Key Distribution in Sensor Networks

Data integrity, authentication

Using PK crypto in distributed networks is:

- enables broadcast authentication
- distribution of new keys and insertion of new nodes is straightforward

Symmetric-key and PK crypto in sensor nets

- Use PK for all operations
 - + simple key distribution
 - + simple broadcast authentication
 - sensors need to be able to perform PK crypto
- PK for key establishment (DH) and SK for the rest
 - + simple key distribution
 - no efficient broadcast authentication
 - sensors need to be able to perform SK and PK crypto
- Use SK for all operations
 - key distribution becomes an issue
 - no efficient broadcast authentication
 - + sensors need to be able to perform only SK crypto

(S)Key distribution in sensor networks [Eschenauer, Gligor]

1 key for all network nodes

- + low storage (1key)
- + efficient broadcast authentication
- no resilience to compromise
- easy to add new nodes

(S)Key distribution in sensor networks [Eschenauer, Gligor]

- Each node pair has a different key
- high storage (n keys)
- inefficient broadcast authentication
- + resilience to node compromise
- expensive to add new nodes

(S)Key distribution in sensor networks [Eschenauer, Gligor]

Some node pairs end-up with the same keys

- lower storage (sqrt(n) keys)
- inefficient broadcast authentication
- + some resilience to node compromise
- + easy to add new nodes

(S)Key distribution in sensor networks

Main idea:

- instead of preloading *n* keys in each node, preload just a small subset of values (k<<n) that make sure that most nodes (probabilistic) or all nodes (deterministic) establish keys
- Placed between two extremes:
 - single master key (1)
 - distinct pair-wise keys for all node pairs (n^2)

Main issues

- Computation (per key established)
- Communication (per key established)
- Memory (sensor storage)
- Key sharing graph connectivity
- Resiliency (how many sensors need to be compromised before the entire pool is disclosed)
- Scalability

[EG] Scheme

Basic probabilistic key pre-distribution

• Eschenauer and Gligor (EG), CCS 2002

k keys in the pool ; sqrt(k) stored per node

[EG] Scheme

• Key setup prior to deployment: keys are generated and loaded into memory (the whole pool is known only to the authority)

Shared-key discovery after deployment: each sensor node broadcasts a key identifier list to one-hop neighborhood (more than one pair may share the same key)

• Path-key establishment:

if two sensor nodes still do not share a key

[EG] Probability of sharing a key

Figure 2: Probability of sharing at least one key when two nodes choose k keys from a pool of size P

[EG] Key Graph and Key Sharing Graph

- Key graph $G_k(V,E)$ is defined as follows:
 - V represents all the nodes in the sensor net
 - For any tow nodes i and j in V, there exists an edge between them if and only if :
 - 1) i and j share at least one common key
- Key sharing graph G_{sk}(V,E')
 - i and j have an edge if and only if
 - 1) And 2) They are within wireless transmission range

11

[EG] Key Graph and Key Sharing Graph

- Key graph $G_k(V,E)$ is defined as follows:
 - V represents all the nodes in the sensor net
 - For any tow nodes i and j in V, there exists an edge between them if and only if :
 - 1) i and j share at least one common key
- Key sharing graph G_{sk}(V,E')
 - i and j have an edge if and only if
 - 1) And 2) They are within wireless transmission range

Better connected Key sharing graph = increased communication ability/security Better connected key graph = increased vulnerability to compromise ...

[EG] Connectivity vs. Resiliency

- The contradictory requirement on Key Pool size |P|
 - Larger key pool size better resiliency
 - Smaller key pool size better connectivity
- The key pool size is restricted by network size
 - |P| < k²/ln(1/(1-p))
 - p is the probability that two nodes share a key (k number of stored keys)
 - p > O(InN)/n

N is the number of sensor nodes in the network and *n* is the average node degree.

- As *N* increases, in order to maintain connectivity, *p* would increase, which leads to shrink in *P*
- Property of resiliency does not scale with network size
 - *p* should be non decreasing as network enlarges.
 - compromising k nodes compromises kp links

Deterministic Approaches

- Used to design the key pool and the key chains to provide better connectivity
 - Matrix Based Scheme [Blom 1985]
 - Polynomial Based Key Generation [Blundo et al. 1992]

Deterministic approaches: Blom's Scheme [B]

- Public matrix G
- Private matrix D (symmetric).

Let $\mathbf{A} = (\mathbf{D} \mathbf{G})^{\mathsf{T}}$

 $\mathbf{A} \mathbf{G} = (\mathbf{D} \mathbf{G})^{\mathsf{T}} \mathbf{G} = \mathbf{G}^{\mathsf{T}} \mathbf{D}^{\mathsf{T}} \mathbf{G} = \mathbf{G}^{\mathsf{T}} \mathbf{D} \mathbf{G} = (\mathbf{A} \mathbf{G})^{\mathsf{T}}$

[B] Scheme

> Node i carries: Node j carries:

[B] λ -secure Property

Undesirable Situation: if $u^*G(i) + v^*G(j) = G(k)$

then $u^*A(i) + v^*A(j) = A(k)$

this would allow colluding nodes (i and j) to impersonate other nodes (k)

[B] λ -secure Property

- ALL λ +1 columns in G are linear independent.
 - Different from saying that G has rank $\lambda + 1$
 - **Rank:** there are λ +1 lineary independent columns
- Can tolerate compromise up to λ nodes.
 - Once λ +1 nodes are compromised, the rest can be calculated if these λ +1 columns are linear independent.
- How to find such a matrix G?

[B] Vandermonde Matrix

[B] Properties of Blom Scheme

- Blom's Scheme
 - Network size is N
 - Any pair of nodes can directly find a secret key
 - Tolerate compromise up to λ nodes
 - Need to store λ +2 keys

Key distribution schemes for sensor networks

http://www.cs.rpi.edu/research/pdf/05-07.pdf

Problem	Approach	Mechanism	Keying style	Papers
Pair-wise	Probabilistic	Pre-distribution	Random key-chain	C, E, F, J
				K, N, S
			Pair-wise key	Е
	Deterministic	Pre-distribution	Pair-wise key	G, M
			Combinatorial	P, Q
		Dynamic Key	Master key	D, L
		Generation	Key matrix	Α
			Polynomial	В, G
	Hybrid	Pre-distribution	Combinatorial	P, Q
		Dynamic Key	Key matrix	H, M, R
		Generation	Polynomial	I, R
Group-wise	Deterministic	Dyn. Key Gen.	Polynomial	B, R

The papers are: A[Blom 1985], B[Blundo et al. 1992], C[Eschenauer and Gligor 2002], D[Lai et al. 2002], E[Chan et al. 2003], F[Pietro et al. 2003], G[Liu and Ning 2003c], H[Du et al. 2003], I[Liu and Ning 2003b], J[Zhu et al. 2003], K[Du et al. 2004], L[Dutertre et al. 2004], M[Lee and Stinson 2004b], N[Hwang et al. 2004], P[Camtepe and Yener 2004], Q[Lee and Stinson 2004a], R[Huang et al. 2004], S[Hwang and Kim 2004].