
used in the Goals block but is not defined in the Declarations block.

� No label must occur twice. In the example, two message exchange steps are defined with the label
[action]. Also, the name given to the protocol and the name of the secrecy goal collide (label
[secrecy]).

� No function declaration must have negative arity. In the example, this is the case for the declaration
public fun/-1.

� All functions must be used with the arity with which they have been declared.

� No role that has no actions must occur in a goal. In the example, the secrecy goal requests that
bar(secr) be a secret of role B even though B has no actions to perform.

� The messages of the communication steps must be synthesizable by the sender. That is, a protocol
must be executable as defined in Definition 2.27 on page 27.

� The messages that occur in the goals must be synthesizable by all roles that are mentioned in the
goal the latest after their last action.

� No two identifiers must occur such that they are equal in a case-insensitive way but not equal in a
case-sensitive way. In the example, Secr and secr collide.

� The declaration of a fresh variable must not collide with a variable that is either in the initial
knowledge of a role or declared as a fresh variable in another action. In the example, secr is
declared as a fresh variable even though it is already in the initial knowledge of A.

The translator refuses to translate any protocol that does not meet all the requirements listed above since
a protocol that is not well-formed has no clear semantics. Note that the synthesizability requirements
above imply that there are no uninitialized variables.

36

4 The Intermediate Representation Format

4 The Intermediate Representation Format

One of the goals of this thesis is to provide a tool that translates from A&B protocol specifications to
the input language of Tamarin. It is usual in computer science not to translate directly from the input
language to the output language, but to first parse the code into an intermediate representation format
(IR):

A&B
Parsing & Analysis−→ IR

Code Generation−→ Output Language

The IR format decouples parsing and analysis from code generation and adds additional flexibility; most
importantly, it allows us to write translators to any output language without having to reimplement
the parsing and analysis stage. In this thesis, we only provide a translation to the input language of
Tamarin, but since the IR is independent of the target language, new code generators can be added
without much effort. This is not the only advantage; having the protocol in a clean representation
simplifies checking if it is well-formed significantly.

We now outline the IR that we use in this thesis. It is, like the whole translator, implemented in
Haskell and for this reason we have to introduce some aspects of the implementation already here. The
intermediate representation format is defined in package Rewriter.IR of the implementation of the
translator.

The IR is based on the same notions and ideas as the specification of protocols that we gave when
we were talking about Alice&Bob notation (see Definition 2.26). Nevertheless, the IR is designed as a
convenient basis for the code generation step and consequently stores more information than is strictly
necessary. Actions in the IR, for instance, do not only describe the job that a principal should perform
but also contain the knowledge that the principal has after executing the action. This spares the code
generator the responsibility to keep track of that knowledge. In other words, the IR is devised in such
a manner that it contains all relevant information of the analysis so that code generation from it is as
simple as possible. There is a short reference for the intermediate representation format in Appendix C.

4.1 Framework

The IR is embedded into the Haskell code of the translator. Therefore we introduce a few general data
structures and type definitions before we start to talk about the IR itself.

The following types are defined in package Parser.Basic and help improve the readability of the
code:

type Label = String;
type RoleName = String;
type Identifier = String;

The chosen names should be self-explaining. For the canonical representation of multiplication, we use
multisets like in our discussion of Alice&Bob notation which is why we introduce the following type
definition:

type Factors = Data.MultiSet.MultiSet Message

Note that Data.MultiSet.MultiSet is not included in most Haskell setups and that therefore, it is
probably necessary to download and install it before the translator can be compiled. The type Data.

MultiSet.MultiSet only works with data types that are in class Ord which is why the messages that
we define in a moment are an instance of Ord.

A data type that lies at the very heart of protocols is Message. The corresponding implementation
in Haskell can be found in package Parser.Message:

data Message
= Gamma Identifier Message
| Var Identifier
| Str String
| Concat Message Message
| Aenc Message Message
| Senc Message Message
| Hash Message

37

4 The Intermediate Representation Format

| Mul Factors
| Exp Message Message
| Pk RoleName
| Sk RoleName
| K RoleName RoleName
| Fun Identifier [Message]
| One

The same messages and the same message model as defined in Section 2.2 are used here. The first
constructor, Gamma represents ghost abstraction. The identifier is used to give a unique name to each
such ghost abstraction; we will ignore this for now, it is discussed later in detail. Var represents a variable
(variables can be both of type Num and Agent) and Str a constant number (constant numbers are
represented as strings in single quotes in A&B, therefore the name). Concat denotes the concatenation
of two messages, Aenc and Senc asymmetric and symmetric encryption of a message (first argument)
with a key (second argument). Hash stands for the hash of a message and Fun for function application,
where the arguments are given as a list of messages. Mul represents multiplication (the factors are
represented as a multiset) and Exp the exponentiation of a message with another message. Sk and Pk

represent the secret and the public key of a role, K the symmetric key of two roles. One represents the
message 1.

Finally, knowledge is represented as a set of messages. For reasons of readability, we again define a
new type in package Parser.Message:

type Knowledge = Data.Set.Set Message

4.2 Representing a Protocol

Based on this framework, we can now define the intermediate representation format. Its definition is
given in package Rewriter.IR and follows the same ideas as the notion of a protocol that we specified in
Definition 2.26. Let us introduce it in a top-down approach by starting with the definition of a protocol:

data Protocol = Protocol Identifier [Function] [Role] [Goal]

The first argument of the Protocol type constructor is the name that is given to the protocol in the
A&B specification. If we return to the specification of the protocols in Figure 5, this would be "CR",
"DIFFIE-HELLMAN" and "ASW", respectively. The second argument is a list of the functions that are
declared in this protocol, the third a list of the roles and the fourth a list of the goals.

Functions. Let us continue with the definition of functions. A predefined function is represented as
follows:

type Function = (Identifier, Integer, Bool)

The first element of the triple is the name of the function, the second the arity and the third specifies if
the function is public. The A&B function declarations public fun/3; and private bar/1; would be
represented as ("fun", 3, True) and ("bar", 1, False), respectively.

Roles. We have specified roles in Definition 2.25 and declared that a role consists of the initial
knowledge that a principal in this role has as well as the actions that are to be performed. A role
in the intermediate representation format, however, only consists of the name of the role and a list of
actions (the order of the actions in the list matters, of course); this is because an Action does not only
represent the action itself but also contains information about the knowledge, as we will see in the next
paragraph, and consequently there is no need to store this information in the role itself. A role is defined
as follows:

data Role = Role RoleName [Action]

38

4 The Intermediate Representation Format

Actions. When we were talking about Alice&Bob protocol specifications, we introduced two types of
actions, namely Send and Recv. We use the same idea in the intermediate representation format with
the type constructors Send and Receive. However, there is also a third type constructor, Prepare,
whose purpose is to represent the initial knowledge of a role. In some sense, it represents the action of
acquiring the initial knowledge. The first action of a role is therefore always a Prepare action. Let us
give the corresponding type definition before we discuss the details:

data Action
= Prepare Knowledge
| Send Bool Label RoleName [Identifier] Message Knowledge
| Receive Label RoleName Message Knowledge

The last argument of all the three type constructors is the knowledge that a principal executing the
action is supposed to have after successfully performing it. In the actions that we defined in Section 2,
we did not include the knowledge at all; here we do it with the code generation in mind since this allows
for a cleaner implementation. It would contradict the idea of separating analysis and code generation
if the code generator had to keep track of the knowledge of a role during a run of the protocol. As
explained above, there is no reason to include the initial knowledge in the specification of a role since all
the information that is needed is included in the actions.

Let us now take a closer look at Send and Receive. Both contain that label that is given to the action
in the A&B specification. It is used for reference when checking the well-formedness of the protocol and
when generating the output code.

Both action types also contain the name of the partner role. This is the third argument in the case of
the Send constructor; here, the partner role is the receiving role. In the case of the Receive constructor,
the partner role is specified in the second argument and corresponds to the role sending the message.

The Send type constructor has two more arguments than Receive. Its very first argument is a Bool
that indicates if the action is executable, that is, if the message can be constructed from the knowledge.
A sending action that is not executable is undefined according to Definition 2.27, in the IR it is simply
marked as not executable. The fourth argument contains the list of the fresh names that should be
generated before the message is constructed and sent.

The second-to-last argument in the Send and Receive type constructors is the message that is
exchanged over the network. In both cases, it is represented in its constructive form. In the case of
Send actions it is an obvious choice to represent the message in this format since it provides a direct
description of how the message to be sent can be constructed from the knowledge (this is of course the
knowledge after adding the freshly generated numbers).

However, it is less clear why we would use the constructive form for Receive actions because receiving
and analyzing is at first glance completely different from synthesizing messages. We have shown earlier
that there are situations where a principal can analyze a message but not reconstruct it from the extracted
sub-messages. For example, if B’s knowledge contains only the message pk(A) and he receives the
message {nn2

1 }ask(A), he can extract nn2
1 but cannot reconstruct {nn2

1 }ask(A) from nn2
1 because he does not

know sk(A) as well. Therefore, he has to store the message γ{nn2
1 }ask(A)

as a whole as well as γnn2
1

in order

not to lose any messages. This shows that there are two points of view that we can take when receiving
a message. On the one hand, we can focus on the new messages that can be learned by analyzing
an incoming message; from that perspective, we could represent the message as {γnn2

1
}ask(A) since B

learns γnn2
1

. On the other hand, we can also focus on the messages we have to store since they are not
synthesizable from the sub-messages; if looking at the received message from that angle, the constructive
form γ{nn2

1 }ask(A)
is a sensible representation because we have to store γ{nn2

1 }ask(A)
as a whole.

Both representations have their advantages and disadvantages. As previously mentioned, we have
decided to use the constructive form for the representation of the exchanged message in Receive actions
because it simplifies some aspects of the code generation step. We come back to this choice in Section 5
where we discuss the translation to the input language of Tamarin and motivate it in more detail.

For illustration of the representation of actions in the IR, consider the last message exchange step of
the Diffie-Hellman protocol in Figure 5. It is perfectly suited to demonstrate some of the points we have
discussed above:

[dh_3] A -> B (n) : senc{n}(gˆ(x*y));

We now give the corresponding actions of the sender (A) and the receiver (B) in the IR format.

39

4 The Intermediate Representation Format

� Let us first look at the sending principal A. After generating the fresh number, the knowledge
of the principal in role A is χA = {A,pk(A), sk(A), γgy , x, n} and as a consequence, we have
cfχA({n}s

g�{|x,y|}
) = {n}s(γgy)x . Hence the constructive form is defined and the action is executable.

The corresponding Send action is then:

Send True "dh 3" "B" ["n"] {n}s(γgy)x {A,pk(A), sk(A), γgy , x, n}

Note that we have not used Haskell notation for the messages because they would become very
long, causing the knowledge to span several lines ({n}s(γgy)x would be represented as Senc

(Var "n") ((Gamma "alpha" (Exp (Var "g") (Var "y"))) (Var "x"))). We resort to this
notation several times in this thesis.

� On the receiving side, B learns n since he can construct the decryption key gx�y as (γgx)
y
.

After receiving, his knowledge therefore is χB = {B,pk(B), sk(B), γgx , y, n} and we represent
the message in the action as cfχB ({n}s

g�{|x,y|}
) = {n}s(γgx)y . The corresponding Receive action is

then:

Receive "dh 3" "A" {n}s(γgx)y {B,pk(B), sk(B), γgx , y, n}

There is one important detail about messages that we have ignored so far, namely the identifier in the
type constructor of ghost messages (Gamma Identifier Message). It plays a crucial role when it comes
to the generation of (Tamarin) code, especially in relation with actions. However, it makes sense to wait
with discussing it until after we have introduced the input language of Tamarin since this will allow us
to support our explanations with examples. Therefore we discuss ghost messages only in Section 5.2.

Security Goals. The representation of the security goals in the IR is straightforward.

data Goal
= Secret Label Message [RoleName]
| WeakAuth Label RoleName RoleName [Message]
| StrongAuth Label RoleName RoleName [Message]

We refer to non-injective agreement as “weak authentication” (WeakAuth) and injective agreement as
“strong authentication” (StrongAuth) here. The meaning of the three types of goals corresponds one-
to-one to the definitions given in Section 3.4 when we were discussing the security goals of A&B. Instead
of further explanations, let us give examples to illustrate the relationship between the declaration of
security goals and their representation in the IR. The CR protocol in Figure 5 specifies one security goal
of each type:

1. [n_secret] n secret of C, R;

2. [authNonInj] C non-injectively agrees with R on n;

3. [authInj] C injectively agrees with R on n;

This translates to the following instantiations of Goal:

1. Secret "n secret" (Var "n") ["C", "R"]

2. WeakAuth "authNonInj" "C" "R" [(Var "n")]

3. StrongAuth "authNonInj" "C" "R" [(Var "n")]

4.3 Example

We used the CR example to illustrate protocols when we discussed Alice&Bob notation in Section 2.8.2.
Later, we gave the CR protocol in the A&B language in Figure 5. Now, we would like to end this
section by giving an explicit implementation of the corresponding intermediate format. It can be found
in Figure 7. Note the common features of the representation of the CR protocol that we gave in
Section 2.8.2 on page 27 and the corresponding intermediate representation.

40

4 The Intermediate Representation Format

import Parser.Message
import Rewriter.IR
import qualified Data.Set as S

protocol = Protocol "CR" []
[Role "C"

[Prepare (S.fromList [Sk "C", Pk "C", Var "C", Pk "R"])
, Send True "cr 1" "R" ["n"] (Aenc (Var "n") (Pk "R"))

(S.fromList [Sk "C", Pk "C", Var "C", Pk "R", Var "n"])
, Receive "cr 2" "R" (Hash (Var "n"))

(S.fromList [Sk "C", Pk "C", Var "C", Pk "R", Var "n"])
]

, Role "R"
[Prepare (S.fromList [Sk "R", Pk "R", Var "R"])
, Receive "cr 1" "C" (Aenc (Var "n") (Pk "R"))

(S.fromList [Sk "R", Pk "R", Var "R", Var "n"])
, Send True "cr 2" "C" [] (Hash (Var "n"))

(S.fromList [Sk "R", Pk "R", Var "R", Var "n"])
]

]
[Secret "n secret" (Var "n") ["C", "R"]
, WeakAuth "authNonInj" "C" "R" [(Var "n")]
, StrongAuth "authNonInj" "C" "R" [(Var "n")]
]

Figure 7: The intermediate representation of the CR protocol from Figure 5.

41

5 Translation to Tamarin

5 Translation to Tamarin

Before we talk about some aspects of the translation step, we would like to say a few words about the
Tamarin prover and, in particular, about its input language. In general, it is not decidable if a protocol
fulfills certain security properties and for this reason, an automated verifier can only be applied to a
subset of all interesting problems.

The Tamarin prover [13] is the first tool that is based on a verification theory that supports
unbounded falsification and verification making use of loops and non-monotonic state. What is more,
Tamarin supports bilinear pairing as well as Diffie-Hellman multiplication and exponentiation which
significantly widens the class of protocols that can be checked by an automated verifier. Tamarin can
be downloaded from the website of the information security group at ETH Zurich [10].

The verification theory of Tamarin is out of scope of this thesis; we give here only a short and
incomplete introduction to the input language of Tamarin where we put an emphasis on the aspects
that are of interest for our purpose. We refer to the documentation that comes with Tamarin for more
details.

5.1 Tamarin and its Input Language

State is modeled as a finite multiset of labeled facts in Tamarin. A protocol is modeled by giving a set
of rewriting rules for these facts and security goals are modeled by specifying first-order logic formulas
(so-called lemmas) that can then be analyzed by the tool, where adversary involvement is considered. A
Tamarin file has the extension .spthy and the following structure:

theory name
begin
/* Body: protocol and security goal specifications */
end

where name can be any identifier. We can see that Tamarin uses C-style comments. Let us now talk
about the body of a Tamarin protocol specification.

