
Implementing Enums in MiniRust

Bachelor Thesis

Timon Meyer

Programming Language Foundations Lab
Swiss Federal Institute of Technology (ETH) Zurich

Supervision

Prof. Dr. Ralf Jung

E-mail address: timeyer@ethz.ch
ETH student ID: 21-922-935

Submission date: March 24, 2024





Abstract

Rust is a low-level programming language with a strong focus on safety. By
design it eliminates many sources of mistakes that programmers can make
using a combination of its rich type system and ownership model for data.
However, it is lacking in a specification of its operational semantics on ma-
chine level. This is where MiniRust comes into play. MiniRust is a project by
Prof. Dr. Ralf Jung to provide a reference interpreter and memory model that
together give the operational semantics. Regrettably it still lacks many fea-
tures, one of which was the enum datatype that is central to Rust. Enums
feature prominently in types like Option<T> and Result<T, E> that sig-
nify either that a value might not exist or a result of an operation that might
fail. This thesis adds the enum datatype to the MiniRust project, enabling it
to model many more programs.

i



Acknowledgements

I want to thank Prof. Dr. Ralf Jung for his great support on how to present
my work and his directions when I did something the unnecessarily hard way
again.

I further want to thank all the members of the Programming Language Foun-
dations Lab and Programming Methodology Group at ETH who came to my
presentations on the topic and asked good questions that gave me a hint at
where I needed to elaborate my explanations.

ii



Contents

Abstract i

Acknowledgements ii

1 Introduction 1

2 Background 3
2.1 Rust enums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Thesis related MIR . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Never Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 Memory representation . . . . . . . . . . . . . . . . . . . . 10
2.1.4 Undefined Behavior (UB) . . . . . . . . . . . . . . . . . . . 12
2.1.5 Unsafe Rust . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Ferrocene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 MiniRust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Type Handling . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.2 Place expressions . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.3 Tuples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.4 Toolchain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Implementation 19
3.1 MiniRust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 Enum type . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.2 Enum variants . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.3 Discriminator . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.4 Enum type well-formedness . . . . . . . . . . . . . . . . . 23
3.1.5 Enum values and representation relation . . . . . . . . . 25
3.1.6 Variant constructor . . . . . . . . . . . . . . . . . . . . . . . 26
3.1.7 GetDiscriminant and SetDiscriminant . . . . . . . . . . . . 26

iii



3.1.8 Variant Downcast . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.9 Switch terminator . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Minimizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.1 Enum type minimization . . . . . . . . . . . . . . . . . . . 28
3.2.2 Further changes and implementations . . . . . . . . . . . 29

4 Evaluation 31
4.1 GetDiscriminant validity . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Using variant types instead of fields . . . . . . . . . . . . . . . . . 34
4.3 Additional representable enums in MiniRust . . . . . . . . . . . . 35
4.4 Minimize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Conclusion 39
5.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40



1. Introduction

This thesis is about implementing the operational semantics of Rust enums in
MiniRust. Rust[1] as a programming language has become very popular due
to its safety guarantees, while being fast and allowing to write low-level code
at the same time. It does so by combining a powerful type system with an
ownership model. The type system is heavily inspired from functional pro-
gramming and its arithmetic data types. One class of those data types are
sum types which in Rust are represented by the enum and features promi-
nently in the standard library with the Option<T> and Result<T, E> . Since
those types signify an optional value or a result of an operation which can fail,
they are used everywhere.

Rust is missing a specification for its operational semantics on machine level.
There is Ferrocene[2] which, for its qualified Rust toolchain for safety-critical
systems, has a specification of the operational semantics of Rust. However,
it is written in plain English and considers differences between the specifica-
tion and the compiler to be a mistake of the specification. This is one of the
reasons why the MiniRust[3] project exists. This project by Prof. Dr. Ralf Jung
aims at providing the operational semantics of Rust by giving a reference in-
terpreter and a memory model. While MiniRust is still lacking many features,
enum data types are added as part of this thesis.

It starts in chapter 2 with a detailed explanation of what enums in Rust are
and how they work, to then to give an overview of MiniRust and how it han-
dles types. Using this information, chapter 3 will explain the model of enums
together with the implementation of their semantics, giving the reasoning
behind. Finally, chapter 4 will discuss some formal aspects of enums and their
implementation in MiniRust. It ends with an overview on what Rust programs
that use enums can now be modeled.

