
The Untapped Potential of Trusted Execution Environments on

Mobile Devices

Jan-Erik Ekberg1, Kari Kostiainen2, and N. Asokan3

1Trustonic. E-mail: jan-erik.ekberg@trustonic.com
2ETH Zurich. E-mail: kari.kostiainen@inf.ethz.ch

3University of Helsinki and Aalto University. E-mail: asokan@acm.org

Abstract
Nearly every smartphone, and even the occasional feature phone, today contains a hardware-based

trusted execution environment (TEE). Smartphones with TEEs first appeared almost a decade ago, but
their use has been limited – application developers have not had the means to make use of TEEs to
improve the security (and usability) of their applications. In this article, we discuss why TEEs are so
widely deployed in mobile devices, and what kind of capabilities they support. We then describe Nokia
Research Center’s On-board Credentials (ObC) system which opens up the device TEE to application
developers and some example applications that make use of ObC. We conclude by briefly outlining recent
developments in standardizing TEE functionality.

Keywords: trusted execution environments; mobile devices

1 Introduction

A trusted execution environment (TEE) is a secure, integrity-protected processing environment, consisting
of processing, memory and storage capabilities. It is isolated from the “normal” processing environment,
sometimes called the rich execution environment (REE), where the device operating system and applications
run. As mobile operating systems grow in size and complexity, they are increasingly susceptible to software
vulnerabilities. TEEs were designed to provide protection against attacks that exploit such vulnerabilities.
TEEs make it possible to design REE applications and services that remain secure even in the face of OS
compromise by partitioning them so that sensitive operations are restricted to the TEE and sensitive data,
like cryptographic keys, never leave the TEE.

In our daily lives, we encounter more and more services that use dedicated hardware tokens to improve
their security: examples include one-time code tokens for two-factor authentication, wireless tokens for
opening doors in buildings or cars, tickets for public transport. Mobile devices equipped with TEEs have
the potential for replacing these many tokens thereby improving the usability for users while also reducing
the cost for the service providers without hampering security.

Chances are that the mobile device in your pocket sports a hardware-based TEE. Chances are, too, that
you have not come across too many applications that actually make use of TEE functionality. In this article,
we explain why this situation came to pass and what the future may hold.

Security in mobile world had a very different trajectory compared to the world of personal computers [12].
The various stakeholders had strict security requirements, some of which date back to two decades ago, right
at the beginning of the explosion of personal mobile communications. Some examples of such requirements
are:

• standardization requirements recommending that the device identifier (also known as International
Mobile Equipment identifier or IMEI) should resist “manipulation and change, by any means (e.g.,
physical, electrical and software)” as phrased in 3GPP specification [1],

1



• regulatory requirements like ensuring secure storage for radio frequency parameters calibrated during
manufacture,

• business requirements like subsidy lock (ensuring that subsidized mobile phones given to a subscriber
as part of a contract with a mobile operator cannot be used by a subscriber of a different mobile
operator) and secure implementations of digital rights management schemes, and

• end user perceptions which had grown accustomed to the reliability of early feature phones (e.g., no
blue screen of death).

These requirements incentivized mobile device manufacturers, chip vendors and platform providers to
design and deploy hardware and platform security mechanisms for mobile platforms from early on. Hardware-
based TEEs were seen as essential building blocks in meeting these requirements. The first mobile phones
with hardware-based TEEs appeared almost a decade ago in the form of Nokia phones using processors
from Texas Instruments [17]. One way to realize a TEE is by implementing a secure processor mode. The
primary example of such an implementation is ARM TrustZone [3]. ARM processors capable of TrustZone
are deployed in the overwhelming majority of smartphones and tablets today. Almost every smartphone and
tablet today contains a TEE like ARM TrustZone (as well as software platform security mechanisms [12]).

Despite such a large-scale deployment, the use of TEE functionality has been largely restricted to its
original intended uses. There has been no widely available means for application developers to benefit from
existing TEE functionality. Fortunately, with emerging standardization this situation is about to change.

In the rest of this article, we discuss the security features provided by TEEs and describe On-board
Credentials (ObC), a system that we developed at Nokia for safely opening up access to TEE functionality
for application developers. We discuss on-going TEE standardization activities and conclude by providing
an outlook for the future of TEEs.