5.1.1 Messages and Functions

Tamarin uses a similar notation for messages as the A&B protocol specification language. In particular:

� Constant numbers are represented as strings in single quotes such as '1' or 'hello'.

� Variables are represented by identifiers such as m, a or key.

� The concatenation of two messages m1 and m2 is represented as <m1, m2> or m1, m2 if unambiguous.
Note that Tamarin uses a comma, not a dot.

� The Diffie-Hellman multiplication of the messages m1 and m2 is denoted by (m1 * m2).

� The Diffie-Hellman exponentiation of a message m1 with a message m2 is denoted by (m1ˆm2).

� The application of the n-ary function fun with the arguments m1, ..., mn is denoted by fun(m1,

..., mn). Hashing, inversion of messages, encryption and further operations are represented as
functions in Tamarin. The parentheses can be omitted for nullary functions and there is a special
syntax for binary functions. The binary function aenc can be applied either as aenc(m1, m2), or
as aenc{m1}m2. This syntax does not make sense in all cases, but helps improve readability for
encryption and therefore we use it when generating Tamarin code.

Functions need to be declared before they can be used. This is done after the functions keyword:

functions: fun/1

In this example, the unary function fun is declared. Functions in Tamarin can be either public or private,
which has exactly the same semantics as in A&B, that is, the adversary can apply public functions while
he cannot apply private functions. Functions are public by default, if we want to declare a function such
as fun as private, we can do this as follows:

functions: fun/1 [private]

42

5 Translation to Tamarin

5.1.2 Equations and Built-in Theories

The message model is determined in Tamarin by specifying equations. For example, if we want to
model symmetric encryption, we can do this by first declaring the binary function senc for encryption
and the binary function sdec for decryption. Both functions should of course be public since they can
be applied by the adversary. Then, we can specify the symmetric decryption property in an equation.
This looks as follows:

functions: senc/2, sdec/2
equations: sdec(senc(m, key), key) = m

Recall property (2) from page 11, namely {{m}sk}sk =M m. There, we did not make a distinction
between decryption and encryption but used the same function for both directions. Unfortunately,
using senc(senc(m, key), key) = m can lead to protocol specifications that cannot be treated due to
restrictions of the prover that underlies Tamarin. As a consequence we use the rule sdec(senc(m,

key), key) = m from above in the Tamarin code that is output by the translator. The same restriction
applies in the case of asymmetric encryption and therefore we use aenc for encryption and adec for
decryption.

Note that this can lead to collisions with the message model that we use in A&B since the message
senc{senc{m}key}key equals m in our Alice&Bob message model but does not equal m in the message
model we use in Tamarin. For this reason, we have to make sure that messages are always kept in
canonical form since this requires that we represent {{m}sk}sk as m. We never have to use decryption
explicitly because Tamarin can work out by itself how messages can be analyzed when given the
appropriate equations.

While we can explicitly declare new functions and add equations, there is a basic setup that is always
there implicitly in Tamarin, namely:

functions: fst/1, pair/2, snd/1
equations: fst(<x.1, x.2>) = x.1, snd(<x.1, x.2>) = x.2

The rules above express that messages can be paired on the one hand and that concatenation can be
decomposed on the other hand (pair/2 represents concatenation, i.e., pair(m1, m2) = <m1, m2>).
The other function declarations and equations that we need have to be given explicitly. To spare us the
necessity to restate the same equations and functions each time, there is a number of built-in equational
theories in Tamarin. For example, there is the equational theory symmetric-encryption which can
be included in the specification with the line

builtins: symmetric-encryption

When the protocol is read by Tamarin, this line is replaced by the appropriate function and equation
declarations, that is, the function declarations of senc and sdec and the equation we stated above. Let
us now quickly go through the other built-in equational theories that we use.

Firstly, there is hashing. It declares the public unary function h. No new equations are added. In
other words, h is treated as a normal function.

Secondly, there is diffie-hellman. This adds the operators * and ˆ for Diffie-Hellman multiplication
and exponentiation. Furthermore, a complex message model is added. Recall our equational theory M
on page 11 in which multiplication and exponentiation are modeled by properties (5) to (10). The
equational theory used by Tamarin is of course much more involved since the capabilities of both the
adversary and honest principals need to be modeled. For example, there is the property ga ∗ gb = g(a+b)

which we did not model (we did not even define addition). The complete proving theory can be found
in the CSF paper about Tamarin [13]. The diffie-hellman theory is a special case since it adds
capabilities to Tamarin internally while other theories are nothing but syntactic sugar for equation and
function declarations.

There are further built-in theories, namely asymmetric-encryption, bilinear-pairing and
signing. We do not use them in this thesis and will therefore not elaborate on them.

5.1.3 Facts and Rewriting Rules

We have mentioned that Tamarin is based on multisets of labeled facts and rules that specify how the
facts in such a multiset can be rewritten. A fact is denoted by F(t_1, ..., t_k) where F is the label

43

5 Translation to Tamarin

and t_1, ..., t_k is a list of parameters. There are a few built-in facts with pre-defined semantics.
For example, the fact Out(m) represents the fact that the message m was sent over the network at some
time and the fact In(m) expresses that m can be received. Another important built-in fact is Fr(n) that
states that n is a freshly generated number.

Facts can be either linear or persistent ; a linear fact can only be consumed by one rule and is then
removed from the multiset state, persistent facts can be consumed arbitrarily often. In the Tamarin
input language, persistent facts are marked by a prefixed exclamation mark. For instance, the persistent
fact that the publicly known principal in role A has public key pkA can be modeled as the persistent fact
!Pk(A, pkA).

How facts can be rewritten is specified by labeled multiset rewriting rules. They have the shape

rule label:
[L] --[A]-> [R]

where L, A and R are comma-separated lists of facts. The facts in L are called the premises, the facts in A

the actions and those in R the conclusions. Note that the name “actions” is somewhat unfortunate since
it collides with our notion of an action that is executed by a principal; we therefore refer to Tamarin’s
actions as statements here. From now on, we refer to labeled multiset rewriting rules simply by “rule”.

Certain properties of values are indicated by prefixes or postfixes. In particular, fresh values are
prefixed with a ∼ or postfixed with :fresh. Similarly, public values are prefixed with $ or postfixed
with :pub. Temporal values are prefixed with a # or postfixed with :temp.

A rule can only be applied if all of the premises are satisfied, that is, if there is a matching fact
in the multiset state for each of the facts in L. When the rule is applied, linear facts in the multiset
are consumed (removed from the state) while persistent facts are left untouched and the facts in R are
added to the multiset state. The statements in A do not influence state. Their purpose is to express that
“something has happened”. These statements can be used in lemmas that describe the properties that
the protocol should achieve (i.e., security goals).

Let us illustrate this with the help of a small example. First, we would like to give the predefined
rule for the generation of fresh values (the label has been omitted here):

[] --[]-> [Fr(∼x)]

This rule expresses that we can generate a fresh value out of nothing (without any premises), that is,
we can always add the fact Fr(∼x) to the multiset without any preconditions. The value ∼x is prefixed
with a tilde to mark it as a fresh value, i.e., it has been randomly chosen and can therefore be assumed
to appear nowhere else. The fact Fr can then be used by the rule Asymmetric_key_setup that models
the possibility of any entity to acquire both a public and a private key. Since Fr is a linear fact, it
is consumed (i.e., removed from the multiset) when rule Asymmetric_key_setup is applied (this only
makes sense because we want to prevent that a fresh value is reused):

rule Asymmetric_key_setup:
[Fr(∼f)] --[]-> [!Sk($A, sk(∼f)), !Pk($A, pk(∼f))]

The rule states that an entity A (that is publicly known, hence the dollar sign) can consume a fresh value
∼f from the multiset state and then generate the two persistent facts !Sk and !Pk that bind a secret key
and the corresponding public key to A. The functions pk and sk represent the generation of the public
and the private key from a fresh value ∼f. Of course, they need to be defined in the functions block.

Furthermore, we can express that the public key can be obtained by any entity by the following rule:

rule Publish_public_keys:
[!Pk(A, pkA)] --[]-> [Out(pkA)]

We quite simply state that the public key is sent to the network as often as desired (!Pk is persistent).
Note that the markers for fresh and public values are used no longer here since we take facts from the
state.

5.1.4 Lemmas

Lemmas are used to describe what security goals should be achieved by a security protocol. They are
guarded fragments of first order logic. Let us just give a dummy example to demonstrate the idea.

First, suppose we have the following rewriting rule

44

5 Translation to Tamarin

rule Dummy:
[P(m)] --[A(m)]-> []

The rule expresses that we can consume a linear fact P(m) from the multiset state while nothing new
is added to the state. Here, we also have a statement A(m). Statements are “made” when the rule is
applied but have no effect whatsoever on the multiset state. Statements can be used in lemmas. For
example, we can express the property that this rewriting rule can actually be applied by a protocol
during execution by stating the following lemma:

lemma executable:
exists-trace
" Ex m #t . A(m) @ #t "

A lemma starts with the keyword lemma, followed by an identifier that gives a name to the lemma.
There are two types of lemmas; the one type requests that the lemma must hold for all traces (keyword
all-traces), the other type requires that there is at least one trace for which the lemma holds (keyword
exists-trace). Then, the actual lemma follows. In the example above, we require that there exists a
point in time #t at which a statement A(m) is made for some value m. We do not discuss lemmas in more
detail here since we only need one lemma template per security goal type and can then simply insert the
matching values as we will see later.

5.2 Translation from IR to Tamarin

We would now like to emphasize a few aspects of how we generate Tamarin code. First of all, we have
to talk about how we specify our equational theory, especially since we also have to fix the adversary
capabilities, something which we did not do for the A&B language itself. Then we can discuss how the
actions taken by principals can be expressed in Tamarin and finally, how the security goals can be cast
into lemmas.

Recall the CR protocol specified in Figure 5 on page 30 and the corresponding IR that is given
in Figure 7 on page 41. We will resort to this protocol repeatedly to illustrate some aspects of the
translation.

5.2.1 Modeling the Capabilities of Honest Principals

We have to express the message model and the capabilities of principals (both honest and dishonest)
from Section 2 in Tamarin. On the one hand, there are the honest principals. In order to specify their
capabilities, we need to express the framework that emerges from the synthesis rules (Definition 2.5
on page 15), the analysis rules (Definition 2.8 on page 16) and equational theory M (Section 2.2.2 on
page 11). On the other hand, we also need to specify the capabilities of the adversary, something that is
mostly predetermined by Tamarin. Let us not beat around the bush and give the function and equation
declarations straight away:

functions: adec/2, aenc/2, pk/1, sk/1
builtins: symmetric-encryption, diffie-hellman, hashing
equations: adec(aenc(x.1, sk(x.2)), pk(x.2)) = x.1,

adec(aenc(x.1, pk(x.2)), sk(x.2)) = x.1

We explained above that all of the built-in theories except for diffie-hellman and bilinear-pairing

are nothing but syntactic sugar for function declarations and equations. If we unfold the built-in theories,
this results in the following equivalent specification:

builtins: diffie-hellman
functions: adec/2, aenc/2, fst/1, h/1, pair/2, pk/1, sdec/2, senc/2,

snd/1
equations: adec(aenc(x.1, sk(x.2)), pk(x.2)) = x.1,

adec(aenc(x.1, pk(x.2)), sk(x.2)) = x.1,
sdec(senc(x.1, x.2), x.2) = x.1,
fst(<x.1, x.2>) = x.1,
snd(<x.1, x.2>) = x.2

45

5 Translation to Tamarin

Note that we do not use the built-in theory asymmetric-encryption but set up asymmetric encryption
by declaring the functions adec, aenc, sk and pk and the two equations that express their properties. We
do this because asymmetric-encryption only allows the decryption of messages that are encrypted with
the public key, not with the secret key. It is not possible to extend asymmetric-encryption to allow
decryption of messages that were encrypted with the secret key without adding unwanted capabilities
for the adversary. In the setup above, the adversary can construct public-secret key pairs, but cannot
construct the public key from a secret key or vice-versa.

In the next proposition, we claim that these definitions actually represent the message model that
we introduced in Section 2.

Proposition 5.1. The capabilities of honest principals that are induced by the function declarations,
equations and the built-in theory diffie-hellman from above are equivalent to the capabilities that arise
from Definitions 2.5 and 2.8 and the properties from Section 2.2.2.

This implies that the protocols that we specify are actually executable in Tamarin. The capabilities
of the adversary follow immediately from the definitions above. In particular, the adversary has all the
capabilities that honest principals have (with the exception of applying private functions).

5.2.2 Setting Up the Knowledge

We have seen in the previous section how we can model the capabilities of honest principals. Therefore
we can now proceed to the initial knowledge, the last piece that we have to include in a specification
of a protocol before we can proceed to the discussion of the actual communication. We can do this by
defining multiset rewriting rules.

The first rule that we introduce allows the generation of arbitrarily many secret-public-key pairs:

rule Asymmetric_key_setup:
[Fr(∼f)] --[]-> [!Sk($A, sk(∼f)), !Pk($A, pk(∼f))]

We represent the secret key of a principal A by the persistent fact !Sk(A, secK) and the public key by
!Pk(A, pubK). Both keys are generated by applying a function to a fresh value ∼f, i.e., we have secK

= sk(∼f) and pubK = pk(∼f). We have chosen this setup since it allows the adversary to generate
public-secret key pairs, but at the same time does not allow the construction of the secret key from the
public key (or vice-versa) if he does not know the value from which they were generated.

In A&B, public keys are assumed to be publicly known (in particular, to the adversary). We model
this by the following rule:

rule Publish_public_keys:
[!Pk(A, pkA)] --[]-> [Out(pkA)]

Now we come to the rule that generates the initial knowledge of all participants. Knowledge can be
represented by facts in Tamarin. For example, the implicit knowledge {A,pk(A), sk(A)} of a principal
in role A can be represented by a fact of the form Knowledge(A, pubK, secK). We have required in
A&B that every communication step has a unique label which comes in handy now. We represent the
knowledge of principal A after the execution of the message exchange step with the label [label] by
St_label_A(...). The fact for representing the initial knowledge of A is called St_init_A(...).

If we take a glance at the intermediate representation of the CR protocol, we can see that the
initial knowledge of role C is [Sk "C", Pk "C", Var "C", Pk "R"], the one of role R [Sk "R", Pk

"R", Var "R"]. We can use rule Asymmetric_key_setup to get the public and private keys of the
participants; C and R are public names. This means that we can set up the initial knowledge with the
following rule:

rule Init_Knowledge:
[!Pk($C, pk(k_C)),

!Pk($R, pk(k_R)),
!Sk($C, sk(k_C)),
!Sk($R, sk(k_R))]

--[]->
[St_init_C($C, sk(k_C), pk(k_C), pk(k_R)),

St_init_R($R, sk(k_R), pk(k_R))]

46

5 Translation to Tamarin

Here, k_C and k_R are the values from which the public and secret keys are generated. Note that this
rule ensures that equal messages actually have equal values in the initial knowledge of different principals
and that the public key pk(R) that C possesses is authenticated (this is why there is only one rule to set
up the initial knowledge for all principals that take part in a run of a protocol).

In the CR protocol, there are only agent names and public and secret keys in the initial knowledge,
all of which are either publicly known or generated by rule Asymmetric_key_setup. There is no general
variable in the initial knowledge. We have defined that variables in the initial knowledge are equal for
all participants of a protocol run and that the value of the variable is fresh each time, i.e., we have to
model them as fresh numbers.

If we assume that C additionally has the message h(n) in her initial knowledge, we can do this by
generating n as a fresh number and adapting the rule above as follows:

[..., Fr(∼n)
--[]->
[St_init_C($C, sk(k_C), pk(k_C), pk(k_R), h(∼n)), ...].

