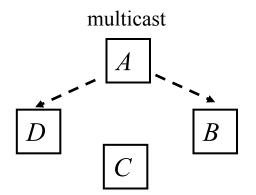
ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich


Security of Wireless Networks Lecture 2/3

Srdjan Čapkun Department of Computer Science ETH Zurich Broadcast Jamming-Resistant Communication – keys, some keys, no keys –

Broadcast Communication

Broadcast communication

- One sender, many receivers
- Open system
 - New receivers may join, receivers may withdraw
 - Any receiver can listen (in contrast to multicast)

Examples:

 radio (audio) broadcast (AM, FM, ...)

D

 navigation signals: satellitebased (GPS), terrestrial (LORAN)

broadcast

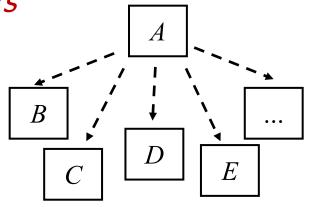
A

C

B

3

Attacks on Broadcast Communication

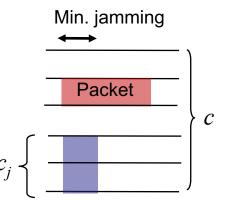

A

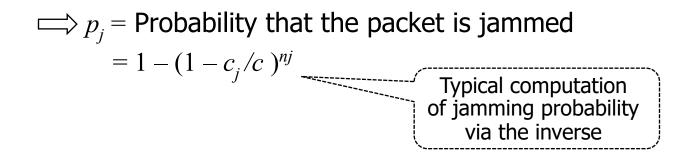
For pairwise (unicast) communication we only consider *external (outsider) attackers*

- A and B are mutually trusted
- Attacker uses only public information

Broadcast communication

- High and unknown number of receivers
- Receivers are potentially untrusted and may be colluding
- We need to consider *external attackers* and *internal (insider) attackers* (can be more efficient)
- Group keys?

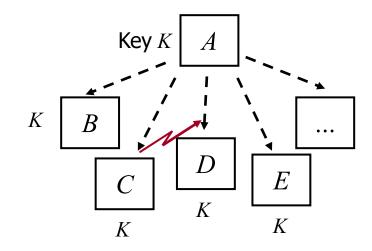



External Attackers on SS Techniques

External attacker

- Does *not* know the spreading code / hopping sequence
- Partial-band attacker can still jam. Example: FHSS

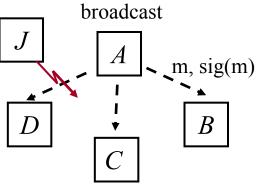
c = # frequency channels $c_j = \#$ channels the jammer jams $n_j = \#$ jamming cycles per packet (given by min. jamming period, packet length, and jammer capabilities)



5

Internal Attackers on SS Techniques

Internal attacker


- Legitimate receiver: can decode the broadcast signal, i.e. knows the used spreading code and its synchronization
- Can *misuse the spreading code and synchronization* for jamming to disable other receivers to get the signal
- *Group keys do not prevent this attack!* We need a better solution!

Anti-jamming Broadcast

Side remark: Generally, anti-jamming (AJ) = jamming-resistant

Problem: Base station (BS) needs to *broadcast* an (authenticated / confidential) message to a *large number of receivers* in an *anti-jamming manner*

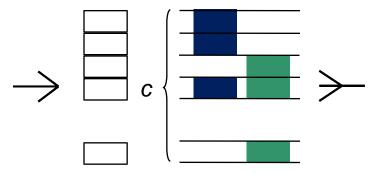
Desirable properties:

- Detect / prevent jamming
- Support a flexible number of receivers
- Tolerate a certain fraction of malicious receivers

Some solutions based on keys shared between sender and receivers:

- Desmedt *et al.*: FHSS-based each receiver listens to a subset of frequencies on which the sender transmits
- 2. Chiang, Hu: DSSS-based codes assigned to each receiver

7


Broadcast Anti-jamming Systems [Desmedt et al.] - I

Broadcast anti-jamming based on frequency hopping (FHSS)

