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ABSTRACT

Up-to-date meteorological information about upper air conditions

is crucial for accurate weather modeling and forecasting. Existing

techniques to sense meteorological parameters in the atmosphere

are costly and provide only limited temporal and spatial sensing res-

olutions. In this paper, we propose crowdsourcing air traffic control

data as a new cost-efficient method to achieve a high temporal and

spatial resolution, and large coverage. Our solution leverages Sec-

ondary Surveillance Radar Mode S and ADS-B transponder signals

that are continuously transmitted by aircraft for air traffic control

purposes. It builds on signals captured by the OpenSky Network, a

global-scale sensor network crowdsourcing 15+ billions of transpon-

der messages per day from aircraft up to an altitude of 13 km. Based

on the decoded data, we infer meteorological conditions such as air

temperature, wind speed, wind direction and atmospheric pressure.

Our evaluation demonstrates that our approach is effective at esti-

mating these parameters with high resolutions along the tracks of

more than 50 percent of all aircraft monitored by the OpenSky Net-

work. Our method delivers estimations for temperature with 0.11°C,

wind speed with 0.09 m/s, wind direction with 1.00°, and air pres-

sure with 0.10 hPa average deviation, making those measurements

suitable for the assimilation in numerical weather models.
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1 INTRODUCTION

Livemonitoring ofmeteorological conditions is essential for weather

modeling and forecasting. Numerical weather prediction models

rely on accurate observation data for estimation of air temperature,

wind and atmospheric pressure over space and time. For example,

the atmospheric weather model developed by the international

Consortium for Small-scale Modeling (COSMO)1, which is used

for weather forecasting by the national meteorological services

of Germany, Switzerland, Italy, Greece, Poland, Romania, Russia

and Israel, relies on various types of surface-level and upper air

observations for estimating the atmospheric conditions along a

three-dimensional grid space.

Upper air meteorological information is particularly important

for such weather models [11]. Obtaining observations about upper

air atmospheric conditions is however much more difficult than

surface-level measurements which can be obtained with existing

ground-based sensor networks (e.g. Weather Underground2). The

challenge with monitoring upper air atmospheric conditions is that

the current measurement techniques do not scale well and therefore

lack of temporal and spatial resolution [4, 8]. For example weather

balloons equipped with meteorological sensors, still one of the

major source of information for weather models, are expensive to

launch on a regular basis and can only provide sporadic snapshots

along the tracks of the balloons. Weather radars require a costly

infrastructure on the ground and only provide data directly above

the radars.

Aircraft have the potential to provide a scalable solution in this

context. According to Flightradar243, more than 10’000 aircraft are

airborne across the globe at any point in time, and the tendency

is increasing. Harvesting meteorological information from these

aircraft therefore constitutes an exceptional sensing opportunity

for meteorology. For this reason, several efforts are considering

the use of aircraft for meteorological monitoring. The Aircraft

Meteorological Data Relay (AMDAR) [24] and the meteorological

routine air report (MRAR) [22] programs have centered on building

out an infrastructure to collect and disseminate meteorological data

from aircraft. However, these solutions require aircraft to upgrade

their communication systems or install new systems, an endeavor

that is very costly and slow in the aviation domain. There is little

1http://www.cosmo-model.org
2https://www.wunderground.com/
3https://www.flightradar24.com/

25

2018 17th ACM/IEEE International Conference on Information Processing in Sensor Networks

0-7695-6377-5/18/$31.00 ©2018 IEEE
DOI 10.1109/IPSN.2018.00010



incentive for many of the aircraft owners to invest money into such

an infrastructure since the data is often not providing a direct value

to the aircraft owners themselves. As a consequence, only very

few aircraft exist today which support these systems and it is very

unlikely that the situation will change in the future. An alternative

approach proposed in [14] suggests combining information from

publicly available flight tracking data sites. This approach requires

no special instrumentation but the information from these sites is

limited and allows only the estimation of the wind which is not

sufficient for accurate weather modeling.

In this work, we address the question if it is possible to leverage

aircraft as a large-scale and flexible sensor network for estimating

various meteorological parameters including temperature, pressure

and wind, but without the need for special instrumentation on the

aircraft. Existing sensors on the aircraft measure different param-

eters of the atmosphere and send derived data in ATC messages.

This communication consists mainly of periodic ADS-B messages

and responses to interrogations from secondary surveillance radars

(SSR). Aircraft transmit both types of messages on the 1090 MHz

Mode S channel. De Haan et al. [9] showed that the assimilation

of weather data derived from Air Traffic Control (ATC) messages

collected by a single radar has a positive effect on the quality of the

forecasts. In the work of De Haan et al., the ATC messages were

provided directly by ATC. We consider it unlikely that ATC institu-

tions share radar data for meteorological parameter estimation on

a large-scale in the near future since ATC radars are operated by

individual countries and represent a safety-critical infrastructure.

In contrast, we propose to use receivers operated by the crowd to

passively receive and collect ATC messages. Such data is already

collected at scale today by crowdsourcing-based ground sensor

networks such as the OpenSky Network [18] and made available

through online databases and APIs. A solution that is based on such

crowdsourced air traffic control data would therefore fulfill the

need for upper air observation data without requiring additional

equipment on the aircraft.

In order to realize the proposed approach, a series of challenges

have to be addressed. First, determining the sender of SSR responses

and its location is error prone because the aircraft address is com-

bined with the message checksum. Second, the message type of

SSR responses is not specified explicitly and we need to infer the

required data using probabilistic techniques. Finally, the data we

receive from crowdsourced receivers is noisy and we need to re-

move outliers. We therefore need to develop robust techniques for

fusing and correlating the data from multiple sensors in order to

estimate the meteorological parameters.