2 What makes a TEE?

A typical TEE provides platform boot integrity, secure storage, device identification, isolated execution, and
device authentication capabilities. Figure 1 illustrates these security mechanisms, and in the following text
we gradually introduce concepts shown in Figure 1.

2.1 Security mechanisms

The mobile device has a hardware trusted computing base (TCB) consisting of hardware and firmware com-
ponents that need to be trusted unconditionally. Mobile platform boot integrity can be verified using either
secure boot or authenticated boot. In secure boot, the device start-up process is stopped, if any modification
of the launched platform components is detected. A common approach to implement secure boot is to use
code signing combined with making the beginning of the boot sequence immutable by storing it within the
TCB (e.g., on ROM of the mobile device processor chip) during manufacturing; the processor must uncon-
ditionally start executing from this memory location. Boot code certificates that contain hashes of booted
code, and are signed with respect to a device trust root, such as the device manufacturer public key that is
immutable on the device, can be used to verify the integrity of the booted components. The TCB must be
enhanced with cryptographic mechanisms that validate the signature of the system component launched
first (e.g., the boot loader) that can in turn verify the next component launched (e.g., the OS kernel) and so
on. If any of these validation steps fail, the boot process aborts. Integrity of the cryptographic mechanisms
can be ensured by storing the needed algorithms on ROM. Secure boot with code signing does not necessarily
imply that only a single platform version is allowed to be started – there may be several certified alternatives.

In authenticated boot, the started platform components are measured, but not verified with respect
to certified reference values. During the boot, measurements of launched software components, and their
configuration data, are stored on integrity-protected volatile memory. The boot loader measures the first
component launched which in turn will measure the next one and so on. These measurements represent the

2



Figure 1: An overview of common hardware-security mechanisms in mobile devices. The trusted execution
environment (TEE) consists of secure storage and isolated execution mechanisms. REE applications access
these security services through TEE API.

state of the platform components after the boot, and can be used to control access of booted system software
to hardware-protected device resources or for remote attestation (see below).

Implementation of secure storage requires at least one confidential, device-specific key that can be accessed
only by authorized code within the TCB. Such a device key may be initialized during manufacturing and
stored in a protected memory area on the processor chip. In addition, secure storage also requires trusted
implementations of necessary cryptographic mechanisms: e.g., an authenticated encryption algorithm. Data
rollback protection, the ability to detect old versions of protected objects in the local persistent storage,
requires inclusion of some writable non-volatile memory (e.g., a monotonic counter) that persists its state
across device boots.

The secure storage mechanism combined with a set of pre-defined cryptographic algorithms can be used
to expose the functionality of such algorithms to the REE with the guarantee that the cryptographic keys
never leave the hardware TCB. While pre-defined common cryptographic operations are sufficient for many
services, certain REE applications require execution of application-specific algorithms in isolation from the
mobile OS and the rest of the REE (isolated execution). Proprietary one-time password algorithms for online
banking constitutes one such example. To extend the secure storage mechanism for isolated execution of
arbitrary code, the device hardware configuration must provide an interface (TEE API) through which the
executable code (TEE code) can be loaded for execution using the protected volatile memory. A TEE code
certificate that contains a hash of the TEE code, and is signed with respect to the device trust root, can
authorize code execution within the TEE and authorize TEE code to access the device key. Furthermore,
the access that any TEE code has to the device key may be controlled based on the platform state that was
measured and saved on volatile, integrity-protected memory during an authenticated boot process.

The hardware TCB instance typically has a unique immutable base identity which may be a serial
number from a managed namespace or a statistically unique identifier initialized randomly at manufacture.
A combination of a trust root and the base identity allows flexible device identification; an identity certificate
that is signed with respect to the aforementioned trust root binds an assigned identity to the base identity.
IMEI and link-layer identities like Bluetooth and WiFi addresses are examples of device identities. A device
certificate that is signed by the device manufacturer can bind any assigned identity to the public part
of the device key. Signatures using the device key provide device authentication, while signed statements
over volatile memory that contains measurements from an authenticated boot enable device state reporting

3



Figure 2: Example hardware configuration for a TrustZone-enabled mobile device. The access control
between hardware elements is implemented using a status flag that determines the processor mode: secure
world or normal world. The system-on-chip (SoC) communication bus carries the status flag, and dedicated
access control hardware (shaded boxes) are added to the device hardware configuration for access control
enforcement.

and verification (remote attestation). The hardware TCB may also contain a hardware-based source of
randomness.