Coding method provides protection against malicious receivers

- Base station transmits the same signal simultaneously on multiple frequencies
- Each receiver listens to a subset of these frequencies at a given time
- *Threshold scheme*: provides protection against up to j 1 colluding receivers

Based on secret information

Broadcast Anti-jamming Systems [Desmedt et al.] - II

Public Channel Allocation Table

- Defines the subset of channels where each receiver *R_i* is listening
- Known to every receiver
- *j*–1 receivers do not cover all channels of any other receiver
- Set coverage problem

- The actual frequencies are secret
- Created and updated via a pseudo-noise generator

Channel	1	2	3	4	5	6	7	8	9	
Frequency (in GHz)	2.437	2.462	2.417	2.442	2.447	2.457	2.412	2.422	2.432	

[Snapshot of the frequency allocation table, the complete table is only known to the base station]

Channel	BS	R1	R2	R 3	R4	
1	Χ		X			
2	Χ	Χ				
3	Χ	Χ		X		
4	Χ			X		
5	Χ	X			Χ	
6	Χ			X		
7	Χ		X			
8	Χ				X	
9	Χ		X	X		
•••						

Broadcast Anti-jamming Systems [Desmedt et al.] - III

System Description:

- Channels $C = \{c_1, c_2, ..., c_m\}$
- Receivers $R = \{R_1, R_2, ..., R_l\}$
- Subsets of channels $CR = \{C_1, C_2, ..., C_l\}$

<u>Theorem</u>: If $|C_i| \ge 1 + (j-1)d$ for all $1 \le i \le l$ and $|C_i \cap C_k| \le d$ for all $i \ne k$, then (C, CR) is a Broadcast Anti-Jamming System.

Sufficient but not necessary condition

- Example: $C = \{1, 2, 3, 4, 5, 6\}, R = \{B_1, B_2, B_3, B_4\}, CR = \{\{1, 2\}, \{2, 3\}, \{4, 5\}, \{5, 6\}\}$
 - Resistant to j = 3 jammers, i.e., j 1 = 2
 - $m = 6, l = 4, |C_i \cap C_k| \le d = 1$
 - Yet $|C_i| = 2$, not the required $|C_i| \ge 1 + (j-1)d = 3$

С	BS	B1	B2	B 3	B4
1	X	X			
2	X	X	X		
3	X		X		
4	X			X	
5	X			X	Х
6	X				Х

Broadcast Anti-jamming Systems [Desmedt et al.] - IV

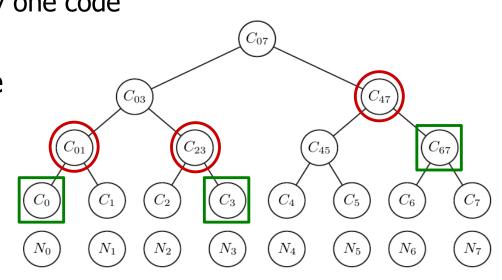
The Desmedt broadcast anti-jamming system works if

- the group of colluders consists of j 1 or fewer members and hence each receiver is always left with at least one free (= unjammed) channel
- the assigned frequencies can be distributed over a broad, non-continuous frequency band

However, this scheme requires secret information to be shared between the base station and each participating receiver \rightarrow *multicast solution*

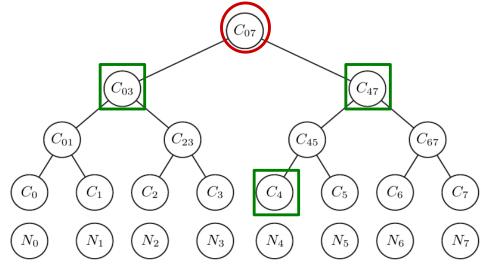
Dynamic Jamming Mitigation [Chiang and Hu] – I

Broadcast anti-jamming based on DSSS


Counteract jamming by using a balanced binary key tree

- Each node corresponds to a spreading code
- Each user N_i is assigned to a leaf and knows all codes on the path from the root

The base station transmits on ...


