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ABSTRACT
Identification of wireless sensor nodes based on the char-
acteristics of their radio transmissions can provide an
additional layer of security in all-wireless multi-hop sen-
sor networks. Reliable identification can be means for
the detection and/or prevention of wormhole, Sybil and
replication attacks, and can complement cryptographic
message authentication protocols. In this paper, we in-
vestigate the feasibility of transient-based identification
of CC2420 wireless sensor nodes. We propose a new
technique for transient-based identification and show
that it enables reliable and accurate sensor node recogni-
tion with an Equal Error Rate as low as 0.0024 (0.24%).
We investigate the performance of our technique in terms
of parameters such as distance, antenna polarization
and voltage and analyze how these parameters affect
the recognition accuracy. Finally, we study the feasi-
bility of certain types of impersonation attacks on the
proposed technique.

1. INTRODUCTION
Identification of components in a networked environ-

ment(e.g., operating systems, drivers, physical device)
can benefit a number of applications such as authorized
access, forensics, device cloning and malfunctioning de-
tection, inventory management, tracking. This identi-
fication is commonly referred to as fingerprinting since
it relies on distinctive characteristics (fingerprints) of
network components, obtained with or without their
cooperation. In a typical scenario, the fingerprinter
observes traffic to and from a targeted device (finger-
printee) in order to find characteristics that (uniquely)
distinguish the device or its components. Fingerprint-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IPSN’09, April 15–18, 2009, San Francisco, California, USA.
Copyright 2009 ACM 978-1-60558-371-6/09/04 ...$5.00.

ing spans physical [1, 2, 3], link [4, 5] and application [6]
layers for a variety of purposes such as identifying the
type of a device [4], operating system [7, 8], particular
drivers [5] or the physical device itself [2, 6, 9, 10, 11].

In wireless sensor networks, reliable sensor node iden-
tification can be means for detection and/or preven-
tion of wormhole [12, 13], Sybil [14] and replication
attacks [15], and can complement cryptographic mes-
sage authentication protocols [13]. We focus on fin-
gerprinting of wireless sensor nodes by distinguishing
characteristics of their radio signals. This approach is
commonly referred to as Radio Frequency Fingerprint-
ing (RFF). More specifically, we investigate the feasi-
bility of transient-based RFF [1, 2] of wireless sensor
nodes. This fingerprinting technique consists of observ-
ing unique features in the radio turn-on transients, that
appear at the beginning of each transmission. Device
fingerprinting based on turn-on transients has been in-
vestigated in the past and has been shown to be useful
in identifying radars, 802.11 devices [3, 16], Bluetooth
mobile phones [11] and Mica2 CC1000 (433MHz) sensor
nodes [13]. The majority of those works focused on the
identifications of the device manufacturer or model.

In this work, we propose a new transient-based finger-
printing technique and show that this technique can be
successfully used to identify individual 802.15.4 CC2420
radio transceivers of the same manufacturer and model.
For this purpose, we propose an improved signal ac-
quisition setup and related spectral FFT-based Fisher-
features for sensor node identification. Our system en-
ables highly accurate device identification both from
short (<1m) and large (>40m) distances with an Equal
Error Rate (EER) as low as 0.0024 (0.24%). We ana-
lyze the recognition accuracy of our system in terms of
the number of signals used to build the device finger-
print, distance, antenna polarization, voltage and tem-
perature. We show how changing these parameters af-
fects the recognition accuracy. The obtained results ex-
pose the limitations of using transient-based techniques
in dynamic environments. To validate the applicabil-
ity of the proposed system to other radio transceivers,



we also use it to identify CC1000 radio transceivers and
show that it achieves similar performance to the CC2420
radios. This result indicates that our technique might
be applicable to a wider range of transceivers. We fur-
ther test the resiliency of our scheme to impersonation
by hill-climbing antenna polarization attacks. We show
that the system becomes highly vulnerable to such at-
tacks if the number of signals used to build the device
fingerprints is small. Finally, we demonstrate that mali-
cious interference (jamming) can easily prevent accurate
device identification.

To the best of our knowledge, this is the first work
that analyzes the feasibility of fingerprinting of 802.15.4
CC2420 devices, evaluates the robustness of the transient-
based identification in dynamic environments and its re-
siliency to certain types of impersonation attacks.

The remainder of this paper is organized as follows.
In Section 2, we present our investigation parameters
and system model. In Section 3, we detail our signal
capturing process and summarize the data acquisition
procedure and collected data. The proposed features
for sensor node identification are explained in Section
4. Their performance is analyzed in Section 5. In Sec-
tion 6, we develop a number of attacks and evaluate
the resiliency of our fingerprinting approach. We de-
scribe possible application scenarios in Section 7, make
an overview of background and related work in Section
8 and conclude the paper in Section 9.

2. PROBLEM STATEMENT AND SYSTEM
OVERVIEW

In the paper, we will address the following questions:
1. What recognition accuracy can be achieved for iden-

tical wireless sensor nodes?
2. How is the recognition accuracy affected by the

number of radio signals used to build the device
fingerprint?

3. What are the effects of distance, antenna polariza-
tion and voltage on the recognition accuracy?

4. How susceptible is the recognition system to im-
personation and denial-of-service (DoS) attacks?

Answers to the above questions will help identify the
types of applications that the described transient-based
identification methods are suitable for.

Device recognition systems typically work in one of
the two modes: either identification of one device among
many, or verification that a device’s fingerprint matches
its claimed identity [17]. Positive identification deter-
mines that a given device is in a (member) database.
Functionally it is the same as verification. Negative
identification determines if a device is not on a neg-
ative list of devices. In this work, we consider posi-
tive identification and more precisely verification of a
device’s claimed or assumed identity. The verification
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Figure 1: CC2420 radio signal transient shape at
the start of each new packet transmission. Be-
fore the packet data transmission starts, the am-
plitude rises from channel noise to full power.

procedure matches a collected fingerprint of a device to
the fingerprint that corresponds to its claimed or as-
sumed identity. The verification system then provides
an Accept/Reject decision based on a threshold value T
(Section 5.1). Verification requires only ”1-to-1” finger-
print comparison (compared to ”1-to-N” in the case of
positive identification) and is therefore scalable.