2.2 Hardware-security architectures

ARM TrustZone [3] and TI M-Shield [17] are hardware architectures that realize these security mechanisms
in current mobile devices. In a common mobile device hardware configuration, the device main processor,
small amounts of ROM and RAM, some peripheral and interrupt controllers, and debug and trace ports
are integrated to a single chip (system-on-chip or SoC). These on-chip components are connected with an
internal bus. The rest of the mobile device components, such as the system main runtime memory, flash
memory elements, the display, and antennas are typically implemented as external components. Such off-
chip hardware elements are connected with an external device bus. Figure 2 illustrates such a hardware
configuration.

The processor can operate in one of two modes: normal world or secure world. The processor boots into
the secure world which sets up the necessary environment before switching to the normal world. Execution
can switch back to the secure world when a special command is executed in the normal world. The secure
world is intended for the TEE while the normal world runs the REE.

The designer of a mobile device hardware configuration defines the hardware components that are acces-
sible in these two modes. In a typical configuration, access to on-chip elements is restricted to the secure
world only, while the device main memory and user input and output interfaces are accessible in both modes.
The access control is implemented based on a status flag indicating the current world which is made visible
over the internal and external bus communication. Access control hardware that enforces the status flag is
added to mobile device configuration (see Figure 2). The switch from the normal world to the secure world
is only possible via a controlled transition from the less privileged mode to the more privileged mode. The
on-chip ROM is populated during device manufacturing to contain the base identity, device key, trust root,
and the cryptographic algorithms. The on-chip RAM is used for isolated execution at runtime.

TrustZone software architecture is illustrated in Figure 3. The mobile OS in REE accesses the TEE
services through a TrustZone library and a hardware driver. Within the TEE, trusted applications are
executed on top of a minimal runtime environment, called trusted OS. The trusted OS provides a TEE internal
API using which trusted applications can communicate with REE applications and access cryptographic

4



Figure 3: Software architecture for TrustZone-enabled mobile devices. Trusted applications are executed
within the TEE that is isolated from the REE running the mobile OS and applications. REE applications
access TEE security services through a device driver.

operations and secure storage functionality. The trusted OS can enforce access control on trusted applications
that attempt to access the device key. The TrustZone architecture does not define how REE applications
access TrustZone services.

Boot time trustworthiness of REE-side system software components, including the TrustZone library, can
be verified with hardware-assisted secure boot. Even if the adversary would manage to compromise these
software components at runtime, he would not gain access to TEE-protected secrets; at most the adversary
could cause denial-of-service for TEE-provided security services.

2.3 Other types of TEEs

The most common approach in today’s mobile devices is to realize the TEE using processor security features
like isolated memories and a secure processing mode, as discussed above. There are also other ways to realize
a TEE:

Virtualization: A securely booted virtual machine monitor (VMM) allows many virtualized “guest” OSs
to run concurrently on the device. The isolation of the guests is arranged by virtue of the VMM running
at a higher protection domain than the OSs, and mastering the memory management unit on behalf of the
OSs. Approaches like Overshadow [5] can even extend similar protection to individual applications inside
a potentially harmful guest OS. Solutions based on virtualization typically rely on software to guarantee
integrity and isolation, but are otherwise architecturally similar to hardware-based TEEs.

Dynamic Roots of Trust: In x86-based mobile devices like laptops, TEEs can be realized using the Dy-
namic Roots of Trust (DRTM) specified by the Trusted Computing Group (TCG) (www.trustedcomputinggroup.
org) as demonstrated by Flicker [13]. A DRTM-enabled processor acting in concert with a Trusted Platform
Module (TPM) can launch and run small pieces of trusted software, isolated from the OS. Such TEEs are
isolated by hardware but active only for short periods at a time.

Embedded secure elements: Some commercial mobile phone models, intended for payment applications
that have high security requirements, include embedded smart cards on their motherboards. These TEEs
often use JavaCard as their programming environment. The cards provide full hardware isolation. Embedded
smart cards, however, rarely provide open interfaces and support for more general 3rd-party programming.