- a *disjoint cover of codes*, i.e., all users can decode using exactly one code
- a set of *test codes*

If a user receives a message on a test code but not on the corresponding detectable code, it reports jamming

Dynamic Jamming Mitigation [Chiang and Hu] – II

Jamming detection and mitigation

Detection and mitigation rely on feedback

Splitting and reforming the tree allows the transmitter to send each transmission on $\leq 2j+1$ codes, where *j* is the (expected upper) number of jammers (details omitted)

Dynamic Jamming Mitigation [Chiang and Hu] – III

Requires highly flexible base station (sending and receiving on a potentially large number of codes) and *feedback channels*

• Not applicable to unidirectional broadcast

Requires *secrets* to be shared between the base station and the receivers

- Each receiver knows the codes on its path to the root but no other codes
- Number of required secrets grows with the number of receivers

Looking back ...

Introduction to broadcast systems

Group keys are not a solution against jamming

Two solutions based on secrets shared between the base station and the receivers:

- FH-based by Desmedt et. al
- DSSS-based by Chiang et. al

Can we achieve jamming-resistant communication without shared secrets?

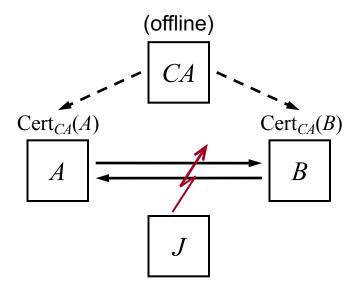
Physical Layer Security

Broadcast Anti-Jamming Techniques Without Shared Secrets

Anti-jamming Broadcast Without Shared Keys

Problem: BS needs to broadcast an (authenticated) message to a large number of *unknown/untrusted receivers* in an *anti-jamming manner*.

Applications: alarm broadcast, navigation signals, etc ... $PK_A = \begin{bmatrix} J & & & \\ M & & M & \\ M & & & \\ PK_A & & \\ PK_A & & \\ PK_A & & \\ PK_A & \\ PK_$


But ...

- Anti-Jamming communication relies on shared secret keys
- In anti-jamming broadcast we cannot rely on shared keys (unknown/untrusted receivers)
- The prior schemes (Desmedt, Chiang) do not work for unknown receivers
- Public-key crypto does not help

Anti-Jamming Key Establishment

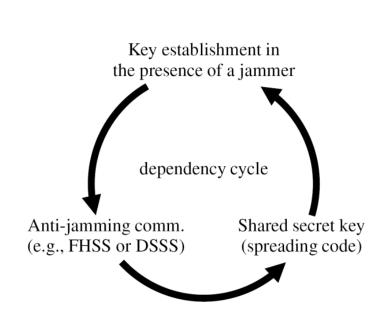
Problem:

A and B want to establish a shared secret key in the presence of a jammer J

Assumptions:

A and B do not share any secrets

The clocks of *A* and *B* are loosely synchronized O(s)


- Each node has a public/private key pair and a certificate binding its identity to the public key
- *CA* (Certification Authority) is trusted by all nodes; it may be off-line or unreachable by the nodes at the time of communication

Anti-Jamming / Key-establishment Dependency

Key establishment depends on jamming-resistant communication

Common anti-jamming techniques require a shared secret key (code)

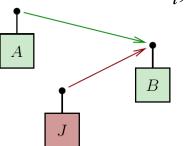
Leads to an anti-jamming/ key-establishment dependency cycle

Two Solutions: UFH and UDSSS

Basic idea:

- If you cannot coordinate the sender and the receiver Don't!
- Sender uses random hopping sequences / spreading codes unknown to the receiver (public set)

Two solutions:

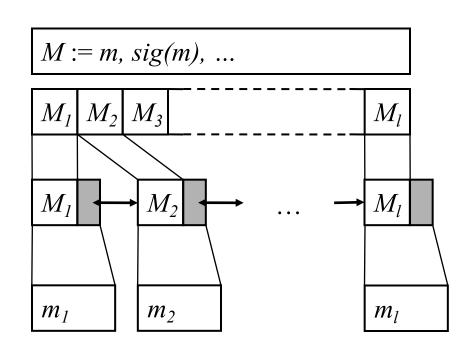

- Uncoordinated Frequency Hopping Spread Spectrum (UFH)
- Uncoordinated Direct Sequence Spread Spectrum (UDSSS)