1



2



2. Background

2.1. Rust enums

Before enums can be added to MiniRust one first has to understand how
enums work in Rust.

In Rust an enum is a type that has different variants. Each variant can have
named or unnamed fields, as shown in listing 1. A variant without fields is
called fieldless.

1 enum MyEnum {
2 FieldlessVariant,
3 UnnamedFields (Int),
4 NamedFields { name: String, some_field: bool },
5 }

Listing 1: An example enum. Int is an arbitrary precision integer.

Each value of an enum is of exactly one variant. For example a value of
MyEnum could be a FieldlessVariant or UnnamedFields(42) or some
other value for a variant, but only one of those at a time.

This is the main difference between an enum and a union. In a union the
underlying data is accessed as the type given by the member, but multiple
members might be valid.

Each enum variant is identified by an enum-wide unique discriminant. This
discriminant is encoded into enum values which then allows the program to

3



4 2.1. Rust enums

discern of which variant a given value is. Therefore the set of possible values
for each variant can be described by tuples of the discriminant and its fields.
Then the set of possible values for the enum is the union of the values for
each variant. This is sometimes called the disjoint union of the variants.

If in the example given in listing 1 the discriminants were assigned 0 for
FieldlessVariant , 1 for UnnamedFields and 2 for NamedFields then
the sets of values for the variants would be as follows:

VFieldLessVariant = {(0)}
VUnnamedFields = {(1, i) | i ∈ Z}
VNamedFields = {(2, s, b) | s ∈ VString, b ∈ {0, 1}}
VMyEnum = VFieldLessVariant ∪ VUnnamedFields ∪ VNamedFields

Rust’s type system is heavily inspired by functional programming languages
like Haskell which use algebraic data types for combining variables. The two
most common classes of algebraic types are product types, which in Rust are
implemented as structs and tuples, and sum types which in Rust are imple-
mented as enums. The classes got their name because of how the set of all
possible values is constructed. For product types it is the cartesian product
and for sum types it is the disjoint union. Product types allow any combina-
tion of values for the types while sum types allow any value for a variant, but
not multiple variants at once.

As the word "disjoint" indicates, Rust strictly enforces the invariant that each
value is of exactly one variant. After a variant was constructed (for example
with MyEnum::UnnamedFields(42)) there is no way for the programmer to
change which variant is used for this value. But since the type of the value is
the enum type there is no way to access the fields like in structs, where the
name or index of the field can be used to access it. For a programmer there
is no way of downcasting the enum type into one of its variants.

However, Rust provides pattern matching which can be used to match an
enum value against the variants of the enum. This then allows the program-
mer to access the fields. There are many forms how pattern matching can be
used as shown in listing 2 on the next page.



Chapter 2. Background 5

1 /// This function will try to access the 'Int' in
2 /// 'MyEnum::UnnamedFields' in four different ways.
3 pub fn access_the_integer(my_enum: MyEnum) {
4 // most common: using a 'match' statement.
5 match my_enum {
6 MyEnum::UnnamedFields(i) => {
7 println!("Got Int! {i}");
8 },
9 _ => {},
10 }
11

12 // if-let, useful when the other values do not matter.
13 if let MyEnum::UnnamedFields(i) = my_enum {
14 println!("Got Int! {i}");
15 }
16

17 // while-let, useful for polling until some end value.
18 while let MyEnum::UnnamedFields(i) = my_enum {
19 println!("Got Int! {i}");
20 break;
21 }
22

23 // let-else
24 // useful if only fields of this variant are used later.
25 let MyEnum::UnnamedFields(i) = my_enum else {
26 return; // we need to exit the function otherwise
27 }
28 println!("Got Int! {i}");
29 }

Listing 2: Accessing the field of the enum through various pattern matches.



6 2.1. Rust enums

2.1.1 Thesis related MIR

As the previous section showed, the Rust programming language seriously
limits how the programmer can interact with enums. Modeling those very
high-level interactions in a reference interpreter would be tough and indeed
MiniRust’s interpreter does not operate on such code. Instead it operates
on a language that strongly resembles the Rust middle intermediate repre-
sentation (MIR). Code generation in the Rust compiler runs through multiple
stages. First the program code gets parsed into the high-level intermediate
representation (HIR). This then gets lowered into the middle intermediate
representation (MIR). Finally, the code gets lowered into bytecode generating
backends like LLVM to produce the executable. On each intermediate repre-
sentation the compiler performs various optimizations and transformations.

