
Secure Data Deletion from Persistent Media

Joel Reardon, Hubert Ritzdorf, David Basin, Srdjan Capkun
ETH Zurich

2013-11-05

1

Secure deletion: the task of deleting data
from a physical medium so that the data

is irrecoverable by an adversary.

2

Security Model: Coercive Adversary

A coercive adversary can:
Unexpectedly compromise all data stored on the user’s storage media
Obtain any secret keys / passphrases to access this data
Strike multiple times

Consequently:
No “extraordinary” actions can be taken to delete data
Any data the user can access when the adversary strikes is exposed to
the adversary

Models, for example, a subpoena

3

Data Life Timeline

data lifetime

data

creation

data

deletion

Time

4

3

2

1

4

Data Life Timeline

data lifetime unexposed

exposed

coercive

attack
Time

1 data

creation

data

deletion

5

Data Life Timeline

data lifetime unexposed

exposed

coercive

attack
Time

2

1 data

creation

data

deletion

6

Data Life Timeline

data lifetime unexposed

exposed

coercive

attack
Time

3

2

1 data

creation

data

deletion

7

Data Life Timeline

data lifetime unexposed

exposed

coercive

attack
Time

4

3

2

1 data

creation

data

deletion

8

Data Life Timeline

data lifetime unexposed

exposed

coercive

attack

coercive

attack
Time

4

3

2

1 data

creation

data

deletion

9

Persistent Storage Medium

Persistent Storage Medium is a storage medium that does not
provide deletion

Data written onto it is permanently available

We assume that an adversary who compromises it sees the entire
write history

10

So if we assume the adversary eventually compromises the
persistent storage, how can we securely delete anything?

11

Our Model

user

persistent

storage medium

securely−deleting

storage medium

e.g., tape archive, network traffic,

analog remnants, write−once media

e.g., piece of paper, smart card,

diligent santization, secure hardware

12

Background: Two Extreme Solutions

securely−deleting

storage medium

persistent

storage medium

securely−deleting

storage medium

persistent

storage medium

key (stored)

key (deleted)

data block (stored)

data block (deleted)
source encrypts destination

Legend

13

Background: Two Extreme Solutions

securely−deleting

storage medium

persistent

storage medium

securely−deleting

storage medium

persistent

storage medium

EA(B)

E

E

EB

2

3

C

F

1(D)

(D)

(D)

key (stored)

key (deleted)

data block (stored)

data block (deleted)
source encrypts destination

Legend

A

C

B E

E

B

C

2

3

A

EA

EA

(C)

(F)

EA 1(D)

(D)

(D)

14

Background: Two Extreme Solutions

securely−deleting

storage medium

persistent

storage medium

securely−deleting

storage medium

persistent

storage medium

key (stored)

key (deleted)

data block (stored)

data block (deleted)
source encrypts destination

Legend

15

Background: Two Extreme Solutions

securely−deleting

storage medium

persistent

storage medium

securely−deleting

storage medium

persistent

storage medium

key (stored)

key (deleted)

data block (stored)

data block (deleted)
source encrypts destination

Legend

16

Background: Static Tree Solution

storage medium

persistent

Legend

key (stored)

key (deleted)

data block (stored)

data block (deleted)

source encrypts destination

securely−deleting

storage medium

17

Background: Update Mechanism

storage medium

persistent

Legend

key (stored)

key (deleted)

data block (stored)

data block (deleted)

source encrypts destination

securely−deleting

storage medium

18

Static Tree Discussion

Tree size/shape is fixed for eternity
Cannot accommodate new data
Tree-depth fixed even when sparse

Proof of deletion is based on fixed shape

Dynamic structures (e.g., B-Trees, balancing trees, etc)
are more versatile

But the proofs become trickier with increased sophistication

19

Our Contributions

We present the key disclosure graph: a tool to model
and reason about worst-case adversarial knowledge
for persistent storage