Rationale:

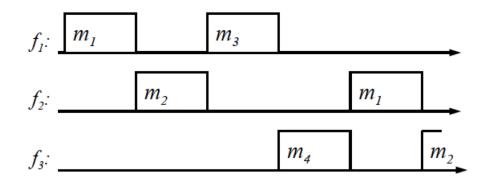
- The attacker cannot predict which channels will be used (neither can the receiver)
- Equivalent to FH in jamming protection (but not in throughput)
- Throughput can be improved by using broadband receivers (c_t, c_r)

Attacker Model

- Attacker goal: to prevent communication!
- Attacker actions: *Jam, Insert, Modify*
- Attacker types: Responsive, Sweep, Random, ...
- Attacker strength (channels/time to jam/sense): c_s / t_s , c_j / t_j
- Power to insert, jam, and overshadow: P_t , P_j , and P_o

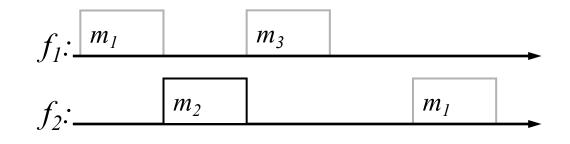


- P_T : total signal strength that attacker J can achieve at the receiver B
- Given the number of frequency channels on which the attacker inserts (c_i), jams (c_j), and overshadows (c_o),

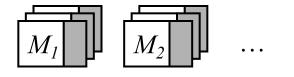

$$c_t P_t + c_j P_j + c_o P_o \le P_T$$

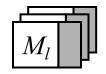
Uncoordinated Frequency Hopping (transmitter)

- 1. Fragmentation
- 2. Fragment linking (protects against insertion)
- 3. Packet Encoding (ECC) (protects against jamming)

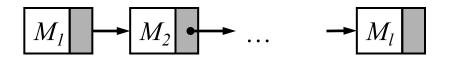


4. Repeated transmission



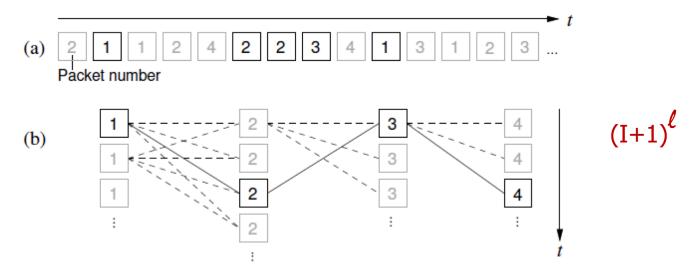

Uncoordinated Frequency Hopping (receiver)

1. Receiving packets



2. Packet decoding

3. Ordering and linking

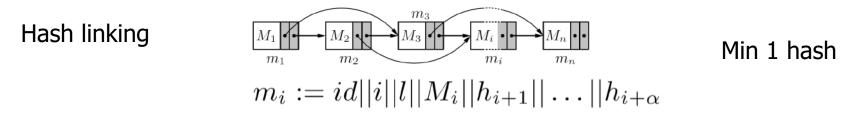

4. Message reassembly and signature verification

$$M_1 M_2 M_3 M_l$$

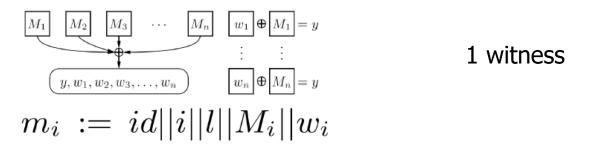
$$M_l := m, sig(m), \dots$$

Security analysis: Fragment linking

Problem: Fragments are not individually authenticated (pollution attacks)

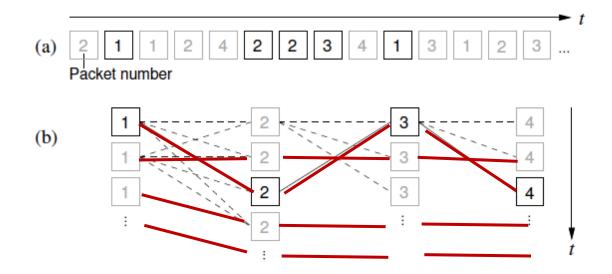

Signature verification at each candidate message (after reassembly)