Our results indicate that using crowdsourced air traffic control

data, it is possible to ultimately estimate temperature with 0.11°C,

wind speed with 0.09m/s, wind directionwith 1.00°, and air pressure

with 0.10 hPa average deviation when compared to radiosonde ref-

erence data. Our developed methods further provide meteorological

observations for more than 50% of existing aircraft while less than

1 percent of the observed aircraft currently support AMDAR and

MRAR. Our approach therefore provides a unique opportunity to

obtain a large number of meteorological observations from aircraft

for assimilation in numerical weather models.

The main contributions of this paper are the following:
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Figure 1: System architecture.

• We propose to use crowdsourced air traffic control data to infer
the meteorological parameters such as temperature, pressure

and wind.

• We develop a decoder which is able to deduce all required
information contained in aircraft transponder SSR replies with-

out the knowledge of the corresponding SSR interrogations by

fusing messages of different receiver locations. This enables

to obtain meteorological data on a large-scale from passively

collected aircraft messages.

• We evaluate the accuracy of using crowdsourced air traffic con-
trol data for meteorological parameter estimation and compare

the obtained results with data from weather balloons, a numer-

ical weather model used by national meteorological services,

and AMDAR.

• We evaluate the availability of the required data (and thus the
coverage of our approach) for meteorological parameter esti-

mation at different locations worldwide and demonstrate that

our approach is able to provide meteorological observations

for more than 50 percent of the aircraft.

2 USING AIR TRAFFIC CONTROL DATA

In this section, we discuss the system to obtain crowdsourced air

traffic control data and the methods to infer meteorological data.

2.1 Air Traffic Control Background

We propose a meteorological monitoring system based on data from

legacy air traffic control communications such as secondary surveil-

lance radar (SSR) and the newer automatic dependent surveillance –

broadcast (ADS-B) systems. Aircraft flying according to instrumen-

tal flight rules are required to support SSR and more than 70 percent

of the existing aircraft already support ADS-B [19]. To support both

types of surveillance technologies, aircraft are equipped with an

onboard Mode S transponder. In SSR, the transponder listens to

interrogations by ground radars and other aircraft in vicinity and

respond to these interrogations with short messages including in-

formation such as altitude, velocity and orientation of the aircraft.

In ADS-B, aircraft periodically transmit messages to indicate their

position, altitude and velocity without being interrogated.
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Figure 2: Reception range of SSR Mode S and ADS-B mes-

sages with 800+ crowdsourced receivers.

Required values
Source

SSR Mode S ADS-B

Temperature
Mach number BDS 60 —

True airspeed BDS 50 —

Wind

Mag. heading BDS 60* —

True airspeed BDS 50 —

True track angle BDS 50 Velocity msg

Ground speed BDS 50 Velocity msg

Pressure Pressure altitude
Altitude Position +

code velocity msg

Position
GPS altitude —

Position +

velocity msg

GPS coordinates — Position msg

* Only the magnetic heading which first needs to be converted to the true heading is
available.

Table 1: Sources for the estimation ofmeteorological param-

eters by using air traffic control messages.

2.2 System Overview

We propose a meteorological monitoring system based on air traffic

control receivers that collect SSR and ADS-B messages and for-

ward the collected data to a cloud infrastructure for meteorological

parameter estimation, fusion, and distribution. Our system architec-

ture is depicted in Figure 1. In this work, we leverage the OpenSky

Network [18] for data collection of SSR and ADS-B messages. The

OpenSky Network is a crowdsourcing initiative to collect air traffic

control data and making the collected data available to third par-

ties. The OpenSky receivers are typically low-cost software radios

such as RTL-SDR USB dongles that are attached to a computer or a

Raspberry Pi and are operated by volunteers at Universities or at

people’s homes.

As of this writing, the OpenSky network collects around 15

billion messages per day from more than 800 online receivers de-

ployed around the world. The actual worldwide reception coverage

is depicted in Figure 2. Currently, Europe and the USA are almost

entirely covered, while other regions in the world have partial

coverage. The coverage in all regions is constantly growing, yet a

single sensor can receive transponder signals up to a distance of

700 km, allowing theoretically to cover the whole world with a few

thousand contributing sensors.

�vg

�vt

�vw

Figure 3: Vector relation for wind estimation.

2.3 Meteorological Parameter Estimation

The goal of our system is to estimate the temperature, pressure and

wind from the ADS-B and the SSR Mode S roll-call replies4 that the

aircraft transmit and that we collect through the OpenSky Network.

We generate individual meteorological observations by combining

information from different SSR Mode S and ADS-B messages. Ta-

ble 1 gives an overview of the ADS-B and SSR Mode S message

types which can be used to estimate the different meteorological

parameters. We refer to the standards [13, 16, 17] for the exact

definition of the message types. For the estimation of some param-

eters, we could make use of different messages because ADS-B and

SSR Mode S replies often provide redundant information. In such

cases, we tend to prioritize ADS-B messages because the decoding

includes no uncertainties as we will see later, and ADS-B is also

broadcast in the absence of interrogators (e.g. non-radar areas).

To assign a position to an observation, we rely exclusively on the

aircraft position as advertised in ADS-B position messages.

Currently, not all aircraft are equipped with ADS-B enabled

transponders. A mandate for this technology will become effective

by 2020. But even after 2020 the decoding of SSR Mode S will still be

necessary. As indicated by Table 1, the estimation of temperature,

wind speed, and wind direction requires SSRMode S messages since

necessary information is only contained in SSR Mode S messages.

2.3.1 Temperature Estimation. We derive the temperature from

the true airspeed (BDS 50) and the Mach number (BDS 60) in SSR

Mode S replies as indicated in [4–6, 8]. The Mach numberM is the
ratio of the true airspeed vt and the speed of sound c in the air
M = vt

c . The speed of sound is not constant but depends primarily

on the temperature. Actually, the speed of sound also depends on

the humidity and other factors but their influence is much smaller.