We have now defined the message model and how the initial knowledge can be set up in Tamarin.
With this, we have now the framework in which we can express the actual communication between honest
principals.

5.2.3 Communication Steps

The IR provides us with two types of communication steps, Send and Receive. Both of them require
that the previous action of the role has been executed. Assume that the current action has the label
[current] and the previous action has the label [previous].

We represent each action of a principal by one rule. Tamarin works with multiset rewriting rules and
we have to make sure that the rule that expresses the action with label [current] can only be applied
when the action with the label [previous] has been applied (“executed”) before. We do this with the
knowledge; remember that the knowledge that P has after executing the action with label [previous]
is represented by the fact St_previous_P(...). Therefore, we use St_previous_P(...) as a premise
for the rule that expresses the action with label [current]. This works since the state of a principal
consists of nothing but the current position in the protocol and the knowledge, information which is
all expressed by the fact St_previous_P(...). Hence, the pattern of all rules that express a Send or
Receive action is as follows:

rule current_P:
[St_previous_P(P, sk(k_P), pk(k_P), ...), ...]
--[...]->
[..., St_current_P(P, sk(k_P), pk(k_P), ...)]

If there is no previous action, then the corresponding label is [init] and the corresponding fact
St_init_P.

Let us now look at both sending and receiving actions separately. For a sending action, we have to
add the Out fact for expressing that the message has been sent. However, before we can send, we need
to generate the fresh numbers. In the general case, a fact representing a sending action of a sending
principal S looks as follows, where message is in constructive form (as delivered by the IR); we will
shortly discuss this in more detail:

rule action_current_S:
[St_previous_S(S, sk(k_S), pk(k_S), ...),

Fr(∼n1), ..., Fr(∼ni), ...]
--[...]->
[..., Out(message),

St_current_S(S, sk(k_S), pk(k_S), ..., ∼n1, ..., ∼ni, ...)].

The receiving of a message that was sent before (an Out fact) is expressed by an In fact in the
premises. The receiving action of a principal R has the following general structure:

rule action_current_R:
[St_previous_R(R, sk(k_R), pk(k_R), ...),

In(message), ...]

47

5 Translation to Tamarin

--[...]->
[..., St_current_R(R, n, sk(k_R), pk(k_R), ...)]

Let us demonstrate this with the CR protocol. The Send and Receive actions of the message
exchange step with label [cr_1] are expressed in Tamarin by the following two facts: :

rule cr_1_C:
[St_init_C(C, sk(k_C), pk(k_C), pk(k_R)),

Fr(∼n)]
--[...]->
[Out(aenc{∼n}pk(k_R)),

St_cr_1_C(C, ∼n, sk(k_C), pk(k_C), pk(k_R))].

rule cr_1_R:
[St_init_R(R, sk(k_R), pk(k_R)),

In(aenc{n}pk(k_R))]
--[...]->
[St_cr_1_R(R, n, sk(k_R), pk(k_R))]

5.2.4 Security Goals

The CR protocol declares one of each of the three security goal types (see Section 3.4 for a discussion of
the security goals). Let us restate them here in the intermediate representation format:

Secret "n secret" (Var "n") ["C", "R"]
WeakAuth "authNonInj" "C" "R" [(Var "n")]
StrongAuth "authNonInj" "C" "R" [(Var "n")]

Remember that n only needs to be secret (i.e., not known by the adversary) if both C and R successfully
finish their runs of the protocol and agree on n. Similarly, authentication goals only need to hold if the
claiming principal finishes protocol execution. In the CR protocol, C claims both non-injective and
injective agreement with R on n. This means that R should state that he possesses n as soon as he has
received it and C should claim agreement when she finished her last action. This is where the statements
in the rewriting rules come into play. R states that he possesses n after executing [cr_1] since this
is the first time when he possesses n. This is done with the statements Running_authNonInj(n) and
Running_authInj(n) for non-injective and injective agreement, respectively:

rule cr_1_R:
[...]
--[Running_authNonInj(n),

Running_authInj(n)]->
[...]

C, on the other hand, claims agreement after her last action [cr_2] with the statement
Commit_authNonInj(n) and Commit_authInj(n). Furthermore, since this is her last action, C also
claims secrecy on n:

rule cr_2_C:
[...]
--[Secret_n_secret_C(n),

Commit_authNonInj(n),
Commit_authInj(n)]->

[...]

R also claims secrecy in his last action which is expressed by the following rule:

rule cr_2_R:
[...]
--[Secret_n_secret_R(n)]->
[...]

Based on these rules and the statements that are made, we can now formulate the lemmas that
correspond to the security goals. Let us start with secrecy:

48

5 Translation to Tamarin

lemma n_secret:
" not(

Ex msg #i1 #i2 #j .
Secret_n_secret_C(msg) @ #i1 &
Secret_n_secret_R(msg) @ #i2 &
K(msg) @ #j

)"

The lemma states that it must not happen that both C and R claim that msg is a secret at any time and
that there is another point in time where the adversary learns msg (expressed by the built-in fact K).
Note that the lemma only holds because we assume that msg has a different value in every run of the
protocol (where it is freshly created in the rule that sets up the initial knowledge fact).

The lemma for non-injective agreement looks as follows:

lemma authNonInj:
" (All m1 #i .

Commit_authNonInj(m1)@ #i
==>
(Ex #j . Running_authNonInj(m1) @ #j & #j < #i)

)"

It expresses that whenever C claims non-injective agreement on a message, then there is an earlier point
in time where R knows the message as well. In particular, C and R have the same value for the message.

Injective agreement is very similar, the only difference is that we additionally require that every
successful run (i.e., the principal that claims agreement terminates his run) of the protocol is unique.
We can do this by requiring that there is only one commit statement for the same value:

lemma authInj:
" (All m1 #i .

Commit_authInj(m1)@ #i
==>
(Ex #j . Running_authInj(m1) @ #j & #j < #i) &
(not (Ex #j . Commit_authInj(m1) @ #j & not (#i = #j)))

)"

We now have the tools to translate A&B protocol specifications to Tamarin. However, we would like to
remark here that Tamarin can not alway handle the code produced by the translator. It is undecidable
in general if a protocol fulfills the requested security properties and consequently, there are cases where
Tamarin does not terminate. Sometimes, this problem can be solved by slightly rewriting the code. In
other cases, one can try to specify typing lemmas to reduce the size of the search space. However, all of
the protocols presented in this thesis lead to code that works without any modifications.

There are also protocols that cannot be handled at all because some internal restrictions of the
Tamarin prover (for example, multiplication restriction) are violated. In these cases, Tamarin
complains that the protocol specification is not well-formed and has to be rewritten manually.

5.3 Ghost Messages

We have promised earlier when we were discussing the intermediate representation format that we would
make clearer what the purpose of the identifier in the constructor Gamma Identifier Message is. Let
us start with an example again, this time the ASW protocol from Figure 5 on page 30. The sub-messages
pk(A), sk(A), m and h(n 1) can be extracted from aenc{pk(A) . pk(B) . m . h(n 1)}sk(A) by B

since he knows pk(B). However, h(n 1) cannot be further analyzed and since B does not posses n 1, he has
to store the message h(n 1). It is put under ghost abstraction since it is not atomic. The corresponding
representation in the IR is then Gamma "alpha" (Hash (Var "n 1")). Here, the "alpha" is nothing
but an identifier with which we refer to the ghost of h(n 1). Furthermore, aenc{pk(A) . pk(B) .

m . h(n 1)}sk(A) cannot be reconstructed from the sub-messages because B does not know sk(A).
Consequently, B has to store this message as a ghost as well; it is represented in the intermediate
representation language as (Gamma "beta" (Aenc ... (Sk "A"))), where we have abbreviated the
message a little.

49

5 Translation to Tamarin

This kind of representation has a direct application when expressing B’s Receive action in Tamarin.
The receiving of the message aenc{pk(A).pk(B).m.h(n_1)}sk(A) can be represented in Tamarin by
the fact In(senc{pkA, pkB, m, h(n_1)}skA) (which would be perfectly legal even though not all sub-
messages can be decomposed). However, since B cannot reconstruct the message from the sub-messages
and therefore has to remember the whole message, we write In(beta) instead.

We lose any information about the structure of the message with this representation. Fortunately,
Tamarin provides us with the possibility to clarify by adding a let block to the rule in which we
can specify beta = senc{pkA, pkB, m, alpha}skA. We do not clarify on alpha since it cannot be
analyzed. This looks as follows:

rule asw1_B:
let

beta = aenc{<pk(k_A), pk(k_B), m, alpha>}sk(k_A)
in

[St_init_B(A, B, sk(k_B), pk(k_A), pk(k_B)),
In(beta)]

--[Running_weakA(m),
Running_strongA(m)]->

[St_asw1_B(A, B, m, sk(k_B), pk(k_A), pk(k_B), beta, alpha)]

This is exactly why we represent the messages in constructive form in the IR even in Receive actions.
This is not the only possible way to represent how messages are analyzed and what information needs to
be stored. However, we find this representation most informative and straightforward for several reasons.
First of all, we represent composed messages that we treat as one message by one symbol; ghost symbols
in the knowledge are always represented by the representatives (alpha and beta in the above rule).
Furthermore, this representation makes clear in what order messages are analyzed. And, finally, the
stepwise analysis of the message shows nicely what checks can be performed (Tamarin does the checks
we require the principals to do automatically by requiring that the premises are fulfilled).

Representatives also go well with passing messages from one action to the next in the knowledge and
with sending. Let us demonstrate this by also giving the rule that expresses the sending action of B
in message exchange step [asw2]. Note that the structure of beta is of no importance at all in this
particular rule:

rule asw2_B:
[St_asw1_B(A, B, m, sk(k_B), pk(k_A), pk(k_B), beta, alpha),

Fr(∼n_2)]
--[]->
[Out(aenc{<beta, h(∼n_2)>}sk(k_B)),

St_asw2_B(A, B, m, ∼n_2, sk(k_B), pk(k_A), pk(k_B),
beta, alpha)]

50

6 Implementation and Tamarin Output

6 Implementation and Tamarin Output

We would now like to talk about some aspects of the implementation of the translator. It consists
of two parts: a program that reads A&B protocol specifications and generates the IR and a program
that generates Tamarin code from the IR. The Haskell source code can be found at http://www.
infsec.ethz.ch/research/software/tamarin. See Appendix D for instructions on compilation
and installation.

We do not discuss the implementation in detail here but only give a rough overview of its structure
where we pick out some of the more important or interesting pieces of code and have a closer look at
them. The program is written completely in Haskell and is Haddock-commented. A structural overview
of the packages is given in Figure 8.

6.1 Outline of the Translator

We have explained in the previous section that the translation is split in two steps. First, the A&B code
is parsed into the IR format from which Tamarin code is then produced. In fact, there is also a third
step since A&B specifications are first parsed into a parse tree. The complete picture looks as follows:

A&B
Parsing−→ Parse Tree

Rewriting−→ IR
Code Generation−→ Output Language

This predetermines the structure of this chapter. We first discuss the parsing step and parse trees.
Then, we come to the rewriting step which is the most interesting part since most of the analysis
happens there. Finally, we say a few words about the translation to the output language, Tamarin in
our case. We have already discussed this code generation step in Section 5 and therefore only talk about
a few implementation-specific aspects.

6.2 Parsing

The parser is implemented in package Parser where the main function is Parser.ProtocolParser.

anbParser. It parses A&B protocol specifications into parse trees.

Compiler

Checker

Checker.CaseInsensitivity

Checker.CheckResult

Checker.Checker

Parser

Parser.Basic

Parser.Message

Parser.ParseTree

Parser.ProtocolParser

Rewriter

Rewriter.Functions

Rewriter.FunctionsStateless

Rewriter.IR

Rewriter.MessageModel

Rewriter.Rewriter

Rewriter.State

Translator

Translator.Auxiliary

Translator.Printer

Translator.State

Translator.Translator

Figure 8: The Haskell packages of the implementation.

51

http://www.infsec.ethz.ch/research/software/tamarin
http://www.infsec.ethz.ch/research/software/tamarin

6 Implementation and Tamarin Output

6.2.1 Parse Trees

Parser.ParseTree.ParseTree is a tree data structure that represents the A&B input. While the
intermediate representation format represents a protocol after it has been analyzed and decomposed into
roles, the parse tree represents a protocol in its ”raw“ format. A message exchange step, for example, is
represented by the structure

data Action
= Action Label RoleName RoleName [Identifier] M.Message

See the implementation for the complete parse tree specification.

The Parser.ParseTree package does not only contain the parse tree definition itself but also provides
a number of helper functions for working with the parse tree. These are useful during the rewriting stage
when we access information from the parse tree frequently.

6.2.2 Parser

The implementation of the parser is based on the monadic Text.Parsec package. It is built by composing
simple parsers into parsers for complex structures. The following function, for instance, parses a label in
brackets such as [cr 1] by applying m brackets to the parser ident.

label :: Parser Label
label = m brackets ident

The monadic nature of Parsec allows for a concise and readable way of composing parsers. For example,
the secret function parses a secrecy goal (which starts with a label):

secret :: Parser Goal
secret = do l <- label

m <- msg
m reserved "secret" >> m reserved "of"
ls <- sepBy1 ident (m symbol ",")
return (Secret l m ls)

The msg function parses a message, m reserved parses a reserved keyword, and sepBy1 ident (m

symbol ",") parses a comma separated list of identifiers (where at least one identifier must occur). In
the last line, the parse tree of the secret is composed and returned.

One aspect of the parser that we would like to emphasize is how precedence and associativity of the
operators (see Section 3.2) have been implemented. Operator precedence needs to be implemented with
particular care since a left-recursive grammar can lead to non-terminating loops. We use the following
grammar for our message parser (note that this is no Haskell code):

msg ::= comT
comT ::= mulT '.' comT | mulT
mulT ::= xorT '*' mulT | xorT
xorT ::= bscT 'ˆ' xorT | bscT
bscM ::= '(' comT ')' | '<' comT '>' | builtinFun

| generalFun | str | var

The parser to the left of a | is applied first; the one on the right-hand side is applied only if the left-hand
side fails (this behavior is implemented in Parsec by the function <|>). In comT, for example, the parser
first tries to parse something of the form mulT '.' comT and only resorts to parsing something of the
form mulT if this fails. In this sense, concatenation is evaluated at the top level. The parser tries to parse
a multiplicative term only if no concatenation can be parsed. Similarly, it will only try exponentiation
if no multiplication can be parsed. Basic messages as specified by bscM are parsed only as “last resort”.

The order of the patterns in bscM matters, too. First, the parser to the very left is applied. If
the parsing is successful, the parsed value is returned. Otherwise, the parser on the right-hand side is
applied. Therefore, if we applied var before generalFun (such as var | generalFun), the message
foo(a) would be parsed as the variable foo even though it is clearly a function application, eventually
leading to a failure since the rest of the string would make no sense to the parser.

52

6 Implementation and Tamarin Output

6.3 Rewriter

The rewriting stage is more interesting since it interprets the meaning of an A&B protocol specification.
It takes a parse tree as input, analyzes it and then converts it into the intermediate representation format.
The rewriting stage is implemented in the package Rewriter, the main function being translateToIR

:: Parser.ParseTree.ParseTree -> Rewriter.IR.Protocol in package Rewriter.Rewriter.

6.3.1 Representing State

We have seen that a protocol can be described as a collection of roles that can be analyzed more or
less independently when we were discussing the semantics of Alice&Bob notation. For this reason, the
rewriting step handles one role after another. At the core of a role lies the knowledge that the principal
in it has at any point in time which means that we have to carry it with us during the complete rewriting
step. The nicest way to handle this is by using a state monad.