In the best case, I=1 ... (depends on attacker's # of channels, power ...) but ℓ is large; $\ell = \frac{\text{message size}}{\text{slot size}}$ (>20)


Result: Attacker performs a DoS attack on the logical level instead on the physical

Security analysis: Fragment linking

Problem: Fragments are not individually authenticated (pollution attacks) Solution: Cryptographically link fragments (no reliance on shared key) to achieve message integrity


One-way Accumulators

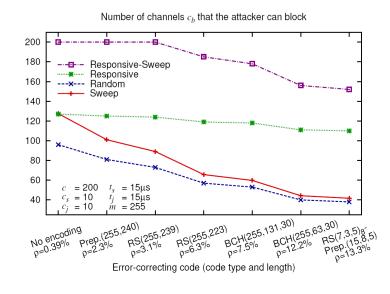
Short signatures

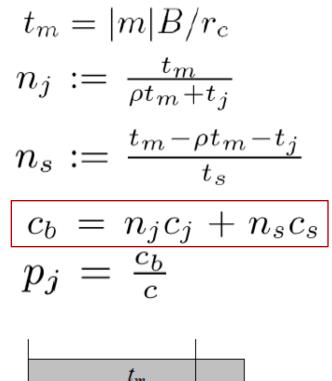
$$m_i := K_M ||i||M_i||Sig_{K_M^{-1}}(K_M||i||M_i)$$
 1 short
signature

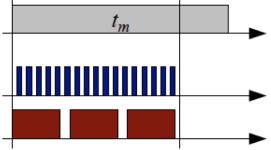
Security analysis: Fragment linking

Gain: Instead of $(I+1)^{\ell}$ signature verifications, reduction to $(I+1)^{\ell}$ hash/acum/signature verifications + (I+1) signature verifications

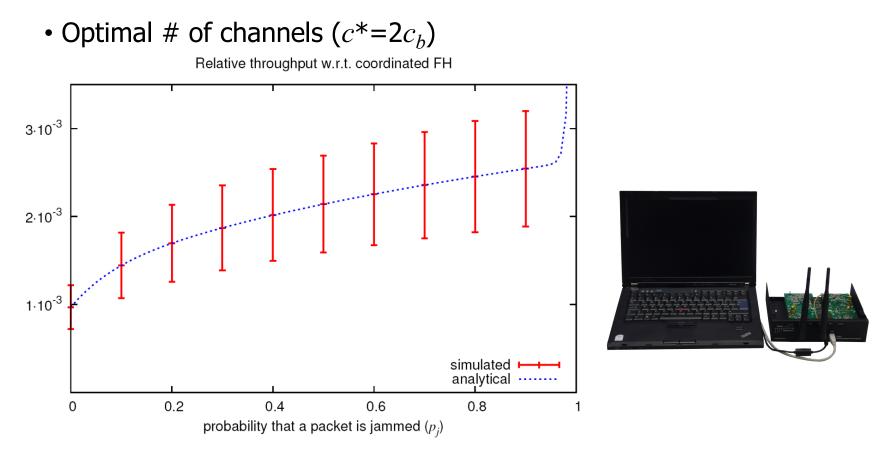
Signatures and accumulators better than hash linking


Possible extensions:


- Use linking with erasure codes, e.g., Fountain codes.
- Reconstruct the message from any k fragments.