What does the Rust middle intermediate representation look like? Since it
only concerns the code, the MIR of a program is a collection of functions.
Each function is defined by basic blocks, in which all statements are being run
one after each other. A statement may modify the execution environment, for
example Assign assigns an RValue to a Place , effectively storing a value
somewhere in memory. RValues represent a single computation of a value,
like mathematical operations or loading a value from a Place . Places de-
scribe how to access a value in a local variable. They give a local variable and
then apply projections on it, which can modify the pointer to the value in the
local variable and its type. Depending on the type those projections might
be a field access or an offset.

RValues only read from the execution environment, they do not write to it.
The statements all modify the execution environment.

Control flow is handled by the terminators of the basic blocks. They describe
which block to execute next, possibly depending on some condition. Ex-
amples for terminators are Return , which returns from this function, or
SwitchInt , which switches to the next block, depending on the result of
an integer-like RValue .

This very clear structuring of code into control flow, execution environment
modification, computations and value accesses makes it a lot easier to argue
about a given program. For this reason most Rust-specific optimizations are



Chapter 2. Background 7

done on this level. This makes it a good basis for MiniRust, especially after
considering that this representation can be accessed from the Rust compiler
API which is used to translate Rust programs to MiniRust.

1 fn foo(_1: u32) -> u64 {
2 let mut _0: u64; // define local _0 as return value
3

4 // start basic block 0
5 bb0: {
6 // assign to the place of the local _0
7 // the RValue of the cast of the local _1 to u64
8 _0 = move _1 as u64 (IntToInt);
9 return; // terminator returning from the function.
10 }
11 }

Listing 3: Example MIR of a function that converts a u32 to a u64.

Listing 3 gives an example on what the MIR for a very simple function looks
like when it is printed in a human-readable format. This highlights the main
issue of the MIR: No high-level programming language would use such a syn-
tax, as the intent of the program is hidden behind all the effects of individual
statements.

The following paragraphs go into more detail for parts of the MIR that are
relevant to enums, because they interact with them directly or indirectly.

Aggregate RValue
In Rust, Enum variants or structs are constructed from their fields in one go.
This enforces that all fields are initialized at the moment of assignment.

Comparing this to initializing fields in a Java class, it could happen, that who-
ever writes the constructor forgets to initialize a field. This can lead to un-
expected behavior later during execution. Rust’s design prevents such pro-
gramming mistakes.



8 2.1. Rust enums

SetDiscriminant statement
Earlier versions of the Rust compiler did actually split the aggregate assign-
ments into individual field assignments during a transformation of the MIR
called "deaggregation". Those field assignments were then followed by a
statement to write the discriminant, SetDiscriminant . Later the deaggre-
gation step got moved further down the compilation pipeline, but for exam-
ple async coroutines still use the original SetDiscriminant statement to set
the state of the coroutine.

Discriminant RValue
In order to have control flow that depends on the discriminant, it has to be
read from the enum value. This is done using RValue::Discriminant .

SwitchInt terminator
The main control flow terminator of the MIR is SwitchInt which works sim-
ilar to C’s switch case . It switches to a branch determined by the value of
the integer, bool or char it was given. It also has a fallback for the cases
which are not explicitly specified.

Further down the compilation pipeline this might be compiled into a series
of conditional branches or a branch table, depending on both computer ar-
chitecture and the kind of value being switched on.

Variant downcast
The most important projection for enums is the Downcast projection which
projects a specific variant onto this Place . This tells the compiler which vari-
ant should be considered for further projections, like for example accessing
the fields of the enum variant.

Note that this downcast cannot be done by the programmer manually and
has been generated by the compiler in an earlier stage, which ensures that
the downcast is always correct. An example for this is Pattern matching on
enum variants. When it reaches the MIR it has been transformed into a switch
on the discriminant. In the subsequent blocks the enum value can be safely
downcast based on the discriminant required to reach the block1.

1This assumes that the enum value is correct if the discriminant could be read, leading to
some issues described later in chapter 4.1.