The state does not only contain the current knowledge but also other relevant information such as
the name of the role and the parse tree. The state is defined in the package Rewriter.State:

type RoleState a
= Control.Monad.State (RoleName,

, Parser.ParseTree.ParseTree
, Rewriter.IR.Knowledge
, [Basic.Identifier],
, Data.Set.Set Basic.Message.Message) a

The last two elements of the tuple require some explanation. Recall the definition of Parser.Message.
Message (we introduced it in Section 4.1 on page 37) where the type constructor for a message under
ghost abstraction is defined as Gamma Identifier Message. The identifier provides a representative
for the message such as alpha or beta. We want to make sure that all ghost messages get a unique
representative in the IR such that we can directly use them when we generate the code for the output.

We do not know in advance how many representatives we need. But we can use the lazy evaluation
property of Haskell and work with an infinite list of unique identifiers. For this purpose, the function
Rewriter.Functions.symbolStore returns the infinite list with the elements "alpha", "beta", . . . ,
"omega", "alpha1", "beta1", The fourth element of the RoleState tuple is the list of all the
representatives that are not yet being used as representatives. Whenever a new name is needed, we can
simply remove the head of the list.

During rewriting, we have to remember which representative was assigned to which ghost message.
This is what the fifth element of the tuple is for; whenever a new ghost message is produced, it is
assigned a unique representative from the infinite list and the corresponding ghost message (including
its representative) is added to the set. When we have to generate another ghost message (for example
when computing the constructive form of a message), we should first check if this message already has a
ghost and only use a new representative if this is not the case. In doing so, we make sure that the same
ghost message is alway represented by the same representative.

The package Rewriter.State does not only provide the definition of RoleState but also provides
some functions for working with it which are used frequently in the rewriter.

6.3.2 From Parse Tree to Intermediate Representation Format

Based on the RoleState monad introduced above and our analysis of Alice&Bob notation in Section 2,
we can now approach the rewriting step itself.

For some parts of a protocol specification, such as the declaration of functions or security goals,
the rewriting from parse tree to IR is straightforward since there is no need to perform any analysis.
What is a little bit more involved is analyzing the actions that a principal in a role has to take. We
have indicated above that we translate one role after another. It is easy to extract the names of all the
roles that appear in a protocol by analyzing the parse tree. For each role, we then construct the initial
knowledge and build the initial RoleState. Further analysis then happens under this RoleState until
finally the Rewriter.IR.Role is returned.

It is here where it comes in handy that we have defined the constructive form cfχ that tells us how
a message can be constructed from knowledge and the algorithm analyzeOnceχ that tells us what sub-
messages can be extracted from a message using the analysis rules. They are implemented in Haskell

53

6 Implementation and Tamarin Output

by the functions Rewriter.Functions.cf and Rewriter.Functions.analyzeOnce that both operate
under the RoleState monad since both are dependent on the current knowledge and may need to
generate new ghost messages (for which we need the infinite list of unused representatives and the list
of representatives that are already being used).

Calculating the constructive form of multiplicative and exponential terms is based on division and left
and right reduction like we have explained in Section 2.5. The corresponding functions are implemented
in the package Rewriter.MessageModel and are called divide, reducel and reducer. In order to
check if a message is divisible, left or right reducible by another message, the functions divisible,
reduciblel and reducibler are provided. These functions are not under the RoleState monad since
they are not dependent on state. The functions constrMultTerm and constrExpTerm are implemented
by Rewriter.Functions.cfMulTerm and Rewriter.Functions.cfExpTerm, respectively.

We have explained that new messages are analyzed by the algorithm addKnowledge in Section 2.6.
The corresponding function is Rewriter.Rewriter.addKnowledge. It is implemented in a similar
fashion as the algorithm addKnowledgeχ:

addKnowledge :: Message -> RoleState ()
addKnowledge m =

do ana1 <- Rewriter.State.analyzeOnce m
Rewriter.State.addToChi ana1
Rewriter.Rewriter.analyzeKnowledge
Rewriter.Rewriter.removeSynth

The new message is first analyzed once by analyzeOnce before it is added to the knowledge (by
function addToChi). Function analyzeKnowledge implements the semantics of the while loop of
addKnowledgeχ. The function removeSynth finally restores the basic set property. Consult the code
for the corresponding function definitions. It is easy to see that addKnowledge indeed implements
addKnowledgeχ.

Some of the functions that are under the RoleState monad have an additional stateless ver-
sion in package Rewriter.FunctionsStateless, for example there is the function Rewriter.

FunctionsStateless.cf. The most obvious difference here is that we have to give the knowledge
explicitly as a parameter. But what is more important is the fact that functions without state cannot
generate new ghost symbols since they do not have access to the list of the remaining representatives.
Consequently, Rewriter.FunctionsStateless.cf can only be applied if the ghost messages that are
needed are already in the knowledge. This is the case after the IR has been constructed. When generating
Tamarin code, there are situations where we need to compute the constructive form of a message.
However, since the complete IR already exists at that time there is no need to generate new ghost
symbols and consequently we can use the stateless version in this case. In other words, the stateful
functions are used during the construction of the IR, the stateless functions afterwards.

6.4 Well-formedness Checks

The intermediate representation format is perfectly suited for ensuring that the protocol is well-formed
like we required in Section 3.5. The translator does not produce any code unless all well-formedness
checks are passed. The checks are implemented in package Checker where the function doAllChecks

:: Rewriter.IR.Protocol -> Checker.CheckResult.CheckResult in package Checker.Checker

performs all checks.
In order to inform about failed well-formedness checks in a sensible way, we introduce the following

data structure in the package Checker.CheckResult:

data CheckResult = Success | Failure [Fail]

A check is either successful, or it fails. If it fails, then the error is specified by an instance of Fail (it
will become clear in a moment why we use a list of Fail in Failure [Fail] instead of a single Fail):

data Fail
= DuplicateLabels (Label)
| NotExecutable IR.Action
| EqualSenderReceiver Label
| NameCollision (Identifier, Label)
| DuplicateFunctionDec Identifier

54

6 Implementation and Tamarin Output

| NegativeArity Identifier
| WrongArity (Identifier, Label)
| UnknownFunction (Identifier, Label)
| UsedFunAsVar (Identifier, Label)
| InconsistentCases (Label, Identifier, Label, Identifier)
| GoalNotExecutable (Label, Message, RoleName)
| RoleInGoalWithNoAction (Label, RoleName)

DuplicateLabels expresses that a label occurs more than once, NotExecutable that a specific
action is not executable, EqualSenderReceiver that sender and receiver are equal in an action,
NameCollision that there is a fresh variable declaration that collides with a variable that is declared
elsewhere, DuplicateFunctionDec that there are multiple declarations of functions with the same name,
NegativeArity that a function was declared with negative arity, WrongArity that a function was used
with an arity that differs from the arity with which the function was declared, UnknownFunction that a
function was used that was not previously declared, UsedFunAsVar that a function was used as if it were
a variable, that is, without parentheses, InconsistentCases that there were identifiers that are equal
in a case-insensitive sense but not equal in a case-sensitive sense, GoalNotExecutable that there is a
security goal where not all roles can construct all messages of the goal, RoleInGoalWithNoAction that
a role is mentioned in a goal even though this role does not have any actions in the protocol. For details
and the meaning of the arguments, see the comments of the definition of Checker.CheckResult.Fail.

CheckResult is a monoid since the results of checks can be appended to each other. Two successful
checks result in a successful check; if either of the check fails, the result is a list of the errors. The
instance declaration of the monoid therefore looks as follows:

instance Monoid CheckResult where
mempty = Success
mappend Success cr = cr
mappend cr Success = cr
mappend (Failure f1) (Failure f2) = Failure (f1 ++ f2)

If more than one check fails, then the corresponding instances of Fail are accumulated in the list of
Failure [Fail]. This is why we use a list there and not a single element. This enables us to print
readable error messages.

Some checks only make sense if the previous checks have succeeded. For example, checking if all
functions are applied with the correct number of arguments has no meaning if the function was declared
twice with different arity or was not declared at all. Therefore, the checks are assigned to levels. Only if
all of the checks of one level have passed is the next higher level of checks performed as well. This helps
prevent error messages that are caused by other errors that should be resolved first. The levels are as
follows:

� Level 1: DuplicateFunctionDec, NegativeArity, DuplicateLabels, InconsistentCases.

� Level 2: EqualSenderReceiver.

� Level 3: RoleInGoalWithNoAction.

� Level 4: GoalsNotExecutable, WrongArity, UsedFunAsVar, UnknownFunction, NameCollision.

Recall the protocol from Figure 6 on page 35 that is not well-formed. When calling Checker.Checker.

doAllChecks on the IR of the protocol, the following errors are output:

There are multiple declarations for a function with name 'fun'.

The function with name 'fun' is declared with negative arity.

Label 'action' is declared multiple times.

In this example, there are failures with the types DuplicateFunctionDec, NevativeArity and
DuplicateLabels, all of which are from level 1.

55

6 Implementation and Tamarin Output

6.5 Generation of Tamarin Code

We have discussed in Section 5 how a protocol in its intermediate representation can be translated into
Tamarin code. We therefore only talk about some implementation-specific aspects here. The code
generator is implemented in the package Translator where we use the state monad again for storing
relevant information during the code generation process. The state TranslationState is defined as
follows:

import Parser.Basic
import Rewriter.IR
import Control.Monad.State

type OutputState = (String, Int, Int)

type RoleState = (RoleName, [Action], [Identifier], [Identifier])

type TranslationState a = State (Protocol, RoleState, OutputState) a

We can see that TranslationState is defined as a triple. The first element is the IR of the complete
protocol that is being translated to Tamarin and allows access to any information of the protocol that
is needed. The second element of the tuple is of type RoleState, the third of type OutputState. Let
us discuss those last two elements in a little more detail.

Recall that when generating Tamarin code, we first output the setup. This involves the message
model and the rewriting rules for setting up keys and the initial knowledge. After that, the rewriting
rules that describe the roles are output where we can treat the different roles independently. Therefore,
we first generate code for one role, then for another until all roles have been translated. Generating code
for a role means to generate code for its Receive and Send actions. An action depends on its preceding
action and therefore they have to be treated in the order in which they are executed by a principal. The
second element of the RoleState tuple therefore represents the remaining actions of the role for which
code is currently being generated.

For the second and third element of RoleState, recall that variables can be prefixed with a ∼ to
indicate that they represent a fresh value or a $ to indicate that they contain a public value. The third
element of RoleState is a list of the identifiers that should be prefixed with a ∼, the fourth a list of
those identifiers that should be prefixed with a $ in the rewriting rule that expresses the action for which
code is currently being generated.

In order to achieve nicely formatted code, we have implemented a few functions for generating
Tamarin code in package Translator.Printer. These functions make use of the information in the
tuple OutputState. Namely, the first element is the output that has been written so far. The second
parameter stores the current indentation depth and the third the current cursor position. Whenever
Tamarin code is appended, the cursor position is updated and if necessary, a newline character
is inserted. The value Translator.Printer.maxOffset determines the maximum length of a line.
Whenever this length would be exceeded, the printer functions try to insert a newline character in order
to prevent the line from becoming too long. The indentation level determines how many blank spaces
are inserted on the new line. Restricting our output to a reasonable line length and using indentation
significantly improves the readability of the generated Tamarin code.

Based on the state defined above, we have implemented the functions that generate code from the
IR in the packages Translator.Translator and Translator.Auxiliary.

56

7 Case Study

7 Case Study

We have now completely specified the A&B protocol specification language, the intermediate representa-
tion format and explained how the translation works and how it is implemented. Throughout this thesis,
we used the CR protocol to point out some of the problems that occur in the context of Alice&Bob
protocol specifications and the ideas behind A&B. In this section, we demonstrate the translator on a
somewhat more involved protocol, namely the ASW protocol that was given in Figure 5 on page 30. In
particular, we show how the Tamarin prover can be used to verify or disprove the security goals that
are declared in the A&B specification.

Recall that the translator first converts A&B input into the intermediate representation from which
it then produces Tamarin code. We therefore first take a short look at the intermediate representation.
However, the main focus will be on the Tamarin code that is produced. Finally, we show how the
Tamarin prover can be applied to the output to verify (or disprove) the security goals.

7.1 Intermediate Representation

The translator provides the option -v that produces verbose output, that is, a pretty-printed version of
the A&B protocol specification, the IR and the produced Tamarin code are output. Therefore, if we
want to get a human-readable representation of the IR of the ASW protocol, we can call

>> ./anb asw.anb -v

and then read it off the screen (see Appendix D on page 78 for a short manual for the translator). The IR
is given below in a nicely formatted way. The actual representation in Haskell code is quite long, therefore
we resort to shorter and more readable way of denoting messages by using the same syntax for them as
in Section 2. To make sure that we do not lose the representative identifiers of ghost messages, we adapt
our syntax a little. For example, Gamma "alpha" (Hash (Var "a")) is represented as γ[alpha](h(a)).
The IR then looks as follows:

Protocol "ASW" []
[Role "A"

[Prepare [A, B, m, sk(A), pk(A), pk(B)]
, Send True "asw1" "B" ["n 1"] {〈pk(A) . pk(B) . m . h(n1)〉}ask(A)

[A, B, m, n1, sk(A), pk(A), pk(B)]
, Receive "asw2" "B" γ[beta]({〈{〈pk(A) . pk(B) . m . h(n1)〉}ask(A) . h(n2)〉}ask(B))

[A, B, m, n1, sk(A), pk(A), pk(B), γ[alpha](h(n2)),
γ[beta]({〈{〈pk(A) . pk(B) . m . h(n1)〉}ask(A) . h(n2)〉}ask(B))]

, Send True "asw3" "B" [] n1

[A, B, m, n1, sk(A), pk(A), pk(B), γ[alpha](h(n2)),
γ[beta]({〈{〈pk(A) . pk(B) . m . h(n1)〉}ask(A) . h(n2)〉}ask(B)]

, Receive "asw4" "B" n2

[A, B, m, n1, n2, sk(A), pk(A), pk(B),
γ[beta]({〈{〈pk(A) . pk(B) . m . h(n1)〉}ask(A) . h(n2)〉}ask(B))]

]
, Role "B"

[Prepare [A, B, sk(B), pk(A), pk(B)]
, Receive "asw1" "A" γ[beta]({〈pk(A) . pk(B) . m . h(n1)〉}ask(A)))

[A, B, m, sk(B), pk(A), pk(B), (γ[alpha](h(n1)),
γ[beta]({〈pk(A) . pk(B) . m . h(n1)〉}ask(A))]

, Send True "asw2" "A" ["n 2"]
{γ[beta]({〈pk(A) . pk(B) . m . h(n1)〉}ask(A)) . h(n2)}ask(B),

[A, B, m, n2, sk(B), pk(A), pk(B),
γ[beta]({〈pk(A) . pk(B) . m . h(n1)〉}ask(A)), γ[alpha](h(n1))]

, Receive "asw3" "A" n1

[A, B, m, n1, n2, sk(B), pk(A), pk(B),
γ[beta]({〈pk(A) . pk(B) . m . h(n1)〉}ask(A))]

, Send True "asw4" "A" [] n2

[A, B, m, n1, n2, sk(B), pk(A), pk(B),
γ[beta]({〈pk(A) . pk(B) . m . h(n1)〉}ask(A)]

57

7 Case Study

]
]
[Secret "secrecy" m ["A", "B"]
, WeakAuth "weakA" "A" "B" [m]
, WeakAuth "weakB" "B" "A" [m]
, StrongAuth "strongA" "A" "B" [m]
, StrongAuth "strongB" "B" "A" [m]
]

The overall structure of the IR can be seen very well from this example, in particular the lists with the
roles of the protocols and the security goals. One can easily see how the knowledge of the roles evolves
over time and also that messages get removed from the knowledge sometimes. If we take a look at the
role of A for example, we see that she has h(n1) in her knowledge after the Receive action asw2 and
that this message is not kept in the knowledge any longer once she has received n2 in action asw4.

