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Abstract— Cloud storage platforms promise a convenient way
for users to share files and engage in collaborations, yet they
require all files to have a single owner who unilaterally makes
access control decisions. Existing clouds are, thus, agnostic to the
notion of shared ownership. This can be a significant limitation in
much collaboration because, for example, one owner can delete
files and revoke access without consulting the other collaborators.
In this paper, we first formally define a notion of shared
ownership within a file access control model. We then propose two
possible instantiations of our proposed shared ownership model.
Our first solution, called Commune, relies on secure file dispersal
and collusion-resistant secret sharing to ensure that all access
grants in the cloud require the support of an agreed threshold
of owners. As such, Commune can be used in existing clouds
without modifications to the platforms. Our second solution,
dubbed Comrade, leverages the blockchain technology in order
to reach consensus on access control decision. Unlike Commune,
Comrade requires that the cloud is able to translate access
control decisions that reach consensus in the blockchain into
storage access control rules, thus requiring minor modifications
to existing clouds. We analyze the security of our proposals and
compare/evaluate their performance through implementations
using Amazon S3.

Index Terms— Cloud security, shared ownership, distributed
enforcement, blockchain technology.

I. INTRODUCTION

EVEN though the cloud promises a convenient way for
users to share files and effortlessly engage in collabora-

tions, it still retains the notion of individual file ownership.
That is, each file stored in the cloud is owned by a single
user, who can unilaterally decide whether to grant or deny any
access request to that file. However, the individual ownership
is not suitable for numerous cloud-based applications and col-
laborations. Consider a scenario where a number of research
organizations and industrial partners want to set up a shared
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cloud repository to collaborate on a joint research project. If all
participants contribute their research efforts to the project, then
they may want to share the ownership over the collaboration
files so that all access decisions are agreed upon among the
owners. There are two main arguments why this may be
preferred to individual ownership. First, a sole owner can abuse
his rights by unilaterally making access control decisions. The
community features a number of anecdotes where users revoke
access to shared files from other collaborators. Second, even
if owners are willing to elect and trust one of them to make
access control decisions, the elected owner may not want to be
held accountable for collecting and correctly evaluating other
owners’ policies. For example, incorrect evaluations may incur
negative reputation or financial penalties.

In contrast to individual ownership, we introduce a novel
notion of shared ownership where n users jointly own a
file and each file access request must be granted by a pre-
arranged threshold of t owners. We remark that existing
cloud platforms, such as Amazon S3 or Dropbox, provide
no support for shared ownership policies, and offer only
basic access control lists. In short, they are agnostic to the
concept of shared ownership. Furthermore, state-of-the-art
trust management systems that can support shared ownership
policies (e.g., SecPAL [1], KeyNote [2], Delegation Logic [3])
make all access decisions using a centralized Policy Decision
Point (PDP). This is not suitable for enforcing our shared
ownership model, because the user who administrates the PDP
can arbitrarily change the policy rules set by the owners and
enforce his own policies.

In this paper, we address the problem of distributed enforce-
ment of shared ownership within cloud storage providers.
By distributed enforcement, we mean enforcement where
access to files in a shared repository is granted if and only
if t out of n owners separately support the grant decision.
Therefore, we introduce the Shared-Ownership file access con-
trol Model (SOM) to define our notion of shared ownership,
and to formally state the given enforcement problem. We then
propose two instantiations of the SOM model to enforce
shared ownership policies in a distributed fashion.

This paper extends our previous work [4]. More specif-
ically, we provide additional formal details about the SOM
model. We also propose a new instantiation of the SOM
model, Comrade, that leverages functionality from the
blockchain in order to reach consensus on access control
decisions. Unlike the Commune framework proposed in [4],
Comrade requires cooperation from the cloud provider that
is expected to translate access control decisions that reached
consensus in the blockchain into storage access control rules.
Comrade, however, exhibits considerably better performance
than Commune. We deploy a smart contract instantiating
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Comrade within the Ethereum blockchain, connect it to
Amazon cloud storage [5], and compare its performance to
the one of Commune [4] with respect to the file size and the
number of users. We summarize our contributions as follows:
• We formalize the notion of shared ownership within a file

access control model named SOM, and use it to define a
novel access control problem of distributed enforcement
of shared ownership in existing clouds.

• We propose a first solution, called Commune, which
distributively enforces SOM and can be deployed in an
agnostic cloud platform. Commune ensures that (i) a
user cannot read a file from a shared repository unless
that user is granted read access by at least t of the owners,
and (ii) a user cannot write a file to a shared repository
unless that user is granted write access by at least t of
the owners.

• We propose a second solution, dubbed Comrade, which
leverages functionality from the blockchain technology
in order to reach consensus on access control decision.
Comrade improves the performance of Commune, but
requires that the cloud is able to translate access control
decisions that reached consensus in the blockchain into
storage access control rules, thus requiring minor modi-
fications of existing clouds.

• We build prototypes of Commune and Comrade and
evaluate their performance within Amazon S3 with
respect to the file size and the number of users.

The remainder of the paper is organized as follows.
Section II introduces our notion of shared ownership in a file
access control model. Section III details Commune and ana-
lyzes its security. In Section IV, we introduce Comrade and
analyze its provisions. Section V evaluates the performance of
Commune and Comrade through an implementation within
Amazon S3. In Section VI, we discuss further insights with
respect to Commune and Comrade. Section VII reviews
related work, and we conclude in Section VIII.

II. SOM: SHARED-OWNERSHIP FILE

ACCESS CONTROL MODEL

In this section, we define the concept of shared ownership,
and formally instantiate it in a file access control model dubbed
SOM. Our main motivation for constructing this model is
three-fold: (i) to precisely define the ideal set of features
that we believe a model, which enforces shared ownership,
should provide; (ii) to formulate the problem of distributed
enforcement more precisely by focusing on SOM’s formal
description; and (iii) to provide a point of reference to scruti-
nize SOM’s enforcement solutions, including our own.

A. The Notion of Shared Ownership

In a file system, we see the notion of shared ownership
as follows. Each file can have one or more owners, and they
collaboratively make an access decision.

To make this notion more precise, let an owner cre-
dential denote a pair (O, R), where R is a tuple
(Subject, File, Action), and O is one of File’s owners. Intu-
itively, an owner credential represents a (unilateral) decision
by an owner O to grant a request R.

We then define a T-out-of-N file access control policy, also
called a threshold policy, as follows:

Definition 1 (Threshold Policy): A T-out-of-N (threshold)
access control policy for a file File is a tuple
(T, Owners, File) where T is a number representing a
threshold, Owners are the File’s owners.

We define an enforcement function g : Reqs × TPolicies×
P(Creds) �→ {grant, deny}, where Reqs is a set of requests,
TPolicies is a set of threshold policies, and Creds is a set
of all possible credentials. Now we define shared ownership
enforcement as follows:

Definition 2 (Shared Ownership Enforcement): An
enforcement function g enforces shared ownership over File
and its threshold policy TPolicy when g(R, TPolicy, Creds)
maps to grant iff there are at least T many distinct
credentials (O1, R), . . . , (OT , R) in Creds, where each Oi

is in Owners and no two Oi refer to the same owner.
Intuitively, we say that a file access control model enforces

shared ownership if it implements a function g that correctly
enforces shared ownership.

B. SOM’s Overview

Given the general notion of shared ownership enforcement
from Definition 2, in the following we present a file access
control model that adopts this concept in the context of a file
access control model. It also further defines how ownership
can be delegated and revoked, and how files’ thresholds can
be changed.

Our model, dubbed SOM, takes files as the only protected
resources. We do not focus on directories (or other file
groupings). Each file is created by one user with the following
request:

U reqs Create(F)

Upon receiving this request, SOM tells a file system to
create a file F, assign the user U as the sole owner, and
initiate the file’s threshold to 1. SOM grants requests for
file creation from authenticated users as long as the new file
name is unique. To this end, we assume that the file system
authenticates U before processing his requests.

SOM allows the ownership over a file to be further shared
with, and also revoked from, a user U through the following
operations:
• Delegate(F, U) – Delegate ownership of the file F to the

user U, i.e., make U one of the owners of F.
• Revoke(F, U) – Revoke ownership of the file F from U,

i.e., remove U as an owner of F.

If an owner O wishes to delegate or revoke ownership from
U over F, then he issues a credential of the form:

O says Action(F, U),

where Action is either Delegate or Revoke. Intuitively, one can
think of a credential as a certificate by an owner to support
an action.

To decide whether a request for an ownership distribution or
revocation is in fact enforced for U, SOM consults the file’s
threshold t to determine how many different credentials U
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Fig. 1. SOM’s credential and request grammar. Words in italics are
non-terminating symbols.

needs from the file’s owners. For example, to gain ownership
of a file F with t = 2, U submits her request:

U reqs Delegate(F, U)

which is granted if two distinct owners of F , for example
O and O ′, issue the following credentials:

O says Delegate(F, U)

O ′ says Delegate(F, U)

The full credential and request grammar are defined in
Figure 1. To access a file, a user submits the following
requests: (i) Read(F) – Obtain F’s content; (ii) Write(F) –
Change F’s content; (iii) Delete(F) – Delete F. For example,
to read F, U submits:

U reqs Read(F)

Similarly to granting and revoking ownership, file access
requests are granted if t out of N owners issue the corre-
sponding credentials. For example, if the threshold for F is
still 2, then U can read F, if the following credentials are
present:

O says U can Read(F)

O ′ says U can Read(F)

where O and O ′ are F’s owners. We note that in SOM, each of
a file’s owners can, by default, read that file. However, writing
and deleting are still subject to a threshold even for an owner.
We find this to be a natural interpretation of shared ownership
when compared to unilateral ownership, where an owner has
full rights.