Thus, the relation between temperature, true airspeed and Mach

number can be approximated by T = κ · v2t
M2 . The true airspeed is

denoted by vt in m/s and M is the dimensionless Mach number.
The temperature is given in Kelvin. The factor κ is assumed to be
constant and is given by κ = m

γR . Where γ = cp/cv = 1.397774

is the ratio of specific heats, R = 8.3145 J/mol is the molar gas
constant andm = 0.0289645 kg/mol is the molar mass of dry air.

2.3.2 Wind Estimation. The method we use to derive wind esti-

mations is analogous to the derivation in related work [4–6, 8, 14].

The movement of an aircraft is not only determined by the position

of the control surfaces and the thrust of the engines but also by the

drift that is caused by wind. The relation of the different vectors is

depicted in Figure 3. The wind vector can therefore be derived using

the vector subtraction �vw = �vд − �vt . The vector �vt is defined by
the velocity relative to the air (true airspeed, BDS 50 of SSR Mode S

4In the rest of the this paper, we simply refer to Mode S replies for these messages
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replies) and by the direction in which the nose of the aircraft points

(mag. heading, BDS 60 in SSR Mode S replies). The vector �vд is
defined by the velocity relative to the ground (ground speed, BDS

50 in SSR Mode S replies) and by the direction of the ground track

of the aircraft (track angle, BDS 50 in SSR Mode S replies). The

wind speed corresponds to the length of the wind vector ‖vw ‖ and
the wind direction is given by the direction of the wind vector ∠vw .
In meteorology, the wind direction is the direction from which

the wind blows. This means the wind direction is opposite to the

direction of the wind vector. For this reason, we shift the direction

of the wind vector by 180 ° to obtain the wind direction.

2.3.3 Pressure Estimation. Aircraft usually determine their alti-

tude using a barometer. The altitude derived by thesemeans is called

pressure altitude. The following relation and the values defined by

the International Standard Atmosphere (ISA) are used to convert

the pressure measurement P into the corresponding altitude value
h [15, 24]:

h =
T0
L

�
�

(
P

P0

)−LR/д
− 1�

�
In reality the reference pressure P0 is location and weather de-

pendent. This means that the calculated altitude differs from the

true altitude. Since it is impractical to keep it up-to-date, P0 is con-
stantly set to 1013.25 hPa (except for very low altitudes). Vertical

separation between different aircraft is still guaranteed because all

aircraft in the same area experience the same deviation of altitude.

In order to estimate the measured pressure, we reverse the pres-

sure altitude calculation. For this we use the above relation and the

constant values defined by the ISA.

3 DATA PROCESSING

Relying on crowdsourced information introduces many data pro-

cessing challenges for the decoding and parameter estimation. For

example, low-cost crowdsourced receivers tend to provide a signifi-

cant number of erroneous messages or are not able to capture all the

messages sent by the aircraft. Furthermore, the transponders of dif-

ferent aircraft tend to behave differently and fusing the information

from different aircraft must therefore take these differences into

consideration. This section describes how we addressed these chal-

lenges in order to make the crowdsourced data from the OpenSky

Network suitable for meteorological parameter estimation.

3.1 Message Decoding

The ADS-B and SSR Mode S reply messages we receive from the

OpenSky Network are in raw format (messages as bit strings in

binary format) and the first step in our processing pipeline is to

decode these messages. Decoding ADS-B messages is simple be-

cause ADS-B is a broadcast protocol and the receivers can identify

the emitting aircraft and message type from the message headers.

However, for many message types in SSR Mode S, and in particular

for Comm-B registers which are needed in our work, there is no

type information in the header and the aircraft address is not given

explicitly (the aircraft address is XORed with a checksum). This

poses a challenge in our processing pipeline, because unlike radars

which know what content to expect in SSR Mode S replies based on

Figure 4: Overview of the SSR Mode S and ADS-B message

decoder architecture.

their own interrogations, OpenSky only receives the SSR Mode S

replies from the aircraft and does not provide any information about

the interrogations.

In principle, it is possible to receive the SSR Mode S interroga-

tions, but these interrogations are sent on a separate uplink fre-

quency (1030 MHz) using a larger signal bandwidth than the down-

link on 1090 MHz and none of the deployed OpenSky receivers are

able to receive such signals. Even if the receivers would be equipped

with necessary hardware to receive the uplink, the receivers would

still need a line-of-sight connection to the radars to successfully

capture interrogations. This is generally not the case since both the

radars and the crowdsourced sensors are located on the ground. In

addition, secondary radars rely on rotating directional antennas

with beams pointed towards the sky. This means that the receivers

would only have poor reception when the antenna is not oriented

towards them. All the mentioned challenges make the approach of

collecting the interrogations on a large-scale much less practical

compared to only collecting the replies.

To address this challenge, we propose a probabilistic decoder that

manages to identify aircraft (transponder) address andmessage type

(BDS register type) in Mode S replies without the corresponding

radar interrogations. An overview of the proposed probabilistic

decoder is shown in Figure 4. Incoming transponder messages are

first classified as ADS-B or SSR Mode S reply. For this part, we rely

on the downlink format (DF) messages field which is available in all

transponder messages. ADS-B messages are decoded in a classical

way based on the aircraft address andmessage type included in each

message. In contrast, SSR Mode S replies are first passed through

an aircraft address filter which relies on the history of previously

received SSR Mode S messages. SSR Mode S reply messages that

pass the address filter are then processed by the Comm B decoder

which performs structural analysis of the received messages in

combination with consistency checks from information based on

the history of previously received SSR Mode S and ADS-B messages

in order to classify the message type based on a probabilistic model.
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Figure 5: Overview of the Comm-B message decoder.