7.2 Tamarin Output

The translation from the IR to Tamarin is more interesting. The following Tamarin code is generated
by the translator for the ASW protocol (we have re-formatted it slightly to save space):

theory ASW
begin

functions: pk/1, sk/1, aenc/2, adec/2
builtins: hashing
equations: adec(aenc(x.1, sk(x.2)), pk(x.2)) = x.1,

adec(aenc(x.1, pk(x.2)), sk(x.2)) = x.1

rule Asymmetric_key_setup:
[Fr(∼f)] --> [!Sk($A, sk(∼f)), !Pk($A, pk(∼f))]

rule Publish_public_keys:
[!Pk(A, pkA)] --> [Out(pkA)]

rule Init_Knowledge:
[!Pk($A, pk(k_A)), !Pk($B, pk(k_B)),

!Sk($A, sk(k_A)), !Sk($B, sk(k_B)), Fr(∼m)]
--[]->
[St_init_A($A, $B, ∼m, sk(k_A), pk(k_A), pk(k_B)),
St_init_B($A, $B, sk(k_B), pk(k_A), pk(k_B))]

// ROLE A
rule asw1_A:

[St_init_A(A, B, m, sk(k_A), pk(k_A), pk(k_B)),
Fr(∼n_1)]

--[Running_weakB(m), Running_strongB(m)]->
[Out(aenc{<pk(k_A), pk(k_B), m, h(∼n_1)>}sk(k_A)),
St_asw1_A(A, B, m, ∼n_1, sk(k_A), pk(k_A), pk(k_B))]

rule asw2_A:
let

beta = aenc{<aenc{<pk(k_A), pk(k_B), m, h(n_1)>}sk(k_A), alpha>}sk(k_B)
in

[St_asw1_A(A, B, m, n_1, sk(k_A), pk(k_A), pk(k_B)),
In(beta)]

--[]->
[St_asw2_A(A, B, m, n_1, sk(k_A), pk(k_A), pk(k_B), beta, alpha)]

rule asw3_A:
[St_asw2_A(A, B, m, n_1, sk(k_A), pk(k_A), pk(k_B), beta, alpha)]
--[]->

58

7 Case Study

[Out(n_1),
St_asw3_A(A, B, m, n_1, sk(k_A), pk(k_A), pk(k_B), beta, alpha)]

rule asw4_A:
let

beta = aenc{<aenc{<pk(k_A), pk(k_B), m, h(n_1)>}sk(k_A), h(n_2)>}sk(k_B)
alpha = h(n_2)

in
[St_asw3_A(A, B, m, n_1, sk(k_A), pk(k_A), pk(k_B), beta, alpha),

In(n_2)]
--[Secret_secrecy_A(m), Commit_weakA(m), Commit_strongA(m)]->
[St_asw4_A(A, B, m, n_1, n_2, sk(k_A), pk(k_A), pk(k_B), beta)]

// ROLE B
rule asw1_B:

let
beta = aenc{<pk(k_A), pk(k_B), m, alpha>}sk(k_A)

in
[St_init_B(A, B, sk(k_B), pk(k_A), pk(k_B)),

In(beta)]
--[Running_weakA(m), Running_strongA(m)]->
[St_asw1_B(A, B, m, sk(k_B), pk(k_A), pk(k_B), beta, alpha)]

rule asw2_B:
[St_asw1_B(A, B, m, sk(k_B), pk(k_A), pk(k_B), beta, alpha),

Fr(∼n_2)]
--[]->
[Out(aenc{<beta, h(∼n_2)>}sk(k_B)),

St_asw2_B(A, B, m, ∼n_2, sk(k_B), pk(k_A), pk(k_B), beta, alpha)]

rule asw3_B:
let

beta = aenc{<pk(k_A), pk(k_B), m, h(n_1)>}sk(k_A)
alpha = h(n_1)

in
[St_asw2_B(A, B, m, n_2, sk(k_B), pk(k_A), pk(k_B), beta, alpha),

In(n_1)]
--[]->
[St_asw3_B(A, B, m, n_1, n_2, sk(k_B), pk(k_A), pk(k_B), beta)]

rule asw4_B:
[St_asw3_B(A, B, m, n_1, n_2, sk(k_B), pk(k_A), pk(k_B), beta)]
--[Secret_secrecy_B(m), Commit_weakB(m), Commit_strongB(m)]->
[Out(n_2),

St_asw4_B(A, B, m, n_1, n_2, sk(k_B), pk(k_A), pk(k_B), beta)]

lemma secrecy:
" not(Ex msg #i1 #i2 #j .

Secret_secrecy_A(msg) @ #i1 &
Secret_secrecy_B(msg) @ #i2 &
K(msg) @ #j)"

lemma weakA:
" (All m1 #i . Commit_weakA(m1)@ #i

==>
(Ex #j . Running_weakA(m1) @ #j & #j < #i))"

lemma weakB:
" (All m1 #i . Commit_weakB(m1)@ #i

==>
(Ex #j . Running_weakB(m1) @ #j & #j < #i))"

59

7 Case Study

lemma strongA:
" (All m1 #i . Commit_strongA(m1)@ #i

==>
(Ex #j . Running_strongA(m1) @ #j & #j < #i) &
(not (Ex #j . Commit_strongA(m1) @ #j & not (#i = #j))))"

lemma strongB:
" (All m1 #i . Commit_strongB(m1)@ #i

==>
(Ex #j . Running_strongB(m1) @ #j & #j < #i) &
(not (Ex #j . Commit_strongB(m1) @ #j & not (#i = #j))))"

end

The structure of the file should be quite clear. At the top, we first declare our message model (note that
we only included the theories that actually matter for the ASW protocol). Then follow the rules that
generate public-secret key pairs, the rule that enables the adversary to get hold of the public keys and
the rule that expresses the initial knowledge that the roles have. This is succeeded by the rules that
express the actual communication that happens in the protocol and finally, there is a lemma for each of
the security goals.

It can be seen very clearly that the order in which a principal executes his role is induced by the
knowledge. For example, the principal in role A first obtains her initial knowledge from fact St_init_A
and produces fact St_asw1_A as a conclusion in her first rule asw1_A. This fact is then consumed in
rule asw2_A, where fact St_asw2_A is produced. This also illustrates that the labels that we required in
the A&B input are essential for the readability of the Tamarin code.

Rule asw3_B illustrates well how messages in the knowledge that become synthesizable are treated.
The message n_1 is not known to B until communication step asw3 and therefore h(n_1) can neither
be analyzed nor synthesized from other messages in the knowledge. Consequently, it is stored as a ghost
message and assigned the representative alpha. Now that n_1 is received, alpha can be removed from the
knowledge and therefore, alpha is not contained in the conclusion fact St_asw3_B. At first glance, there
is no reason for expressing that alpha = h(n_1) in the let block. However, we need to tell Tamarin
what shape the message alpha has because otherwise Tamarin cannot perform the appropriate checks
whether the two messages actually match. The same applies for beta that represents the complete
encrypted message. We mention it in the let block even though it still cannot be synthesized from
other messages. Note that this is not strictly necessary for beta since this check is covered by the check
involving alpha, but listing both simplifies matters in the implementation.

The ASW protocol was declared with five security goals and we can see well how these are
expressed in Tamarin. For the secrecy goals, A and B make the statements Secret_secrecy_A and
Secret_secrecy_B, respectively (recall that we refer to Tamarin’s action facts as statements). These
statements are then used in lemma secrecy. For agreement goals, the agreement partner states that he
possesses the message as soon as possible by a statement like A does in rule asw1_A with her statement
Running_weakB. The principal in the other role, B in this case, claims agreement with the statement
Commit_weakB in rule asw4_B. These statements are then used in lemma weakB. Note again that the
label-based naming of the rules makes quite clear how the different rules, lemmas and statements are
related.

7.3 Protocol Verification

Consult Appendix D for instructions on the compilation and the usage of the translator. When calling

>> ./anb asw.anb,

the verifier produces a file asw.spthy with the Tamarin output. In a standard installation, the Tamarin
prover can then be invoked on it by calling

>> tamarin-prover asw.spthy --prove

The Tamarin prover first outputs a pretty-printed version of the protocol specification. In particular, all
the built-in rules are spelled out in full. Then, Tamarin tries to verify the lemmas. Protocol verification
is undecidable and consequently there are protocols that simply cannot be proved by the Tamarin

60

7 Case Study

prover. In such a case the verification does not terminate. For the ASW protocol, however, Tamarin
almost immediately returns:

summary of summaries:

analyzed: asw.spthy

secrecy (all-traces): falsified - found trace (10 steps)
weakA (all-traces): verified (6 steps)
weakB (all-traces): verified (6 steps)
strongA (all-traces): verified (14 steps)
strongB (all-traces): falsified - found trace (10 steps)

We can see that the security goals secrecy and strongB are disproved by Tamarin while there are
no attacks for the other security goals. The Tamarin prover provides a graphical user interface that
visualizes the attacks that were found. The traces of the attacks for secrecy and strongB are very long
and therefore we demonstrate this on on the following short and very simple example:

Protocol Asym:
Knowledge:

B : pk(A);
Actions:

[a1] A -> B (n) : aenc{n}sk(A);
Goals:

[sec] n secret of A, B;
end

The adversary knows all public keys and therefore it is obvious that the secrecy goal sec does not hold
since the message aenc{n}sk(A) can be decrypted by him and Tamarin consequently finds a trace that
disproves lemma sec. The graphical mode of Tamarin can be started by invoking

>> tamarin-prover interactive asym.spthy --prove

and then visiting http://localhost:3001/ in a browser. The graphical representation of the attack
that is found by Tamarin for the Asym protocol is depicted in Figure 9. We will not provide the Tamarin
code here because it is possible to follow a trace only with the A&B protocol specification.

Let us briefly discuss the trace of the attack. The secrecy goal sec requires that n must not be known
by the adversary whenever both A and B finish the execution of their roles (compare to Definition 3.1
on page 34). Recall that A and B make the statements Secret_sec_A and Secret_sec_B in Tamarin
in their last rules because they are both mentioned in the goal sec and note that both A and B perform
their last (any only) action in message exchange step a1.

The first three rows of the graphical representation of the trace represent the setup of the initial
knowledge of A and B. In the fourth row, A executes her first and only action, makes her statement
Secret_sec_A and sends aenc{n}sk(A). The message is then intercepted by the adversary (rule irecv).
The rewriting chain on the right-hand side describes how the adversary first obtains the public key of A
via the rule Publish_public_keys and then the derivation chain where the message n is extracted step
by step from aenc{n}sk(A), where the fact !KU(∼n) has the meaning that n can be constructed by the
adversary. Finally, the adversary forwards aenc{n}sk(A) to the network (rule isend) where B receives
the message and makes his statement Secret_sec_B. Therefore, both the statements Secret_sec_A(n)
and Secret_sec_B(n) are made while the adversary knows n. Consequently, the lemma sec is violated.

This example illustrates that the generated code is designed in such a way that the output of the
Tamarin prover should be understandable without looking at the Tamarin file. However, it still makes
sense to double check if the Tamarin code really expresses the protocol that was intended.

61

http://localhost:3001/

7 Case Study

Figure 9: Graphical representation of the attack on the security goal sec of the Asym protocol.

62

8 Conclusion

8 Conclusion

Let us first briefly recapitulate what we have done in this thesis. We first discussed the challenges that
have to be met when formalizing the semantics of Alice&Bob notation where we could resort at large
to previous work. Based on our semantics of Alice&Bob notation, we then specified the syntax and the
semantics of the A&B protocol specification language. Finally, we implemented the translator where we
argued the correctness of the most important pieces of code.

The examples that we gave throughout the thesis show that the A&B language is much more readable
and shorter than the input languages of common protocol verification tools such as Tamarin while it
still allows to express a large class of protocols. The case study at the end of the thesis demonstrated
that the generated Tamarin code is well-structured and readable.

However, there are also some limitations to the A&B language. There is no way to specify explicitly
what principals should do if they suspect that there might have been adversary involvement; principals
simply abort protocol execution in such a case. What is more, the rigid structure of message exchange
steps with exactly one receiver limits the A&B language to a certain class of protocols. There is also no
immediate way to specify stateful protocols. These restrictions are acceptable though since we designed
the A&B language to be slim and expressive and as close as possible to Alice&Bob notation. An aspect
of A&B that leaves room for improvement, on the other hand, is its message model, in particular with
respect to Diffie-Hellman multiplication and exponentiation. Only the most important properties were
included in equational theory M . For example, the message ac�bc is not equal to (a� b)c in our current
message model.

At the moment, Tamarin is the only target language of the translator. The most obvious
extension is therefore adding support for other output languages where the structure of the intermediate
representation format is a good basis. However, the fact that A&B is independent of a specific
verification tool also has its downsides since this prevents us from taking the properties of specific
provers into account. Sometimes, Tamarin requires the specification of typing lemmas since otherwise,
the verification step does not terminate, something that the translator cannot do for us. This makes
clear that the A&B protocol specification language must not be understood as a direct input language
for automated verifiers but rather as a tool that helps on the path to the final (Tamarin) specification.
The A&B language gives a head-start by allowing one to express a protocol in a simple and readable
way where the translator then produces a well-structured basis code from which work can continue.

In this sense, the main contribution of this thesis is the specification of the syntax and the semantics
of the A&B language as well as a translator from it to Tamarin. A&B allows one to specify a protocol
in a highly readable way while the translator produces valid Tamarin code that can then be used for
further refinement. In summary, we can conclude that the A&B protocol specification language and its
translator to Tamarin can be a valuable and work-saving tool when it comes to specifying a protocol
in Tamarin.

63

Declaration of originality

The signed declaration of originality is a component of every semester paper, Bachelor’s thesis,
Master’s thesis and any other degree paper undertaken during the course of studies, including the
respective electronic versions.

Lecturers may also require a declaration of originality for other written papers compiled for their
courses.
__

I hereby confirm that I am the sole author of the written work here enclosed and that I have compiled it
in my own words. Parts excepted are corrections of form and content by the supervisor.

Title of work (in block letters):

Authored by (in block letters):
For papers written by groups the names of all authors are required.

Name(s): First name(s):

With my signature I confirm that
− I have committed none of the forms of plagiarism described in the ‘Citation etiquette’ information

sheet.
− I have documented all methods, data and processes truthfully.
− I have not manipulated any data.
− I have mentioned all persons who were significant facilitators of the work.

I am aware that the work may be screened electronically for plagiarism.

Place, date Signature(s)

 For papers written by groups the names of all authors are

required. Their signatures collectively guarantee the entire
content of the written paper.

Converting Alice&Bob Protocol Specifications to Tamarin

Keller Michel

References

[1] N. Asokan, Victor Shoup, and Michael Waidner. Asynchronous Protocols for Optimistic Fair
Exchange. In IEEE Symposium on Security and Privacy, pages 86–99. IEEE Computer Society,
1998.

[2] Bruno Blanchet and Ben Smyth. ProVerif 1.85: Automatic Cryptographic Protocol Verifier, User
Manual and Tutorial, 2011.

[3] Carlos Caleiro, Luca Viganò, and David A. Basin. On the Semantics of Alice&Bob Specifications
of Security Protocols. Theor. Comput. Sci., 367(1-2):88–122, 2006.

[4] Cas J.F. Cremers. Unbounded Verification, Falsification, and Characterization of Security
Protocols by Pattern Refinement. In Proceedings of the 15th ACM Conference on Computer and
Communications Security, CCS ’08, pages 119–128, New York, NY, USA, 2008. ACM.