Our fingerprinting system is based on the extraction
of the radio signal transient and distinctive features.
Figure 1 shows the radio signal at the start of a new
transmission (for CC2420, this effect occurs at the start
of each packet). The transient is the part of the sig-
nal where the amplitude rises from channel noise to full
power. The exact beginning and end of the transient is
discussed in Section 3.3. The unique properties of the
transient are generated by the analog part of the radio
transmitter which includes an amplifier, band-pass fil-
ter, frequency mixer as well as the physical properties
of the transmitting antenna. Each of these entities con-
tains a number of passive (e.g., resistance) and active
(e.g., capacitance) components which contribute to the
unique behavior of the transient signal. We explore the
features that make the transient distinguishable to each
sensor node (the same manufacturer and model).

Our system consists of two primary components: a
signal acquisition setup (Section 3) and a feature selec-
tion component (Section 4).

3. SIGNAL ACQUISITION
In this section, we describe the hardware setup for

signal capture and present the collected datasets.

3.1 Hardware Setup
Figure 2 displays the hardware setup used to cap-

ture radio signals. The signals are acquired by a Stan-
dard Horn directional antenna and subsequently am-
plified by an ultra low-noise and low-power amplifier
(NF=0.15 dB). Due to the low power of the sensor de-
vices, it is critical to amplify the signal without losing
its unique characteristics, as the signal-to-noise ratio de-
grades drastically within a couple of meters. An ultra
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Figure 2: Radio signal-capturing hardware setup.

low-noise and low-power amplifier proved to be the best
choice among a number of amplifiers we tested.

We used an ultra low insertion loss bandpass filter to
eliminate radio frequencies outside the IEEE 802.15.4
band [18]. We then down-mixed this amplified and fil-
tered signal to an intermediate frequency of 450 MHz
using a standard frequency mixer and a voltage con-
trolled oscillator. We down-mixed the signal to capture
it with sufficient precision on the 1 GHz oscilloscope we
had at our disposal. If the sensor (2.4 GHz) signals are
not down-mixed, the oscilloscope significantly attenu-
ates (-25 dB) their high frequency components, which
in result significantly degrades the recognition accuracy.

Due to the frequency artifacts in the down-mixing
process, we passed the intermediate frequency signal
through a lowpass filter and a DC blocking capacitor
before it was recorded by our oscilloscope (1 GHz band-
width, 4 GS/s sampling rate). In all experiments we
used high quality SMA cables with low insertion loss
(approximately 0.5 dB depending on the cable length
used). Our first experiments with standard BNC cables
showed that these cables attenuated the signals such
that they could not be used for accurate recognition.

The fact that our acquisition setup supports accu-
rate recognition even when the signal is down-mixed to
450 MHz shows that a compact setup can be built for
transient-based identification with off-the-shelf compo-
nents. The primary component of such a setup would be
an acquisition board (FPGA with an 1-2 GS/s ADC). It
would even be possible to build this setup in a printed-
circuited board (PCB) by using surface mount compo-
nents instead of the currently used coaxial ones. We ac-
knowledge that the price of such boards is currently high
(10-15 K) which is a limiting factor in civilian compared
to military applications. Therefore further investiga-
tion is needed to see if lower intermediate frequencies
(<450 MHz) also preserve sufficient discriminant infor-
mation in the transient part of the signal. This could
significantly reduce the price of building the device.

3.2 Collected Data
Using the above described signal-capturing setup we

collected sample signals from the sensor nodes. Our

Table 1: Data acquisition sets.
Goal Dist. # Signals # Nodes P Total

1 Accur. 10m 600 50 30000
2 Accur. 40m 600 10 6000
3 Volt. 10m 200 10 2000
4 Polar. - 600 10 6000
5 Attack 10m 350 3 1050

population of devices (P ) consisted of 50 COTS Tmote
Sky sensor nodes with manufacturer signature ”4M 94V-
0 H014-4787” (i.e., the same manufacturer and model).
Given that they were purchased in 2 separate sets, we
cannot fully assert that they were all produced at the
same production line, even though such an assumption
is highly plausible. The recorded datasets and main
measurement parameters are summarized in Table 1.

During data acquisition, each node was positioned on
the same tripod, previously fixed at a given distance
from the fingerprinter’s antenna. Polarizations of the
sensor devices’ antennas (all sensors were equipped with
standard on-board integrated antenna) and of the fin-
gerprinter’s antenna were aligned and perpendicular to
the ground. The devices were run on 2 x 1.5V AA
batteries (Dataset 1,2,4,5) and 2 x 1.2V AA batter-
ies (Dataset 3). The experiments were made indoors
(Dataset 1,3,4,5) and in a covered parking space (Dataset
2) for about 20 minutes with equally spaced packet
transmissions in order to acquire a large number of sig-
nal samples for performance evaluation. The data ac-
quisition phase might last shorter or longer depending
on the sensor network application. The ambient tem-
perature of the environment was between 18 and 23◦C.