Note that successful additions and revocations of the owner-
ship effectively change the number of owners. This, however,
does not change the file’s threshold. Namely, since adding
new owners does not change the threshold t , then the original
fraction of owners required to approve file actions is lower.
To enable the owners to restore the ratio, or indeed set a new
one, the newT action can be used as follows:

O says NewT (F, told , tnew)

C. Formal Account

Intuitively, we formalize SOM’s semantics as follows.
We represent a file system state consisting of files, owners and
thresholds as a Datalog database [6]. This database consists

of a set of relations describing each file’s owners and its
threshold, and a set of clauses that axiomatize the definitions of
shared ownership. We translate a request and credentials into
Datalog clauses, which are evaluated over the current state and
threshold axioms. For example, file access is granted if a set of
credentials supports the grant (expressed as a Datalog query)
evaluated over the current state. Facts are added or removed
when a set of credentials supports a change of ownership or a
change of a particular threshold.

Since SOM’s semantics heavily depend on Datalog, we first
give a brief overview of Datalog and refer the reader to the
more extensive surveys [6]. A Datalog program is a finite set
of clauses of the form:

S← L1, L2, . . . , Lm

where S and Li are function-free first-order literals of the
form predicate(arg1, . . . , argn). We refer to S as the head of
the clause, and to Li as a body literal. We adopt the following
notation: a variable starts with the ? character, a constant starts
with a capital letter, and a predicate name starts with a lower-
case letter.

A clause with no body literals is called a fact. All clauses
are safe: all variables that appear in a head literal also appear
in at least one body literal. A Datalog program can be split into
two sets of clauses: EDB and IDB. EDB is a set of facts whose
head literals do not appear as head literals in any other clause.
All other clauses are in the IDB set. Intuitively, we think of
an EDB as an input for computing all implied facts by the
clauses in the IDB set. The declarative semantics of a Datalog
program are given by interpreting each clause as a first-order
sentence: ∀x̄ L1 ∧ · · · ∧ Li → S, and then taking a program
to be a conjunction of all its clauses. For each program P =
IDB ∪ EDB let σ(IDB ∪ EDB) = { f act | I(P) |	 f act},
where I(P) represents the first-order translation of P , and
|	 is the logical implication.

We formally define SOM’s semantics of request evaluations
in terms of a labeled transition system (LTS) (S, L,→).

A state s ∈ S is a tuple (Files, Users, Owns, Thresholds)
where Files denotes a set of strings representing file names,
Users is a set of users, Owns is a subset of 2Users×Files.
The Thresholds set is a subset of 2Files×N. For the sake of
brevity and presentation, we write Filess , to denote the Files
set of the state s (and similarly for other sets of s as well).
We can represent a state s as an (EDB) Datalog program sE D B

consisting of only the following facts:

file(F). only if {F} ⊆ Filess

user(U). only if {U} ⊆ Userss

owns(U, F). only if {(U, F)} ⊆ Ownss

threshold(F, N). only if {(F, N)} ⊆ Thresholdss

For the sake of simplicity, we assume a fixed set of Users
across all states, and we take s0 to be ({}, Users, {}, {}).

A label e ∈ L is a tuple (R, C), where R is a request creden-
tial submitted by a user, and C is a set of available credentials.
Credentials can be either submitted by a user, or kept in a
separate storage and simply appended to each request.
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Fig. 2. Transition rules for the → set of SOM’s LTS.

The→ set contains all (valid) transitions, defined as a triple
(s, e, s′). All the necessary and sufficient conditions for valid
transitions are given in Figure 2. We note that s and s′ are
equal in all aspects except if otherwise indicated.

Intuitively, all transition rules (except Create) require that
σ(T (C)∪A[s]∪ sEDB) |	 T (R), where s is the state in which
the request is received. T (C) are Datalog clauses generated
from e:

T (U says U′ can accessOp(F)) = says(U, U ′, accessOp, F)

T (U says U′ ownsOp(F, U′)) = says(U, U ′, ownsOp, F)

T (U says NewT (F, t, t′)) = says(U, NewT , F, T, T ′)

In the given translation, accessOp ranges over Write, Read,
and Delete; ownsOp ranges over Delegate, and Revoke. The
translation of R follows the same idea, except that we do not
generate says facts but rather queries that should follow from
the submitted speech acts.

T (U reqs accessOp(F) = can(U, accessOp, F)

T (U reqs ownsOp(F, U′)) = ownsOp(U ′, F)

T (U reqs NewT(F, t, t ′)) = changeT (F, T, T ′)
T (U reqs Create(F)) = create(U, F)

The set A[s] is a parameterized (on s) IDB program
containing necessary clauses to enforce a T-out-of-N access
control policy.

The first axiom allows owners to read their files:

can(?U, Read, ?F)← f ile(?F), owns(?U, ?F)

The second axiom is a template for the accessOp operations
Read, Write, and Delete:

can (?U, accessOp, ?F)← f ile(?F), user(?U),

threshold(?F, ?T ),

[[says(?U1, ?U, accessOp, ?F), . . . , says(?U?T , ?U,

accessOp, F), owns(?U1, ?F), . . . , owns(?UT , ?F),

?U1 �=?U2, . . . , ?U1 �=?U?T , . . . , ?U?T−1 �=?U?T ]]

Intuitively, this template axiom generates the necessary
clauses (by substituting accessOp with Read, Write, and
Delete). The generated clauses are further grounded on ?F

and ?T , i.e., on all files and their thresholds. The reason for
doing so is to correctly enforce the current (for the given
state s) threshold T for a particular file. In other words,
we need to generate the correct number of ?Ui variables for
each file and its threshold in s. To represent this dynamic
part of a clause (that is dynamically adjusted for each state),
we enclose it within [[ and ]] brackets. We note that the number
of variables that need to be generate is given by the ?T ’s value.

The same reasoning applies for the ownsOp axioms.
We replace (o|O)wnsOp with (d|D)elegate and (r|R)evoke,
in addition to grounding the clauses on ?F and ?T .

ownsOp(?U, ?F)← f ile(?F), user(?U),

threshold(?F, OwnsOp, ?T ),

[[says(?U1, ?U, ownsOp, ?F), . . . , says(?U?T , ?U,

OwnsOp, ?F), owns(?U1, ?F), . . . , owns(?UT , ?F),

?U1 �=?U2, . . . , ?U1 �=?U?T , . . . , ?U?T−1 �=?U?T ]]

In case of NewT, we ground the clause on ?F and ?T , but
omit it here due to space constraints.

Given these axioms and the transition rules, it follows that
SOM represents a correct implementation of an enforcement
function g given in Definition 2 for all requests, except when a
subject is a file’s owner as well and the action is a read action.
In this case, an owner is always given access. Clearly, we can
easily remove this provision from A[s], but we argue that it
is a natural provision to have in a file access control model.

D. Centralized vs. Distributed Enforcement

Given SOM’s description, the natural question to consider
is how to enforce such a model in a third-party cloud file
system that does not endorse shared ownership.

Current state-of-the-art distributed authorization logics—
such as SecPAL [1], DKAL [7], Binder [8], KeyNote [2]—that
could in principle express SOM’s axioms, enforce a policy
through a policy decision point (PDP), which evaluates a
given set of policies. However, a PDP always has one trusted
administrator who has full control over the PDP’s policies.
This administrator can clearly abuse his powers and modify
policies within his PDP and circumvent threshold policies,
which defeats the core idea of shared ownership.

We frame this concern as the SOM enforcement problem.
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Problem: How can SOM be enforced without granting one
owner unilateral powers?

III. COMMUNE: DISTRIBUTED ENFORCEMENT OF

SHARED OWNERSHIP IN AN AGNOSTIC CLOUD

This section presents Commune, our solution for distrib-
uted enforcement of the SOM access control policy in an
agnostic cloud. As SOM does not specify concrete file access
operations, we instantiate Commune with write and read
actions. Before introducing our solution, we outline our cloud
and attacker model.

A. Cloud and Attacker Model

We focus on a cloud storage platform, S, where a set
of users U have personal accounts onto which they upload
files. For example, users might set up their own personal
clouds [9], [10], or might create personal accounts in existing
public clouds. We assume that S authenticates users before
they get access to the platform. A user U ∈ U can unilaterally
decide who has access to files stored on his account. In
particular, S allows each user to define access control policies
of the type p : U × {write, read} → {grant, deny}. We also
assume that S correctly enforces individual access control
policies. This model reflects the functionalities provided by
existing cloud platforms, such as Amazon S3.

We focus on both external and internal adversaries.
An adversary may try to gain read access to a file even if
fewer than t owners have issued the corresponding credentials.
We refer to this adversary as a “malicious reader”. Alterna-
tively, an adversary, who has been granted write access by
fewer than t owners, may try to publish a file F as if F were
authored by a user who had been granted write access by
t or more owners. We refer to this adversary as a “malicious
writer”. We also consider sets of users who collude to escalate
their access rights.

B. Overview of Commune

Before describing Commune, we make the following
observations:

Observation 1: Commune’s files cannot be stored on a
single user account.

Following the discussion regarding the centralized enforce-
ment, a single user must not be charged with making unilateral
grant and deny decisions. Otherwise, that user may abuse his
rights and take unilateral access control decisions. A naïve
solution where a file is encrypted (e.g., using a key shared
among the owners) and the ciphertext is stored on a single
account, allows that account holder to, unilaterally deny read
access to the ciphertext. If the ciphertext cannot be read,
any mechanism to distribute or recover the encryption key
is of no help. We argue, therefore, that Commune cannot
use a centralized repository owned by a single user because
the repository owner can unilaterally grant or deny access to
the files stored therein. Our alternative is to use a “shared
repository”, which is an abstraction built on top of the owners’
personal accounts on S.

Observation 2: Commune cannot support in-place writing.