[5] Santiago Escobar, Catherine Meadows, and José Meseguer. Maude-NPA: Cryptographic Protocol
Analysis Modulo Equational Properties. In FOSAD, pages 1–50, 2007.

[6] Gavin Lowe. A Hierarchy of Authentication Specifications. In Proceedings of the 10th IEEE
Workshop on Computer Security Foundations, CSFW ’97, pages 31–, Washington, DC, USA, 1997.
IEEE Computer Society.

[7] Sreekanth Malladi and Bruno Blanchet. Online Demo for ProVerif. http://proverif.rocq.
inria.fr/, 2014.

[8] Simon Meier. GitHub Repository of scyther-proof Project. https://github.com/meiersi/
scyther-proof.

[9] Simon Meier, Cas J. F. Cremers, and David A. Basin. Strong Invariants for the Efficient Construction
of Machine-Checked Protocol Security Proofs. In CSF, pages 231–245. IEEE Computer Society,
2010.

[10] Simon Meier, Benedikt Schmidt, Cas J. F. Cremers, and Cedric Staub. Tamarin Prover. http:
//www.infsec.ethz.ch/research/software/tamarin, May 2014.

[11] Sebastian Mödersheim. Algebraic Properties in Alice and Bob Notation (extended version).
Technical Report RZ3709, IBM Zurich Research Lab, 2008.

[12] Sebastian Mödersheim. Algebraic Properties in Alice and Bob Notation. In ARES, pages 433–440.
IEEE Computer Society, 2009.

[13] Benedikt Schmidt, Simon Meier, Cas J. F. Cremers, and David A. Basin. Automated Analysis of
Diffie-Hellman Protocols and Advanced Security Properties. In Stephen Chong, editor, CSF, pages
78–94. IEEE, 2012.

65

http://proverif.rocq.inria.fr/
http://proverif.rocq.inria.fr/
https://github.com/meiersi/scyther-proof
https://github.com/meiersi/scyther-proof
http://www.infsec.ethz.ch/research/software/tamarin
http://www.infsec.ethz.ch/research/software/tamarin

A Proofs

A Proofs

Proposition 2.7. Let χ1 and χ2 be sets of messages and let χ′1 and χ′2 be basic sets with synth∗(χ1) =M

synth∗(χ′1) and synth∗(χ2) =M synth∗(χ′2). Then synth∗(χ1) =M synth∗(χ2) if and only if χ′1 =M χ′2.

Proof. Let χ1 and χ2 be sets of messages and let χ′1 and χ′2 be basic sets with synth∗(χ1) =M synth∗(χ′1)
and synth∗(χ2) =M synth∗(χ′2). We prove the two directions separately.

� synth∗(χ1) =M synth∗(χ2)⇒ χ′1 =M χ′2.
The proof is by contradiction. Assume that synth∗(χ1) =M synth∗(χ2) but χ′1 6=M χ′2. From
χ′1 6=M χ′2 we can conclude that there is a message m with m ∈S χ′1 and m /∈M χ′2 (without
loss of generality; otherwise simply exchange χ′1 and χ′2). Since χ′1 and χ′2 are basic sets, we
have m /∈M synth∗(χ′1\{m}) since otherwise χ′1 would not be a basic set. Furthermore, we have
m ∈M synth∗(χ′2) =M synth∗(χ′2\{m}) since otherwise synth∗(χ′1) 6=M synth∗(χ′2) and therefore
synth∗(χ1) =M synth∗(χ′1) 6=M synth∗(χ′2) =M synth∗(χ2), contradicting our assumption.

Since m ∈M synth∗(χ′2) and m /∈M χ′2, we know that there must be messages m1, . . . ,mi in
χ′2 that are not equal to m from which m can be synthesized. At least one of the messages
m1, . . . ,mi cannot be in synth∗(χ′1) since otherwise m would be synthesizable from χ′1, i.e., m ∈
synth∗(χ′1\{m}). This however implies synth∗(χ′1) 6=M synth∗(χ′2) and hence synth∗(χ1) =M

synth∗(χ′1) 6=M synth∗(χ′2) =M synth∗(χ2), a contradiction to our assumption.

� χ′1 =M χ′2 ⇒ synth∗(χ1) =M synth∗(χ2).
From χ′1 =M χ′2 we obviously have synth∗(χ′1) =M synth∗(χ′2) and with synth∗(χ1) =M

synth∗(χ′1) and synth∗(χ2) =M synth∗(χ′2) we have synth∗(χ1) =M synth∗(χ′1) =M synth∗(χ′2) =
synth∗(χ2).

Lemma 2.11. Let m be an arbitrary message. Then canonical(m) is in canonical form and
canonical(m) =M m.

Proof Sketch. First of all, note that canonical(m) is defined for all messages. The proof is by structural
induction on the message m. Let us do a case distinction on the shape of m.

� m is atomic.
In this case, canonical(m) =S m. Consequently, canonical(m) =M m. Furthermore, m is in
canonical form by the definition of the canonical form.

� m =S 〈m1 . m2〉.

– Case (i). Message m1 =S 〈m′1 . m′′1〉, i.e., m1 is a concatenation message itself.
In this case, we have canonical(〈m1 . m2〉) =S canonical(〈m′1 . 〈m′′1 . m2〉〉), i.e., the shape of
the concatenation is rewritten into a right-associated form as required by the definition of the
canonical form and canonical is applied recursively. Eventually, a situation will be reached
where the left-hand side of the concatenation is not a concatenation itself, i.e., we are in case
(ii) where the top-level concatenation is in its right-associated form.

– Case (ii). Message m1 is not a concatenation itself.
In this case, we can apply our induction hypothesis and conclude that canonical(m1)
and canonical(m2) are both in canonical form and canonical(m1) =M m1 as well as
canonical(m2) =M m2. Consequently, canonical(m) is in canonical form and from property
(1) on page 11, we can conclude that canonical(m) =M m.

� m =S {m′}ak′ .

– Case (i). m′ =S {m′′}ak′′ for some messages m′′ and k′′ and (k′)
−1

=M k′′.
In this case, we have canonical({m′}ak′) =S canonical(m′′). By our induction hypothesis,
canonical(m′′) is in canonical form and canonical(m′′) =M m′′. From property (3) on
page 11, we can conclude that {{m′′}ak′′}ak′) =M m′′ and consequently that canonical(m) =M

canonical(m′′) =M m′′ =M m.

66

A Proofs

– Case (ii). Whenever case (i) does not apply.
In this case, we have canonical({m′}ak′) =S {canonical(m′)}acanonical(k′). By our induction

hypothesis, canonical(m′) and canonical(k′) are both in canonical form and from the
definition of the canonical form we can see that canonical(m) is in canonical form. From
our induction hypothesis, we can also derive that canonical(m′) =M m′ as well as
canonical(k′) =M k′ and consequently canonical(m) =M m.

� m =S {m′}sk′ .

– Case (i). m′ =S {m′′}sk′′ for some messages m′′ and k′′ and k′ =M k′′.
In this case, we have canonical({m′}sk′) =S canonical(m′′). By our induction hypothesis,
canonical(m′′) is in canonical form and canonical(m′′) =M m′′. From property (2) on
page 11, we can conclude that {{m′′}sk′′}sk′ =M m′′ and consequently that canonical(m) =M

canonical(m′′) =M m′′ =M m.

– Case (ii). Whenever case (i) does not apply.
In this case, we have canonical({m′}sk′) =S {canonical(m′)}scanonical(k′). By our induction

hypothesis, canonical(m′) and canonical(k′) are both in canonical form and from the
definition of the canonical form we can see that canonical(m) is in canonical form. From
our induction hypothesis, we can also derive that canonical(m′) =M m′ as well as
canonical(k′) =M k′ and consequently canonical(m) =M m.

� m =S h(m′).
In this case, we have canonical(h(m′)) =S h(canonical(m′)). By our induction hypothesis we have
canonical(m′) =M m′ and that canonical(m′) is in canonical form. From this and the definition
of the canonical form, we can conclude that canonical(m) =M m and that canonical(m) is in
canonical form.

� m =S foo(m1, . . . ,mi).
In this case, we have canonical(foo(m1, . . . ,mi)) =S foo(canonical(m1), . . . , canonical(mi)). By
our induction hypothesis we have canonical(mk) is in canonical form and canonical(mk) =M mk

for all k ∈ {1, . . . , i}. From this and the definition of the canonical form, we can conclude that
canonical(m) =M m and that canonical(m) is in canonical form.

� m is a multiplication.

– Case (i). m =S �{|m′|}.
In this case, we have canonical(�{|m′|}) =S canonical(m′). By our induction hypothesis
we have canonical(m′) =M m′ and with �{|m′|} =M m′, we get that canonical(m) =M

canonical(m′) =M m′ =M m. Also by our induction hypothesis, we know that canonical(m′)
is in canonical form and hence canonical(m) is in canonical form.

– Case (ii). m =S �{|m1, . . . ,mj−1,mj ,mj+1, . . . ,mi|} for i ≥ 2 and mj =M 1.

In this case, we have canonical(m) =S canonical(�{|m1, . . . ,mj−1,mj+1, . . . ,mi|}). From
our induction hypothesis, we know that canonical(�{|m1, . . . ,mj−1,mj+1, . . . ,mi|}) is in
canonical form and hence canonical(m) is in canonical form. From properties (5), (6), and (8)
on page 11, we get m = �{|m1, . . . ,mj−1,mj ,mj+1, . . . ,mi|} =M �{|m1, . . . ,mj−1,mj+1, . . . ,
mi|} and from our induction hypothesis we also know that canonical(�{|m1, . . . , ,mj−1,
mj+1, . . . ,mi|}) =M �{|m1, . . . ,mj−1,mj+1, . . . ,mi|} and consequently canonical(m) =M m.

– Case (iii). m =S �{|m1, . . . ,mj−1,mj ,mj+1, . . . ,mi|} and mj =S �{|m1
j , . . . ,m

k
j |} and i ≥ 2.

In this case we have canonical(m) =S canonical(�{|m1, . . . ,mj−1,m
1
j , . . . ,m

k
j ,mj+1, . . . ,

mi|}). This is only a different representation of multiplication on which canonical is recursively
called. Since the depth of multiplication is gradually reduced, a state will eventually be reached
where we are in state (i), (ii) or (iv) where none of m1, . . . ,mi are themselves multiplicative
messages.

– Case (iv). Whenever none of the above applies.
In this case canonical(�{|m1, . . . ,mi|}) =S �{|canonical(m1), . . . , canonical(mi)|}. From our

67

A Proofs

induction hypothesis, we can conclude that canonical(mk) =M mk and that canonical(mk)
is in canonical form for all k ∈ {1, . . . , i}. We consequently get that canonical(m) =M m and
with the definition of the canonical form we get that canonical(m) is in canonical form.

� m =S m
m2
1 .

– Case (i). m2 =M 1.
In this case, we have canonical(m) =S canonical(m1). From our induction hypothesis, we
get that canonical(m1) =M m1 and that canonical(m1) is in canonical form. Furthermore,
we get from property (9) on page 11 that m =M m1 and consequently canonical(m) =M

canonical(m1) =M m1 =M m and that canonical(m) is in canonical form.

– Case (ii). m1 =M 1 and m2 6=M 1.
In this case, we have canonical(m) =S 1. We know from property (10) on page 11 that m = 1,
hence canonical(m) =M canonical(1) =M 1 which is obviously in canonical form.

– Case (iii). m1 =S (m′1)
m′′1 .

In this case, we have canonical(mm2
1) =S canonical((m′1)

�{|m′′1 ,m2|}). Then canonical is
applied recursively. Eventually, a situation will be reached where message m1 is not an
exponentiation message itself and we are in one of the cases (i), (ii) or (iv), where m1 is not
an exponential message.

– Case (iv). Whenever none of the above applies.
In this case, we have canonical(mm2

1) =S canonical(m1)canonical(m2). From our induction
hypothesis, we know that canonical(m1) =M m1 and canonical(m2) =M m2 and that
canonical(m1) and canonical(m2) are both in canonical form. Hence canonical(m) =M m.
From the definition of the canonical form, we can further see that canonical(m) is in canonical
form.

� m =S (m1)
−1

.

– Case (i). m1 =S (m2)
−1

.
Here we have canonical(m) =S canonical(m2). In this case, we can derive with property (4)
from page 11 that m =M m2. From our induction hypothesis, we have canonical(m2) =M m2

and that canonical(m2) is in canonical form. Hence canonical(m) =M canonical(m2) =M

m2 =M m and canonical(m) is in canonical form.

– Case (ii). Whenever case (i) does not apply.

In this case, we have canonical(m) =S (canonical(m1))
−1

. By our induction hypothesis
we have canonical(m1) =M m1 and that canonical(m1) is in canonical form. We get

canonical(m) =M (canonical(m1))
−1

=M (m1)
−1

. From the definition of the canonical form
we can derive that canonical(m) is in canonical form.

We can see that the required property holds in all cases.

Lemma 2.12. Let m be an arbitrary message. Then the canonical form of m exists and is unique, i.e.,
there is exactly one message m′ in canonical form such that m =M m′.

Proof Sketch. Let m be an arbitrary message. From Lemma 2.11, we know that canonical(m) =M m
and that canonical(m) is in canonical form. Consequently, we can conclude that there is a canonical
form for every message.

What remains to be shown is that the canonical form is unique. To this end, suppose that there are
two different canonical forms for m, i.e., assume that there are messages m′ and m′′ in canonical form
for which m =M m′ and m =M m′′ but m′ 6=S m

′′. Since the messages m′ and m′′ do not have the same
shape but are still equal in equational theory M , we need to check the properties (1) to (10) on page 11:

� Property (1): 〈m1 . 〈m2 . m3〉〉 =M 〈〈m1 . m2〉 . m3〉
Here, only the left-hand side can be in canonical form.

� Property (2): {{m}sk}sk =M m
Here, only the right-hand side can be in canonical form.

68

A Proofs

� Property (3): {{m}ak}ak−1 =M m
Here, only the right-hand side can be in canonical form.

� Property (4): (k−1)
−1

=M k
Here, only the right-hand side can be in canonical form.

� Property (5): m1 �m2 =M m2 �m1

Here, both sides are represented as �{|m1,m2|} in canonical representation, i.e., both m1�m2 and
m2 �m1 have the same canonical form (same shape).

� Property (6): (m1 �m2)�m3 =M m1 � (m2 �m3)
Here, both sides are represented as �{|m1,m2,m3|} in canonical representation, i.e., both (m1 �
m2)�m3 and m1 � (m2 �m3) have the same canonical form (same shape).

� Property (7): (mm2
1)

m3 =M mm2�m3
1

Here, only the right-hand side can be in canonical form.

� Property (8): m1 � 1 =M m1

Here, only the right-hand side can be in canonical form.

� Property (9): (m1)
1

=M m1

Here, only the right-hand side can be in canonical form.

� Property (10): 1m1 =M 1
Here, only the right-hand side is in canonical form.

We can see that there is no case in which the two messages m′ and m′′ in canonical form have the same
value because of one of the properties (1) to (10) and different shape. Consequently, the canonical form
of a message is unique.

Proposition 2.13. Let m1 and m2 be messages. We have m1 =M m2 if and only if canonical(m1) =S

canonical(m2).

Proof Sketch. This is a direct corollary of Lemmas 2.11 and 2.12:

� m1 =M m2 ⇒ canonical(m1) =S canonical(m2).
We know from Proposition 2.12 that messages that are equal in equational theory M have the same
canonical form. Therefore m1 and m2 have the same unique canonical form. From Proposition 2.11
we know that this canonical form is canonical(m1) =S canonical(m2).

� canonical(m1) =S canonical(m2)⇒ m1 =M m2.
We know from Proposition 2.11 that canonical(m1) =M m1 and canonical(m2) =M m2. From
canonical(m1) =S canonical(m2) we can conclude that canonical(m1) =M canonical(m2) and
consequently m1 =M canonical(m1) =M canonical(m2) =M m2.