5

www.trustedcomputinggroup.org
www.trustedcomputinggroup.org


Figure 4: On-board Credentials (ObC) architecture. Shaded boxes illustrate ObC components. Trusted
applications are executed within the TEE by the ObC Interpreter. The ObC scheduler maintains trusted
application persistent storage and handles execution scheduling. REE applications use ObC services through
the ObC API.

3 TEE access for developers

Although TrustZone and M-Shield architectures have been deployed to many mobile devices for almost a
decade, the usage of hardware-security mechanisms by third-party developers has been limited. Traditionally,
mobile device manufacturers have leveraged TEE capabilities only for their internal use cases, such as subsidy
lock protection and secure boot.

Some mobile platforms provide hardware-assisted security APIs. Java ME application framework that is
widely used in feature phones defines JSR 177 API [14] . The JSR 177 provides a low-level communication
interface to a smartcard-like secure element and a more high-level cryptographic API. The implementation
may be provided by a mobile phone secure element such as SIM card. Recent versions of the Android platform
expose hardware-assisted cryptographic APIs [8] in the form of standardized PKCS11 [16] interface, while
in iOS similar functionality is provided through a proprietary key chain API [2].

The high-level hardware-security APIs described above have been modeled on the usage paradigms of
hardware security modules (HSMs), cryptographic tokens and smart cards. They allow the creation of
hardware-protected keys, and common cryptographic operations, such as encryption and signatures, on them
or assume. To take advantage of programmability of mobile TEEs, a different kind of API abstraction is
needed. The API should address provisioning of trusted applications and secrets to the device, authorization
of trusted applications to access provisioned secrets and device keys, and control which REE application can
execute trusted applications. None of the current standardized, or de-facto proprietary, hardware-security
APIs provide such functionality. This is what motivated us to to start the On-board Credentials project.

4 On-board Credentials

On-board Credentials (ObC) is a TEE architecture that we developed at Nokia Research Center. ObC is now
available in Nokia Windows Phone 8 and Symbian phones. The ObC architecture is illustrated in Figure 4
and further elaborated in [11].

In the ObC architecture, the needed isolation properties for trusted applications are achieved using
the ObC interpreter, a small virtual machine (VM). Although this interpreter is not a complete operating

6



system, it provides the necessary runtime environment for execution of trusted applications that originate
from untrusted developers. The VM-based design was driven by the constraints of the current mobile
devices such as the scarcity of isolated on-chip memory. Future generation mobile devices are likely to be
less constrained in terms of TEE resources and may support secure virtual memory. Thus, adoption of TEE
platforms that resemble full-fledged embedded operating systems may become practical in the future.

Development of ObC trusted applications can be done either in BASIC or using a bytecode assembler.
The ObC VM is implemented as a set of interacting TrustZone code components — depending on the
underlying TEE hardware and software architecture these components may permanently reside inside the
TEE or be loaded on-demand. In some environments they constitute the only available “trusted OS” in the
device whereas in other deployments the ObC interpreter components are themselves trusted applications;
these are cases where ObC is used to augment the native trusted OS provisioning capability or isolation
guarantees rather than to provide implementation minimality. In the rest of this section, we use the term
trusted application to denote bytecode running on the ObC VM rather than the ObC VM implementation
option described above.

The scheduling between the ObC TrustZone components, as well as managing the encrypted state of the
currently interpreted trusted application, is left to the ObC scheduler that runs in REE. Applications in
REE access the ObC system through the ObC API (see Figure 4).

4.1 Scheduling

To execute a trusted application, the scheduler loads the locally encrypted representation of it, as well as
possible inputs and stored data sealed by previous invocations of the same application instance.

The ObC interpreter will then execute the trusted application bytecode. Some execution events including
a bytecode that request an input parameter or a bytecode that needs to invoke a library function, will cause
the interpreter to collect its runtime state (the virtual machine program counter, local variables and stack),
encrypt it, and return to the REE for scheduling. The interpreter also performs on-demand code page
loading of the bytecode itself which is another cause for scheduling out from the TEE. Back at the REE, the
ObC scheduler will re-invoke the same or different trusted application, using the same or different TrustZone
component, attaching possible temporarily stored data or interpreter state. In this manner the bytecode
execution will continue until the trusted application completes.