The address filter and Comm B decoder blocks are described in

more details in the following.

3.1.1 Address Filter. To link a receivedmessage to an aircraft, we

need to extract the aircraft address from a data field that contains

the address XOR-ed with the parity of the message. Under the

assumption that the message did not suffer from bit errors, we can

extract the aircraft address from the parity by XOR-ing the parity

with the CRC of the received message body. Of course, with this

approach the parity can no longer be used to check the integrity

of the message. Since the 1090 MHz channel over which the SSR

Mode S replies are transmitted is highly overloaded, and in practice,

many bit errors occur [23], we need however to ensure the integrity

of the message because messages with bit errors would otherwise

result in faulty aircraft addresses.

We propose and evaluate two different filtering strategies to

correctly decode the aircraft address of the aircraft and to discard

corrupted messages in the presence of bit errors. Both filters build

on previous messages to infer the aircraft address which could

potentially be in the coverage of the receiver.

Seen-before filter: With the seen-before filter, we count the

number of times an aircraft address has been seen before in SSR

Mode S replies (i.e. extracted from the parity) and store this infor-

mation in a cache. The message itself is stored in a message queue.

We remove a message from the queue and forward it to the Comm-

B decoder only if the aircraft address has been seen more than n
times. The threshold n defines the responsiveness of the filter and
the likelihood that an address is decoded. Old aircraft addresses are

evicted from the address cache after 10 minutes, corresponding ap-

proximately to the time it takes for an aircraft to pass the reception

range of a receiver.

All-call filter: This filter exploits the nature of so called all-call

replies. These messages are used by the interrogators (radars) to

discover new aircraft which entered their operational range. The

all-call replies include the aircraft address separate from the CRC.

Instead the CRC is combined with the interrogator address. There

is only a small number of valid interrogator IDs (80 IDs) compared

to the number of possible aircraft addresses (224). Therefore, the

probability that the message is corrupted if a valid interrogator

address is included in the message is small: 80/224 = 0.000477%.

Similar to the seen-before filter, all aircraft addresses frommessages

with valid interrogator addresses are stored in a cache. The replies

are only forwarded to the Comm-B decoder if the aircraft address

of the message is contained in the address cache. Again, old aircraft

addresses are evicted from the address cache after 10 minutes.

3.1.2 Comm-BMessage Decoder. The received SSRMode S reply

messages can now be assigned to an aircraft based on the aircraft

address but the type of the message (i.e., the BDS register) is still

unknown. The Comm-B message decoder (depicted in Figure 5)

therefore first guesses the Comm-B field of the SSR Mode S reply

based on a combination of structural tests and consistency checks.

From the message specification, we know that there are certain

bit combinations which are not valid for a given format type. For

example, if the status bit of a parameter indicates that the corre-

sponding field is invalid, the field bits must be set to zero. If a single

inconsistent bit is detected in a structure check, we do no longer

consider the corresponding message format for the message. With

the bit combinations, we do not require every field of the BDS reg-

ister to be filled since according to the standard [16], not all fields

must be populated with data.

In a second step, we apply consistency checks to the decoded

messages with the remaining formats. For this, we define a set of

checks which compare two similar parameters frommessages of the

same aircraft within a small time window. We compare parameters

from the same message, from previously decoded messages of the

same type but also from messages of other types. We also use data

from ADS-B messages for comparison. As an example, the ground

speed contained in a SSR Mode S message can be compared to

the ground speed value contained in the ADS-B message. For the

comparisons that require previously decoded messages, we rely on

a decoded message cache.

From the applied consistency checks, we get a confidence for

each message type. Based on this confidence, our decoder selects

the message format with the highest confidence. If none of the

decoded message formats exhibits a large enough confidence value,

no message format is chosen and we drop the message. This can

for example happen if messages contain bit errors or if there is an

ambiguity between multiple message types due to the content of

the message being plausible for different BDS registers.

3.2 Handling Decoding Errors and Noise

After message decoding, we fuse the data from the different re-

ceivers and estimate the temperature, the wind speed, the wind

direction and the pressure along the tracks of the aircraft.

3.2.1 Outlier Filtering. We apply outlier filtering before smooth-

ing the data, as the error of a single outlier may otherwise pollute

the neighboring data points. This means that the data still exhibits

quantization. In addition, a perfectly valid signal may not change

over many successive sampling points. These facts make it dif-

ficult to find suitable parameters to filter outliers with standard

approaches, such as Thompson Tau or Median Absolute Deviation

outlier filtering. Even the change of one quantization step will al-

ways be treated as an outlier if the rest of the window consists of

nothing but exactly equivalent values.

To deal with these problems, we apply the following method.

For every value, we know the quantization step size. We assume

that the values do not vary rapidly and that the maximum possible

change is proportional to the quantization step size. For a single
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parameter of a single aircraft we apply sliding window filtering over

time. For every position of the window, we examine if the center

point of the window is an outlier or not. For this, we calculate the

median of the remaining points in the window and calculate the

difference of this median and the value of the center point. Only

if this difference is larger than n times the quantization step, we
consider the center value as an outlier. We call n the outlier filter
factor. For angular values we can not use the median, instead we

use the circular mean for the comparison. Since most of the outliers

are caused by the Comm-B decoder selecting a wrong message

format, it is very likely that the other fields included in the same

message are wrong as well. Therefore, the outlier filter discards the

whole message that contains the detected outlier.

Analogous to classical methods such as Aircraft Meteorological

Data Relay (AMDAR) [24] and MRAR [22], we discard measure-

ments that are obtained when the aircraft exhibits a large roll angle.