Security analysis: Packet Encoding

Defined by the jamming resistance ρ and coding rate r_c

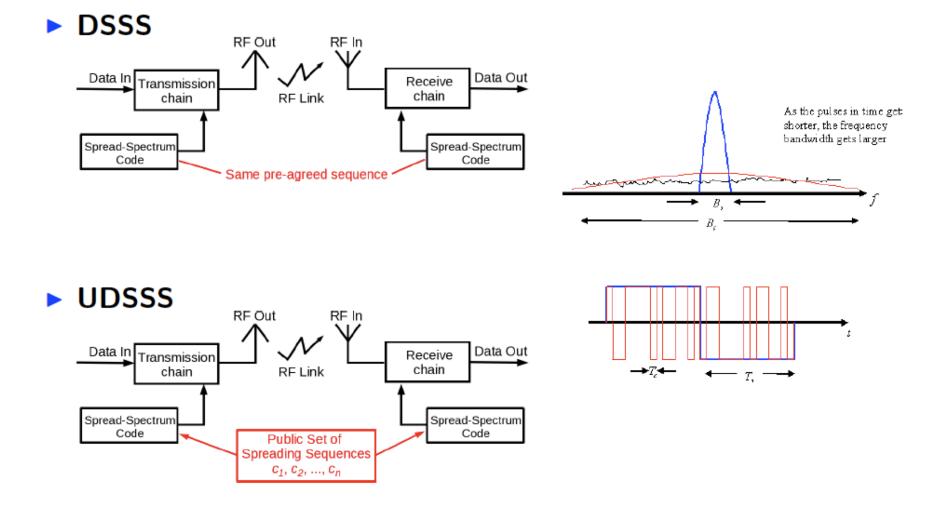

- Packet transmission time:
- #channels that the attacker can (blindly) jam during the transmission:
- #channels that the attacker can scan during the transmission:
- #channels that the attacker can block during the transmission

Performance Results

- Some results (*c*=200, 1MBit/s, 1600 hops/s, ECC signature, |*M*=2176|, *l*=13)
 - Throughput: 1000x slower than FH
 - Latency: 2 100s (different attacker strengths)

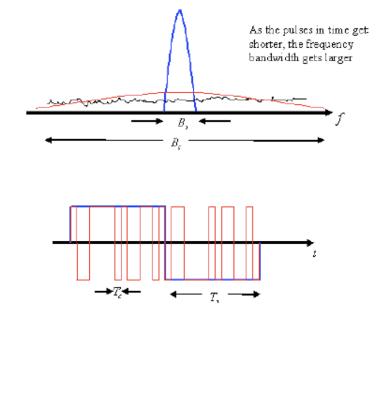
Two Solutions: UFH and UDSSS

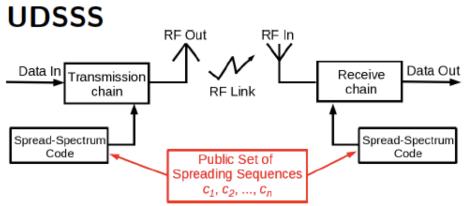
Basic idea:


- If you cannot coordinate the sender and the receiver Don't!
- Sender uses random hopping sequences / spreading codes unknown to the receiver (public set)

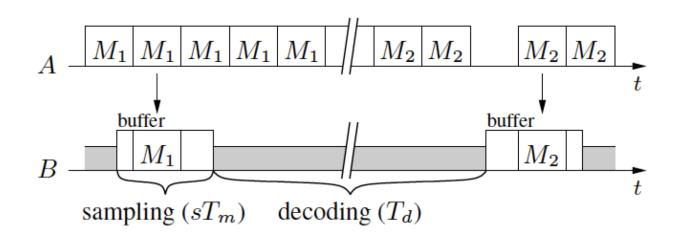
Two solutions:

- Uncoordinated Frequency Hopping Spread Spectrum (UFH)
- Uncoordinated Direct Sequence Spread Spectrum (UDSSS)


Rationale:

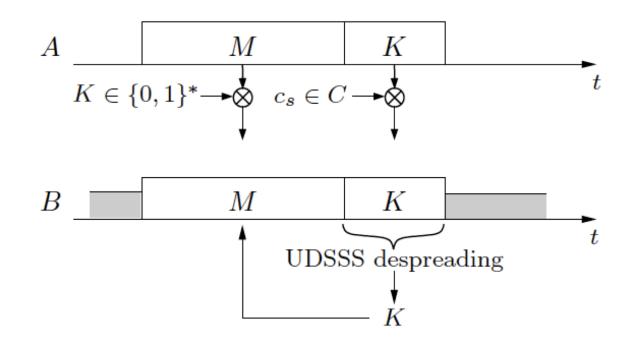

- The attacker cannot predict which spreading codes are used by the sender (neither can the receiver)
- UDSSS has reduced latency compared to DSSS
- Throughput can be improved by using parallelization