This scheduling mechanism causes a significant execution overhead, due to often numerous context
switches between TEE and REE, and corresponding encryption and decryption. However, since the ObC
system runs on the main processor of the mobile device, the overall performance is comparable to solutions
without such scheduling on slower security chips, such as smart cards.

4.2 Provisioning

The ObC platform supports an open provisioning model in which any developer can, with the permission of
the user of a device, deploy trusted applications without having to ask permission from a centralized authority,
such as the device manufacturer or the OS provider. A device-specific and manufacturer-certified public key
provides the basis for remote provisioning of trusted applications (and the secrets they need to operate on) to
devices already in the field. In addition, service providers need to handle user authentication for provisioning.
The certified device (public) key is used to transport a provisioner-specific secret key that defines a security
domain for trusted applications and secrets that are later provisioned to that domain. Isolation between
security domains inside the TEE is guaranteed by interleaving execution of different security domains in
time, and implementing local storage with distinct encryption keys for each domain.

4.3 Application development

To develop a complete service, a service provider needs to deploy two components to a mobile device: a
trusted application that handles the service-specific security logic within the TEE, and an REE application
that triggers the trusted application execution and potentially provides a user interface.

7



For trusted application developers, the ObC interpreter provides an API including cryptographic func-
tions, standard string and array manipulation, sealing and I/O. Listing 1 shows an extract from a trusted
application written in ObC BASIC for MirrorLink attestation (see next section).

For REE application developers, the ObC API includes functions for (1) provisioning of new trusted ap-
plications and secrets that these applications should operate on, (2) executing previously provisioned trusted
applications with the needed input parameters, and (3) local encryption, or sealing, of REE application data
that can be done without having to develop a custom trusted application.

Listing 1: A fragment of MirrorLink attestation trusted application. The fragment illustrates TPM platform
configuration register (PCR) extending and signing (Quote operation).

rem −−− Subroutines written in assembler or BASIC can be linked in
#include ‘‘ sha1 standard.evoh’ ’
#include ‘‘ io codes .evoh’ ’
#include ‘‘ program io.evoh’ ’
...

rem −−− Extend operation
rem −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
if mode == MODE EXTEND
read array (IO SEALED RW, 2, pcr 10) rem −−− Read earlier produced sealed input data
read array (IO PLAIN RW, 3, value) rem −−− Read plaintext input data

append array(pcr 10, value) rem −−− Concatenate arrays
sha1(digest , pcr 10) rem −−− PCRval’ = H(PCRval | New)

write array (IO PLAIN RW, 1, digest) rem −−− Write plaintext output
write array (IO SEALED RW, 2, digest) rem −−− Write encrypted data for storage and future use

end

rem −−− Quote operation
rem −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
if mode == MODE QUOTE
read array (IO SEALED RW, 2, pcr 10)
read array (IO PLAIN RW, 3, ext nonce)

rem −−− Create TPM PCR COMPOSITE (the default type is uint16)
pcr composite [0] = 0x0002 rem −−− sizeOfSelect=2
pcr composite [1] = 0x0004 rem −−− PCR 10 selected (00 04)
pcr composite [2] = 0x0000 rem −−− PCR selection size 20 (uint32)
pcr composite [3] = 0x0014
append array(pcr composite, pcr 10)
sha1(composite hash, pcr composite)

rem −−− Create TPM QUOTE INFO
quote info [0] = 0x0101 rem −−− version (major and minor)
quote info [1] = 0x0000 rem −−− version (revMajor and revMinor)
quote info [2] = 0x5155 rem −−− fixed (‘Q’ and ‘U’)
quote info [3] = 0x4F54 rem −−− fixed (‘O’ and ‘T’)
append array(quote info , composite hash)
append array(quote info , ext nonce)
write array (IO PLAIN RW, 1, pcr composite)

rem −−− Hash QUOTE INFO for MirrorLink PA signing
sha1(quote hash, quote info )
write array (IO PLAIN RW, 2, quote hash)
...

8



4.4 Example Applications

In this section we describe two applications that we have developed and deployed using the On-board
Credentials system.