A large roll angle indicates that the aircraft is turning and the sen-

sors of an aircraft can produce bad values during aircraft maneuvers

due to irregular air flows around the sensors.

3.2.2 Mitigating Quantization Noise. In order to mitigate quan-

tization noise, we apply a smoothing filter after the outlier filtering.

Common filters for this purpose are low or band pass filters. How-

ever, such filters are not well suited for the kind of data we obtain

from the decoder. The data is sampled at irregular intervals and

such filters assume equidistant sampled signals. Instead, we apply

sliding window filtering to single parameters of a single aircraft

over time and focus on the center point. A new value for the center

point is determined by first calculating a linear regression using

all points in the window and then calculating the value of this

regression line at the position of the center of the window. This

does not work for circular data like heading angles. Therefore, we

use the circular mean for angles.

4 EVALUATION METHODOLOGY

This section describes the reference data sets we obtained in order

to assess the accuracy of our approach. Ideally, we would want to

assess the accuracy of our method by comparing the obtained me-

teorological parameters with a ground truth. However, obtaining

such a ground truth happens to be a great challenge because refer-

ence measurements obtained with other methodologies also exhibit

measurement errors. In addition, these reference measurements

may not happen at the exact same location and time which also

introduces a bias in the comparison. Nevertheless, we compare our

results to three independent reference datasets in order to better

understand the estimation accuracy.

4.1 Reference Data Sets

Radiosonde: The first dataset consists of reference data from

radiosondes operated by the Federal Office of Meteorology and

Climatology of Switzerland (MeteoSwiss), the national meteorolog-

ical agency in Switzerland. A radiosonde consists of measurement

equipment which is attached to a gas-filled balloon. During the

ascent, the radiosonde provides a vertical profile of the atmosphere

up to approximately 30 km altitude. The radiosondes of MeteoSwiss

are launched twice a day approximately 1 hour before the syn-

optic hour (00UTC and 12UTC). The launch location is Payerne,

Switzerland. The measurement data of the radiosonde includes tem-

perature, wind speed, wind direction, pressure, dew point as well as

accurate timestamps and GPS position. The temporal resolution of

the measurement points is usually 1 second which leads to approxi-

mately 5 meters resolution vertically. According to MeteoSwiss the

uncertainty at 2 km altitude is 0.1 K for the temperature, 0.2m/s for

the wind speed, 2% for the relative humidity and 0.2% for the pres-

sure. Radiosonde reference data happens to be relatively accurate

but the data points obtained with this method are quite far apart

from the aircraft since they cannot fly at the same time in the same

airspace.

COSMO: The second dataset is reference data from the numeri-

cal weather prediction model of MeteoSwiss. We refer to this data

source as COSMO. This weather model mainly covers Switzerland

and the border region. Vertically the data about the atmosphere is

available from ground up to 12 kilometers altitude. The altitude of

the height levels are not constant for the whole model area but they

depend on the topography of the terrain. The weather model has an

horizontal resolution of approximately 1 kilometer and a vertical

resolution from about 20 meters on ground up to 500 meters at 12

kilometer altitude. The weather model is assimilated with data from

ground-based weather stations, radar data, radio soundings from

different locations, wind profiler data and AMDAR observations.

The numerical weather model is calculated every 3 hours and pro-

duces forecasts covering the next 33 hours with a granularity of 1

hour. For this work, only the temporally non-overlapping forecasts

with smallest time difference to the considered time are used.

AMDAR: The third reference dataset consists of AMDAR observa-

tions that aircraft sent out on the aircraft communications address-

ing and reporting system (ACARS) over very high frequency (VHF)

radios. AMDAR is a system which is dedicated to collect meteo-

rological measurements. Only very few aircraft transmit AMDAR

information and this dataset is therefore relatively small. Between

5/27/2016 and 1/22/2017, the AMDAR data set contains 366 En-

route Weather Reports which contain a total of 774 measurements.

Most measurements are taken at high altitudes between 8 km and

12 km. AMDAR data is extracted and preprocessed (averaged) on

the aircraft. We only consider data points from aircraft for which

our method provides also observation points. AMDAR measure-

ments tend to have worse quality compared to radiosonde measure-

ments [4], however since themeasurements originate from the same

aircraft as for our method, the distance between the observations

from the both methods is smaller than radiosonde data.

4.2 Collocations

In order to compare the estimated meteorological data points to

the reference data sets, we look for collocated measurement points.

Since the measurements from the different data sets do not match

exactly the derived estimations in terms of location and time, we

have to tolerate a distance in the collocations. The distance between

two data points is defined by the horizontal and the vertical distance

as well as by the time difference. When selecting collocations, we

prioritize small vertical distances for larger horizontal distance

and time offsets since the altitude has the strongest influence on

most meteorological parameters. The distributions of the vertical,

horizontal distance and time offset of collocations when using the
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Figure 6: Distribution of the collocation metrics when using

the radiosonde (top row), COSMO weather model (middle

row) or AMDAR (bottom row) reference data.

radiosonde (top row), COSMO (middle row) or AMDAR (bottom

row) reference data is shown in Figure 6.

Before collocating the estimated data with reference data, we

filter the estimated meteorological parameters since the reference

data (COSMO and AMDAR) is based on averages as well. For this,

we use a sliding window and consider the point in the middle. We

remove outlier points if the difference to the mean of the rest of the

points is larger than two times the standard deviation of the rest

of the points (window size of 45 s). Furthermore, we replace the

middle point with the mean of the remaining points in the window

(window size of 20 s).

As comparison metric, we consider the root-mean-square devia-

tion (RMSD). This nomenclature takes into account that our ground

truth does not originate from the same place both spatially and

temporal as our estimated data. In addition, the reference data are

also merely estimations experiencing their own errors. Therefore,

the RMSD should be regarded as an upper bound on the estima-

tion error, while the true error of our estimators is expected to be

smaller.