We present a generic shadowing graph mutation: a graph
mutation that can express the update behaviour of arborescent
data structures and facilitates secure deletion

We characterize related work by their key disclosure graphs

We instantiate this solution with a B-Tree

20

Key Disclosure Graph

����������

k1

4k (D2) t1

k1

kE (D)
5 3k2

E (k)
4kE (k)

2 3

Derivable

Key Disclosure Graph

k2

5k (D)5 3

SDSM

Storage Media Content

t0time

value

PSM

k k4 1
E (k)k3 1 2 2

E (D) E (D)

k2
E (k)

5

3k (D1
)

1

1 2 3 4 5 1 2 3

datakeys

attack

time

21

Key Disclosure Graph

����������

k1

4k (D2) t1

k1

kE (D)
5 3k2

E (k)
4kE (k)

2 3

k1

t2

k6 4
E (D)k1

E (k)
6

Derivable

Key Disclosure Graph

k2

5k (D)5 3

SDSM

Storage Media Content

t0time

value

PSM

k k4 1
E (k)k3 1 2 2

E (D) E (D)

k (D6 4)

k2
E (k)

5

3k (D1
)

2

1

1 2 3 4 5 6 1 2 3 4

datakeys

attack

time

22

Key Disclosure Graph

����������

k1

4k (D2) t1 t2

k1 k1

k6 4
E (D)k1

E (k)
6k2

E (k)
5

kE (D)
5 3k2

E (k)
4kE (k)

2 3

k7

k 6
E (k)

7

k

k 27
E (k)k6 5

E (k)
Derivable

Key Disclosure Graph

6k (D4)

k2

5k (D)5 3

SDSM

Storage Media Content

t0time

value

PSM

k k4 1
E (k)k3 1 2 2

E (D) E (D)

3t

7

3k (D1
)

3

2

1

1 2 3 4 5 6 7 1 2 3 4

datakeys

attack

time

23

Key Disclosure Graph

����������

k

4k (D2) t1 t2 t4

k1 k1 k7

k 6
E (k)

7k 27
E (k)k6 5

E (k)

k6 4
E (D)k1

E (k)
6k2

E (k)
5

kE (D)
5 3k2

E (k)
4kE (k)

2 3

k1

Derivable

Key Disclosure Graph

4)

k2

7
5

SDSM

Storage Media Content

t0 t3time

value

PSM

k k4 1
E (k)k3 1 2 2

E (D) E (D)

3k (D)5
k (D6

3k (D1
)

k7

3

2

1

1 2 3 4 5 6 7 1 2 3 4

datakeys

attack

time

24

Key Disclosure Graph

����������

k1

k
k (D)5 3

4k (D2) t1 t2 t4

k1 k1 k7k7

t5

k 27
E (k)k6 5

E (k)

k6 4
E (D)k1

E (k)
6k2

E (k)
5

kE (D)
5 3k2

E (k)
4kE (k)

2 3

Key Disclosure Graph

6k (D4)

k2

7

SDSM

Storage Media Content

t0 t3time

value

PSM

k k4 1
E (k)k3 1 2 2

E (D) E (D)

Derivable

3k (D1
)

k

k

9

8 k10 11k (D 4)

datakeys
1 2 3 4 5 6 7 98 01 11

1

2

3

4

1 2 3 4

attack

time

k8

kkE (k)
10 11 11 4

E (D)k 4
E (k)

k 6
E (k)

7

3
E (k)kk8 10

E (k)kE (k
8 9

)
9

9

25

Secure deletion

Secure deletion of data requires:
when writing data, ensuring all previous values stored in the SDSM
cannot derive its key
when deleting data, determining all of the derivable ancestors in the
KDG and make them all underivable
ancestor relation based on the ever-growing KDG

How do we avoid storing the entire KDG?
require that in the KDG there is at most one unique path that connects
any pair of vertices
in graph theory, such a graph is called a mangrove

26

Mangroves

27

How do we ensure that the KDG is always a mangrove?
We use shadowed updates.