Public transport ticketing. Our first application is public transport ticketing with NFC enabled mobile
phones. We have designed and implemented trusted applications, and matching REE applications, for gated
and non-gated ticketing scenarios. The protocol for our gated environment is a straight-forward challenge-
response protocol for identity verification. In non-gated transport, the travel tickets are not verified at the
station gates, but instead travelers are requested to perform ticketing on their own accord but are subject to
random ticket inspections. In such a model, some evident options for fraud emerge. For example, a traveller
could stop his phone from reporting evidence for trips during which he was never inspected.

To address this threat, we developed an ObC trusted application which implements an authenticated
counter value that is bound to identity verification signatures. In ticket inspection and evidence reporting,
we require that signatures are accounted for in backend logs and bind the use of the counter (device-local
enforcement) to an operational window remotely controlled by the service backend to match the risk model
and the usability considerations of the target public transport system [7].

A traditional cryptographic API (e.g., PKCS #11 or TPM interface) would not give the needed flexibility
for the non-gated scenario. By having a programmable TEE environment, we were able to implement such
an augmented cryptographic primitive with little effort and deploy it to devices already in the field. The
non-gated ticketing application has been used in a trial of more than 100 users in New York transit system.

MirrorLink attestation. Our second application is MirrorLink (www.mirrorlink.com), a system that
enables usage of smartphone provided content and services in automotive environments. In order to enforce
driver distraction regulations, the car head-unit (the main console of the car entertainment and navigation
system) must verify the trustworthiness of the data it receives from the mobile device. We have designed
an attestation protocol that builds on standardized functionality and data structures defined in the Mobile
Trusted Module (MTM) specification of TCG. A set of Platform Configuration Registers (PCRs) aggre-
gate measurements that represent the mobile device software configuration. A signature using a device-
manufacturer certified key over the content of such registers provides the verifier (i.e., the car head-unit)
assurance on the trustworthiness of the software running on the mobile device. Content attestation is built
on top of device and software attestation [10]. We have implemented the relevant subset of the MTM
specification as a trusted application, and Listing 1 shows a fragment of this implementation.

This example illustrates a different use of programmable TEEs. There are many legacy security stan-
dards, ranging from one-time token algorithms to APIs like MTM that may originally have been intended
for implementation with dedicated hardware tokens or resources. In devices with programmable TEEs, it
becomes possible to easily deploy these interfaces to already shipping customer devices if the security prop-
erties of the TEE satisfies the compliance requirements of the standard being implemented. For example,
the Nokia ObC implementation of the MirrorLink attestation has been security audited for approval by
Car Connectivity Consortium. Evaluation with respect to more generic auditing systems, such as Common
Criteria, is left for future.

5 Emerging standardization

To date, there is no standard interface that would define how REE applications access security services of a
TEE. The ARM TrustZone architecture can be considered a de-facto starting point hardware architecture
for mobile devices. NIST recently made public a draft guideline for hardware rooted security in mobile
devices [4]. NIST identifies secure storage, (code) integrity, reporting and provisioning, policy enforcement
and OS component measurement as security services that should be rooted in device hardware. From
these roots, TEE isolation properties, application protected storage and overall integrity guarantees can be
constructed.

9

www.mirrorlink.com


The Global Platform consortium (www.globalplatform.org) intends to produce a full set of standards
for TEE interfaces, including trusted application provisioning and use, API interfaces within the TEE and
I/O specification for trusted application communication with external interfaces such as trustworthy user
interfaces. Many of these specifications have already been in public review: An OS driver interface (TEE
Client API) provides an interface to activate and run trusted applications, and a trusted application system
interface (TEE internal API) provides commonly available programming interfaces such as memory allocation
primitives and cryptographic primitives for trusted applications. Thus far, Global Platform has not published
how REE applications access TEE functionality.

TPMs, specified by TCG, define security interfaces for non-volatile storage, key generation and use, and
binding locally encrypted data to the measured software configuration of the device (sealing). The recently
published TPM 2.0 specification [19] adds a fine-grained policy authorization model for object access. The
TPM is typically implemented as a discrete chip, but in a mobile context a trusted application implementation
is more likely deployment. TPM interfaces do not specify installation of trusted applications into TEE. TCG
also has a mobile working group; a recently published use case document [18] indicates that TPM Mobile will
provide standardization support for OS application interfaces as well as trusted application use and possibly
provisioning. These specifications are complementary to the Global Platform standards.