If Commune were to allow in-place writing, then users
who are granted write access could overwrite a file with
“garbage”. This would equate to granting users the right to
unilaterally delete the file, thus nullifying our efforts to prevent
such scenarios. A standard alternative to in-place writing is
to introduce “copy-on-write” mechanisms whereby a new
file is created upon each file write operation. To optimize
performance, Commune implements versioning and splits
files into units (i.e., the unit of granularity of versioning) so
that writing a new version of an existing file, only requires
updating the units that have changed with respect to the
previous version.

Observation 3: Commune cannot prevent users from dis-
seminating a file or a key through an out-of-band channel.

Access control solutions cannot prevent a user from dis-
tributing content through an out-of-band channel. A user who
rightfully reads a file, can leak it to third parties. Alternatively,
a rightful reader can share the key with S and thereby leak
the file. Similarly, a malicious writer can write a file and
disseminate it through an out-of-band channel. For example,
a user can publish files on his account on S and make them
available for others to read. We cannot prevent such behaviour.
Commune, however, must at least allow honest readers, who
abide to the protocol specification, to distinguish between the
content written by malicious writers and the content written
by honest writers.

Given these observations, Commune unfolds as follows.
At system setup, users define the set of n owners O and the
threshold t (with t ≤ n).1 Commune abstracts the storage
space of the owners’ accounts on S as the “shared repository”.
Each owner grants/denies read and write access on his account
to users (including other owners) according to his individual
access control policy. The distributed enforcement of the SOM
access control policy then follows from the enforcement of the
individual access policies set by each owner.

To write a file to the shared repository, the writer encodes
the file in tokens and distributes the tokens to the owners’
accounts. A file is written to the shared repository if and only
if the writer successfully distributes the file’s tokens onto at
least t owners’ accounts. That is, a user has write access to
the shared repository if and only if he has write access to at
least t of the owners’ accounts. We refer to such a user as an
“authorized writer”.

To read a file from the shared repository, the reader must
fetch the file’s tokens from at least t distinct owners’ accounts.
Therefore, a user has read access to the file if and only if he
has read access to the file’s tokens by at least t owners. We
refer to such a user as an “authorized reader”.

To securely enforce shared ownership policies, Commune
is designed to fulfil the following properties.

• P1: A malicious writer (i.e., a user who has been granted
write access by fewer than t owners), must not be able
to publish a file F as if F were authored by an authorized
writer.

1The selection of owners and the threshold t are outside of our scope.
In settings like scientific collaboration, these are agreed upon by the partners.



3024 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 13, NO. 12, DECEMBER 2018

• P2: A malicious reader (i.e., a user who has been granted
read access to a file F by fewer than t owners), must not
be able to recover the file content. This property must
also hold in case of revocation. Assume that, at the time
τ1, U has read access to F granted by at least t owners.
Also assume that, at the time τ2 > τ1, U has his access
rights revoked. This happens if, at the time τ2, some of
the owners decide to revoke read access to U so that U
is left with fewer than t read grants. We must ensure that,
starting from time τ2, U cannot recover meaningful bits
of F. We remark that, as is common for access control
systems, we cannot prevent U from storing a local copy
of F at the time t1 and reading it even after his read right
has been revoked.
Commune must also provide collusion resistance. That
is, coalitions of users—where no single user is an autho-
rized reader—must not be able to pool their credentials
to escalate their read access rights.

Property P1 ensures protection against malicious writers
who try to disseminate content despite lacking the required
credentials. Property P2 guarantees that malicious readers
cannot read content written to the shared repository.

Commune fulfils property P1 by design, through the
abstraction of the shared repository and the copy-on-write
mechanism (see Section III-E). Property P2 is fulfilled
through two cryptographic building blocks: Secure File Dis-
persal (SFD), and Collusion Resistant Secret Sharing (CRSS).
SFD ensures that malicious readers cannot acquire any infor-
mation about a file, even if they previously had access to the
file and were later revoked. CRSS builds atop SFD and ensures
that coalitions of users where no single user has enough
credentials to read the file, cannot pool their credentials in
order to escalate their read access rights.

In the following, we describe and analyze SFD
(Section III-C) and CRSS (Section III-D). In Section III-E,
we detail the integration of both building blocks in Commune.

C. Secure File Dispersal (SFD)

Information dispersal algorithms [11] encode a file in n
chunks so that any t chunks (where t ≤ n) are sufficient
to decode it. However, information dispersal algorithms do
not provide any security guarantees if the number of available
chunks is smaller than t: any party with fewer than t chunks
may still recover meaningful information about the original
file’s content.

Previous work on securing information dispersal algo-
rithms [12] combines erasure codes with All-Or-Nothing
Transforms (AONT) [13]. The latter is an efficient block-wise
transformation that maps an n-block bitstring in input to an
n′-block bitstring in output (with n′ ≥ n). AONTs are designed
in such a way that, unless all the n′ output blocks are available,
it is hard to recover any of the input blocks.

Existing AONTs [13], [14] leverage block ciphers and rely
on the secrecy of a cryptographic key that is embedded within
the output blocks. Given all AONT output blocks, the key can
be recovered; once the key is known, individual blocks can
be reverted, independently of other blocks. Current AONTs,

therefore, preserve their all-or-nothing property only for one
time: knowledge of the cryptographic key allows to revert
single output blocks and to recover parts of the original data.
This is at odds with our security requirements. As argued
before, we cannot prevent users from caching a local copy
of the file and reading it at later time when their read rights
may have been revoked. However, we still want to provide
revocation of a user who only stored the encryption key at the
time when he had read access to the file.

We therefore introduce a new scheme, called Secure File
Dispersal (SFD), that combines information dispersal algo-
rithms with an AONT that preserves its all-or-nothing property
even if the adversary has the encryption key.

Definition: An SFD scheme consists of the following
algorithms:

{c1, . . . , cn} ← SFD.Encode(t, n, F, K , λ).
Encodes a file F into n chunks, such that F can be
correctly decoded using any t chunks; K denotes a
key used in the encoding process and λ is a security
parameter.

F′ ← SFD.Decode(K , C, λ).
Takes as input a key K , a set of chunks C, and
security parameter λ; it outputs a file F′.

Correctness. Given {c1, . . . , cn} ← SFD.Encode
(t, n, F, K , λ) and F′ ← SFD.Decode(K , C, λ), we require
that if C ⊆ {c1, . . . , cn} and |C| ≥ t , then F′ = F.

Security.
We define the advantage of adversary A as follows:

AdvS F D(A) = Pr[ f ← A(K , C)|K ← {0, 1}l, l ≥ λ,

F = ( f1, . . . , fm )← {0, 1}mλ,

{c1, . . . , cn} ← SFD.Encode(t, n, F, K , λ),

C ⊂ {c1, . . . , cn}, |C|< t, f ⊆ F, | f | ≥ λ].
where f ⊆ F refers to a substring of F. We say that SFD is
secure if, for any p.p.t. adversary, its advantage is negligible
in the security parameter, i.e., AdvS F D(A) ≤ negl(λ). Our
security definition captures the scenario where, at an earlier
time, A was given enough chunks to decode F and has cached
a copy of the key K , while at current time he is only given
fewer than t chunks. Even if A has the key K , we require the
probability that A recovers any λ consecutive bits of F to be
negligible in the security parameter.

Instantiation. Our SFD scheme combines information dis-
persal techniques with AON-FFT, an all-or-nothing transfor-
mation inspired by Fast Fourier Transform.

Let E : {0, 1}4λ→ {0, 1}2λ be a semantically secure block
cipher (e.g., E(·) could correspond to 256-bit Rijndael [15],
with λ = 128).2 AON-FFT takes as input a symmetric key
K (of size 2λ) and m input blocks ( f1, . . . , fm) (each of size
λ). It executes in log2 m rounds and, at each round, applies
E(·) to pairs of blocks. Each round is fed with the output of
the previous round. The original input ( f1, . . . , fm ) is treated
as the output of round 0; the final output of the algorithm is
the output of round log2 m (cf. Figure 3). The pseudo-code of

2The key size is 2λ and the input/output size is also 2λ, totalling 4λ size
of input.
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Fig. 3. Sketch of the AON-FFT scheme where the input consists of m = 8
input blocks. Solid circles refer to the block cipher E(·), while empty circles
depict its input/output blocks.

Algorithm 1 AON-FFT(K , f1, . . . , fm)

1: Parse f1, . . . , fm as f 0
1 , . . . , f 0

m
2: for r ← 1 to log2 m do � round counter
3: for i ← 0 to m

2r − 1 do
4: for j ← 1 to 2r−1 do
5: f r

j+i·2r || f r
j+i·2r+2r−1 ← E(K , f r−1

j+i·2r ,

f r−1
j+i·2r+2r−1)

6: end for
7: end for
8: end for
9: return f r

1 . . . , f r
m as f̄1 . . . , f̄m

AON-FFT is shown in Algorithm 1. We omit the details of
the decryption algorithm since it is specular to encryption.

Given the pseudo-code of AON-FFT, our SFD scheme
unfolds as follows:

{c1, . . . , cn} ← SFD.Encode(t, n, F, K , λ).
Parse F as ( f1, . . . , fm) where each fi has size λ.
Run f̄1 . . . , f̄m ← AON-FFT(K , f1, . . . , fm). Use
the information dispersal encoder to encode
f̄1 . . . , f̄m in n chunks with reconstruction
threshold t .3

F′ ← SFD.Decode(K , C, λ).
Given a set of at least t chunks C and key K , use
the information dispersal decoder to decode blocks
( f̄ ′1, . . . , f̄ ′m). Run ( f ′1 . . . , f ′m)←
AON-FFT(K , f̄ ′1, . . . , f̄ ′m).