3.3 Transient Extraction
From each acquired signal (one signal corresponds to

one packet), we extracted its transient. It should be
noted that in a regular transmission from the nodes,
the transient is present before each transmitted packet.
Each acquired signal trace lasted 500 ns, of which the
transient consistently lasted approximately 125 ns for
all the nodes in our population set (Figure 1). Given
the 4GS/s sampling rate of our oscilloscope, this cor-



Raw Hil
0

5

10

15

Features (ms)

E
qu

al
 E

rr
or

 R
at

e 
(%

)

Raw+ Hil+ Prop
0

0.5

1

1.5

2

Features (ms)

E
qu

al
 E

rr
or

 R
at

e 
(%

)
Figure 3: Recognition accuracy of the initial
transformations (P=50, D=10m).

responded to approximately 500 data points. We de-
fined the transient data sample as the 512 data points
from its detected starting point. The starting point was
determined by the variance-based threshold detection
algorithm described in [13].

4. FEATURE SELECTION
The goal of feature selection is to obtain distinctive

feature templates (fingerprints) from raw transient sig-
nals. Our feature selection procedure consists of two
stages: (1) initial transformation and (2) feature extrac-
tion using statistical analysis. The initial transforma-
tion is selected from a set of known transformations and
is an input into a Linear Discriminant Analysis (LDA)
feature extraction. The feature extraction is done using
a linear transformation derived from Fisher LDA [19].

In the initial transformation stage, we experimentally
test a number of signal transformations to find initial
features that capture most discriminant information in
a device’s transient. In the statistical analysis stage,
we statistically determine linear boundaries between the
initial features in order to efficiently reduce the dimen-
sionality and increase the system accuracy. The used
Fisher LDA has been effectively applied to discrimi-
nate human biometrics [20, 21] and outperforms related
methods when the training data is sufficiently large [22].

4.1 Initial Transformations
We considered the following initial transient transfor-

mations: Raw - the original transient data sample, no
transformation; Hil - the envelope of the transient data
samples obtained by the Hilbert transformation, pro-
posed in [23]; Raw+ - the FFT spectra of the transient
data samples; Hil+ - the FFT spectra of the envelope of
the transient data samples; Prop - differences between
adjacent FFT spectra of the transient data samples.

We tested the use of these initial transformations in
our recognition system. The results of the test over
Dataset 1 are summarized in Figure 3. The figure shows
the Equal Error Rate (EER) defined in Section 5.1.
The obtained results show that when using the original
transient data samples (Raw) or their envelopes (Hil),
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of 
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Figure 4: Feature extraction process.

our recognition system scores a high EER (15%) which
translates into a low recognition accuracy. This makes
these two transformations unsuitable for further analy-
sis. Using FFT spectra significantly improves the recog-
nition accuracy (Raw+, Hil+, Prop), with (Prop) scor-
ing the highest. We therefore chose the proposed rel-
ative differences between adjacent FFT spectra (Prop)
as the transformation for further feature extraction.

The above results were validated with 4-fold cross val-
idation [19]. Three folds of Dataset 1 were used for
training and the remaining one fold for testing. Each
fold contained 150 transient data samples per sensor
node. This resulted in a total of 300 genuine and 22050
imposter matchings per fold1 to compute the EER.

4.2 Feature Extraction
In this section, we describe our feature extraction pro-

cess. It assumes the relative differences between adja-
cent FFT spectra as the initial transformation.

For a given sensor device, spectral Fisher-features are
extracted from N captured signals using a linear trans-
formation derived from LDA. Figure 4 illustrates the
process. First, we extract the transient part of the
recorded signal l. We denote this part by f(t, l), where
f(t, l) is the amplitude of the signal l at time t.

In Step (i), we apply a one-dimensional Fourier trans-
formation on f(t, l) to obtain F (ω, l):

F (ω, l) =
1√
M

M−1∑
m=0

f(t, l) exp(−2πi
tω

M
) (1)

where M is the length of transient and 0 ≤ t ≤M − 1.
We then compute the relative difference between the ad-
jacent spectra of the |F (ω, l)| denoted in a vector form
as: ~sl = [ |F (2, l)|−|F (1, l)| |F (3, l)|−|F (2, l)| · · · |F (M/2−
1, l)| − |F (M/2− 2, l)| ]t where the DC component and
redundant half of the spectrum are removed.

In Step (ii), a projected vector ~gl, also called a Fisher-
feature, is extracted from the Fourier spectrum using an
LDA matrix WL:

~gl = W t
L~sl (2)

1Each fold contains 3 feature templates (fingerprints) per
sensor node. This results in 6 different matchings of finger-
prints of the same sensor node (i.e., genuine matchings) and
441 different matchings of fingerprints from different sensor
nodes matching(i.e., imposter matchings). This makes 300
genuine and 22050 imposter matchings for 50 sensor nodes.



Based on the above description, the Fisher-feature ex-
traction from N captured signals for a given sensor de-
vice is written as G = W t

LS where G is an array of gl

and S is a matrix S = [ s0 .. sl .. sN ].
Finally in Step (iii), the feature template h used for

matching (recognition) is computed:

h = {Ĝ; ΣG} (3)

where Ĝ denotes the mean vector of G and ΣG denotes
the covariance matrix of G.

The number of captured signals N used to build the
feature template and the number of projected vectors
in WL (i.e., the Fisher subspace dimension) are experi-
mentally determined.

4.3 Training and Mahalanobis Matching
The LDA matrix WL is derived by a standard LDA

procedure based on scatter matrices [19]. Here, WL is
the optimal Fisher discriminant projection given as the
set of κ eigenvectors in matrix W that correspond to the
κ-highest eigenvalues in the generalized eigenvalue prob-
lem: SbW = ΛSwW , where Λ is the eigenvalue matrix,
Sw is the within-class scatter matrix showing the aver-
age scatter of sample features h from the same sensor
device and Sb is the between-class scatter representing
the average scatter of sample features h from different
sensor devices.

Mahalanobis distance is used to find the similarity
between feature templates (fingerprints). The result of
matching a reference hR and a test hT feature templates
is a matching score, calculated as follows.

Matching score =
√

(hT − hR)tΣ−1
G (hT − hR) (4)

Values of the matching score closer to 0 indicate a better
match between the feature templates.