6 Outlook

Security through isolation has a long history in computing systems. In mobile devices, hardware-based TEEs
have been available for over a decade, but as we have seen, the ability for app developers to make use of
them has been limited. Our ObC system was a first step in this direction.

Recent standardization efforts in Global Platform and Trusted Computing Group is accompanied by
increased interest in the industry to make standardized TEE functionality widely available. However, as of
today, no standardized API exists that would provide the TEE functionality exemplified by the ObC system,
including open, trusted application provisioning and execution by REE applications. A recent white paper
by Global Platform [9] indicated a vision for moving away from the centralized “issuer-centric” provisioning
model to a more open “consumer-centric” model. The concrete provisioning specification is not yet public.
Therefore it is too early to say what its level of openness would be.

In addition, several important considerations are likely to be missing from the picture. In many emerging
mobile platforms, third-party application development is based on web programming techniques. How can
web applications access TEE services? Current mobile devices are equipped with several security critical
interfaces, including SIM cards, NFC payment and user interfaces. Can future trusted applications control
and use such interfaces? If trusted applications are distributed from traditional REE application stores,
what is the security model by which these trusted applications are authorized for the TEE within the desti-
nation device, and how is associated confidential data distributed to the device? Provisioning of confidential
data implies encryption with a device-specific key which transforms a traditional application publishing and
downloading process into an interactive provisioning protocol. How are secrets collected and amassed in a
trusted application migrated to a new device when the user updates his device? How are backups, factory
reset and device service issues handled? Can centralized trusted authorities, such as Trusted Service Man-
agers (TSMs) [6] assist the user in such credential life-cycle management operations? If the device has many
parallel personalities, like in bring your own device (BYOD) concepts, what is the authorization model to
trusted applications in the respective usage modes?

As with any new problem domain, only when the first significant stakes are set, we see the full range of
issues lying ahead. TEEs in mobile devices is now at this critical juncture. While some form of developer
access to TEEs can be expected in the short term, a number of open issues need to be addressed before
developer use of TEEs becomes widespread. When that happens, the ingenuity and creativity of developers
will lead to novel ways in which they will make use of TEEs to improve their applications. In just the
same way, we can expect attackers to find creative ways of exploiting TEE functionality to strengthen their
attacks. Efforts in this direction [15] are already under way!

10

www.globalplatform.org


References

[1] 3GPP. 3GPP TS 42.009 Security Aspects. 3GPP, March 2001. http://www.3gpp.org/ftp/Specs/

html-info/42009.htm.

[2] Apple Inc. iOS security, October 2012. http://images.apple.com/iphone/business/docs/iOS_

Security_Oct12.pdf.

[3] ARM. Building a Secure System using TrustZone c©Technology. ARM Security Technologyg, April
2009. http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.prd29-genc-009492c/

index.html.

[4] L. Chen, J. Franklin, and A. Regenscheid. Guidelines on Hardware-Rooted Security in Mobile Devices,
Draft. Technical Report NIST SP 800-164, National Institute of Standards Technology, October 2012.
http://csrc.nist.gov/publications/drafts/800-164/sp800_164_draft.pdf.

[5] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C. A. Waldspurger, D. Boneh, J. Dwoskin,
and D. R. Ports. Overshadow: a virtualization-based approach to retrofitting protection in commodity
operating systems. ACM SIGPLAN Notices, 43(3):2–13, 2008.

[6] C. Cox. Trusted service manager: The key to accelerating mobile commerce, 2009. First Data white pa-
per. http://www.firstdata.com/downloads/thought-leadership/fd_mobiletsm_whitepaper.pdf.

[7] J.-E. Ekberg and S. Tamrakar. Mass transit ticketing with NFC mobile phones. In Proceedings of
International Conference on Trusted Systems (TRUST), pages 48–65. Springer, 2012.

[8] N. Elenkov. Jelly bean hardware-backed credential storage, 2012. http://nelenkov.blogspot.ch/

2012/07/jelly-bean-hardware-backed-credential.html.