Correctness. If {c1, . . . , cn} ← SFD.Encode(t, n, F, K , λ),
any subset of at least t chunks {ci1 , . . . , cit } can be decoded
into the whole output of AON-FFT, namely f̄1 . . . , f̄m . Given
K , the output of AON-FFT can be decrypted to recover
F = ( f1, . . . , fm).

Security. Given the construction of our AON-FFT scheme,
it is easy to see that each input block depends on all output
blocks and on the encryption key. Furthermore, assuming
that E(·) is a semantically secure block cipher, for any
p.p.t. algorithm A, we have AdvS F D(A) ≤ negl(λ). More
details on the security of AON-FFT can be found in [4].

Note that a construct similar to AON-FFT, was first men-
tioned by Rivest [13] and later on used as a “proof of storage”
in [17]. Nevertheless, the construction proposed therein can

3SFD can leverage any information dispersal algorithm (e.g., Reed-Solomon
codes [16]).

use any pseudo-random permutation in the FFT network. Our
AON-FFT requires a keyed permutation, hence a block-cipher.
Furthermore, the goal of the adversary in [17] is to recover, in a
given amount of time, all output blocks. In contrast, the goal
of our adversary is to recover any input block. This entails a
different security analysis.

D. Collusion Resistant Secret Sharing (CRSS)

We now introduce our second building block, called Col-
lusion Resistant Secret Sharing (CRSS). Similar to threshold
secret-sharing schemes, CRSS allows one party to distribute
a secret among a set of designated shareholders, so that
any subset of shareholders of size equal to or greater than
the threshold can reconstruct the secret. Furthermore, CRSS
allows shareholders to issue to other users delegation to
reconstruct the secret. If a user collects enough (i.e., above the
threshold) delegations, he can rightfully reconstruct the secret.
However, users cannot pool their delegations to reconstruct the
secret, unless one of them has collected enough delegations.
In Commune, CRSS is used to secret-share the key K used
in SFD, in order to achieve collusion resistance.

CRSS is inspired by decentralized Attribute Based Encryp-
tion [18] where shares of a secret are blinded with shares of 0,
such that, if a user collects enough shares for his identity,
the blinding cancels out and the secret can be reconstructed.

Definition: Our definition of CRSS builds on top of a
standard threshold secret-sharing scheme SS with algorithms
SS.Share(·) and SS.Combine(·), to share and reconstruct a
secret, respectively. We assume SS to be secure according to
the Game Priv definition by Rogaway and Bellare [19]. That
is, we assume that an adversary has only negligible advantage
in identifying which out of two values was (t, n) secret-shared
using the SS.Share(·) algorithm, even if the adversary can
corrupt up to t − 1 shareholders and access their shares.

CRSS defines the following algorithms:

{s1, . . . , sn} ← CRSS.Share(s, t, n).
Shares secret s in a set of n shares {s1, . . . , sn} with
reconstruction threshold t .

di, j ← CRSS.Delegate(si , U j ).
Takes as input a share si and an user identity U j .
The output is a delegation di, j .

s′ ← CRSS.Combine({di1, j , . . . , dil , j }).
Combines delegations {di1, j , . . . , dil , j } into s′.

Correctness. Given {s1, . . . , sn} ← CRSS.Share(s, t, n)
and s′ ← CRSS.Combine({di1, j , . . . , dil , j }), we require that
if dip, j ← CRSS.Delegate(sip , U j ), for 1 ≤ p ≤ l and l ≥ t ,
then s′ = s.

Security.
We model the security of CRSS using an adaptation of

the Game Priv of [19] and we denote the refined game by
Game Priv∗:

Init. The adversary A submits two messages x0, x1
of equal length. The challenger flips an unbiased coin
b and runs {s1, . . . , sn} ← CRSS.Share(xb, t, n).
Find. A can submit two types of queries.
In Type-1 queries, the adversary can corrupt up to
t ′ ≤ t − 1 shareholders and receives their shares.
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At this time, A picks t ′ indexes i1, . . . , it ′ and
receives {si1 , . . . , sit ′ }. In Type-2 queries, for any
fresh identity U j , the adversary can ask for up to t ′′
delegations, as long as t ′ + t ′′ ≤ t − 1. A submits an
identity U j and t ′′ indexes i1, . . . , it ′′ , and receives
delegations {di1, j , . . . , dit ′′ , j }.
Guess. The adversary outputs his guess b′ and wins
if b′ = b.

We define the advantage of the adversary as the proba-
bility of its winning minus a half. That is, AdvPriv

∗
C RSS (A) =

Prob[Priv*A] − 1
2 . Therefore, we say that CRSS is secure

if any p.p.t. algorithm A has only negligible advantage in
winning Game Priv*.

The above Game Priv* models a scenario where a set of
malicious users, including up to t ′ shareholders, collects up
to t ′′ delegations for each of their identities. If t ′ + t ′′ ≥ t ,
the malicious shareholders can produce the missing delega-
tions for any of the colluding user identities, so that the secret
can be reconstructed by means of CRSS.Combine(·). Other-
wise, colluding users must not be able to retrieve the secret.

Instantiation. Our CRSS scheme is based on the threshold
secret-sharing scheme proposed in [20], which is defined as
follows:

gx , {x1, . . . , xn} ← SS.Share(−, t, n).
Pick a cyclic group G of prime order q where the
discrete logarithm assumption holds; let 〈g〉 = G.
Pick a random x ∈ Zq and set the secret to gx . Pick a
random t − 1-degree polynomial X with coefficients
in Zq , such that X (0) = x . Set the i -th share to
xi = X (i).

s′ ← SS.Combine({xi1 , . . . , xil }).
Given shares {xi1 , . . . , xil }, use polynomial interpo-

lation to recover the secret. That is s′ = g
∑p=l

p=1 xip λp

where λp =∏k �=p
1≤k≤l

xik
xik−xip

.
Note that in the above scheme, the secret is not given as

input to the Share algorithm; rather, it is set to gx for a
randomly chosen x . Given the above algorithms, our CRSS
scheme unfolds as follows:
{s, s1, . . . , sn} ← CRSS.Share(−, t, n).

Run SS.Share(−, t, n) to obtain gx , {x1, . . . , xn}.
Pick H (·) : {0, 1}∗ → G to be a cryptographic
hash function that maps random strings in G. Pick a
random t − 1-degree polynomial Y with coefficients
in Zq , such that Y (0) = 0, and denote yi = Y (i).
The secret is set to s = gx while each share is set
to si = (xi , yi ).

di, j ← CRSS.Delegate(si , U j ).
Parse si = (xi , yi ) and output di, j = gxi H (U j)

yi .
s′ ← CRSS.Combine({di1, j1, . . . , dil , jl }).

Run s′ ← SS.Combine({di1, j1, . . . , dil , jl }).
Correctness. If l ≥ t , then CRSS.Combine({di1, j , . . . ,

dil , j }) outputs

s′ =
p=l∏

p=1

(
dip, j p

)λi p =
p=l∏

p=1

(
gxi H (U j )

yi
)λi p

= g
∑p=l

p=1 λi p xip H (U j )
∑p=l

p=1 λi p yip

= gk H (U j)
0 = gk = s.

Security. The security of CRSS is based on the fact that,
in the random oracle model, delegations for different identities
cannot be combined to remove the blinding factor from the
secret. Assuming that H (·) is modeled as a random oracle
and that the discrete logarithm assumption holds in G, we can
show that any p.p.t. algorithm A has only negligible advantage
in winning Game Priv*. More details on the security of
CRSS can be found in [4].

E. Commune: Protocol Specification

Recall that Commune leverages a shared repository, which
is an abstraction of the owners’ storage space. The shared
repository uses a versioning system so that content cannot be
overwritten but only new content can be added. In particular,
Commune optimizes performance by splitting a file in smaller
units, and encoding/decoding each unit separately. Therefore,
when a new file version is written to the shared repository,
the writer only needs to upload the units that have changed
from the previous version.

Files written to the repository are encoded in tokens and
distributed across the owners’ accounts. Leveraging the basic
ACLs of S, owners define their individual policy on the
tokens in their accounts. The distributed enforcement of the
SOM policy is implied by the enforcement of each owner’s
individual policy on his tokens by S. Encoding must guarantee
both correctness and security of reading operations. Hence,
users who are authorized to read at least t tokens must be
able to decode the original file; users who are granted read
access on fewer than t tokens must not be able to recover
its content. Furthermore, users must not be able to pool their
credentials to escalate their access rights.

1) Create a File: File creation requires one user, the file
creator, to “bootstrap” the system and write the initial version
of the file into the repository. For this reason, we assume that—
at the file creation time—the file creator has been granted the
right to write new data to each of the owner’s accounts on S.

The file creator splits the file F into k fixed-sized units. For
each unit Fi , he runs {si , si1, . . . , sin } ← CRSS.Share(−, t, n)
to produce a fresh secret si and n of its shares. Secret si is
used as a symmetric key to encode the unit Fi in n chunks
using SFD. That is, the file creator runs {ci1, . . . , cin} ←
SFD.Encode(t, n, Fi , si , λ). The token of the unit Fi for
the owner O j is set to (ci j , si j ) (i.e., one chunk out-
putted by SFD.Encode(·) and one secret-share outputted by
CRSS.Share(·)). Finally, for each owner O j , the file creator
writes {(ci j , si j )}i∈[1,...,k] to O j ’s account on S. Each owner,
therefore, receives one token for each unit that constitutes F.

2) Grant/Deny Write Rights: An owner O j grants write
rights to a user Ul by granting to Ul the right to write new
data (i.e., tokens) to O ′j s account. Similarly, O j denies write
rights to Ul by denying Ul the right to write new data to O ′j s
account.