Lemma 2.18. Let m and r be two messages in canonical form. Then we have:

(i) If m is divisible by r, then we have m = r � (m÷ r) and m÷ r is in canonical form.

(ii) If m is left reducible by r, then we have m = r(m/r) and m / r is in canonical form.

(iii) If m is right reducible by r, then we have m = (m . r)
r

and m . r is in canonical form.

Proof Sketch. Let us prove the three points separately.

(i) � Case m =S r. Then m÷ r =S 1 and therefore we have r� (m÷ r) =S m� 1 =M m where we
have used property (8) from page 11 in the last step and m÷ r is in canonical form since 1 is
in canonical form.

� Case r =S 1. Then m÷r =S m and therefore we have r� (m÷r) =M 1�m =M m�1 =M m
where we have used properties (8) and (5) from page 11 and m÷ r =S m is in canonical since
m is in canonical form.

69

A Proofs

� Case m =S �M and r =S �R and R ⊂S M . Then m ÷ r =S canonical(�(M\R)). We
have �(M\R) =M canonical(�(M\R)) and m ÷ r is in canonical form from Lemma 2.11
on page 18. In canonical form, we represent multiplication by a multiset where we have
(�A)� (�B) =M �(A ∪B) for any multisets A and B. It is clear that M = R ∪ (M\R) and
hence that m =M �M =M �(R ∪ (M\R)) =M (�R)� (�(M\R)) =M r � (m÷ r).

� We have �(M\{r}) =M canonical(�(M\{r})) and m÷r is in canonical form (Lemma 2.11 on
page 18). Obviously, M = {r} ∪ (M\{r}) and hence m =M �M =M �({r} ∪ (M\{r})) =M

r � (�(M\{r})) =M r � (m÷ r).
� In all other cases, m÷ r is not defined.

(ii) � Case m =S m
m2
1 and r =S r

r2
1 and m1 =S r1 and m2 is divisible by r2. Then m/r =S m2÷r2.

We have rm/r =S (rr21)
m2÷r2 =M r

r2�(m2÷r2)
1 =M rm2

1
r1=Sm1=M mm2

1 =S m where we have used
property (7) from page 11 and the properties of division that we have shown above. m / r is
in canonical form since m÷ r is in canonical form.

� Case m = mm2
1 and r is not an exponentiation message and m1 =S r. Then m/r =S m2. We

have rm/r =S r
m2

m1=Sr=S mm2
1 =S m. m/r is in canonical form since m2 is in canonical form.

� In all other cases, m / r is not defined.

(iii) � Case m =S mm2
1 and m2 is divisible by r. Then we have m . r =S mm2÷r

1 . We have
(m . r)

r
=S (m1

m2÷r)
r

=M m1
(m2÷r)�r =M mm2

1 =S m. From the definition of division,
we can see that it returns a non-exponential message whenever it is defined and can conclude
that m2 ÷ r is non-exponential. We know that m1 is in canonical form and that m2 ÷ r is
in canonical form (we have just shown this) and can consequently conclude that mm2÷r

1 is in
canonical form as well.

� In all other cases, m . r is not defined.

Proposition 2.19. Let m be a message in canonical form and let χ be a basic set with synth∗(χ) =
close(χ). Then cfχ(m) is defined if and only if m ∈ synth∗(χ). If defined, then cfχ(m) is composed of
messages that are in χ and describes a valid way of constructing m from χ.

Proof Sketch. Let us prove the directions separately.

� cfχ(m) is defined ⇒ m ∈M synth∗(χ).
This proof is by structural induction on messages. Let us do a case distinction based on the shape
of the message m.

– m is an atomic message.
In this case, cfχ(m) is defined if and only if m ∈S χ. We know that since m is in canonical
form that m ∈S χ⇔ m ∈M χ (Lemma 2.11 on page 18 and Proposition 2.13 on page 19) and
consequently m ∈M synth∗(χ) whenever cfχ(m) is defined.

– m =S 〈m1 . m2〉.
In this case, cfχ(m) is defined if and only if cfχ(m1) and cfχ(m2) are both defined. By our
induction hypothesis, we know that m1 ∈M synth∗(χ) and m2 ∈M synth∗(χ). By applying
synthesis rule Sconcat on m1 and m2, we can conclude that m =M 〈m1 . m2〉 ∈M synth∗(χ).

– m =S {m1}am2
.

In this case, cfχ(m) is defined if either (1) both cfχ(m1) and cfχ(m2) are defined, or (2)
m ∈S χ. Otherwise, cfχ(m) is undefined. In case (1), we know by our induction hypothesis
that m1 ∈M synth∗(χ) and m2 ∈M synth∗(χ). By applying synthesis rule Saenc on m1

and m2 we get that m =S {m1}am2
∈M synth∗(χ). In case (2) we can conclude m =S

{m1}am2
∈M synth∗(χ) directly from m ∈S χ (Proposition 2.13).

– m =S {m1}sm2
.

In this case, cfχ(m) is defined if either (1) both cfχ(m1) and cfχ(m2) are defined, or (2)
m ∈S χ. Otherwise, cfχ(m) is undefined. In case (1), we know by our induction hypothesis

70

A Proofs

that m1 ∈M synth∗(χ) and m2 ∈M synth∗(χ). By applying synthesis rule Ssenc on m1

and m2 we get that m =S {m1}sm2
∈M synth∗(χ). In case (2) we can conclude m =S

{m1}sm2
∈M synth∗(χ) directly from m ∈S χ (Proposition 2.13).

– m =S h(m1).
In this case, cfχ(m) is defined if (1) cfχ(m1) is defined, or (2) m ∈S χ. Otherwise, cfχ(m) is
undefined. In case (1), we can conclude by our induction hypothesis that m1 ∈M synth∗(χ).
By applying synthesis rule Shash on m1 we get that m =S h(m1) ∈M synth∗(χ). In case (2)
we can conclude m =S h(m1) ∈M synth∗(χ) directly from m ∈S χ (Proposition 2.13).

– m =S fun(m1, . . . ,mi).
In this case, cfχ(m) is defined if (1) cfχ(m1), . . . , cfχ(mi) are defined, or (2) m ∈S χ.
Otherwise, cfχ(m) is undefined. In case (1), we can conclude by our induction hypothesis
that mk ∈M synth∗(χ) for k = 1, . . . , i. By applying synthesis rule Sappl on m1, . . . ,mi,
we get that m =S fun(m1, . . . ,mi) ∈M synth∗(χ). In case (2), we can conclude m =S

fun(m1, . . . ,mi) ∈M synth∗(χ) directly from m ∈S χ (Proposition 2.13).

– m =S �{|m1, . . . ,mi|}.
In this case, cfχ(m) = constrMultTermχ(m) which is defined if (1) m ∈S χ, (2) there is a
message r ∈S χ by which m is divisible and m ÷ r is synthesizable from χ, or (3) there is a
factor mk, k ∈ {1, . . . , i} that is synthesizable from χ and for which m÷mk is synthesizable.
In all other cases, cfχ(m) is undefined.

In case (1), we can conclude m ∈M synth∗(χ) directly from m ∈S χ (Proposition 2.13).

In case (2), we know that m ÷ r is synthesizable, i.e., cfχ(m ÷ r) is defined. We know that
m =M r� (m÷r) from Lemma 2.18 on page 21. Since (m÷r) is a sub-message of r� (m÷r),
we can apply our induction hypothesis and conclude that m÷ r ∈M synth∗(χ). We can then
apply synthesis rule Smul on r and m÷r and conclude that m =M r�(m÷r) ∈M synth∗(χ).

In case (3) we know that both mk and m ÷ mk are synthesizable (note that m is always
divisible by mk since mk is a factor of m), that is, cfχ(mk) and cfχ(m ÷ mk) are both
defined. We can now apply our induction hypothesis and conclude that mk ∈M synth∗(χ)
and m÷mk ∈M synth∗(χ). We can then apply synthesis rule Smul on mk and m÷mk and
conclude that m =M mk � (m÷mk) ∈M synth∗(χ) with the help of Lemma 2.18 on page 21.

– m =S m1
m2 . In this case, cfχ(m) = constrExpTermχ(m) which is defined if (1) m ∈S χ, (2)

cfχ(m1) and cfχ(m2) are defined, (3) there is a message r ∈S χ such that m is left reducible
by r and m / r is synthesizable from χ, or (4) there is a message r ∈S χ such that m is right
reducible by r and m . r is synthesizable from χ.

In case (1), we can conclude m ∈M synth∗(χ) directly from m ∈S χ (Proposition 2.13).

In case (2), we can apply our induction hypothesis and get that if cfχ(m1) is defined then
m1 ∈ synth∗(χ) and similarly that if cfχ(m2) is defined then m2 ∈ synth∗(χ). By applying
synthesis rule Sexp, we then get m =S m

m2
1 ∈M synth∗(χ).

In cases (3) and (4), we can again apply our induction hypothesis and get that whenever
cfχ(m / r) is defined then m / r ∈M synth∗(χ) and whenever cfχ(m . r) is defined then
m.r ∈M synth∗(χ). Furthermore, we have r ∈M synth∗(χ) from r ∈S χ. With Lemma 2.18,
we get m ∈M synth∗(χ) with m =M rm/r in case (3) and m =M (m . r)

r
in case (4).

We see that the implication holds in all cases.

� m ∈M synth∗(χ)⇒ cfχ(m) is defined.
First recall that the implication only needs to hold if m is in canonical form (Definition 2.10 on
page 17). We have m ∈S χ⇒ m ∈M synth∗(χ), i.e., cfχ(m) has to be defined whenever m ∈S χ.
This is always true except in the case of concatenation. What remains are the other cases where
m ∈M synth∗(χ) (and the case of concatenation). The proof here is again by structural induction.
Let us make a case distinction based on the shape that a message in canonical form can assume:

– m is an atomic message.
In this case, we have m ∈M synth∗(χ)⇔ m ∈S χ since atomic messages cannot be constructed
from other messages. The implication holds since cfχ(m) is defined if and only if m ∈S χ.

71

A Proofs

– m =S 〈m1 . m2〉.
From χ = analyze∗(χ) and the analysis rules Aconcat1 and Aconcat2, we can conclude
that concatenation is always taken apart in χ and since χ is a basic set, we have no
concatenation messages in χ (for example, the message γ〈m1 . m2〉 cannot be in χ since there is
also m1 and m2, making the ghost message synthesizable). Therefore, m ∈M synth∗(χ) if and
only if m1 ∈M synth∗(χ) and m2 ∈M synth∗(χ). From our induction hypothesis, we know
that m1 ∈M synth∗(χ) implies that cfχ(m1) is defined and, similarly, that m2 ∈M synth∗(χ)
implies that cfχ(m2) is defined. From the definition of the constructive form we can read off
that it is only defined if both cfχ(m1) and cfχ(m2) are defined. Note that this is compatible
with property (1) from page 11 because of χ = analyze∗(χ) (χ is completely analyzed).

– m =S {m1}am2
.

We know that m1 6=S {m′1}am−1
2

since m is in canonical form. Consequently, Saenc is the only

rule we can apply to construct a message that equals m in equational theory M , i.e., m is
synthesizable only if m1 ∈M synth∗(χ) and m2 ∈M synth∗(χ). From our induction hypothesis
we know that m1 ∈M synth∗(χ) ⇒ cfχ(m1) is defined and m2 ∈M synth∗(χ) ⇒ cfχ(m2)
is defined and consequently m ∈M synth∗(χ) ⇒ cfχ(m1) is defined and cfχ(m2) is defined.
This is exactly what the constructive form requires, i.e., m ∈M synth∗(χ)⇒ cfχ(m).

– m =S {m1}sm2
.

We know that m1 6=S {m′1}sm2
since m is in canonical form. Consequently, Ssenc is the only

rule we can apply to construct a message that equals m in equational theory M , i.e., m is
synthesizable only if m1 ∈M synth∗(χ) and m2 ∈M synth∗(χ). From our induction hypothesis
we know that m1 ∈M synth∗(χ) ⇒ cfχ(m1) is defined and m2 ∈M synth∗(χ) ⇒ cfχ(m2)
is defined and consequently m ∈M synth∗(χ) ⇒ cfχ(m1) is defined and cfχ(m2) is defined.
This is exactly what the constructive form requires, i.e., m ∈M synth∗(χ)⇒ cfχ(m).

– m =S h(m1).
There is no equational property that includes hashing in equational theory M . Hence, m
is synthesizable only if rule Shash can be applied, i.e., m is synthesizable only if m1 ∈M
synth∗(χ). From our induction hypothesis, we know that m1 ∈M synth∗(χ) ⇒ cfχ(m1).
This is exactly what the constructive form requires and hence m ∈M synth∗(χ)⇒ cfχ(m).

– m =S foo(m1, . . . ,mi).
There is no equational property that includes function application in equational theory
M . Hence, m is synthesizable only if rule Sappl can be applied, i.e., m is synthesizable
only if m1, . . . ,mi ∈M synth∗(χ). From our induction hypothesis, we know that mk ∈M
synth∗(χ)⇒ cfχ(mk) for k ∈ {1, . . . , i}. This is exactly what the constructive form requires
and hence m ∈M synth∗(χ)⇒ cfχ(m).

– m =S �{|m1, . . . ,mi|}.
In this case, we have cfχ(m) = constrMultTermχ(m).

The message m is in canonical form and is therefore represented as a multiset of factors.
Furthermore, the canonical form requires that none ofm1, . . . ,mi are themselves multiplicative
messages. This means that the multiplication only has the factors m1, . . . ,mi. The multiset
representation also covers the properties (5) and (6) of equational theory M (that is, it solves
the problems of commutativity and associativity). Therefore, m ∈ synth∗(χ) only if either
(1) m ∈S χ or if (2) there are two messages a, b ∈M synth∗(χ) to which Smul can be applied
and for which m =M a� b.
(1) This case is handled by the condition m ∈S χ at the beginning of constrMultTermχ.

(2) Suppose that there are a, b ∈M synth∗(χ) such that m =M a� b. The messages a and b
are either single factors of m, or they are multiplications of several factors of m. Let us
first take a look at the second loop of constrMultTermχ. It iterates over all factors f
of m and checks if they are synthesizable from χ. Since f is a sub-message of m, we can
apply our induction hypothesis and get f ∈M synth∗(χ)⇒ cfχ(f) is defined. That is, if
there is a factor that is synthesizable from χ, then it is detected by constrMultTermχ.
Then the algorithm checks if m ÷ f is constructible. We can again apply our induction
hypothesis and get m÷ f ∈M synth∗(χ)⇒ cfχ(m÷ f) is defined . From Lemma 2.18 on
page 21, we get that m =M f � (m÷ f).

72

A Proofs

What remains are the cases where m can be constructed as m =M a � b but neither
a nor b is a single factor of m. This can only be the case if there are multiplicative
ghost messages in χ. This is handled by the first loop of constrMultTermχ. It checks if
there is a message r ∈S χ such that m is divisible by r and m ÷ r is synthesizable from
χ. By our induction hypothesis, we get that r ∈M synth∗(χ) ⇒ cfχ(r) is defined and
m÷ r ∈M synth∗(χ)⇒ cfχ(m÷ r) is defined. From Lemma 2.18 on page 21, we get that
m =M f � (m÷ f).
Summarizing, we can conclude that the implication holds.

– m =S m
m2
1 .

In this case, we have cfχ(m) = constrExpTermχ(m).

The message m is in canonical form and therefore m1 is not an exponentiation message itself
and m2 is not the message 1.

By applying rule Sexp, we can construct m directly from the messages m1 and m2. Due to
property (7) we can also construct m as an exponentiation of two messages a and b, where a

has the shape mc
1 such that ab =S (mc

1)
b

=M mb�c
1 =M m.