It should be noted that the proposed feature extrac-
tion and matching method can be efficiently implemented
in hardware as it uses only linear transformations for
feature extraction and inter-vector distance matching to
compute similarity. These operations have a low mem-
ory footprint and are computationally efficient.

5. PERFORMANCE EVALUATION
In this section, we present the performance results of

our fingerprinting system. First, we review the metrics
used to evaluate the recognition accuracy of the system.

5.1 Evaluation Metrics
We adopt Equal Error Rate (EER) and Receiver Op-

erating Characteristic (ROC) as the metrics for evalu-
ating the accuracy of the proposed system since these
are the most agreed way for evaluating identification
systems [17]. The metrics are briefly discussed below.

Hypothesis testing is a common approach to statisti-
cally establish matching between two samples. The null
hypothesis Ho states that the two samples match and
the alternative hypothesis Ha - that the two samples
do not match. In such a setting, there are two possi-
ble errors: False Accept and False Reject. False Accept
means that the system decides Ho when Ha is true. In
our system this is equivalent to a decision that a de-
vice’s (claimed) identity is legitimate while in reality it
is an imposter device. False Reject means that the sys-
tem decides Ha when Ho is true. In our system, this is
equivalent to a decision that a device’s identity is not
legitimate while in reality it is.

The False Accept Rate (FAR) and False Reject Rate
(FRR) represent the frequencies at which the above
errors occur. The FAR and FRR are closely related
to each other in the Receiver Operating Characteristic
(ROC). The ROC is a curve which allows to automati-
cally compute FRR when the FAR is fixed at a desired
level and vice versa [17]. The operating point in ROC,
where FAR and FRR are equal, is called the Equal Er-
ror Rate (EER). The EER represents the most common
measure of the accuracy of a recognition system [24].
The operating threshold value at which the EER occurs
is our threshold T for an Accept/Reject decision.

To increase clarity of presentation, we use the Genuine
Accept Rate (GAR = 1 - FRR) in the ROC because it
shows the rate of Accepts of legitimate identities. In ad-
dition, we also compute FRR for common target values
of FAR (e.g., FAR = 0.01%, 0.1%).

5.2 Results
In our evaluation, we first consider the recognition

results obtained using Dataset 1 (Table 1) that contains
signals from all sensor nodes (P=50) taken at distance
D=10m. The number of captured signals N used to
build feature templates was fixed to N=50. The results
are validated with the 4-fold cross validation procedure
described in Section 4.1.

The results are presented in Figure 5(a) (Fisher-features)
and show the dependency of the recognition accuracy
(EER) of our system on the fingerprint size (i.e., the
dimension of the Fisher subspace used to project the
initial features into). The dimension of the features af-
ter the initial transformation (Section 4.1) is 254.

The results show very small EER of our system, which
is, for fingerprint sizes ≥3 between 0.0024 (0.24%) and
0.005 (0.5%). This means that our system correctly
identifies sensor nodes with an accuracy higher than
99.5% (GAR at the EER operating point). We later
show that the accuracy achieved in this set is equally
preserved for other datasets.

The results in Figure 5(a) confirm that using the first
5 eigenvectors of Fisher-features for projection scores
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Figure 5: (a) Eigen- and Fisher-features accuracy for different subspace dimension. Dimension 1 is in
the inner plot (P=50, D=10m, N=50). (b) Fisher-features accuracy for different subspace dimension
and nbr. of signals N used to build the feature templates (P=50, D=10m). (c) Receiver Operating
Characteristic (ROC) for different number of signals N used to build the feature template (P=50,
D=10m). The Fisher-feature subspace dimension is fixed at 5. See Table 2 for the underlying data.

the highest recognition accuracy. EER degrades pro-
gressively in higher dimensional subspaces. This phe-
nomenon is even more pronounced when the number of
signals N used to build the feature template decreases,
in particular for feature templates built with N<30 sig-
nals as shown in Figure 5(b).

The results also demonstrate that our proposed fea-
tures keep the EER low even when fewer signals N<50
are used to build the feature template. This is exhibited
in Figure 5(b) which gives the EER for different dimen-
sions and N . Reducing N allowed us to perform 5-fold
cross validation (5 folds x 120 signals) which increased
the genuine and imposter matchings per fold (Table 2).

Figure 5(a) also presents the comparison between Eigen-
and Fisher-feature extraction. Eigen-feature extraction
is based on Principal Component Analysis (PCA). The
validated EERs show that the Fisher-subspace is more
efficient for lower dimensional subspaces (1-3 eigenvec-
tors) compared to the eigenspace. However, we can-
not assert with statistical confidence such behavior for
higher dimensional subspaces. This is probably due to
the 4-fold cross validation (the maximum for N=50)
which produces large (overlapping) confidence intervals.

In summary, the above results demonstrate the recog-
nition efficiency of our proposed acquisition setup and
related spectral FFT-based Fisher-features. They also
show that a 5-dimensional linear subspace is enough to
represent a device feature template (fingerprint). There-
fore, our proposed features also form very compact and
computationally efficient fingerprints. If each dimension
is represented by a 4-byte floating-point number, the
size of the corresponding feature template h = {Ĝ; ΣG}
is 20 (5x4) bytes for Ĝ and 100 (5x5x4) bytes for the
square covariance matrix ΣG resulting in a total of 120
bytes. It should be noted that optimization techniques

exist to reduce the bit size per dimension to 1-2 bytes.
In order to fully characterize the accuracy trade-offs,

we draw the ROC curves for the selected 5-dimensional
features and different number of signals N as shown in
Figure 5(c). Table 2 summarizes the underlying data,
namely the number of signals N , total genuine and im-
poster matchings performed, Accept/Reject threshold
T (at EER point), EER and its confidence interval (CI)
and FRR for two common FAR=0.01%, 0.1% targets.

