Deterministic Approaches

- Used to design the key pool and the key chains to provide better connectivity
 - Matrix Based Scheme [Blom 1985]
 - Polynomial Based Key Generation [Blundo et al. 1992]

Deterministic approaches: Blom's Scheme [B]

- Public matrix G
- Private matrix D (symmetric).

Let $\mathbf{A} = (\mathbf{D} \mathbf{G})^{\mathsf{T}}$

 $\mathbf{A} \mathbf{G} = (\mathbf{D} \mathbf{G})^{\mathsf{T}} \mathbf{G} = \mathbf{G}^{\mathsf{T}} \mathbf{D}^{\mathsf{T}} \mathbf{G} = \mathbf{G}^{\mathsf{T}} \mathbf{D} \mathbf{G} = (\mathbf{A} \mathbf{G})^{\mathsf{T}}$

[B] Scheme

Node i carries: Node j carries:

[B] λ -secure Property

Undesirable Situation: if $u^*G(i) + v^*G(j) = G(k)$

then $u^*A(i) + v^*A(j) = A(k)$

this would allow colluding nodes (i and j) to impersonate other nodes (k)

[B] λ -secure Property

- ALL λ +1 columns in G are linear independent.
 - Different from saying that G has rank $\lambda + 1$
 - **Rank:** there are $\lambda + 1$ lineary independent columns
- Can tolerate compromise up to λ nodes.
 - Once $\lambda + 1$ nodes are compromised, the rest can be calculated if these $\lambda + 1$ columns are linear independent.
- How to find such a matrix G?

[B] Vandermonde Matrix

[B] Properties of Blom Scheme

- Blom's Scheme
 - Network size is N
 - Any pair of nodes can directly find a secret key
 - Tolerate compromise up to λ nodes
 - Need to store λ +2 keys

Key distribution schemes for sensor networks

http://www.cs.rpi.edu/research/pdf/05-07.pdf

Problem	Approach	Mechanism	Keying style	Papers
Pair-wise	Probabilistic	Pre-distribution	Random key-chain	C, E, F, J
				K, N, S
			Pair-wise key	Е
	Deterministic	Pre-distribution	Pair-wise key	G, M
			Combinatorial	P, Q
		Dynamic Key	Master key	D, L
		Generation	Key matrix	Α
			Polynomial	В, G
	Hybrid	Pre-distribution	Combinatorial	P, Q
		Dynamic Key	Key matrix	H, M, R
		Generation	Polynomial	I, R
Group-wise	Deterministic	Dyn. Key Gen.	Polynomial	B, R

The papers are: A[Blom 1985], B[Blundo et al. 1992], C[Eschenauer and Gligor 2002], D[Lai et al. 2002], E[Chan et al. 2003], F[Pietro et al. 2003], G[Liu and Ning 2003c], H[Du et al. 2003], I[Liu and Ning 2003b], J[Zhu et al. 2003], K[Du et al. 2004], L[Dutertre et al. 2004], M[Lee and Stinson 2004b], N[Hwang et al. 2004], P[Camtepe and Yener 2004], Q[Lee and Stinson 2004a], R[Huang et al. 2004], S[Hwang and Kim 2004].