3) Update a File: Assume Ul wants to write a new version
of a file F. For simplicity, assume that the new version differs
from the previous one by only one unit Fi (the case where the
old and the new versions differ in several units is handled in a
similar fashion). At this point, some owners may allow Ul to
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write tokens to their accounts while others may not. Let O+
be the subset of owners who grant to Ul write rights to their
accounts. Similarly, let O− be the subset of owners who deny
to Ul write rights to their accounts. Ul can, therefore, only
distribute tokens to owners in O+. This scenario is equivalent
to the case where Ul distributes tokens to all owners in O, but
the ones in O− decide to reject the version produced by Ul

and make the received tokens unavailable.
Ul is an authorized writer and his version accepted

(i.e., considered as written to the shared repository) if and only
if |O+| ≥ t . In this case, there are at least t tokens for the
new unit, so it may be decoded by users who collect enough
credentials. If |O+| < t , user Ul is not authorized to write and
his version is rejected (i.e., considered as not written to the
repository), since there are not enough tokens to decode the
unit produced by Ul .

4) Grant/Deny Read Rights: Recall that for each unit Fi ,
an owner O j receives the token (ci j , si j ). O j can grant
to Ul read access to that unit by endorsing the token
for Ul and granting to Ul read access on the endorsed
token. Token endorsement requires O j to run di j,l ←
CRSS.Delegate(si j , Ul). The endorsed token (ci j , di j,l ) is then
made available by O j for Ul to read. If a file consists of
multiple units, O j must endorse all relative tokens for Ul and
grant to Ul read access on all endorsed tokens.

O j can revoke read rights that were previously granted,
by denying to Ul the right to read the previously endorsed
tokens.

5) Read a File: If the original file spans several units, Ul

must decode each unit separately in order to read the entire
file. That is, for each unit, he uses the set of endorsed tokens he
can fetch to recover the secret key via CRSS.Combine(·) and
then uses the secret key to decode the unit via SFD.Decode(·).
Note that for an authorized reader to read version x of
file F, he must fetch the latest endorsed tokens created
up to (and including) version x , for each unit that com-
prises the file. Assume user Ul is granted read access to
{(ci j 1, di j 1,l), . . . , (ci j t , di j t ,l)}. To recover Fi that user runs
si ← CRSS.Combine({di j 1,l , . . . , di j t ,l}) and then Fi ←
SFD.Decode(si , {ci j 1

, . . . , ci j t
}, λ). U j proceeds in a similar

way to recover all units of F that he has access to.

F. Security Analysis

User authentication rules out attacks from entities that do
not have an account on S. That is, if S correctly enforces
user authentication, non-registered users have no means to
access the platform or the (encrypted) data. Therefore, in the
following we only focus on internal adversaries, i.e., malicious
users who have an account at S.

From Sections III-C and III-D, it follows that given t tokens
of a file unit Fi (endorsed for a unique user identity), it is
possible to recover both the secret key used to encode Fi

and its AON-FFT ciphertext, so that the original file can
be decrypted. That is, users can read files written by honest
writers, if they are granted such right by at least t out of n
owners.

Property P1 (cf. Section III-B) is fulfilled as follows.
First, Commune uses copy-on-write to prevent writers from

overwriting content in the shared repository with garbage.
Second, malicious writers (i.e., writers with less than t write
permissions) are unable to distribute a file without honest
readers detecting it. In other words, a file is considered written
if and only if it is correctly encoded in tokens and those
tokens are distributed to and endorsed by at least t out
of n owners. Any content distributed through other means
(e.g., out of band channels) is recognized as malicious by
honest readers. We argue that detection of unauthorized files is
the only solution for protecting honest readers, because there
are no mechanisms to deter malicious writers from dissem-
inating arbitrary content (cf. Observation 3). We also stress
that honest readers can easily detect writers that distribute
polluted (i.e., non-decodable) tokens. Denial-of-service attacks
are, nevertheless, out our scope.

Property P2 is satisfied by combining CRSS and SFD. The
former ensures that coalitions of users, where no single user
has enough tokens endorsed for his identity, cannot pool their
endorsed tokens in order to escalate their access rights. The
latter addresses the case where at a time τ1 a user has access
to t or more tokens of a file unit Fi , but at a time τ2 > τ1,
his access rights are revoked. That is, at time τ2, the user
has access to fewer than t endorsed tokens. SFD ensures that
even if, at time τ1 the user may have cached the key used to
encode Fi , he will not be able to decode parts of Fi at time
τ2. Note that, once a user has access to the file, then he can
locally store any plaintext of his choice. Similar to other access
control schemes, Commune cannot deter this behavior.

Finally, given the guarantees that Commune makes for
write and read actions, it follows that Commune is a
(correct) solution for distributed enforcement of the SOM
access control policy.

IV. Comrade: BLOCKCHAIN-BASED SHARED OWNERSHIP

In this section, we present an alternative solution for enforc-
ing shared ownership in the cloud by leveraging function-
ality from the blockchain. Our solution, dubbed Comrade,
enables a distributed blockchain-based enforcement of the
SOM access control policy in a cooperative cloud. Unlike
Commune, Comrade does not assume an agnostic cloud,
and requires the cloud operator to cooperate and to interface
with the blockchain. Since SOM does not specify concrete
file access operations, we instantiate Comrade with write and
read actions. Before introducing our solution, we provide some
background on the blockchain and describe the system model.

A. Blockchain and Smart Contracts

The notion of blockchain was originally introduced by
the well-known proof-of-work hash-based mechanism that
confirms cryptocurrency payments in Bitcoin [21]. The PoW-
based blockchain ensures that all transactions and their order
of execution are available to all blockchain nodes, can be
verified by all involved entities and aids the consensus between
the parties. Bitcoin’s blockchain fueled innovation, and a
number of innovative applications have already been devised
by exploiting the secure and distributed provisions of the
underlying blockchain. Prominent applications include secure
timestamping [22], [23], and smart contracts [24].
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Smart contracts refer to binding contracts between
two or more parties that are executed by all blockchain
nodes. Namely, smart contracts implement state machine repli-
cation. Smart contracts typically consist of a self-contained
code and persistent storage available to all blockchain nodes.
For example, Ethereum [24] is a decentralized platform that
enables the execution of arbitrary applications (or contracts)
on its blockchain. Owing to its support for a Turing-complete
language, Ethereum (which currently also relies on PoW-based
consensus) offers an easy means for developers to deploy their
distributed applications in the form of smart contracts.

To make smart contracts more powerful, techniques have
been developed to securely insert real-world facts into
blockchains, such as TownCrier [25]. These facts, such as
weather information or flight delays, allow contracts to take
real-world events into account and to offer new functionalities.

B. Overview of Comrade

The main idea behind Comrade is that a smart contract can
instantiate a trusted third party that can evaluate user creden-
tials against owners access policies in a trustworthy manner.
This is a basic provision of the blockchain technology that
holds as long as the security assumptions on the blockchain
hold. (We will argue on those assumption in the security
analysis). Hence, in Comrade, a smart contract assists the
cloud’s PDP ensuring trustworthy handling of policies and
credentials. Differently from Commune, however, Comrade
needs the cloud to be “shared-ownership aware” and enforce
the policies defined by the smart contract. (Recall that we
assume the cloud to correctly enforce access policies.)

In more details, cloud accounts in Comrade are not owned
by users, but by a smart contract that is running within
a blockchain. We refer to such a smart contract by owner
contract and we rely on it to ensure access control as agreed
upon by the file owners. The cloud’s PDP makes access control
decisions by evaluating a standardized function within the
owner contract, as depicted in Figure 4. To grant or deny
access rights, the owners submit their votes to the owner
contract, which stores them in the blockchain. The PDP’s
decision then depends on the access control policy, encoded
in the owner contract, and data stored inside the blockchain,
i.e., owners’ votes or securely inserted facts.

To perform an action a on file F in Comrade, user Ul

proceeds as follows. Ul issues a standard access request to the
cloud storage. The request is authenticated using Ul ’s private
key. The cloud PDP determines the corresponding owner
contract for F and evaluates the hasAccess() function
inside that owner contract: hasAccess(F, Ul , a).
hasAccess() is evaluated based on the contract’s access

control policy, the owners’ votes and potentially additional
blockchain data. The derived access control decision is then
enforced by the cloud’s Policy Enforcement Point (PEP).
Notice that the cloud PDP performs this evaluation by
locally executing hasAccess() on the current state of
the blockchain, i.e., the evaluation triggers no action on the
blockchain and requires no fees.

The owner contract also manages the users. Users can
join the system by sending a request to the owner contract.

Fig. 4. Overview of Comrade . Access control decisions depend on the
evaluation of a smart contract executed within the blockchain.

For every user, the contract’s storage contains the user’s public
key, used for authentication and data encryption as explained
below. The storage also contains every user’s accounting bal-
ance. Finally, the contract contains procedures for initializing
and closing the cloud account.

Recall that the owner contract stores the votes inside its
storage. To minimize the overhead associated with such a
voting scheme (i.e., storage costs in the blockchain), Comrade
employs a hierarchical file structure and groups files into
directories. This allows users to issue a directory-specific
vote; votes on directories are valid for all contained files and
subdirectories (unless a more precise vote exists). We addi-
tionally group users into roles by leveraging role-based access
control (RBAC) [26]. RBAC allows full flexibility at higher
efficiency as owners only need to vote on access rights for the
roles.

Similar to Commune, we assume that the cloud provider
will enforce access control decisions correctly at all
time (although the provider might be interested in learning
the contents of files).

Comrade also ensures fair payment by all owners, protect
the cloud provider from free-riding, and punishes unfair behav-
iour. To do so, each user in Comrade makes a policy-defined
deposit at the owner contract at system setup. The owner
contract tracks each user’s balance (e.g., and punishes them
for delayed payments). To pay for cloud storage, the owner
contract forwards a part of the users’ deposits to a deposit
inside the cloud contract.