Chapter 2. Background 9

Field access
After a Place of an enum value has been downcast into a variant, the fields
can be accessed using a Field projection. Applying this field projection on
the Place of an enum value without a Downcast is considered invalid MIR.
The field projection would have no idea to which variant the accessed field
belongs, and therefore also not know the type and location of the field.

2.1.2 Never Type

Sometimes code cannot return, like for example in listing 4. The loop will
continuously execute f without end, and therefore the function will return
nothing. With no value there is also no type, making it impossible to write
function signatures. Rust’s solution to this is the Never type ! . It signals that
any value with this type can never occur, meaning it cannot be instantiated
or read in any way.

1 /// Calls the function f forever.
2 fn do_forever(f: impl Fn() -> ()) -> ! {
3 loop {
4 f();
5 }
6 }

Listing 4: Function running the same function forever.

This is different from the more known unit type () returned by f in listing 4,
of which there is exactly one value. In other languages like C the unit type is
more commonly known as void .

While Never is not related to enums in Rust, it has the same semantics as
an enum with no variants (zero-variant enum)[4], because to instantiate an
enum means to instantiate a variant. Such an enum could also never be read.
The two ways of reading from an enum value are by downcasting it into a
variant which is impossible with no variants, or by calculating its discriminant.
But with no valid discriminant this has to fail as well.



10 2.1. Rust enums

The only difference between a zero-variant enum and the Never type is that
the Never type can be coerced into any other type.

2.1.3 Memory representation

In order for MiniRust to specify the state of the execution environment for
the operational semantics it will have to deal with the bits and bytes that are
manipulated in the computer executing the code. This poses the question on
how to represent the mathematical concept of enums from chapter 2.1 as a
combination of discriminant and fields in memory.

The data of the fields has to be encoded as usual, since Rust allows references
to those fields. Dereferencing those references should not deal with the fact
that those fields are part of an enum. The discriminant, however, can be en-
coded more freely. It may not overlap with data, but otherwise the compiler
is free to do what it wants. The encoded discriminant is called the tag and
the method of conversion is called tag encoding.

The first tag encoding used in the compiler is called the direct tag encoding.
In this case the tag is just another field containing the discriminant. The ex-
ample in listing 6 shows the memory representation of the specialization for
Option<T> from the standard library shown in listing 5 for a byte u8 . The
discriminants are automatically assigned 0 for None and 1 for Some(T) . It is
important to mention here that the actual memory representation is unsta-
ble and might be subject to change[5]. This example refers to the output of
the Rust compiler at the time of this thesis2.

1 enum Option<T> {
2 None, // None automatically gets discriminant 0.
3 Some(T), // Some automatically gets discriminant 1.
4 }

Listing 5: Option<T> as in the standard library.

2This would be the nightly version of rustc 1.78.0 from 29th february, 2024.



Chapter 2. Background 11

Value: Bytes:

Some(42) tag data
0x01 0x2A

Listing 6: Memory representation of Option<u8>

While this way of encoding enums is simple, it often is not space efficient.
Consider the specialization of Option for references (Option<&R>): Direct
tag encoding would use 64 bits to encode the reference and add a field of at
least one bit for the tags of the two variants. Due to the alignment require-
ments of the reference this would blow up the size of the Option<&R> to 128
bits.

This can be improved by using the niche tag encoding. Rust references are
not allowed to be null . The compiler uses this information to find out that
the data of Some(&R) has a so-called niche with an invalid value, 0. Further-
more, None has no data at this place in memory. So the value 0 can be used
as the tag for the None variant and be written where the pointer would be
for Some(&R) . Reading the value of the reference now reveals which vari-
ant it is. A zero indicates None , while all other values belong to the variant
Some(&R) . Without the separate tag field, the size of an Option<&R> is 64
bits.

More formally the niche tag encoding uses a niche, with enough invalid val-
ues to store the tags of the other variants, of a field where no other variant
has data. This field stores the tag, and the variant with the data there is called
the untagged variant. This means that to encode the untagged variant no
tag is written, as in some sense the data is the tag. For the other variants the
tag is computed using some arithmetic operations on their discriminant and
written into the field of the tag. This is why the tagged variants may not have
any data there, otherwise it would be overwritten.