- Public set C of spreading sequences


Sender randomly selects sequence $c_s \in C$ to spread message MReceivers record signal and despread Mby applying sequences from Cusing a trial-and-error method

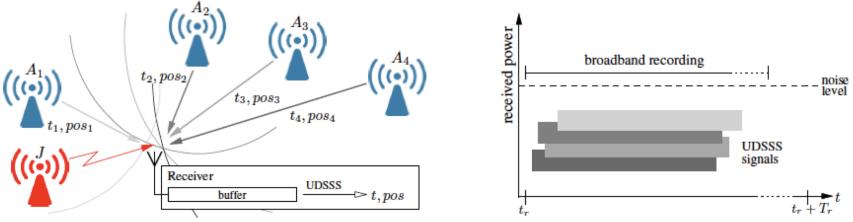
Message repetitions, due to

- lacking synchronization between sender and receivers
- the possibility of successful jamming attacks


- Code set C composed of n code sequences
- Each code sequence is composed of *l* spreading codes containing *N* chips
 - E.g., N = 100 chips → 20 dB processing gain
 - Auto-correlation and cross-correlation properties

Successful despreading requires to hit the correct spreading sequence and the correct synchronization

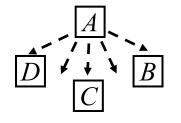
UDSSS: Optimization


- Idea: Use UDSSS to transmit the spreading key only
- Trick: First transmit message M using a random spreading code K, then transmit the spreading code K using UDSSS

Advantages: Smaller spreading code set. Quicker decoding. Longer messages. More flexible security level.

UDSSS: Example Application

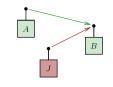
- For positioning and/or time-synchronization
- Requirements:
 - signals from three to four different base stations
 - precise time-stamping of signal reception



- UDSSS provides:
 - anti-jamming transmission of multiple signals in parallel
 - precise time-stamping of signal reception (despite delayed recovery) & updated time-stamps in each transmitted message
 - anti-spoofing protection of authenticated messages

Summary

• Anti-jamming – key-establishment circular dependency


Broadcast anti-jamming problem

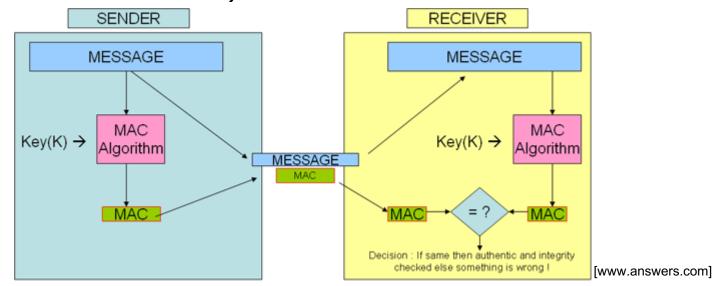
UDSSS and UFH

New attacker models

Applications

Key establishment in the presence of a jammer

dependency cycl


Shared secret ke (spreading code

Anti-jamming comm. (e.g., FHSS or DSSS)

Physical Layer Security

Application of (Broadcast) Anti-Jamming Techniques to Key Establishment Applications for Shared Keys in Wireless Networks

