
Adding Pointer Support to Miri’s FFI
Bachelor Thesis Project Description

Lucas Werner
Supervised by Prof. Dr. Ralf Jung

Programming Language Foundations Lab, ETH Zürich

April 3, 2024

1 Introduction
Rust[1] is an emerging programming language
with strong emphasis on safety, speed and
concurrency. To achieve speeds comparable
to other common low-level systems languages,
Rust code is compiled through several layers
of intermediate representation where optimiza-
tions may extensively transform a user’s code.
This works well with the strong program invari-
ants enforced through Rust’s type system and
ownership memory model, which are exploited
on various levels of Rust’s program analysis.

Figure 1: The various compilation stages of the
Rust compiler and where Miri fits into this.[2]

A special point of interest is Rust’s mid-level
intermediate representation (MIR), where a
number of optimization passes are be per-
formed before LLVM takes over at a lower level
of compilation. MIR code at this stage can be
run through an interpreter for various useful
purposes: Miri[3] is able to make use of MIR
interpretation to detect undefined behaviour
(UB) in Rust programs, notably inside unsafe

blocks. For this, Miri keeps track of an ex-
tended program state, including memory ini-
tialization and pointer provenance[4] to detect
when uninitialized or out-of-bounds memory is
accessed.
Special care needs to be taken when a given
program tries to call an external function. Miri
currently recognizes a basic set of common such
functions whose behaviour it knows how to
handle. Miri is also able to execute arbitrary
native functions as long as they only take in
and return integer values. In all other cases
Miri currently does not know how to handle its
bookkeeping of the program state when inter-
acting with native code, and aborts.
The goal of this project is to extend Miri in
such a way as to allow for calling external na-
tive code that makes use of pointer arguments.
The benefit of this would be to enable Miri to
run and test a much larger class of real-world
Rust programs that rely on native code not ex-
plicitly reproduced inside Miri, such as func-
tions accessible through the C FFI.

2 Approach

Extending how Miri is able to execute these
foreign functions requires specific, well-adapted
changes in parts of its existing codebase.

2.1 Memory Layout and Alignment

Miri is already capable of executing native code
that handles integers. However, when we need
to pass a pointer this is a problem for Miri
since the data actually lives in Miri’s “inter-

1



Bachelor Thesis Project Description Adding Pointer Support to Miri’s FFI

preter memory” via Allocations. To allow na-
tive code to access this memory we need to en-
sure that the data bytes inside the Allocation

and the pointer we pass to the code actu-
ally match. For this the implementation needs
to ensure proper byte alignment of allocated
datastructures.

2.2 Initialization and Pointer Prove-
nance

Miri Allocations not only store the allocated
data they represent, but also which bytes
are currently initialized (i.e. valid to access)
and for pointers specifically something called
pointer provenance. Pointer provenance is nec-
essary in the context of pointer optimizations
to ensure a pointer does not ‘access memory
that it is not supposed to.’[5] Pointer prove-
nance in Rust exists but is still a matter of
research, and therefore still a subtle source of
UB, and which Miri can keep track of.
Miri needs to decide what state its interpreter
memory is in after a call to native code returns.
Since the focus is not on dealing with the cor-
rectness of external code itself, we make some
assumptions:

• We assume the foreign function call is
well-behaved (does not cause UB when
called from correct code).

• We assume the foreign call might have
change the initialization of any bytes it
had access to, and therefore mark them
as initialized.

• We assume the foreign call might have
changed the provenance of pointer bytes
it had access to. Since we cannot
guess the precise provenance, we set their
provenance to Miri’s built-in Wildcard.

It is important to note that if the native code
follows nested pointers then we have to deal
with the changed states for those allocations
too.

3 Core Goals
The central goals to be achieved in the project
are as follows:

I. Implementing proper access to Miri’s
memory for a native code call that takes
in a pointer, as described in 2.1.

II. Implementing proper handling of Miri’s
extended allocation state (initialization,
provenance) for a native code call that
takes in a pointer, as described in 2.2.

The core goals only cover native code handling
existing allocations. A more challenging goal
would be to handle new allocations originating
from native code; see extension goals.

4 Extension Goals
Additional relevant issues are defined to be ex-
tension goals, consisting of the following:

I. Try loading an actual C library. Achiev-
ing this would suggest that the core goals
were achieved well enough to already be
amenable for practical usage of certain,
actual C libraries when running Miri.

II. Implement a mechanism to let Miri han-
dle memory that was newly allocated and
returned from inside a C call.

5 Schedule
To accommodate for delays a schedule tighter
than six months is laid out:

Core Goals. 10 weeks.

Extension Goals. 6 weeks.

Writing. 4 weeks.

References
[1] Rust Programming Language, https://www.

rust-lang.org/.

[2] Scott Olson, Miri, An interpreter for
Rust’s mid-level intermediate representa-
tion, https://solson.me/miri-slides.pdf.

[3] Miri, https://github.com/rust-lang/miri.

[4] Rust has Provenance (RFC 3559),
https://rust-lang.github.io/rfcs/

3559-rust-has-provenance.html.

2

https://www.rust-lang.org/
https://www.rust-lang.org/
https://solson.me/miri-slides.pdf
https://github.com/rust-lang/miri
https://rust-lang.github.io/rfcs/3559-rust-has-provenance.html
https://rust-lang.github.io/rfcs/3559-rust-has-provenance.html


Bachelor Thesis Project Description Adding Pointer Support to Miri’s FFI

[5] Rust has Provenance (Pointers Are Com-
plicated II, or: We need better lan-
guage specs, https://www.ralfj.de/blog/

2020/12/14/provenance.html.

3

https://www.ralfj.de/blog/2020/12/14/provenance.html
https://www.ralfj.de/blog/2020/12/14/provenance.html

	Introduction
	Approach
	Memory Layout and Alignment
	Initialization and Pointer Provenance

	Core Goals
	Extension Goals
	Schedule
	References