In order to visualize many parameter difference values, we make

use of box plots. In box plots, the box extends from the lower to

the upper quartile values of the data and the line represents the

median. The whiskers reach 1.5 ·IQR past the first and third quartile,
with IQR being the interquartile range. This means that the box

represents 50% of the data, while the whiskers together with the

box span 99.3% of the data.

5 EVALUATION

Our evaluation consists of three parts. In the first part, we evaluate

the performance of our decoder. In the second part, we evaluate the

accuracy of the meteorological parameters derived by our approach

compared to the reference data sets. Finally, we analyze the coverage

of our method at eight different sites around the world.

Figure 7: Seen-before filter output for messages received in

Thun, Switzerland.

Figure 8: Seen-before filter output for messages received

near the airport of Frankfurt (first 400 seconds).

5.1 Decoder Performance

5.1.1 Address Filter. To evaluate the performance of the filters of

our probabilistic decoding scheme, we consider the filtered output

from two different receivers. One receiver in Frankfurt, Germany,

is located close to a large airport and the other receiver in Thun,

Switzerland, is far away from any large airport. The duration of the

Mode S recording is 15 minutes for both receivers.

The results for different n for the receiver in Thun are very
similar (Figure 7). Surprisingly, the opposite is the case for the

receiver in Frankfurt (Figure 8). The large difference in slope of

the different seen-before settings suggests that we decode a lot of

invalid aircraft addresses that show up only very few times. This

suggests that the noise level from different sensors highly depends

on the receiver setup and the radio environment. Most of the aircraft

seem to be within the operational ranges of multiple interrogator

and therefore send all-call replies to multiple interrogators. Only

2.44% of all interarrival times are larger than 1 second. Additional

analyses also indicate that a single transponder often sends 3–5

replies to the same interrogator in a very short time, or, that the

same reply is received multiple times by the receiver (e.g. due to

multipath effects).

For the rest of the evaluations in this work, we use the all-call

filter since it performs better in an environment with corrupted

messages and it performs similar in an environment with almost

no corrupted messages.

5.1.2 Decoding Performance. We evaluate our probabilistic de-

coding scheme by decoding the same set of transponder messages
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Figure 9: Pareto plot with the Pareto frontier of the Comm-B

decoder evaluation.

with different decoder configurations. The SSR Mode S and ADS-B

data stem from a receiver located in Thun, Switzerland. The dis-

tance between the radiosonde launch location and the receiver is

approximately 55 km. The duration of the data recording is 10 min-

utes. Three main parameters of the Comm-B decoder are varied

for the evaluation. The consistency source defines which type of

information is used in the plausibility checks. The consistency level

determines the tightness of the limits for the plausibility checks.

Finally the minimum confidence level defines the amount of plausi-

bility checks that must be successful in order to accept a decoded

message format. We defined a set of consistency source combina-

tions that are compatible with each other.

For every decoder configuration, we obtain a set of decoded SSR

Mode S messages which is used to estimate meteorological param-

eters. The estimated parameters are then evaluated by comparing

them to reference data from the radiosonde sounding in Payerne,

Switzerland. Thus, for every decoder configuration, we obtain the

number of collocations and the RMSD.

The goal of the evaluation is to maximize the number of colloca-

tions (which is proportional to the number of decoded messages)

and at the same time to minimize the RMSD. In order to select an

optimal decoder configuration, we plot the obtained results in a

Pareto diagram which is depicted in Figure 9. Each point in this

plot represents one decoder configuration. We chose to analyze

the temperature parameter since the variation of this meteorologi-

cal measurement is the smallest and the estimation requires two

important SSR Mode S BDS registers, BDS 50 and BDS 60.

In summary, simpler consistency checks produce better results.

We chose a configuration in the Pareto frontier (depicted as a line)

for which many combinations in the vicinity produce good results

as well. For our selected configuration, the Comm-B decoder uses

the values in the same message and values in previously decoded

Comm-B messages of other message types. The consistency level of

our selection is 4 out of 4. This corresponds to consistency checks

with tight limits. The minimum confidence setting of our selection

is 0.5 which means that 50% of the consistency checks applied to a

message must be successful. For all other evaluations in this work

we use this configuration for the Comm-B decoder.

Figure 10: Pareto plot of temperature estimations when

varying all three parameters of the filtering.

5.2 Meteorological Parameters

5.2.1 Noise Mitigation Parameters. In order to reduce the error

induced by outliers and quantization, we first start with optimizing

the parameters for the outlier filters and quantization noise miti-

gation techniques used in our implementation. Analogously to the

parameter optimization for the decoder, we apply the filters with

varying configuration to the same set of decoded messages. For

the decoding, we use the optimal configuration determined in the

previous section and the same 10 minutes recording of Mode S and

ADS-B data.

For the window size of the outlier filter and the smoothing filter

we use the values {1, 2, 5, 10, 15, 20, 25, 30, 40, 50, 60} seconds. For

the outlier filter factor we use the values {2, 5, 8, 10, 15, 20}. We form

the Cartesian product of all values and all inputs in order to deter-

mine all evaluated filter configurations. The filtered data is used

to estimate meteorological parameters which are then evaluated

using reference data from the radiosonde in Payerne, Switzerland.

The configuration of the estimation and evaluation is kept constant

for all filter settings. For every filter configuration, we determine

the number of obtained collocations and the RMSD. In order to

select an optimal filter configuration, we plot the obtained points

in a Pareto diagram depicted in Figure 10.

We select a Pareto optimal point in the Pareto frontier for which

many combinations in the vicinity produce good results as well.