In turn, the cloud contract deducts the operational costs
from the deposit and requests the deposit to be refilled before
it reaches zero. Once it reaches zero, access to the cloud
resources is denied and after some grace period the cloud
resources are released.

Similarly, the owner contract requires users to restock their
deposit. Otherwise, the owner contract can impose sanctions,
e.g., deny certain access rights or ignore votes in case of an
owner. Such sanctions and the payment procedures are defined
as part of the owner contract which is visible to all owners at
contract creation. Notice here that different accounting policies
are feasible. For example, the owners can equally split the
costs, can ask users to pay a share of the costs or the policy
can dictate usage-based cost sharing where more active users
pay more.



RITZDORF et al.: TOWARD SHARED OWNERSHIP IN THE CLOUD 3029

In contrast to Commune, Comrade requires slight changes
to the cloud architecture. Namely, the cloud needs to provide
a blockchain interface to manage and pay for used cloud
resources. To offer such an interface, a single smart contract
per cloud provider is sufficient. We refer to such a contract
as a cloud contract. The cloud can monitor the state of the
cloud contract and perform the requested operations. Such an
interface seems realistic as cloud providers currently provide
more complex interfaces such as command-line tools or web
platforms. The cloud also needs a slight modification in its
PDP. Access control requests for cloud resources owned by
a smart contract are decided by evaluating a function inside
the matching owner contract. We refer to this as a blockchain-
aware PDP. Overall, Comrade only requires minor, inexpen-
sive changes in the cloud infrastructure.

We argue that Comrade ensures that the cloud provider
cannot be held accountable for collecting and correctly eval-
uating other owners’ policies. For example, incorrect evalu-
ations may incur negative reputation or financial penalties.
Instead, all votes are collectively evaluated by the blockchain
nodes. Moreover, Comrade allows for the first time the imple-
mentation of complex, distributed, event-based access control
policies that would considerably enrich the cloud offering.

C. Comrade: Protocol Specification
We now detail the operations of Comrade.
1) Create a File: During file creation, one user—the file

creator—writes the initial version of the file into the repository.
This requires the file creator to have write permissions for the
directory the file is created in.

The file creator also encrypts the file using a randomly
chosen file key before uploading it. The encrypted file is
uploaded as F using a write action. To securely distribute the
file key to Ui , the file creator also uploads wrapped keys Fk,Ui

containing the file key for file F encrypted with the public key
of user Ui . By default a file creator uploads wrapped file keys
for all owners. Notice that the access control policy for Fk,Ui

is defined such that a user U j can access Fk,Ui if and only if
U j = Ui and U j can access F.

2) Grant/Deny Write Rights: An owner O j grants write
rights for a resource F (and the associated wrapped file key)
to an entity Ul by submitting a corresponding vote to the
blockchain. The vote consists of a blockchain transaction
v(O j , Ul , write, F, D), as shown in Algorithm 2. Here, F
can be a file or directory, Ul can be a single user or a specific
role and D is grant or deny. Similarly, O j denies write rights
for F to Ul by voting against the access. Notice that access to
F also implies access to the associated wrapped file key.

3) Update a File: Assume Ul wants to write a new version
of a file F. Ul encrypts F using its file key and issues a
write action as described in Section IV-B. In case the owner
contract implements a threshold-based access control policy,
the request succeeds if there are at least t owner votes
in favour.

4) Grant/Deny Read Rights: Analogously to write rights,
an owner O j grants or denies read rights for a resource F
to an entity Ul by submitting a corresponding vote to the
owner contract. As mentioned earlier, this vote corresponds
to a blockchain transaction v(O j , Ul , read, F).

Algorithm 2 Sketch of Comrade Smart Contracts
1: function V(O, U , a, F, D) � Vote function
2: votes[O, U , a, F] = D � D = GRANT/DENY, a =

Action
3: end function
4:

5: function HASACCESS(F, U , a) � PDP function
6: grant← 0
7: O ← Owners[F] � Identifying File-Based Owners
8: for i ← 1 to |O| do
9: if votes[Oi , U , a, F] == GRANT then

10: grant← grant + 1 � Accumulating Owner Votes
11: end if
12: end for
13: return (grant ≥ threshold[A, F]) � Policy Check
14: end function

5) Read a File: Assume Ul wants to read a file F. Ul issues
a read request for F and Fk,Ui as described in Section IV-B.
In case the owner contract implements a threshold-based
access control policy, the request succeeds if there are at least
t owner votes in favour. Ul decrypts Fk,Ui using its private key
to obtain the file key and finally decrypts F.

D. Security Analysis

Since Comrade heavily rely on the security provisions of
the Ethereum blockchain, we start by analyzing the security
provisions of Ethereum and then explain how Comrade
correctly instantiates the SOM model.

1) Blockchain Security: Recall that all transactions issued
by the owners in Comrade are confirmed in the blockchain
by the validators/miners. As required for the security of the
underlying blockchain, we assume the standard safety condi-
tions particular to the underlying blockchain technology. For
instance, since Ethereum relies on Proof-of-Work, we assume
that the adversary cannot control the majority of the computing
power in the network (see [21] for further details). In practice,
we assume that the adversary does not affect the mining
process in Ethereum (i.e., does not act as a miner). Notice
that malicious miners can decide not to include the transactions
issued by the owners in Comrade. By doing so, the adversary
can attempt to delay the confirmation of transactions issued by
entities in Comrade for a short amount of time. Conforming
with the current operation of Ethereum, we assume that the
issuers of transactions will re-broadcast their transactions in
case they are not included in the subsequent block. This will
ensure that these transactions will be eventually confirmed by
honest miners in the system—as long as the majority of the
computing power harnessed in Ethereum is honest.

Moreover, we assume that the adversary cannot monop-
olize the connections of owners/nodes in the system. This
prevents the adversary from mounting Eclipse attacks [27] and
partial Eclipse attacks [28] to abuse consensus realization in
Ethereum.

Finally, the adversary can try to exploit any existing
vulnerability in the smart contract instantiating Comrade.
However, given that the contract features a small codebase,
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we assume that the contract can be formally verified to prevent
any such exploits from occurring in practice.

2) Comrade Security: Similar to Commune, in Comrade
user authentication at the server and at the owner contract rules
out external adversaries. Further, assuming that the aforemen-
tioned security provisions of the blockchain are met, the owner
contract essentially instantiates a trusted third party that
handles access policies and credentials. Moreover, since an
untampered log of the system is available from the blockchain,
computation of the contract can be publicly audited.

Each credential issued by an owner is instantiated by a
blockchain transaction that is confirmed within the blockchain
by the validator/miners. As such, the vote of an owner on an
access control decision is eventually taken into account by
the smart contract and persisted to the blockchain. Similarly,
access requests for a file by owners are processed, saved to
the blockchain, and evaluated by the smart contract against
the policy define by the owners of that file.

As such, malicious writers (i.e., writers who have been
granted write access on a resource by fewer than t owners)
are denied access by the cloud PDP according to the owner
contract. At the same time, copy-on-write prevents authorized
writers from overwriting content in the shared repository with
garbage (similarly to what happen in Commune).

Similarly, malicious readers (i.e., readers who have been
granted read access on a resource by fewer than t owners)
are denied access from the cloud’s PDP as it evaluates
the hasAccess() on the request of the malicious reader.
Further, we note that revocation is correctly enforced since
S evaluates access requests on the latest policy defined by
the owners. Also, Comrade is collusion-resistant by design,
because credentials granted by owners are issued against a
given user identity and cannot be pooled to escalate rights.

Finally, we note that cloud providers have to evaluate
hasAccess on every resource access. Since hasAccess
is Turing-complete, the cloud provider must protect against
resource exhaustion attacks, where clients trigger expensive
hasAccess functions. Therefore, the cloud provider can
define a maximum‘ number of execution steps for an evalua-
tion of hasAccess and charge the owner contract according
to the number of required execution steps. Notice that this is
a similar concept as the notion of gas in Ethereum 4. This
ensures fair payments across different tenants and defends
against resource exhaustion.

V. PROTOTYPE DESIGN & EVALUATION

In this section, we describe prototype implementation of
Commune and Comrade integrated with Amazon S3 [5] and
evaluate their performance.

A. Commune Implementation

We leverage Amazon S3 to instantiate S: for each user in U ,
we create personal accounts in Amazon S3, into which users
can upload content and for which users can define arbitrary
access control policies. In our implementation, we use Amazon
S3 access control features to distribute tokens from the file
creator to the set of owners O ⊆ U . In particular, we assume

4http://ethdocs.org/en/latest/contracts-and-transactions/

TABLE I

TRANSACTION FEES IN USD FOR OUR COMRADE PROTOTYPE

that each user sets up (i) one “temporary” folder where other
peers are granted write access, and (ii) one “main” folder
where endorsed tokens are stored and retrieved. When the file
creator wants to distribute a token to owner O j , he writes
the token to O j ’s temporary folder. Since no other user apart
from O j has read access to the temporary folder, the new
token is protected from unauthorized access. At this point, O j

can endorse the token for another user Ul by storing the token
in his main folder, and granting read access on it to Ul .

Our Commune prototype, implemented in Java, is a multi-
threaded client-side interface to repositories hosted on Amazon
S3. The client runs on a user’s machine and uploads/downloads
content to/from the repositories. The client’s implementation
of SFD leverages Rijndael [15] as the underlying block cipher
for AON-FFT and systematic Reed-Solomon codes [16] for
information dispersal. We chose a symbol size of 16 bytes,
and a security parameter λ = 128 bits.

