Key Distribution in Sensor Networks

Data integrity, authentication

- expensive

Symmetric-key and PK crypto in sensor nets

- Use PK for all operations
+ simple key distribution
+ simple broadcast authentication
- sensors need to be able to perform PK crypto
- PK for key establishment (DH) and SK for the rest
+ simple key distribution
- no efficient broadcast authentication
- sensors need to be able to perform SK and PK crypto
- Use SK for all operations
- key distribution becomes an issue
- no efficient broadcast authentication
+ sensors need to be able to perform only SK crypto

(S)Key distribution in sensor networks [Eschenauer, Gligor]

1 key for all network nodes

+ low storage (1key)
+ efficient broadcast authentication
- no resilience to compromise
- easy to add new nodes

(S)Key distribution in sensor networks [Eschenauer, Gligor]

Each node pair has a different key

- high storage (n keys)
- inefficient broadcast authentication
+ resilience to node compromise
- expensive to add new nodes

(S)Key distribution in sensor networks [Eschenauer, Gligor]

Some node pairs end-up with the same keys

- lower storage (sqrt(n) keys)
- inefficient broadcast authentication
+ some resilience to node compromise
+ easy to add new nodes

(S)Key distribution in sensor networks

Main idea:

- instead of preloading n keys in each node, preload just a small subset of values ($k \ll n$) that make sure that most nodes (probabilistic) or all nodes (deterministic) establish keys

Placed between two extremes:

- single master key (1)
- distinct pair-wise keys for all node pairs (n^{2})

Main issues

- Computation (per key established)
- Communication (per key established)
- Memory (sensor storage)
- Key sharing graph connectivity
- Resiliency (how many sensors need to be compromised before the entire pool is disclosed)
- Scalability

[EG] Scheme

Basic probabilistic key pre-distribution

- Eschenauer and Gligor (EG), CCS 2002

[EG] Scheme

- Key setup prior to deployment: keys are generated and loaded into memory (the whole pool is known only to the authority)
- Shared-key discovery after deployment:
each sensor node broadcasts a key identifier list to one-hop neighborhood (more than one pair may share the same key)
- Path-key establishment: if two sensor nodes still do not share a key

[EG] Probability of sharing a key

Figure 2: Probability of sharing at least one key when two nodes choose k keys from a pool of size P

[EG] Key Graph and Key Sharing Graph

- Key graph $\mathrm{G}_{\mathrm{k}}(\mathrm{V}, \mathrm{E})$ is defined as follows:
- V represents all the nodes in the sensor net
- For any tow nodes i and j in V , there exists an edge between them if and only if :
- 1) i and j share at least one common key
- Key sharing graph $\mathrm{G}_{\mathrm{sk}}\left(\mathrm{V}, \mathrm{E}^{\prime}\right)$
- i and j have an edge if and only if
- 1) And 2) They are within wireless transmission range

[EG] Key Graph and Key Sharing Graph

- Key graph $\mathrm{G}_{\mathrm{k}}(\mathrm{V}, \mathrm{E})$ is defined as follows:
- V represents all the nodes in the sensor net
- For any tow nodes i and j in V , there exists an edge between them if and only if :
- 1) i and j share at least one common key
- Key sharing graph $\mathrm{G}_{\text {sk }}\left(\mathrm{V}, \mathrm{E}^{\prime}\right)$
- i and j have an edge if and only if
- 1) And 2) They are within wireless transmission range

Better connected Key sharing graph = increased communication ability/security Better connected key graph = increased vulnerability to compromise ...