[9] Global Platform. A New Model: The Consumer-Centric Model and How It Applies to the Mobile
Ecosystem, March 2012. http://www.globalplatform.org/documents/Consumer_Centric_Model_

White_PaperMar2012.pdf.

[10] K. Kostiainen, N. Asokan, and J.-E. Ekberg. Practical property-based attestation on mobile devices.
In Proceedings of Trust and Trustworthy Computing (TRUST), pages 78–92. Springer, June 2011.

[11] K. Kostiainen, J.-E. Ekberg, N. Asokan, and A. Rantala. On-board credentials with open provisioning.
In Proceedings of ACM Symposium on Information, Computer and Communications Security (ASI-
ACCS), pages 104–115. ACM, 2009.

[12] K. Kostiainen, E. Reshetova, J.-E. Ekberg, and N. Asokan. Old, new, borrowed, blue – a perspective
on the evolution of mobile platform security architectures. In Proceedings of the First ACM Conference
on Data and Application Security and Privacy (CODASPY), pages 13–24. ACM, 2011.

[13] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter, and H. Isozaki. Flicker: An execution infrastructure
for tcb minimization. In ACM SIGOPS Operating Systems Review, volume 42, pages 315–328. ACM,
2008.

[14] Oracle. JSR 177: Security and trust services API for J2ME, 2007. Available at: http://jcp.org/en/
jsr/detail?id=177.

[15] T. Roth. Next generation mobile rootkits. Presentation at BlackHat Europe 2013 http://leveldown.

de/bh_eu_2013.pdf.

[16] RSA Laboratories. PKCS # 11 v2.20: Cryptographic Token Interface Standard, 2004. ftp://ftp.

rsasecurity.com/pub/pkcs/pkcs-11/v2-20/pkcs-11v2-20.pdf.

11

http://www.3gpp.org/ftp/Specs/html-info/42009.htm
http://www.3gpp.org/ftp/Specs/html-info/42009.htm
http://images.apple.com/iphone/business/docs/iOS_Security_Oct12.pdf
http://images.apple.com/iphone/business/docs/iOS_Security_Oct12.pdf
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.prd29-genc-009492c/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.prd29-genc-009492c/index.html
http://csrc.nist.gov/publications/drafts/800-164/sp800_164_draft.pdf
http://www.firstdata.com/downloads/thought-leadership/fd_mobiletsm_whitepaper.pdf
http://nelenkov.blogspot.ch/2012/07/jelly-bean-hardware-backed-credential.html
http://nelenkov.blogspot.ch/2012/07/jelly-bean-hardware-backed-credential.html
http://www.globalplatform.org/documents/Consumer_Centric_Model_White_PaperMar2012.pdf
http://www.globalplatform.org/documents/Consumer_Centric_Model_White_PaperMar2012.pdf
http://jcp.org/en/jsr/detail?id=177
http://jcp.org/en/jsr/detail?id=177
http://leveldown.de/bh_eu_2013.pdf
http://leveldown.de/bh_eu_2013.pdf
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-11/v2-20/pkcs-11v2-20.pdf
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-11/v2-20/pkcs-11v2-20.pdf


[17] J. Srage and J. Azema. M-Shield mobile security technology, 2005. TI White paper. http://focus.
ti.com/pdfs/wtbu/ti_mshield_whitepaper.pdf.

[18] Trusted Computing Group. Mobile trusted module 2.0 use cases, March 2011. https://www.

trustedcomputinggroup.org/developers/mobile.

[19] Trusted Computing Group. TPM 2.0 library specification, parts 1-4, Level 00, Rev. 00.96, March 2013.
http://www.trustedcomputinggroup.org/resources/tpm_library_specification.

12

http://focus.ti.com/pdfs/wtbu/ti_mshield_whitepaper.pdf
http://focus.ti.com/pdfs/wtbu/ti_mshield_whitepaper.pdf
https://www.trustedcomputinggroup.org/developers/mobile
https://www.trustedcomputinggroup.org/developers/mobile
http://www.trustedcomputinggroup.org/resources/tpm_library_specification

	Introduction
	What makes a TEE?
	Security mechanisms
	Hardware-security architectures
	Other types of TEEs

	TEE access for developers
	On-board Credentials
	Scheduling
	Provisioning
	Application development
	Example Applications

	Emerging standardization
	Outlook

