Introducing Concurrency to MiniRust

Bachelor Thesis Project Description

Yannik Wyss

Supervised by Prof. Ralf Jung
ETH Ziirich

December 2022

1 Problem Description

MiniRust[1] is both a language and an operational
semantics. The MiniRust project aims to define
a precise specification of Rust’s semantics. Since
the goal is not just to define the semantics, but
also to communicate it to the programmer, the
specification is written as an interpreter. In the
greater picture, MiniRust is a proposal for the
soon-to-be-formed operational semantics team of
Rust. The MiniRust language is condensed to
a small core, far from the feature richness of a
language like Rust. This is by design. It is much
easier to translate Rust into MiniRust and define
MiniRust precisely, compared to defining Rust
directly.

This work adds concurrency to MiniRust. As a
first goal, it adds some necessities like extending the
machine to allow for multiple threads, adding in-
trinsics for creating and joining threads, and adding
basic synchronization methods like locks or atomic
memory accesses. As an extension, the detection of
data races could be added.

2 Approach

In this section, the key contributions needed for
concurrency in MiniRust are outlined.

2.1 Extension of the Machine

To allow for concurrency, a threading system must
be added to the machine. In a PR[2] to miri, this
is done by replacing the global stack and program
counter with a ThreadSet. Each of these threads
will then have its own private stack and program
counter. This system also needs a scheduler to de-
cide the order in which threads will make progress.

2.2 Intrinsics

Threads need a way to be created and joined.
Therefore, this work must add intrinsics to
MiniRust, which allow for these actions. In Rust,
the intrinsic to create threads takes a function
pointer as an argument. This is currently not pos-
sible in MiniRust, since it does not have function
pointers. There are two possible approaches to this
problem. The intrinsic could use the current sys-
tem, taking a FnName as an argument. Another
option is to change the current system to work with
function pointers.

2.3 Synchronization

For concurrency to be useful, we need to coor-
dinate between threads. An example would be
locks. Locks can be used to create critical sections,
in which we can be sure that the thread is the
only one in that critical section. Locks can be
provided by the system. It can then manage queues
for blocked, waiting, and runnable threads. The
scheduler can be extended to take this information
into account when it chooses the next thread to
make progress.

Other synchronization methods include atomic
memory operations. When writing sequential code,
the default memory accesses are thought to hap-
pen in a fixed order. In reality, this is not the
case. The compiler is allowed to move those instruc-
tions around to increase efficiency, as long as the
behavior doesn’t change in a sequential execution.
This becomes an issue once we want to use memory
operations to communicate between threads. For
this reason special atomic memory operations are
added. They are understood as communication be-
tween threads and are not to be reordered by the

compiler. We additionally need a mechanism to
keep the programmer from using default memory
operations for communication. Therefore such in-
teractions, called data races are undefined behavior.

2.4 Data Race

Intuitively, a data race is a situation in the exe-
cution of a program where multiple threads try
to change the same location at the same time.
As mentioned before, this is undefined behavior,
which means that the abstract machine is allowed
to interpret those instructions in any way possible.
By definition, a program contains a data race if
there is a reachable program state where there are
two distinct threads for each of which the next
operation is a memory access, both accesses are to
the same location, at least one write, at least one
non-atomic. [3]

When designing a system to detect those data
races, we can exploit that MiniRust is primarily in-
tended for verification. This means that every pos-
sible program trace will be checked. It is therefore
sufficient for our system to detect the data race in
one of those traces. The idea is to keep a set of all
memory operations executed by a statement. If the
next statement is then executed by another thread,
we can check the set and find any conflicting oper-
ations.

3 Core Goals

The core goal of this thesis is to implement basic
concurrency for MiniRust.

3.1 Machine and System extension

Extend the machine to allow for multiple threads
to run concurrently. Add intrinsics like create and
join for concurrency.

e Extend the existing interpreter without remov-
ing its core idea of being humanly understand-
able.

e Understand and decide what intrinsics are

needed for concurrency.

3.2 Synchronization
Create basic synchronization methods like locks.

e Implement locks

e Adding intrinsics for atomic memory accesses.

4 Extension Goal

Some more extension goals might be added during
the work.

4.1 Data Race Detection

Extend the memory or thread system to detect data
races. The goal here is to do it in a Sequential
Consistent setting, where changes to the memory
are seen by all threads at some defined time.

e Analyze the solution space and decide on
a well-suited solution considering the design
goals of MiniRust.

e Implement the solution.

4.2 Synchronization Extended

There is a wide range of synchronization methods
that could be useful when the machine implements
them. An example would be semaphores.

e Implementing additional

methods

synchronization

References

[1] R. Jung, “minirust: A precise specification
for ”"rust lite / mir plus”.” [Online]. Available:

https://github.com/RalfJung/minirust

[2] V. Astrauskas,
for concurrency

“Implement basic support
(linux/macos only).” [On-

line]. Available: https://github.com/rust-
lang/miri/pull/1284/

[3] “Rustbelt.” [Online]. Avail-
able: https://plv.mpi-

sws.org/rustbelt /popl18 /paper.pdf