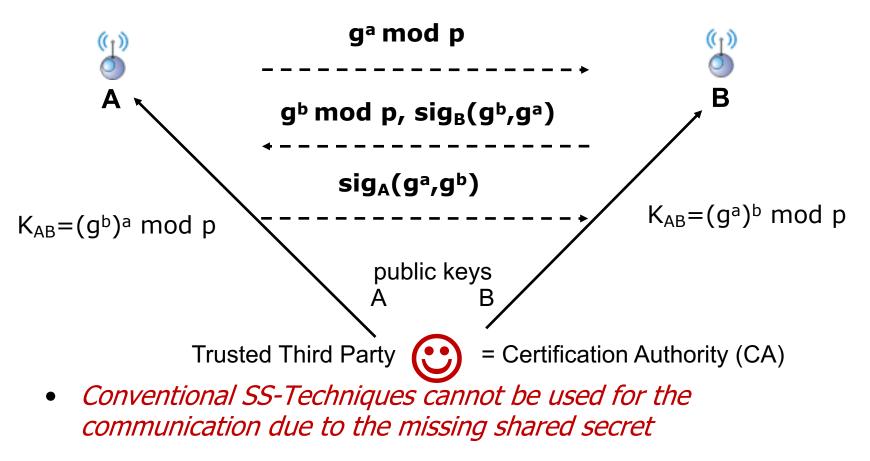
- Secret keys are required / used for:
 - Communication techniques (DSSS, Frequency Hopping)
 - Encryption of messages
 - Integrity protection of messages (MACs = Message Authentication Codes)

Authentication / authorized access

The Problem with Key Establishment

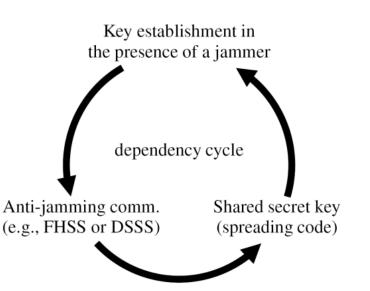
Key establishment is a challenge

Pre-sharing Symmetric Keys

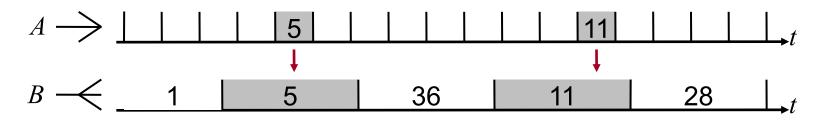

- A Trusted Third Party (TTP) pre-loads the keys
- Efficient (+)
- Suffers from network dynamics problems (–):
 - new nodes joining, key revocation, key compromise

Key Establishment

- Based on public-key (asymmetric) cryptography
- Prominent examples: RSA, Diffie-Hellman (DH)
 - Based on computational hardness of the factorization (RSA) or discrete logarithm (DH) problem
- Requires reliable communication


DH Key Establishment

- Nodes A and B do not share any secrets, but possess certificates of their public keys
- Authenticated Diffie-Hellman Protocol (using signatures)



Anti-jamming / Key-establishment dependency

- Key establishment (e.g. using DH) depends on jamming-resistant communication
- Common anti-jamming techniques require a shared secret key (code)
- Leads to an anti-jamming/ key-establishment dependency cycle

 Key idea: break the dependency cycle by using Uncoordinated Frequency Hopping (UFH)

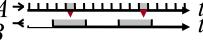
Key Establishment Protocol: Sender/Receiver

ECC-based Station-to-Station Diffie-Hellman

- *P*lies on elliptic curve $E(F_{a})$, CA = Certification Authority
- $PK_A = A$'s public key, $Sig_A = A$'s signature, $r_A P = A$'s key contribution

$$\begin{array}{c} A \\ r_A \leftarrow_R Z \\ K=r_A(r_BP) \end{array} \xrightarrow{B} \\ K=r_A(r_BP) \end{array} \begin{array}{c} B \\ R_B \leftarrow_R Z \\ M, PK_A, Sig_{CA}(A, PK_A), T_A, r_A P, Sig_A(A, \dots, r_A P) \\ Sig_{CA}(A, PK_B), T_A, r_B P, Sig_B(B, \dots, r_B P) \\ K=r_B(r_A P) \end{array}$$

Elliptic Curve Cryptography (ECC) enables to reduce the key length while maintaining the level of security


- E.g., 128-bit security level [NIST] \rightarrow 256 bit prime fields on elliptic curves and 512 bit keys (vs. 3072-bit key for RSA)

Use UFH to transmit the messages

What to remember?

- What are broadcast systems?
- Applications for broadcast
- Approaches for enabling jamming-resistant broadcast despite internal attackers
- Jamming-resistant communication \bullet without shared secrets
- Anti-jamming/Key-establishment dependency \bullet