The ROC curve allows us to conclude that reducing
the number of signals N used to built the feature tem-
plates, degrades the Genuine Accept Rate for lower tar-
gets of FAR (e.g., 0.01%). This is not readily visible
from Figure 5(b) where the differences in EER for N>10
are statistically insignificant in the range between 0.24%
and 0.34% (Table 2). The ROC analysis shows that if an
application is required to operate at low FARs (<0.1%),
it must use more signals to build the feature template
for a reliable recognition with a high GAR.

5.3 Feature Stability
In the following analysis, we investigate the stability

of our proposed technique in terms of distance, antenna
polarization, voltage and temperature. We also show
that our scheme can be used for identification of sensor
nodes that use CC1000 radios.

5.3.1 Distance
For any practical use of physical-layer recognition, we

must consider the effect of channel attenuation. For this
purpose, we performed measurements in the university
parking, which allowed us to collect signals from 40m
line-of-sight (LoS). We used the first 10 sensor devices
from our population set (Dataset 3, Table 1).

Table 3 compares the validated EERs for different N



Table 2: Summary of recognition accuracy for Dataset 1 (P=50, D=10m).
N Test matchings Threshold T EER (%) EER CI (%) FRR (%) Validation

Genuine Imposter lower upper FAR=0.01% FAR=0.1%
50 300 22050 3.01 0.24 0 0.49 0.72 0.65 4-fold
40 300 22500 3.95 0.34 0.02 0.66 1.10 0.46 5-fold
30 600 39200 3.87 0.32 0.07 0.56 2.92 0.61 5-fold
20 1000 61250 4.10 0.34 0.21 0.47 12.94 1.24 5-fold
10 1000 61250 6.74 0.72 0.62 0.82 52.00 9.60 5-fold
5 1000 61250 16.04 2.72 2.38 3.06 82.12 40.10 5-fold

and a distance of 10m and 40m respectively. The sys-
tem is trained separately for each distance. We do not
observe statistically significant differences in the recog-
nition accuracy. This shows that our capturing setup
(Section 3.1) is successful in preserving the discriminant
power of the transient signal.

It should be pointed out that for N=30,40,50 the algo-
rithm achieves EER=0%. This confirms that the EER
must be computed for a larger set of devices in order to
have a more accurate estimation of the recognition capa-
bilities. In biometric recognition systems hundreds and
even thousands of different biometric identifiers (e.g.,
fingerprints, faces) are usually used for evaluation (e.g.,
NIST, FERET databases). In our experiments, how-
ever, due to limited resources, we could not evaluate on
such large sets of devices.

Even though all signal capturing was performed in a
university parking place with numerous possibilities for
reflection (e.g., cars, concrete columns), we did not ob-
serve multipath propagation problems. We acknowledge
that superposition of signal transients might prevent
accurate recognition. In such scenarios, excess signals
need to be detected and eliminated from the extraction
of the matching features.

In order to complete the analysis on the effect of dis-
tance on the recognition accuracy, we performed cross-
matching between feature templates extracted at 10m
and 40m distance from the capturing antenna. We reg-
istered an average recognition accuracy of EER=0.38
(38.01%) for N=50. This result shows that while the
frequency information in the transient signal is unique
within a given distance, it changes across different dis-
tances for the same antenna polarization. The impact
of antenna polarization is discussed in Section 5.3.3.

5.3.2 Voltage and Temperature
Given that sensor nodes are generally run on bat-

tery supply, we evaluated the effect of voltage. For this
purpose, we used transient data samples captured with
2x1.5V alkaline and 2x1.2V NiMH batteries.

Figure 6 shows the matching scores between transient
data samples taken at the same voltage level (blue trian-
gles) and between transient data samples taken at dif-

Table 3: EER at D=10m and 40m (P=10).
N Test matchings EER (%) Valid.

Genuine Imposter 10m 40m
50 60 810 0 0 4-fold
40 60 810 0 0 5-fold
30 120 1440 0 0 5-fold
20 200 2250 0.57 0.36 5-fold
10 200 2250 1.35 3.41 5-fold

ferent voltage levels (2.4V and 3V respectively) (red cir-
cles) for 10 sensor nodes. We do not observe a significant
difference between genuine matching scores coming from
the same and cross voltage levels. The scores are close
to 0 and within the boundary of the genuine matching
score distribution (i.e., below T=3.01) for N=50. The
EER for this set of 10 sensor nodes (same set of nodes
as in the previous section) is 0%.

This is an expected result given that the sensor nodes
are equipped with a low-power micro-controller. It re-
quires 2.1-3.6V for its normal operation. It should be
noted that such a result is not necessary true for high-
power transmitters (e.g., VHF FM) as observed in [25].

Our experiments did not suggest any effect on the
recognition accuracy from the surrounding temperature
changes (indoor air-conditioned environment or non air-
conditioned parking place). We point out however that
the ambient temperature during signal acquisition did
not vary substantially, the variance being approximately
5◦C between the two environments used. We did not
investigate extreme changes of temperature (e.g., inten-
tional heating) and higher variance of the ambient tem-
perature which usually occurs in outdoor environments.
We intend to consider the latter in future work to quan-
tify the effect.