To optimize performance, our prototype handles file unit
operations at a smaller granularity, called pieces. During the
creation of any file unit, the unit is split into pieces that are
processed in parallel. A token for each unit contains one output
chunk of SFD for each piece that composes the unit. The
piece size w is chosen such that tλ|w, where λ is the security
parameter and t is the required reconstruction threshold. This
condition ensures that (i) a piece can be encrypted in an integer
number of ciphertext blocks of λ bits, (ii) an encrypted piece
can be divided into an integer number of input chunks for the
Reed-Solomon encoder, and (iii) the size of each chunk of the
Reed-Solomon encoder/decoder is at least λ bits.

B. Comrade Implementation

We implement Comrade using solidity-based smart con-
tracts5 on the Ethereum blockchain and a python-based client,
which are all connected to a single Amazon S3 account,
owned by the owner contract. Since Amazon does not support
blockchain-aware PDPs yet, we implement the PDP in an
Amazon EC2 instance. The PDP has access to the S3 account
and makes all access control decisions based on the current
state of the blockchain. For every file access, our clients
contact the PDP.

For the deployment of our contracts, we use the existing,
public Ethereum blockchain. The owner contract with the
main logic of Comrade works follows. Clients vote on
the access control directly through Ethereum transactions.
Notice that we run tests on a private Ethereum [24] chain to
avoid paying transaction fees. Table I summarizes the fees.
The creation of our owner contract in Ethereum costs
$3.056 and $5.47 for 4 and 8 owners respectively. Granting
permissions costs $0.08 while uploading a new file incurs no
fees.

5Full smart contract code is available at https://gist.github.com/ritzdorf/
37ab1c3c57b9167c8418156a06c72b44

6At time of writing, the Gas price is 2·10−9 ETH where 1 ETH = $407.15.
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Fig. 5. Latency evaluation of our prototype implementations. Each data point is averaged over 20 measurements; where appropriate, we also provide
the corresponding 95% confidence intervals. Figure 5(e) splits up the latency into its different components. (a) Impact of the piece size. (b) Impact of the
reconstruction threshold. (c) Impact of the number of owners. (d) Impact of the unit size. (e) Runtime analysis for five different configurations of Commune
and Comrade below.

To support authentication with the PDP, every user registers
its public key within the owner contract. Since the storage
inside the blockchain is expensive, we use compact elliptic
curve cryptography (ECC) (since ECC public keys are smaller
than RSA keys). To access a file, a client establishes a TLS
connection to the PDP using its registered public key inside a
client certificate. The PDP identifies the client based on the key
and makes the access control decision by locally evaluating a
function of the owner contract. Similar to Commune, our
Comrade prototype breaks units up into pieces.

In our implementation, we require that the encrypted, shared
files and the wrapped keys are stored on Amazon S3. Notice
that, unlike Commune, no additional redundancy for stored
files is required in Comrade. Therefore, the wrapped keys
represent the only storage overhead incurred by Commune.
This overhead amounts to 36 bytes per wrapped key; hence
the storage overhead per file is 36 bytes times the number of
file owners. Notice that this is a negligible storage overhead
since most shared files are at least 1 MB in size.

C. Evaluating Single Unit Write/Read

We evaluate the performance of Commune and Comrade
for a single file unit write and read, with respect to (i) the piece
size w (default value w = 128 bytes), (ii) the reconstruction
threshold t (default value t = 4), (iii) the number of owners
n (default value n = 10), and (iv) the size of the file unit |Fi |
(default value |Fi | = 10 MiB).

We then change one variable at a time to assess its impact on
the system performance. For each configuration, we measure
the time required (i) to create and upload Fi (denoted by Write
in our plots), and (ii) to retrieve Fi (denoted by Read). These
latencies are measured from the initiation of the operation
until the output is available either in the repositories (for
Write) or on a local disk (for Read). We control for the

effect of caching by uploading random binary streams at each
repetition.

During Read, the Commune client fetches endorsed tokens
from t randomly chosen owners. Recall that a (t, n) sys-
tematic erasure code outputs t data chunks and n − t parity
chunks. Since data chunks need not be decoded, our evaluation
accounts for the average-case scenario where the probability
that a token contains a data chunk is bounded by t

n . Notice
that we do not evaluate the time required to grant read rights
(i.e., the time required to endorse a token or to submit a
blockchain transaction) since it does not depend on any of
the considered parameters.

Our results are depicted in Figure 5. For Commune,
we additionally monitor the runtime of the intermediate steps
for a number of configurations as shown in Figure 5(e).

Our evaluation shows that writing a new unit in Commune
(Write) is less expensive than reading it (Read) while the
order is reversed in Comrade. The former effect is due to
the overhead of thread synchronization when storing decoded
pieces on the local disk while the Write performance in
Comrade is due to the overhead of uploading wrapped keys
for all owners.

1) Impact of the Piece Size: Figure 5(a) shows the impact
of the piece size w on the latency. For Commune, a smaller
w leads to a smaller number of input blocks to the AON-FFT
scheme, which results in better performance since AON-FFT
requires log2 m rounds of encryption for m input blocks.
However, we experience higher latencies for very small values
of w, especially in the Read operation. This is due to the
thread synchronization overhead when writing data to disk.
For Comrade, a smaller w increases the overhead because
of additional synchronization while a larger w cannot benefit
from parallelism. Throughout the rest of the evaluation, we set
w = 128 B for Commune and w = 512 KiB for Comrade
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since they offer a good performance trade-off as shown
in Figure 5(a).

2) Impact of the Reconstruction Threshold: Figure 5(b)
shows the latency impact of the reconstruction threshold t .
In Comrade, the threshold does not influence latency as
shown in Figure 5(b). In Commune, the chunk size of the
Reed-Solomon encoder increases as t decreases; this results
in larger chunk upload and download times. Figure 5(e) also
shows that a smaller value of t results in longer encoding
and decoding times. On the one hand, during Write, small
values of t result in larger encoding overhead since the size
of the encoding matrix increases. On the other hand, during
Read, small values of t decrease the probability of recovering
data chunks (w.r.t. the probability of recovering parity chunks),
which makes decoding slower (cf. Figure 5(e)).

3) Impact of the Number of Owners: Figure 5(c) shows
that latency increases for Commune’s Read and Write as the
number of owners grows. The latency increase during Read
is due to an higher probability of fetching parity codes that
take more time to be decoded by the Reed-Solomon decoder.
During Write, this increase is caused by the creation and
distribution of additional tokens from the file creator to the
set of owners. The performance of Comrade is virtually
unaffected by the number of owners since the upload of
additional wrapped keys can be performed in parallel—thereby
resulting in negligible additional cost.

4) Impact of the Unit Size: Figure 5(d) shows Commune’s
and Comrade’s latency for different unit sizes. The time
required to read/write a unit increases almost linearly with the
unit size (Figure 5(d) relies on semi-logarithmic axes). How-
ever, the performance of Comrade is a magnitude faster than
that of Commune. The time required to read a 10 MB unit is
roughly 4.47 seconds for Commune, but only 0.81 seconds
for Comrade. As shown in Figure 5(e), this stems from the
fact that Commune’s latency is dominated by the encryption
and decryption as part of AON-FFT, while Comrade does
not leverage AON-FFT and therefore witnesses a considerably
lower latency.

D. Evaluating Multiple Units Read/Write

We now determine the peak throughput exhibited by our
prototype implementations. Here, we increase the number of
concurrently accessed units until the throughput is saturated.
We then compute the peak throughput as the maximum aggre-
gated amount of data in bits per second that can be transferred
between client and Amazon S3. Table II shows that the peak
read/write throughput is above 29 Mbps for Commune and
above 190 Mbps for Comrade.

We argue that, while Commune’s overhead might be
tolerable in low-throughput, high-latency scenarios such as
collaborative text editing where users work on content on their
local machines (and only periodically synchronize content
with the cloud), Comrade is a viable option in a wide variety
of application scenarios including those with more frequent
cloud interactions.

VI. DISCUSSION

In this section, we discuss further insights into the design
of and possible extensions of Commune and Comrade.

TABLE II

PEAK THROUGHPUT. EACH DATA POINT IS THE
AVERAGE OF 20 MEASUREMENTS

1) Transparency to Users: As explained, Commune
enables users to coordinate access control to cloud content
in a distributed manner. We stress that all the operations
in Commune are implemented by the client application
described in Section V. Users need not “manually” distrib-
ute or fetch tokens. In fact, users are only required to set the
list of owners for the files they create and to define the access
policy on the files for which they are appointed as owners.

In Comrade, the owners initially create the owner contract.
Afterwards, the owner contract acts as an orchestrator for
all users. Comrade transparently fetches ciphertexts and the
corresponding wrapped keys.

2) Changing threshold t: To maintain consistency in
Commune, we do not support the change of threshold t for
any file F. If an owner would want to change the threshold,
say from t to t ′, he would have to compute and distribute
new tokens to all owners in O. Then, all owners in O must
replace their old tokens with the newly received ones. Since
each owner has full rights on its tokens, there is no mechanism
to force all owners to accept these changes, and replace their
tokens. This can lead to an inconsistent state in which some
tokens correspond to a file version with threshold t , while other
tokens correspond to another version with threshold t ′. There-
fore, Commune does not support changing the threshold.

In contrast, Comrade supports changing threshold t by
modifying the owner contract. The owner contract defines
the requirements for such a change, e.g., agreement by all
owners. Once the requirements for a change are fulfilled,
the change takes effect and future evaluations of the owner
contract through the cloud PDP use the updated threshold.

3) Adding/Revoking Owners: Our model assumes that the
set of owners O is defined before file creation. Adding an
owner in Commune requires that either the original file
creator or at least t out of the n owners provide the new
owner with his set of tokens. However, revoking ownership
rights from an owner, say O j , may not be feasible since
tokens cannot be removed from O j ’s storage on S without his
consent. One possible solution would be to re-encode the file
and distribute new tokens to owners in O\{O j }. Nevertheless,
similar to the case of changing the threshold t , some of the
owners in O \ {O j } may decide to discard the new tokens and
keep the old ones—leading to an inconsistent state.