The configuration of the selected Pareto optimal point correspond

to a window size of 10 seconds and a filter factor of 20 for the

outlier filter. The selected Pareto optimal point also corresponds to a

smoothing filter window size of 15 seconds. The evaluation for other

meteorological parameters yields similar optimal configurations.

5.2.2 Comparison to Radiosonde Reference Data. In this section,

we compare a larger set of estimated meteorological data to refer-

ence data from radiosonde soundings. The SSR Mode S and ADS-B

channel data stem from 4 receivers located around the radiosonde

launch location in Payerne, Switzerland, with a maximal distance

of 60 km. The data spans a time of 2 hours around the time of the

radiosonde sounding at 12 UTC of 13 successive days in June 2016.

For the evaluation, we use the optimal configuration determined in

the previous sections for the decoder and the noise mitigation.

Figure 11 and Table 2 show the results of the evaluation with

radiosonde reference data. The corresponding distributions of the

collocation metrics are depicted in Figure 6. The temperature and
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Ref.
Parameter

Estimated data
RMSD

Parameter diff.
Units

data #AC #Collocations Mean Std.dev.

R
ad
io
so
n
d
e Temperature 700 212625 1.640 -0.114 1.636 °C

Wind speed 700 212223 4.136 0.090 4.135 m/s

Wind direction 700 212223 40.696 -0.999 40.684 °

Pressure 726 169042 4.223 0.103 4.222 hPa

C
O
S
M
O

Temperature 785 22273 2.379 -0.793 2.243 °C

Wind speed 774 21719 4.412 0.314 4.400 m/s

Wind direction 774 21719 51.929 4.838 51.703 °

Pressure 803 19505 3.510 0.504 3.474 hPa

A
M
D
A
R Temperature 8 15 5.983 -2.180 5.572 °C

Wind speed 8 15 3.651 -0.710 3.581 m/s

Wind direction 8 15 17.062 -10.075 13.770 °

Table 2: Metrics of the parameters estimated from air traf-

fic control messages when comparing them to radiosonde,

COSMO and AMDAR reference data (all altitude bins).

Figure 11: Vertical distribution of the deviation between the

parameters estimated from ATC messages and radiosonde

reference data.

wind are evaluated with more than 200,000 collocations and the

pressure with more than 165,000 collocations. The distribution of

the collocations over the altitude is visible in Figure 11. The pressure

exhibits a larger positive bias for lower altitudes. In contrast, the

error of the wind speed increases with increasing altitude. We

investigated if errors are related to particular aircraft models or

Figure 12: Vertical distribution of the deviation between the

parameters estimated from ATC messages and COSMO ref-

erence data.

aircraft operators but did not observe any correlation. The deviation

of the wind direction has a lot of variation. This is not surprising

since the reference data for the wind does show a lot of variation

as well.

5.2.3 Comparison to COSMO Reference Data. We evaluate our

estimated data by comparing it to the COSMO reference data of

eight consecutive days (6/1/2016 until 6/8/2016). We chose a maxi-

mum of 6m for the vertical distance of collocations and use other-

wise the same configuration as in the evaluation in Sections 5.1.2

and 5.2.1.

The resulting RMSD, mean and standard deviation values are

listed in Table 2. The vertical distributions of the deviation are

depicted in Figure 12. The results show that the bias for the tem-

perature, the wind speed and the wind direction is worse. For the

pressure the opposite is the case. The evaluation with COSMO

data exhibits a larger RMSD at low altitudes. In general, the bias of

the different altitude bins follows the bias of the evaluation with

radiosonde reference data. We suspect that the main reason for

the higher RMSD when using COSMO reference data is the dif-

ferent distribution and availability of the reference data. COSMO

reference data is only available at grid points and has a maximum

altitude of 12 km, whereas the maximum altitude for the radiosonde
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data is approximately 30 km and it is available for almost any al-

titude. Therefore the two methods have a significantly different

distribution of the collocation metrics (depicted in Figure 6). Fur-

thermore, the modeling of COSMO can cause deviations that do

not correspond to the conditions of the real world.

5.2.4 AMDAR Reference Data. The resulting metrics for the

AMDAR reference data are listed in Table 2. Again, we apply limits

to match points of the two data sets. This is necessary since the

AMDAR measurements are not produced at the exact same time

instances as the measurements derived from the air traffic control

messages. Furthermore, AMDAR data has a very coarse temporal

resolution and air traffic control messages derived measurements

are not always available due to lacking coverage or failed decoding

of necessary messages. We set the time difference limit to 2 minutes,

the vertical distance limit to 200 meters and the horizontal distance

limit to 6000 meters. The corresponding distributions of the collo-

cation metrics are depicted in Figure 6. We could only find a small

number of collocations (15) due to the small number of AMDAR

measurements and due to the limited coverage of the OpenSky

sensor network in the beginning of the AMDAR observation period.

Furthermore, not every AMDAR aircraft is yet equipped with an

ADS-B enabled transponder as the mandate for this technology will

only become effective by 2020. Since AMDAR data does not contain

the corrected altitude but only contains the pressure altitude, we

could not compare the pressure estimations.

Compared to the RMSD of the evaluation with radiosonde and

COSMO, the RMSD of the AMDAR temperature is relatively large

(5.98 °C). However, the comparison is biased since the vertical dif-

ference of the collocation, the parameter with the most influence

on the temperature, is set much higher in the case of AMDAR

(200m instead of 8m). The RMSD for the wind speed and the wind

direction are both better than for the other two reference data sets.

5.3 Density & Availability

To show how our method improves the number of aircraft that

can be used to infer meteorological parameters, we study further

the capabilities of existing aircraft and the amount of messages

that are available for our passive approach compared to active

interrogations by Meteorological Routine Air Report (MRAR) and

Meteorological Hazard Report (MHR). MRAR and MHR are both

extensions of Mode S to retrieve meteorological parameters from

aircraft which require modification and upgrades of the aircraft’s

equipment.