Let us now show that whenever m ∈M synth∗(χ), we have that constrExpTermχ(m) is
defined.

The first condition of the algorithm checks if m is directly in χ. Therefore, we have m ∈M
synth∗(χ)⇒ cfχ(m) in this case.

Next, the algorithm checks if m1 and m2 can be synthesized from χ. By our induction
hypothesis, we have m1 ∈M synth∗(χ) ⇒ cfχ(m1) is defined and m2 ∈M synth∗(χ) ⇒
cfχ(m2) is defined. Consequently, we have m ∈M synth∗(χ)⇒ cfχ(m) in this case.

In the loop, we check for each r ∈S χ whether it can be used for right or left exponentiation.
Note that from our induction hypothesis, we have m / r ∈M synth∗(χ) ⇒ cfχ(m / r) is
defined and m . r ∈M synth∗(χ) ⇒ cfχ(m . r) is defined and therefore in both cases m ∈M
synth∗(χ)⇒ cfχ(m) (Lemma 2.18).

Note that there are no further cases. Either, we can construct m1, or m1 is contained in an
exponential ghost term. Consequently, all cases are covered and m ∈M synth∗(χ)⇒ cfχ(m)
in all cases.

– m =S m
−1
1 .

Since our principals do not have the capability of constructing the inverse of a message, they
only can synthesize it if they directly possess it in their knowledge which is exactly what the
constructive form requires with m ∈S χ.

Finally, we request that the canonical form describes a valid way of synthesizing m from χ. This can be
seen very easily from the explanations above.

Lemma 2.21. Let S be a set of messages. Then χ := basicSet(S) is a basic set and synth∗(χ) =
synth∗(S).

Proof Sketch. According to Definition 2.6 on page 16, χ is a basic set if for all messages m ∈S χ we
have m /∈M synth∗(χ\{m}). According to Proposition 2.19 on page 22, m /∈M synth∗(χ\{m}) holds if
and only if m is not synthesizable from χ\{m}, that is, if and only if cfχ\{m}(m) is not defined. This is
exactly the termination criterion of the loop in algorithm basicSet, in other words, whenever basicSet
terminates then χ is a basic set.

On every iteration, one message is removed from the set of messages and since the algorithm
terminates at the latest when there are no more messages left in this set, we can conclude that basicSet
always terminates. Consequently, basicSet always terminates and returns a basic set.

What remains to be shown is synth∗(S) =M synth∗(basicSet(S)) for any set of messages S. Let us
consider an arbitrary iteration of the loop and denote by Sa the set of messages before the loop execution.
According to the specification of basicSet, the loop is only executed if there is a message m that can be
synthesized from Sa\{m}. The set of messages after the loop iteration is Sb := Sa\{m}. We know that
m can be synthesized from Sb, that is, cfSb(m) is defined, and consequently we get m ∈M synth∗(Sb)
by Proposition 2.19. This in turn implies that synth∗(Sb) =M synth∗(Sb ∪ {m}) =M synth∗(Sa). We
can conclude by induction that synth∗(basicSet(S)) =M synth∗(S) which concludes the proof.

73

A Proofs

Proposition 2.22. Let Q and R be two sets of messages. Then there are unique basic sets Q′ and
R′ with synth∗(Q) =M synth∗(Q′) and synth∗(R) =M synth∗(R′). For these, we have synth∗(Q) =M

synth∗(R) if and only if Q′ =M R′.

Proof Sketch. This is a direct corollary of Lemma 2.21 and Proposition 2.7. From Lemma 2.21 we know
that there is a basic set Q′ with synth∗(Q′) =M synth∗(Q). Similarly, there is a basic set R′ with
synth∗(R′) =M synth∗(R). From Proposition 2.7, we know synth∗(Q) =M synth∗(R) ⇔ Q′ =M R′

which also implies that the basic sets Q′ and R′ are unique (in equational theory M , not necessarily by
shape).

Proposition 2.23. Let m be a message and χ a basic set. Then addKnowledgeχ(m) is a basic set and
synth∗(addKnowledgeχ(m)) =M close(χ ∪ {m}).

Proof Sketch. Let us denote the initial knowledge with which the algorithm is called by χstart.
The (gradually growing) knowledge in the algorithm is represented by the variable χ which is a finite

set of messages. The set of messages that we can construct from it is exactly the set synth∗(χ). Recall
that according to Proposition 2.19, we have cfχ(m) is defined ⇔ m ∈M synth∗(χ).

Let us now take a look at analyzeOnceχ. We can see that analyzeOnceχ implements all of the
analysis rules from Definition 2.8 on page 16. In particular, analyzeOnceχ(m) contains all the messages
that can be extracted from synth∗(χ) by applying one analysis rule since in the case of the rules that
take two messages, it checks if the second message is in synth∗(χ) by computing cfχ(m). Consequently,
the while loop terminates exactly when no more information can be analyzed from synth∗(χ), that is,
when synth∗(χ) =M analyze(synth∗(χ)) which implies synth∗(χ) =M close(χ).

The first instruction of the algorithm adds m to χstart. After that, messages are only added to χ,
never removed (at least as long as the loop is not left). Also, only messages that can be analyzed from
χ are added. Combined, this implies that close(χ) =M close(χstart ∪ {m}).

Summarizing, the loop is left exactly when synth∗(χ) =M close(χ). Together with the fact
close(χ) =M close(χstart ∪ {m}) we can conclude that the loop is left exactly when synth∗(χ) =M

close(χstart ∪ {m}).
The return value of addKnowledgeχstart(m) is then basicSet(χ). From Proposition 2.21 on

page 24, we know that addKnowledgeχstart(m) =M basicSet(χ) is a basic set and synth∗(χ) =
synth∗(basicSet(χ)). Hence, we have synth∗(addKnowledgeχstart(m)) =M synth∗(basicSet(χ)) =M

synth∗(χ) =M close(χstart ∪ {m}).

Proposition 5.1. The capabilities of honest principals that are induced by the function declarations,
equations and the built-in theory diffie-hellman from above are equivalent to the capabilities that arise
from Definitions 2.5 and 2.8 and the properties from Section 2.2.2.

Proof Sketch. We see immediately that the messages used in Tamarin satisfy all the properties that
we defined in Section 2.2.2; associativity of concatenation is implemented in Tamarin by default, the
properties of exponentiation and multiplication are added with the built-in diffie-hellman and the
other properties arise from the equations. What remains to be shown is that the synthesis capabilities
from Definition 2.5 on page 15 and the analysis capabilities from Definition 2.8 on page 16 follow from
the equations specified in Tamarin.

Let us first discuss the synthesis capabilities. We note that concatenation is expressed by the function
pair, symmetric encryption by senc, asymmetric encryption by the function aenc and hashing by the
function h. Since function application is there in Tamarin by default, we can conclude that the rules
Sappl, Sconcat, Saenc, Ssenc, and Shash are implemented. Finally Sexp and Smul are added with
the operators * and ˆ by the built-in theory diffie-hellman.

The analysis capabilities are expressed by the equations. In particular, Asenc is implemented
by sdec(senc(x.1, x.2), x.2) = x.1, Aaenc1 by adec(aenc(x.1, sk(x.2)), pk(x.2)) = x.1,
Aaenc2 by adec(aenc(x.1, pk(x.2)), sk(x.2)) = x.1 (since we do not work with the inverses of
general messages in A&B), Aconcat1 by fst(<x.1, x.2>) = x.1, and, Aconcat2 by snd(<x.1,

x.2>) = x.2.

74

B Grammar of the A&B Input Language

B Grammar of the A&B Input Language

The grammar of the A&B protocol specification language is defined in this section.

Identifiers and Strings. Identifiers must start with a letter, followed by any number of letters, digits,
and underscores (‘ ’). A&B as such is not case sensitive, but special rules apply for identifiers: there
must not be two identifiers that differ only in case. For example, the two identifiers “Message” and
“message” must not appear in the same protocol. String literals are identifiers that are enclosed in
single quotes.

IDENT ::= Letter { Letter | Digit | "_" }*
STRING ::= "'" IDENT "'"

Messages. There are 5 types of atomic messages, namely strings, variables, secret keys, public keys
and symmetric keys. All other messages are composed from atomic messages.

MESSAGE ::= IDENT // variable name or role name
| STRING // a string in single quotes
| "pk" "(" IDENT ")" // public key of an agent
| "sk" "(" IDENT ")" // secret key of an agent
| "k" "(" IDENT "," IDENT ")" // shared symmetric key

// of two agents
| MESSAGE "." MESSAGE // concatenation
| "<" MESSAGE {"." MESSAGE}+ ">" // concatenation in angles
| "(" MESSAGE ")" // parentheses for

// determining precedence
| "aenc" "{" MESSAGE "}" MESSAGE // asymmetric encryption
| "senc" "{" MESSAGE "}" MESSAGE // symmetric encryption
| MESSAGE "*" MESSAGE // multiplication
| MESSAGE "ˆ" MESSAGE // exponentiation
| "h" "(" MESSAGE ")" // hash of a message
| IDENT "(" [MESSAGE {"," MESSAGE}*] ")" // function application

Protocol Specification. A protocol specification consists of four blocks, namely a Declarations
block where functions are declared, a Knowledge block where the initial knowledge of the roles is specified,
an Actions block describing the protocol and a Goals block where the security goals are specified. Any
of these blocks can be left away if they are not needed:

PROTOCOL ::= "Protocol" IDENT ":"
[DECLARATIONS] [KNOWLEDGE] [ACTIONS] [GOALS]
"end"

DECLARATIONS ::= "Declarations" ":" { DECLARATION }*

DECLARATION ::= ["public" | "private"] IDENT "/" INTEGER ";"

KNOWLEDGE ::= "Knowledge" ":" { KNOWS }*

KNOWS ::= IDENT ":" [MESSAGE] {"," MESSAGE}* ";"

ACTIONS ::= "Actions" ":" { ACTION }*

ACTION ::= "[" IDENT "]" IDENT "->" IDENT
["(" IDENT { "," IDENT }* ")"] ":" MESSAGE ";"

| "[" IDENT "]" IDENT "<-" IDENT
["(" IDENT { "," IDENT }* ")"] ":" MESSAGE ";"

75

B Grammar of the A&B Input Language

GOALS ::= "Goals" ":" { GOAL }*

GOAL ::= "[" IDENT "]" IDENT "non-injectively" "agrees" "with"
IDENT "on" MESSAGE ";"

| "[" IDENT "]" IDENT "injectively" "agrees" "with"
IDENT "on" MESSAGE ";"

| "[" IDENT "]" MESSAGE "secret" "of" IDENT { "," IDENT } ";"

Reserved Identifiers. The following identifiers are either reserved keywords of A&B or could lead to
naming conflicts in Tamarin and must therefore not be used:

Actions, adec, aenc, agrees, Declarations, em, end, fst, Goals, h, in, init, inv,
injectively, k, Knowledge, let, non-injectively, of, on, pk, pair, pmult, Protocol,
private, public, rule, secret, sdec, senc, sign, snd, true sk, verify, with.

76

C Intermediate Representation Format

C Intermediate Representation Format

In the following, we give a listing of all data structures that are part of the intermediate representation
format and the packages in which they are defined.

Package Parser.Basic:

type Label = String;
type RoleName = String;
type Identifier = String;

Package Parser.Message:

type Factors = Data.MultiSet.MultiSet Message

data Message
= Gamma Identifier Message
| Var Identifier
| Str String
| Concat Message Message
| Aenc Message Message
| Senc Message Message
| Hash Message
| Mul Factors
| Exp Message Message
| Pk RoleName
| Sk RoleName
| K RoleName RoleName
| Fun Identifier [Message]
| One

type Knowledge = Data.Set.Set Message

Package Rewriter.IR:

data Protocol = Protocol Identifier [Function] [Role] [Goal]

type Function = (Identifier, Integer, Bool)

data Role = Role RoleName [Action]

data Action
= Prepare Knowledge
| Send Bool Label RoleName [Identifier] Message Knowledge
| Receive Label RoleName Message Knowledge

data Goal
= Secret Label Message [RoleName]
| WeakAuth Label RoleName RoleName [Message]
| StrongAuth Label RoleName RoleName [Message]

77

D Short Manual for the Translator

D Short Manual for the Translator

Compilation The Haskell source code of the translator can be downloaded from http://www.
infsec.ethz.ch/research/software/tamarin. The package Data.MultiSet needs to be
installed before it can be compiled. It can be installed via Cabal or alternatively downloaded
from https://hackage.haskell.org/package/multiset. The main file of the translator is
code/anb.hs. Using Cabal and the Glasgow Compiler, the translator can be compiled with the following
instructions:

>> cd ./code
>> cabal install MultiSet
>> ghc anb.hs

The program can now be invoked with the command ./anb.

Usage Assume that the executable of the translator is called anb. In this case, the translator is invoked
according to the following pattern:

>> ./anb [input-file and options]

A short explanation of usage and possible options is displayed when called with the option --help (or
-h). For instance:

>> ./anb --help

Only one file can be translated at a time and only input files with the file extension .anb are accepted.
A file protocol.anb can be translated by invoking:

>> ./anb protocol.anb

This will read the A&B specification and write the corresponding Tamarin code in the file protocol.

spthy. If the output should be written to file out.spthy instead, one can do this with the -o option:

>> ./anb protocol.anb -o out.spthy

Note that the translator does not produce any code if the A&B input does not pass all well-formedness
checks. For verbose output, use the option -v:

>> ./anb protocol.anb -v

Verbose output contains the A&B specification, a representation of the IR and the generated Tamarin
code.

78

http://www.infsec.ethz.ch/research/software/tamarin
http://www.infsec.ethz.ch/research/software/tamarin
https://hackage.haskell.org/package/multiset

	Introduction
	Related Work
	Structure
	Contributions

	The Semantics of Alice&Bob Protocol Specifications
	Overview
	Messages and Message Model
	Messages
	Message Model

	Alice&Bob Notation
	Knowledge and Basic Sets
	Initial Knowledge
	Alice&Bob Protocol Specifications
	Notational Conventions

	Capabilities
	Synthesization Capabilities
	Analysis Capabilities
	Ghost Symbols
	Multiset Representation of Multiplication and Canonical Form of Messages

	Synthesizing Messages
	Constructive Form
	Division, Left and Right Reduction
	Multiplicative and Exponential Terms

	Analyzing Messages
	Checks
	Wrap-up
	Actions, Roles and Protocols
	Example

	The A&B Input Language
	Basics
	Messages
	Operator Precedence
	Associativity of Operators
	Influencing Operator Precedence and Associativity

	Specifying a Protocol
	Declaring Functions
	Declaring Initial Knowledge
	Declaring Message Exchange Steps

	Declaring Security Goals
	Overview
	Secrecy
	Agreement

	Well-formedness Checks

	The Intermediate Representation Format
	Framework
	Representing a Protocol
	Example

	Translation to Tamarin
	Tamarin and its Input Language
	Messages and Functions
	Equations and Built-in Theories
	Facts and Rewriting Rules
	Lemmas

	Translation from IR to Tamarin
	Modeling the Capabilities of Honest Principals
	Setting Up the Knowledge
	Communication Steps
	Security Goals

	Ghost Messages

	Implementation and Tamarin Output
	Outline of the Translator
	Parsing
	Parse Trees
	Parser

	Rewriter
	Representing State
	From Parse Tree to Intermediate Representation Format

	Well-formedness Checks
	Generation of Tamarin Code

	Case Study
	Intermediate Representation
	Tamarin Output
	Protocol Verification

	Conclusion
	Declaration of Originality
	References
	Proofs
	Grammar of the A&B Input Language
	Intermediate Representation Format
	Short Manual for the Translator