In Comrade, owners can be added and revoked through
the owner contract. The requirements for adding or revok-
ing owners are mandated by the owner contract which can
require e.g., the approval by a majority of owners. Afterwards,
the owner list inside the owner contract is updated and
new owner votes take effect (or obsolete owner votes are
disregarded).

4) Fine-Grained Per-Version Access Control: Commune
and Comrade enable owners to perform per-version access
control. That is, owner O j can, for example, grant Ul read



RITZDORF et al.: TOWARD SHARED OWNERSHIP IN THE CLOUD 3033

access to version x of a file F but deny Ul access to F’s
version x ′. In collaborative scenarios some versions of a given
file may contain information only intended for a subset of the
users (e.g., due to IPR protection).

Note that, due to versioning, a given unit may span several
versions of file F. Nevertheless, we argue that this is transpar-
ent to the user who only decides whether to grant/deny access
to a given version x , while tokens are handled by the client
application.

VII. RELATED WORK

Current state-of-the-art access control systems, such as
SecPAL [1], KeyNote [2], and Delegation Logic [3], can
in principle express t out of n policies. These languages,
however, rely on the presence of a centralized PDP component
to evaluate their policies. Furthermore, their PDPs cannot be
deployed within a third-party cloud platform. As explained in
Section II, these access control systems rely on an administra-
tor to define and manage access control policies. In our setting,
this means that a set of owners has to elect one enforcer who
has unilateral powers over their files.

Multi-Authority Attribute Based Encryption (MA-ABE)
[18], [29] is a powerful tool that may be used to address the
problem of shared ownership and allow multiple parties to
collaboratively control access to a shared resource. However,
most existing proposals for MA-ABE require a bilinear map,
hence they incur in expensive operations and rely on novel
cryptographic assumptions. In this paper, we rely on CRSS
instead. Although CRSS only allows threshold policies, it only
requires a cyclic group of prime order and relies on standard
assumptions. We argue that for the application at hand, thresh-
old policies are sufficient and therefore our system can benefit
from the low complexity of CRSS. Furthermore, MA-ABE,
just like CRSS, may only be used to regulate access to an
encryption key. Regulating access to large files requires a
different approach such as combining CRSS with SFD.

Secret sharing schemes [30] allow a dealer to distribute
a secret among a number of shareholders, such that only
authorized subsets of shareholders can reconstruct the secret.
In threshold secret sharing schemes [20], [31], the dealer
defines a threshold t and each set of shareholders of cardinality
equal to or greater than t is authorized to reconstruct the secret.
Secret sharing guarantees security (i.e., the secret cannot be
recovered) against a non-authorized subset of shareholders;
however, they incur a high computation/storage cost, which
makes them impractical for sharing large files.

Rabin [11] proposed an information dispersal algorithm
with smaller overhead than that of [31], however, his pro-
posal does not provide any security guarantees when a small
number of shares (fewer than the threshold) are available.
Krawczyk [32] combines both Shamir’s [31] and Rabin’s [11]
approaches; in [32] a file is first encrypted using AES and
then dispersed using the scheme in [11], while the encryption
key is shared using the scheme in [31].

Information dispersal based on erasure codes [16] are effec-
tive tools to enhance the reliability of cloud-based storage
systems [33]–[36]. Ramp schemes [37] constitute a trade-off
between the security guarantees of secret sharing and the
efficiency of information dispersal algorithms.

5) All or Nothing Transformations: All-or-nothing transfor-
mations were first introduced in [13] and later investigated
in [14] and [38]. The majority of AONTs leverage a secret key
that is embedded in the output blocks. Once all output blocks
are available, the key can be recovered and single blocks can
be reverted. Rivest [13] also mentioned a transformation that
is inspired by Fast Fourier Transform. Van Dijk et al. [17] later
on leveraged Rivest’s transformation to construct a “proof of
encryption” of files in the cloud. In this paper, we extend the
use of Rivest’s transformation to construct an AONT scheme,
that keeps its all-or-nothing property even if the adversary is
given the secret key. Resch and Plank [12] combine AONT
and information dispersal to provide both fault-tolerance
(i.e., decoding requires only t out of n shares) and data
secrecy (i.e., confidentiality is guaranteed w.r.t. parties that
collect fewer than t shares), in the context of distributed
storage systems. In [12], however, an adversary who caches
the encryption key can still decode single shares. In [39],
Karame et al. showed that by first encrypting the data then
post-processing it using a linear transform, one can construct
an encryption mode which provides similar guarantees as
all or nothing transforms, and with comparable performance.

VIII. CONCLUSION

Even though existing cloud platforms are used as shared
repositories, they do not support any notion of shared owner-
ship. We consider this a severe limitation because contributing
parties cannot jointly decide how their resources are used.

In this paper, we introduced a novel concept of shared
ownership and we described it through a formal access control
model, called SOM. We then propose two possible instan-
tiations of our proposed shared ownership model. Our first
solution, called Commune, relies on secure file dispersal
and collusion-resistant secret sharing to ensure that all access
grants in the cloud require the support of an agreed threshold
of owners. As such, Commune can be used in existing
agnostic clouds without modifications to the platforms. Our
second solution, dubbed Comrade, leverages the blockchain
technology in order to reach consensus on access control deci-
sion. Unlike Commune, Comrade requires that the cloud is
able to translate access control decisions that achieved consen-
sus in the blockchain into storage access control rules. Com-
rade, however, shows better performance than Commune.

Given the rise of personal clouds (e.g., [9], [10]), we argue
that Commune and Comrade find direct applicability in set-
ting up shared repositories that are distributively managed atop
of the various personal clouds owned by users. We therefore
hope that our findings motivate further research in this area.
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“Commune: Shared ownership in an agnostic cloud,” in Proc. SACMAT,
2015, pp. 39–50.



3034 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 13, NO. 12, DECEMBER 2018

[5] Amazon Simple Storage Service (S3) Accessed: 2018. [Online].
Available: http://aws.amazon.com/s3/

[6] S. Ceri, G. Gottlob, and L. Tanca, “What you always wanted to know
about Datalog (and never dared to ask),” IEEE Trans. Knowl. Data Eng.,
vol. 1, no. 1, pp. 146–166, Mar. 1989.

[7] Y. Gurevich and I. Neeman, “DKAL: Distributed-knowledge authoriza-
tion language,” in Proc. CSF, Jun. 2008, pp. 149–162.

[8] J. DeTreville, “Binder, a logic-based security language,” in Proc. IEEE
Symp. Secur. Privacy, May 2002, pp. 105–113.

[9] The Respect Network. [Online]. Available: https://www.respectnetwork.
com/

[10] WD My Cloud. [Online]. Available: http://www.wdc.com/en/products/
products.aspx?id=1140

[11] M. O. Rabin, “Efficient dispersal of information for security, load
balancing, and fault tolerance,” in J. Assoc. Comput. Mach., vol. 36,
no. 2, pp. 335–348, 1989

[12] J. K. Resch and J. S. Plank, “AONT-RS: Blending security and perfor-
mance in dispersed storage systems,” in Proc. FAST, 2011, pp. 1–12.

[13] R. L. Rivest, “All-or-nothing encryption and the package transform,” in
Proc. Int. Workshop Fast Softw. Encryption (FSE), 1997, pp. 210–218.

[14] V. Boyko, “On the security properties of OAEP as an all-or-nothing
transform,” in Proc. CRYPTO, 1999, pp. 503–518.

[15] J. Daemen and V. Rijmen. (1999). AES Proposal: Rijndael. [Online].
Available: http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.
pdf

[16] J. H. van Lint, Introduction to Coding Theory. New York, NY, USA:
Springer-Verlag, 1982.

[17] M. van Dijk, A. Juels, A. Oprea, R. L. Rivest, E. Stefanov, and
N. Triandopoulos, “Hourglass Schemes: How to prove that cloud files
are encrypted,” in Proc. CCS, 2012, pp. 265–280.

[18] A. B. Lewko and B. Waters, “Decentralizing attribute-based encryption,”
in Proc. EUROCRYPT, 2011, pp. 568–588.

[19] P. Rogaway and M. Bellare, “Robust computational secret sharing and
a unified account of classical secret-sharing goals,” in Proc. CCS, 2007,
pp. 172–184.

[20] C. Charnes, J. Pieprzyk, and R. Safavi-Naini, “Conditionally secure
secret sharing schemes with disenrollment capability,” in Proc. CCS,
1994, pp. 89–95.

[21] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,”
Tech. Rep., 2008.

[22] F. Armknecht, J.-M. Bohli, G. O. Karame, Z. Liu, and C. A. Reuter,
“Outsourced proofs of retrievability,” in Proc. CCS, 2014, pp. 831–843.

[23] F. Armknecht, J.-M. Bohli, G. O. Karame, and F. Youssef, “Transparent
data deduplication in the cloud,” in Proc. CCS, 2015, pp. 886–900.

[24] V. Buterin, “A next-generation smart contract and decentralized appli-
cation platform,” White Paper, 2016. [Online]. Available: https://github.
com/ethereum/wiki/wiki/White-Paper

[25] F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi, “Town Crier:
An authenticated data feed for smart contracts,” in Proc. CCS, 2016,
pp. 270–282.

[26] D. F. Ferraiolo and D. R. Kuhn, “Role-based access controls,” in Proc.
15th NIST-NSA Nat. Comput. Secur. Conf., 1992, pp. 554–563.

[27] E. Heilman, A. Kendler, A. Zohar, and S. Goldberg, “Eclipse attacks
on bitcoin’s peer-to-peer network,” in Proc. SEC USENIX Assoc., 2015,
pp. 129–144.

[28] A. Gervais, H. Ritzdorf, G. O. Karame, and S. Čapkun, “Tampering
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