5.3.3 Polarization
The polarization of an antenna is defined as the polar-

ization of the wave radiated by the antenna. At a given
position, the polarization describes the orientation of
the electric field. This orientation will change in sensor
network applications when the nodes change their po-
sition with respect to the receiving antenna. A direct
consequence of changing polarization is the change in



1 2 3 4 5 6 7 8 9 10
0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

Sensor node identity

M
at

ch
in

g 
sc

or
e

 

 

Same voltage matching
Cross voltage matching

Figure 6: Matching score with variable voltage:
the (blue) triangles represent matching scores
of fingerprints from the same sensor node and
same voltage level; the (red) circles represent
matching scores of fingerprints from the same
sensor node at different voltage levels (2.4V and
3V). All matching scores are below the threshold
T=3.01, thus within the genuine score distribu-
tion (P=10, D=10m, N=50).

the shape of the transient signal as shown in Figure 7.
In order to quantify the effect of polarization, we col-

lected transient data samples under the same conditions
as in Dataset 1 (Table 1), but with a changed polar-
ization of the antenna on the sensor node by 45◦ with
respect to the fingerprinter antenna. We then matched
the extracted feature templates to the reference feature
templates in Dataset 1. This resulted in a degraded
recognition accuracy (EER = 0.39 (39%)).

As this result could have been influenced by the train-
ing procedure where only training data from one type of
polarization was used, we collected transient data sam-
ples from 10 sensor nodes at 3 different antenna polar-
izations (Dataset 4, Table 1). The recognition accuracy
did not improve. This finding show that varying the
polarization changes the frequency information in the
transient signal. These changes cannot be well sepa-
rated by a linear discriminant. The low accuracy is due
to incorrect identification of 4 out of the 10 nodes, the
other 6 being correctly identified. We acknowledge that
further work is needed to quantify how much change
in polarization can be tolerated (e.g., small perturba-
tions) as the above results are for a 45◦ change. We also
intend to consider non-linear feature boundaries which
may overcome this limitation in future work.

5.3.4 Results for CC1000 radios
We applied our proposed features to the dataset col-

lected by [13]. That dataset consisted of 2000 tran-
sient data samples captured from 10 identical Mica2
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Figure 7: Transient signal shapes from a sensor
node at two different antenna polarizations.

sensor nodes equipped with CC1000 (433Mhz) radios
from 15 cm distance. The transient part occupied ap-
proximately 100 ns (200 data points). Our proposed
features scored an EER=0.0167 (1.67%) on that data,
showing that CC1000 radios can also be recognized with
high accuracy. It should be noted that this result can
possibly be improved if the linear transformation WL

was trained specifically for CC1000 radios. This was not
possible due to the small size of the considered dataset.

In order to directly compare our features to the ones
used in [13], we computed the performance metric used,
namely the classification error rate 2. In our case, it is
3.2% which is a significant improvement compared to
the 30% classification error rate reported in [13].

5.4 Summary of Results
Our results show that sensor nodes can be recognized

with high accuracy by analyzing the transient part of
the transmitted signals. Such recognition proves to be
robust to distance, multipath propagation and voltage
changes. As such, it can be effectively used in applica-
tions where the sensor nodes do not often move.

Transient shape changes due to antenna polarization
(mobility) introduce variability that degrades the recog-
nition accuracy. This finding limits the usability of
only transient-based features in applications where sen-
sor nodes frequently move. Nevertheless, our features
can be combined with other techniques (e.g, direction-
ality, RSSI) to further reduce the set of probable sen-
sor nodes from which the signals came. We acknowl-
edge however that other statistical methods in partic-
ular non-linear (kernel) analysis[19] may be more effec-
tive in overcoming this issue. More investigation and
experimentation is needed to assert this finding.

In application scenarios where the number of sensor
devices is known, the classification error rate [19] can
be used to evaluate the ability of the fingerprinting ap-
proach to classify (map) the transmitted signals to their
corresponding devices. Table 4 displays the average
classification error rates using our proposed technique
on the full set of 50 nodes (Dataset 1) for typical 1-NN
and 2-NN classifiers. The results show that the classifi-
2The classification error rate is the percentage of incorrectly
classified samples to a predefined set of classes of samples.



Table 4: Average classification error rate (%).
N # Samples 1-NN (%) 2-NN (%) Valid.
50 300 0.07 0 4-fold
40 300 0.07 0 5-fold
30 600 0.25 0.07 5-fold
20 1000 0.97 0.45 5-fold
10 1000 3.71 2.43 5-fold

X

Y

Z

Fingerprinter
antenna

Attacker
antenna

Figure 8: Hill-climbing attack setup. An at-
tacker sensor node with external rotational an-
tenna is positioned at the same X-axis as the
fingerprinter antenna. The attacker changes the
radio waves by rotating its antenna in the Y-Z
axis to find a polarization that impersonates a
sensor node from the targeted network.

cation error rate reduces when N increases. It reaches
0.0007 (0.07%) for 1-NN and 0 for 2-NN classifier.

Comparison of the classification error rates in Table
4 with related work (Section 8) can be misleading given
the difference in the device population (same vs. differ-
ent manufacturers), device hardware and radio specifi-
cation, capturing distance. Nevertheless, our approach
outperforms previous work on transient-based identifi-
cation of identical CC1000 wireless sensor nodes [13] as
demonstrated in Section 5.3.4. An advantage of our ap-
proach to a recent modulation-based identification tech-
nique [26] is that the classification error rate reduces
significantly when the number of signals N increases.

It should be noted that the classification error rate is
by definition not a suitable metric for recognition (ver-
ification) as outlined in Section 8. Furthermore, the
obtained results show that the classification error rate
significantly differs from the EER (Table 4 vs. Table 2).

We also point out that the results in Table 4 may be
improved by using more sophisticated classifiers (e.g.,
SVM, PNN). However, these classifiers need to be aug-
mented with doubt and outlier classes to fit the appli-
cation requirements. They are also memory expensive
and require more computational resources.

6. ATTACKING FINGERPRINTING
In this section, we analyze the robustness of our iden-

tification approach to impersonation and denial-of-service
(DoS) attacks. In particular, we demonstrate a hill-
climbing attack for impersonating a sensor device through
variable antenna polarization and show that imperson-
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Figure 9: Hill-climbing attack scores. The X-
axis contains the 21 (3 sensor nodes x 7 an-
tenna polarizations) attacking features; the Y-
axis shows the reference features of the 50 sen-
sor nodes targeted for impersonation; the Z-axis
is the matching score obtained between each at-
tacking and reference features. The thick surface
is the Accept/Reject threshold (T=16.04).

