
Profiling for Miri
Practical Work Proposal

Supervisor: Max Vistrup

Abstract
Miri is an interpreter for Rust. It executes the program strictly according to the rules of the formal
abstract semantics of Rust. As such, it can detect most kinds of Rust undefined behavior (UB), and
is usually used to test whether a certain piece of Rust code has UB. Miri works by simulating the
Rust program step by step, checking all the UB rules at each step. For example, it checks whether
values are well-formed or whether data races are happening right now.

Unfortunately, this makes Miri quite slow. Some of this slowdown is expected: Since Miri does a
bunch of extra work for each step of the simulated program, it is expected that it takes much longer
to evaluate a complete program. But since Miri is already quite slow, performance regressions
often go unnoticed. Also, various features might be implemented in less-than-optimal ways, further
causing unnecessary slowdowns.

Goals
Before Miri can be made faster, it is necessary to figure out which parts of Miri are the main
bottleneck. So, the goal of this project is to extend Miri with support for profiling and performance
tracing, and to determine the main bottlenecks.

This is not as easy as it sounds: On the one hand, Miri has to do work to check all the rules of the
Rust abstract machine. On the other hand, Miri also has to run the actual code, which might just
be slow. Of course, this is not a clean separation: Some code is slow because it uses features that
then in turn make Miri do more work to check all the abstract machine/UB rules. The specific goal
is to find ways of measuring which category (or what overlap of categories) is responsible for the
high execution time, and also nice ways of visualizing this.

Some possible tools that could be useful for this are tracing-chrome, a crate that can use “tracing”
infrastructure (which already somewhat exists in Miri, but would need to be extended/adjusted) to
produce files that can then be viewed with the Chrome trace viewer, and tracy – but this is not a
full survey; part of the project would involve determining the right tool for this task.

This profiling and measuring on its own would already be a huge improvement, since it lays the
foundation for later optimizing some of the slow parts.

Optional Goals

Actually making Miri faster is not a required goal of the thesis. This is because we are not really
sure how much potential for optimization is there, due to the missing profiling. But this does not
mean that you are forbidden from optimizing Miri. Such optimization attemps should however be
guided by profiling data, instead of being ad-hoc.

Requirements
• Knowledge of Rust is required

https://plf.inf.ethz.ch/people/person-detail.html?persid=317592
https://github.com/rust-lang/miri
https://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html
https://crates.io/crates/tracing-chrome
https://github.com/wolfpld/tracy


• A good grasp of computer performance, asymptotic vs. actual runtimes, how the cache or
profiling works, . . . is advantageous. (Un)fortunately, there is no single course we can
require here. The following courses seem to teach some of it, so having done well in any is
advantageous:

– 252-0028-00L: Digital Design and Computer Architecture and 252-0026-00L: Algorithms
and Data Structures should cover the basics

– 263-0007-00L: Advanced Systems Lab goes into detail
– 263-0006-00L: Algorithms Lab should leave you with a good understanding of peformance,

as well
– Having experience with Competitive Programming can help as well

Further Reading
In 2023, Ralf gave a talk about Miri and undefined behavior, which was recorded. For more on
undefined behavior, see this for an explainer targeting C programmers (but many of the same
principles apply to Rust).

https://www.vvz.ethz.ch/Vorlesungsverzeichnis/sucheLehrangebot.view?semkez=2024S&&lerneinheitscode=252-0028-00L
https://www.vvz.ethz.ch/Vorlesungsverzeichnis/sucheLehrangebot.view?semkez=2023W&&lerneinheitscode=252-0026-00L
https://www.vvz.ethz.ch/Vorlesungsverzeichnis/sucheLehrangebot.view?semkez=2023W&&lerneinheitscode=252-0026-00L
https://www.vvz.ethz.ch/Vorlesungsverzeichnis/sucheLehrangebot.view?semkez=2024S&&lerneinheitscode=263-0007-00L
https://www.vvz.ethz.ch/Vorlesungsverzeichnis/sucheLehrangebot.view?semkez=2023W&&lerneinheitscode=263-0006-00L
https://blogs.ethz.ch/acmicpc/about-acm-vis/
https://www.youtube.com/watch?v=svR0p6fSUYY
https://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html

	Abstract
	Goals
	Optional Goals

	Requirements
	Further Reading