28

Shadowing

Shadowed updates is a technique in file systems
New versions of data are written to new (empty) locations
Old versions remains but are no longer valid
Anything that references the old version is also shadow-updated by
referring to the new location

We use keys instead of versions
Any change results in a new key being generated
to encrypt the new version
Key wrappers must then change to store the new key, etc.

29

Shadowing Mutation

30

Shadowing Mutation

31

Shadowing Mutation

32

Shadowing Mutation

33

Shadowing Mutation

34

Shadowing Mutation

35

Shadowing Mutation

Shadowing mutations can implement any arborescent
data structure

A shadowing mutation applied on a mangrove results
in a mangrove

Shadowing mutations do not permit old (pre-mutation) nodes to
access new (post-mutation) nodes

Computing the ancestors of a node requires only following its
unique path

36

Related Work

persistant storage: magnetic tape

securely−deleting: e.g., paper, floppy disk

update mechanism: re−encrypt keys with

 new master secret

persistant storage: communication channel

securely−deleting: trusted−third party

 to expiration times

update mechanism: master keys correspond

 Perlman’s Ephemerizer

persistant storage: flash memory

securely−deleting: reserved area of flash

 DNEFS

 in reserved area

update mechanism: erase flash memory

persistent and securely−deleting medium

are explicitly considered

update mechanism: re−encrypt keys on

 static path to root

 Di Crescenzo et al.
 Boneh and Lipton

37

We implement a caching B-Tree version of this solution.

38

Implementation

nbd_client

/mnt/btree

nbd_server at

localhost:9876

NBD_CMD_READ

NBD_CMD_WRITE

NBD_CMD_FLUSH

NBD_CMD_TRIM

B−Tree Impl

/mnt/persist

filebench

cp

svn co

etc.

mkfs

mount/dev/nbd0

KERNEL SPACE

TCP

/mnt/secdel

USER SPACE

39

Overhead Results
B-Tree block size

4 KiB 16 KiB 64 KiB 256 KiB

ge
n
er
al

total data blocks 6553600 1638400 409600 102400
tree height 5 3 2 2
cache size (nodes) 2048 512 128 32
MiBs sharing path 0.16 2.65 42.6 682.5

se
q
u
en
t. cache hits (%) 99.3 99.7 99.9 1

storage overhead (%) 2.4 0.6 0.1 0.03
comm overhead (%) 2.4 0.6 0.1 0.03
block size ovrhd (%) 0 5.3 26.3 58.1

ra
n
d
1k

cache hits (%) 64.7 59 43.2 73.8
storage overhead (%) 2.4 0.6 0.1 0.03
comm overhead (%) 1308.5 3129 8623.5 20671.4
block size ovrhd (%) 497.9 2293.2 9473 38191.8

ra
n
d
1m

cache hits (%) 99.2 98.9 96.5 95.5
storage overhead (%) 2.47 0.59 0.14 0.03
comm overhead (%) 4.9 3.7 7.8 17.7
block size ovrhd (%) 1 7.7 34.6 82.1

sv
n

cache hits (%) 99.2 98.9 96.5 95.5
storage overhead (%) 1.74 0.42 0.1 0.02
comm overhead (%) 4.4 4.9 5.4 2.6
block size ovrhd (%) 0 63.4 247.9 750.2

1

40

Summary and Future Work

Contributions
We introduce the key disclosure graph to characterize adversarial
knowledge growth for settings with a small securely-deleting medium
and a large persistent medium
We prove that a generic shadowing graph mutation preserves the
mangrove property on the KDG, facilitating secure deletion
We design and implement a B-Tree-based secure-deletion solution that
shows promising performance
We characterize related work as instances of our general model

Future Work
Extensively test our implementation with real-world workloads
Compare overheads against related work
Identify the best approaches for specific scenarios and workloads

41