Table 5: Hill-climbing attack on sensor ID=9.
N 50 20 10 5

Hill-attack distance 42.74 38.12 35.89 21.61
Threshold 3.01 4.10 6.74 16.04

ation would be possible if a small number of signals is
used for feature extraction. We also show that DoS at-
tacks can prevent accurate identification. Finally, we
discuss the implications of other attacks.

6.1 Hill-climbing Attack
A hill-climbing attack is a well-known attack on bio-

metric recognition systems [17]. This attack consists of
repeatedly submitting data to an algorithm with slight
modifications. Only modifications that preserve or im-
prove the matching score are kept in the process. Even-
tually, a score that exceeds the operating threshold (Ta-
ble 2) might be achieved. This results in successful im-
personation without providing the genuine biometric.

To perform the attack, we would ideally need a spe-
cialized device that is able to create transient signals
(similar to the ones generated by the sensor nodes) and
at the same time allow for introducing variations in it.

We decided to use 3 additional sensor nodes that are
not part of the population of 50 sensor nodes used so far.
In order to create variations in the shapes, we mounted
external antennas on the 3 sensor nodes and change
their antenna polarization as shown in Figure 8.

We collected 50 transient data samples from 7 differ-
ent polarization positions of the antennas of the 3 sensor
nodes. We then supplied these transient data samples
to our proposed matching algorithm. Figure 9 displays
the matching scores obtained during the attack in a 3D



representation for N=5. For clarity reasons, all scores
that exceed 100 are not displayed.

The identification procedure becomes more vulner-
able to the impersonation attack when N decreases.
In particular, the matching scores against sensor node
ID=9 for N=5 were consistently very close to the Ac-
cept/Reject threshold T=16.04 (Table 5). Device im-
personation is possible for N≤5. A real system needs to
consider acquiring N>5 signals to build the fingerprint
to ensure protection against this type of impersonation.

6.2 Denial-of-service Attacks
Due to the low output power and limited spectral di-

versity of sensor node transceivers, wireless sensor net-
works are particularly vulnerable to jamming-based DoS
attacks [27]. We therefore decided to quantify the effect
of jamming on the recognition in our system.

We collected transient data samples in the presence
of a jammer. For jamming purposes we used an USRP
device with GNU radio software [28]. Figure 10 dis-
plays 2 different transient data samples acquired in the
presence of a Gaussian noise jamming signal.

The matching experiments showed that it is impos-
sible to recognize the device due to the superposition
effect of the jamming and the original sensor node sig-
nal. Furthermore, even jamming a small amount of the
sensor node signals (5-10 out of 50 that formed the tem-
plate features) was sufficient to prevent accurate recog-
nition. These findings show that an identification pro-
cedure based on physical signal characteristics must be
complemented by a jamming detection mechanism.

It should be noted that a sophisticated jammer can
jam only the signal transient, which will result in suc-
cessful data transmission, but inaccurate identification.
As a result, there is a need for devising a jamming de-
tection procedure not only at the data layer [27, 29], but
also for the transient part of the transmission.

This attack also shows that if the network authority
wants to prevent fingerprinting by an attacker, it could
do so by appropriately jamming the communication be-
tween the sensor nodes (i.e., jamming only the transient
and not affecting the transmitted data).

We did not investigate intentional heating of the cir-
cuit of the sensor node as a possible DoS attack. We
point out that even if such an attack succeeds, it might
be easily detected by appropriate temperature sensors
or tamper-responsive shielding [30].

6.3 Other Attacks
The possibility of an attack which records the tran-

sient part of the signal and subsequently concatenates it
to some data needs to be investigated. There is a num-
ber of points which make this attack hard to achieve.
First, the replaying device needs to have a zero-length
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Figure 10: Jammed transient signals (to be con-
trasted with the not jammed signals in Fig. 7).

transient in order to successfully transmit the originally
recorded transient. Second, the concatenation needs to
be also very precise to allow accurate demodulation of
the signal for data extraction. Third, the replayed tran-
sient part features will score exactly the same matching
score when matched to the reference template features
of the attacked device. As a result, the attack is easily
detectable unless some variability is introduced to pre-
vent same matching score. In addition, the introduced
variability needs to stay within the genuine distribu-
tion scores of the attacked device. This is not trivial to
achieve as demonstrated in our hill-climbing attack.

Hardware circuit replication (cloning) is another at-
tack that can be performed to compromise the system.
The instrumentation of such an attack needs physical
sensor node capturing and subsequently very accurate
replication of the circuitry (i.e., matching as much as
possible the characteristics of all integrated circuit com-
ponents). In addition, if the devices are equipped with
special shielding or a node capture detection mechanism
is in place, such a task becomes even harder.

These attacks require further investigation.

7. APPLICATION SCENARIOS
In this section, we describe applications of physical-

layer identification in all-wireless multi-hop sensor net-
works. We focus on protection against wormhole, Sybil
and node replication attacks as well as enhancement of
cryptography-based protocols for authentication.

In a wormhole attack [12], an attacker forwards pack-
ets received at one point of the network to another point
that is usually multiple hops away. This is achieved by
tunneling between two attackers’ devices positioned at
the respective points. This attack is particularly harm-
ful to routing protocols [31] and is very challenging to
detect because it can be executed by external attack-
ers and the packet information does not need to be
changed. Physical-layer identification helps identifying
the attacker’s device (intruder) when trying to forward
packets, as the physical characteristics of the transmit-
ted signal differ. Such detection can be achieved by a
centralized or distributed approach detailed in [13].