[EG] Connectivity vs. Resiliency

- The contradictory requirement on Key Pool size |P|
- Larger key pool size - better resiliency
- Smaller key pool size - better connectivity
- The key pool size is restricted by network size
- $\quad|\mathrm{P}|<\mathrm{k}^{2} / \ln (1 /(1-\mathrm{p}))$
p is the probability that two nodes share a key (k - number of stored keys)
- $\quad \mathrm{p}>\mathrm{O}(\operatorname{lnN}) / \mathrm{n}$
N is the number of sensor nodes in the network and n is the average node degree.
- As N increases, in order to maintain connectivity, p would increase, which leads to shrink in $/ P /$
- Property of resiliency does not scale with network size
- $\quad p$ should be non decreasing as network enlarges.
- compromising k nodes compromises $k p$ links

Deterministic Approaches

- Used to design the key pool and the key chains to provide better connectivity
- Matrix Based Scheme [Blom 1985]
- Polynomial Based Key Generation [Blundo et al. 1992]

Deterministic approaches: Blom' s Scheme [B]

- Public matrix G
- Private matrix D (symmetric).

[B] Scheme

$$
A=(D G)^{\top}
$$

G
(D G) ${ }^{\top} G$

Node i carries:
Node j carries:

[B] λ-secure Property

Undesirable Situation:
if
$u^{*} G(i)+v^{*} G(j)=G(k)$
then
$u^{*} A(i)+v^{*} A(j)=A(k)$
this would allow colluding nodes (i and j) to impersonate other nodes (k)

[B] λ-secure Property

- ALL $\lambda+\mathbf{1}$ columns in G are linear independent.
- Different from saying that G has rank $\lambda+\mathbf{1}$
- Rank: there are $\lambda+\mathbf{1}$ lineary independent columns
- Can tolerate compromise up to λ nodes.
- Once $\lambda+1$ nodes are compromised, the rest can be calculated if these λ +1 columns are linear independent.
- How to find such a matrix G ?

[B] Vandermonde Matrix

$G=\left(\begin{array}{ccccc}1 & 1 & 1 & \cdots \cdots & 1 \\ s & s^{2} & s^{3} & \cdots \cdots & s^{N} \\ s^{2} & \left(s^{2}\right)^{2} & \left(s^{3}\right)^{2} & \cdots \cdots \cdots & \left(s^{N}\right)^{2} \\ & & \vdots & & \\ s^{\lambda} & \left(s^{2}\right)^{\lambda} & \left(s^{3}\right)^{\lambda} & \cdots \cdots \cdots & \left(s^{N}\right)^{\lambda}\end{array}\right)$

[B] Properties of Blom Scheme

- Blom' s Scheme
- Network size is N
- Any pair of nodes can directly find a secret key
- Tolerate compromise up to λ nodes
- Need to store $\lambda+2$ keys

Key distribution schemes for sensor networks

http://www.cs.rpi.edu/research/pdf/05-07.pdf

Problem	Approach	Mechanism	Keying style	Papers
Pair-wise	Probabilistic	Pre-distribution	Random key-chain	$\begin{aligned} & \mathrm{C}, \mathrm{E}, \mathrm{~F}, \mathrm{~J} \\ & \mathrm{~K}, \mathrm{~N}, \mathrm{~S} \end{aligned}$
			Pair-wise key	E
	Deterministic	Pre-distribution	Pair-wise key	G, M
			Combinatorial	P, Q
		Dynamic Key Generation	Master key	D, L
			Key matrix	A
			Polynomial	B, G
	Hybrid	Pre-distribution	Combinatorial	P, Q
		Dynamic Key Generation	Key matrix	H, M, R
			Polynomial	I, R
Group-wise	Deterministic	Dyn. Key Gen.	Polynomial	B, R

The papers are: A[Blom 1985], B[Blundo et al. 1992], C[Eschenauer and Gligor 2002], D[Lai et al. 2002], E[Chan et al. 2003], F[Pietro et al. 2003], G[Liu and Ning 2003c], H[Du et al. 2003], I[Liu and Ning 2003b], J[Zhu et al. 2003], K[Du et al. 2004], L[Dutertre et al. 2004], M[Lee and Stinson 2004b], N[Hwang et al. 2004], P[Camtepe and Yener 2004], Q[Lee and Stinson 2004a], R[Huang et al. 2004], S[Hwang and Kim 2004].