For the analysis, we rely on SSR Mode S/ADS-B data from eight

OpenSky receivers in three continents. For all receivers, a time

interval of two hours after 12:00 local time is used. Because not all

of the receivers were available at the same time, we chose different

days to extract the data. The message rate of the different receivers

varies due to the receiver type, the antenna, the obstruction of the

line-of-sight path and the location. We use the optimal decoder and

filter configurations determined in Sections 5.1.2 and 5.2.1. We do

apply outlier filtering, but we do not apply smoothing.

5.3.1 Transponder Equipage & Capabilities. The Mode S capa-

bility report (BDS 17) gives an indication of which message types

are supported by the aircraft even if they are not interrogated. We

(a) Based on information in capability report messages.

(b) Based on received messages.

Figure 13: Availability of different sources ofmeteorological

information.

analyze the capability reports of aircraft seen by the eight OpenSky

sensors. We only consider aircraft with non-varying capability re-

ports, i.e. the majority (> 70%) of the capability reports are identical

and for every aircraft we decoded the same capability report at

least three times. In order to normalize the number of supporting

aircraft across different receivers, we use the total number of air-

craft that send non-varying capability reports. Figure 13a depicts

the corresponding percentages of aircraft for the eight receiver

locations.

The results indicate that the messages which are required in

our method to estimate the temperature, wind and pressure are

available at every location. There is a tendency that the availability

of those messages is higher in the European area compared to

the locations on other continents. The exceptions, Washington,

Palmerston North and Oxford, might be influenced by the large

amount of intercontinental flights.

On average only approximately 4% of all aircraft report to sup-

port the meteorological message types MRAR and MHR. This num-

ber complies with the numbers stated in related work [22]. However,

67% of the aircraft support the messages that are needed in our

method, resulting in a much larger fleet of aircraft for parameter

estimation than the classical MRAR and MHR. Despite the ongoing

roll-out of MRAR and MHR, we expect this trend to remain valid

for many upcoming years.

5.3.2 Interrogated Data. To further understand which messages

types supported by the aircraft are actually interrogated, we evalu-

ate the number of received and decoded ADS-B and SSR Mode S

messages at the different OpenSky sensor locations. An aircraft

is counted for a message type only if the message type has been

decoded at least three times. In order to normalize the number

of aircraft across different receivers, we use the total number of

aircraft for which we decoded SSR Mode S or ADS-B messages.

This number gives an indication of how many aircraft are in the

air at the receiver location. Figure 13b depicts the corresponding
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Figure 14: Rate of observations for the different sensor loca-

tions.

percentages of aircraft for the eight receiver location. In Figure 14,

the corresponding rate of observations are depicted.

The results show that the availability of messages required for

temperature, wind and pressure estimation is higher in Europe.

Mainly the higher availability of Mode S Enhanced Surveillance

(EHS) messages in Europe contributes to this distribution. In North

America, themessages required for the pressure estimations are sent

by a larger number of aircraft. This indicates that the availability

of ADS-B messages is better compared to Europe. According to

our result, the meteorological Mode S messages (MRAR and MHR)

are transmitted nowhere. In the observed airspace, no interrogator

seems to request these message types. In contrast, our method

exploits commonly interrogated message types and provides on

average meteorological observations for 51% of the aircraft.

6 RELATEDWORK

Kapoor et al. presented a method to use machine learning and data

from flight tracking websites to obtain wind speed and wind direc-

tion information [14]. While our method also allows to derive the

wind speed and wind direction, we can further infer other meteo-

rological parameters such as temperature and pressure as required

for weather modeling and forecasting, which is not possible with

their approach.

De Haan et al. [4–9] and Hrastovec et al. [12] have investigated

the use of radar technologies to estimate meteorological parameters

of the atmosphere. However in these works, the data is obtained

directly from radar sites or from an ADS-C data provider while our

approach is to leverage crowdsourced air traffic control data. De

Leege [10] et al. investigate techniques to derive meteorological

parameters from passive ADS-B measurements only. These tech-

niques have very large mean estimation errors in the range of 9.2

kt and 29.0° for wind, 0.8 hPa for the pressure and 2 K for the tem-

perature which makes them unsuitable for assimilation in weather

models. De Haan et al. [7] and Stone et al. [20, 21] suggest passive

decoding of Mode S messages. Our work differs by making use of

crowdsourced air traffic control data for large-scale meteorological

monitoring.

Environmental monitoring, with or without the help of the

crowd, has been in the focus for pollution or air quality assess-

ment, e.g. [1–3]. In the contrary, our work focuses on retrieving

meteorological parameters of the atmosphere for weather model-

ing.

7 CONCLUSIONS

We have proposed to use crowdsourced air traffic control data

for upper air meteorological monitoring. We have designed, im-

plemented, and evaluated an approach to infer wind speed, wind

direction, temperature and air pressure from SSR Mode S and ADS-

B messages collected through the OpenSky Network. We show in

our evaluation, that our approach allows for estimating meteorolog-

ical parameters with average deviations to official weather agency

data of 0.11°C in temperature, 0.09 m/s in wind speed, 1.00° in wind

direction, and 0.10 hPa in air pressure.

In addition, we have evaluated the availability of the required

air traffic control data and compared it to other solutions which

require infrastructure updates on the aircraft. Our results show

that our approach based on crowdsourced data is able to derive

meteorological observations for more than 51% of all aircraft while

systems such as AMDAR and MRAR provide currently observation

data for only less than 1 percent of the aircraft in the considered

airspace. Our approach therefore opens new sensing opportunities

on a larger scale. In the future, we want to evaluate how weather

forecasting models can be improved by assimilating data as derived

in this work.
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