Physical-layer identification can be used to prevent
Sybil [14] and node replication (cloning) [15] attacks.



In the Sybil attack, the attacker gives several identi-
ties to the same sensor node with the purpose to fool
the routing and data aggregation in the network. The
replication attack consists of assigning the same (legit-
imate) identity to several nodes. With a physical-layer
identification mechanism in place, and given the diffi-
culty of compromising the identification, these attacks
can successfully be prevented.

Finally, physical-layer identification can also be used
to complement cryptography-based protocols for authen-
ticating the communication between sensor nodes. It
provides a second layer of security that cannot be easily
subverted even if the attacker has compromised or is in
the possession of the cryptographic keys for communica-
tion (internal attacker)[13]. An (internal) attacker who
holds the cryptographic keys will not be able to authen-
ticate to the network with her own device unless she is
able to replicate the sensor node radio circuit to imper-
sonate a legitimate device from the target network. In
addition, in some scenarios, our technique can be used
alone for device authentication which saves power com-
pared to cryptography-based authentication[32, 33].

8. RELATED WORK
The proliferation of radio technologies triggered a num-

ber of research initiatives to detect illegally operated ra-
dio transmitters [1, 9, 10], device cloning [34], defective
transmission devices [35] and identify wireless devices
[3, 11, 36, 13, 23] by using physical characteristics of
the transmitted signals [2]. Below, we present the most
relevant work to ours in terms of signal similarities, fea-
tures and objectives.

Hall et al. [3, 16] explored a combination of features
such as amplitude, phase, in-phase, quadrature, power
and DWT of the transient signal. The authors tested on
30 IEEE 802.11b transceivers from 6 different manufac-
turers and scored a classification error rate of 5.5%. Fur-
ther work on 10 Bluetooth transceivers from 3 manufac-
turers recorded a classification error rate of 7% [11]. One
weakness of the approach is that the classification error
rate highly depended on the device’s manufacturer.

Ureten et al. [23] extracted the envelop of the instan-
taneous amplitude by using the Hilbert transformation
and classified the signals using a Probabilistic Neural
Network (PNN). The method was tested on 8 IEEE
802.11b transceivers from 8 different manufacturers and
registered a classification error rate of 2%-4%.

Both works differ from ours in terms of the features
and type of wireless devices used. Devices from different
manufacturers ease the recognition task due to signifi-
cant differences in the signals. An attacker could easily
compromise such a system by using a device from the
same manufacturer.

Rasmussen et al. [13] explored transient length, am-

plitude variance, number of peaks of the carrier signal
and the difference between mean and maximum value
of the transient. The features were tested on 10 identi-
cal Mica2 (CC1000) sensor devices (approx. 15cm from
the capturing antenna) and achieved a classification er-
ror rate of 30%. This work is the closest to ours as it
considered wireless sensor devices from the same model
and manufacturer. We tested our approach on the data
they have used and scored a much improved classifica-
tion error rate of 3.2%.

None of the above works considered the stability of
their proposed features with respect to capturing dis-
tance, antenna polarization and voltage, or attacks.

Very recently, Brik et al. [26] proposed a device iden-
tification based on the variance of modulation errors.
The method was tested on 100 identical 802.11b NICs
(3-15 m from the capturing antenna) and achieved a
classification error rate of 3% and 0.34% for k-NN and
SVM classifiers respectively. No evidence about feature
stability or attacks have been presented in that work.
Given that only classification error rate is used to evalu-
ate that system, we cannot compare our achieved recog-
nition accuracy to that work. We therefore show the
trade-offs of our technique with respect to that metric
as well. We point out that even if our classification error
rate is comparable and even lower, a direct comparison
can be misleading given the different radio type and sig-
nal physical properties considered.

Our work also differs from previous work in the use
of Equal Error Rate (EER) and Receiver Operating
Characteristic (ROC) for performance evaluation. Prior
work [3, 16, 11, 13, 23, 26] considered standard classifier
(e.g., k-NN, PNN, SVM) and classification error rate as
performance metric. While such a metric is appropri-
ate for applications with well-known type and number of
classes (e.g., [35]), it is not suitable for applications such
as intrusion detection, device authentication, wormhole
detection, etc. due to: 1) In intrusion-related applica-
tions, the number of classes (i.e., devices) is unlimited.
2) A standard classifier will classify test signals coming
from a device that does not belong to the considered
classes of devices to one of these classes.

We therefore use EER and ROC to quantify the accu-
racy of our system. It should be noted that a standard
classifier can be adapted for security applications by
considering doubt and outlier classes. This additional
overhead however unnecessary complicates the design,
and it is not scalable for large number of devices.

9. CONCLUSION
In this paper, we investigated the feasibility of transi-

ent-based identification of 802.15.4 CC2420 Tmote Sky
wireless sensor nodes. We proposed a new technique for
transient-based identification and we showed that it en-



ables reliable and accurate sensor node recognition, with
an Equal Error Rate as low as 0.0024 (0.24%). Our sys-
tem works equally well on CC1000 sensor nodes and im-
proves previously reported results. We also investigated
the performance of our technique in terms of parame-
ters such as distance, antenna polarization and voltage.
We showed that large fixed distances and variable volt-
age preserve fingerprint properties, whereas varying dis-
tance and antenna polarization distort the fingerprints
and cause significantly lower recognition accuracy. This
result limits the usability of the proposed technique in
dynamic networks, however other statistical methods
may be more appropriate in such scenarios. We also
investigated the feasibility of impersonation and denial-
of-service attacks on the recognition. We showed that if
the parameters of the system are not well chosen, sen-
sor nodes can be impersonated using a hill-climbing at-
tack with antenna polarization. Finally, we showed that
transient-based sensor node identification can be dis-
abled by carefully structured denial-of-service attacks.
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