Later, the discriminant is calculated by reading the tag and reversing the op-
erations. Though if the value at the tag was valid for the data of the untagged
variant, then its discriminant would be returned.



12 2.1. Rust enums

2.1.4 Undefined Behavior (UB)

Sometimes the program encounters a state which is invalid, or runs an op-
eration on values for which it is undefined. The result is called Undefined
Behavior, or UB in short, as many vastly different things are possible from
this point on. Usually this happens because of some invariant that has been
violated without throwing an error.

Rust prevents many sources of undefined behavior with its type system and
ownership model. However, it can still be produced using code wrapped in
an unsafe { .. } block that will be discussed in the next chapter.

The most important case of undefined behavior in Rust for this thesis is read-
ing or writing an invalid value. This usually leads to reading a discriminant
that does not belong to any variant of the type of the enum.

Dereferencing the pointer in listing 7 produces undefined behavior since
Option<bool> uses a niche tag encoding with 2 for the tag of None3. 12
is neither the tag of None , nor a valid value for the boolean which uses 0 or
1, therefore this is an invalid value that would be assigned to x .

1 let x = unsafe {
2 let ptr: *const u8 = &12;
3 *(ptr as *const Option<bool>)
4 };

Listing 7: Unsafe example that leads to UB.

2.1.5 Unsafe Rust

Unsafe Rust is all the code that is wrapped in an unsafe { .. } block. The
main difference is that unsafe code may dereference raw pointers.

Raw pointers, like for example *const String , are different from refer-
ences like &String in that they are not subject to the ownership model and
can be cast into any pointer type as shown in listing 8. Therefore it is unsound

3At the time of writing this, as mentioned before.



Chapter 2. Background 13

to arbitrarily dereference them. In fact, since most of Rust’s undefined behav-
ior has to do with reading or writing invalid values for their type, this is the
only way to produce behavior considered undefined in Rust. Only raw point-
ers allow generally unsound behavior, like reading a value that has expired,
reading or writing a value of the wrong type, or dereferencing a null pointer.

1 unsafe {
2 let x: String = String::new();
3 let x_ref: &String = &x;
4 let x_ptr: *const String = &x;
5

6 consume(x); // move x out of scope.
7

8 // compiler will complain that x has gone out of scope.
9 let _ = *x_ref;
10 // compiler will accept this but it will produce
11 // undefined behavior during execution.
12 let _ = *x_ptr;
13 }

Listing 8: The main difference between a pointer and a reference.

For a high-level overview on unsafe Rust see the Rustonomicon[6]. This thesis
will not go into more details on unsafe Rust as it does not offer any additional
ways of interacting with enums.



14 2.2. Ferrocene

2.2. Ferrocene

Ferrocene[2] by Ferrous Systems is a Rust toolchain qualified for safety-critical
environments. It is based on Rust 1.68, released on March 9th 2023[7].

A prerequisite of the qualification is a formal specification, which is given in
the Ferrocene Language Specification (FLS)[8]. It has been compiled from ex-
isting Rust documentation like the Rust Reference[9] and the Rustonomicon[6].
However, this specification only describes the behavior of the Rust compiler.
Any difference between FLS and the Rust compiler is considered to be a mis-
take in the specification. This makes it less useful to define what behavior
is a bug in the compiler and what is actually part of the Rust programming
language. Furthermore, the Ferrocene Language Specification is written in
English which makes it harder to produce a mathematical model based on it.
Those two issues are some of the reasons why further work is being done on
a Rust specification.

What does the Ferrocene Language Specification have to say about
enums? Not much more than what was introduced in the background on
Rust. It specifies the syntax, what discriminants can be assigned to variants,
and what discriminants are used when they are not assigned manually. It fur-
ther states that a valid value must have a discriminant specified by the enum
type[10].

Additionally, it specifies how the pattern matching works and how enum val-
ues are initialized. But this is all, since those are the only enum related op-
erations exposed to the programmer. There are no details about how those
operations interact with a computer.



Chapter 2. Background 15

2.3. MiniRust

MiniRust[3] by Prof. Dr. Ralf Jung is a project that aims to develop a specifica-
tion of the operational semantics of Rust, with a particular focus on unsafe
Rust. The project is located on GitHub. It consists of the specification in /spec
and additional tools like a test suite. Chapter 2.3.4 will discuss the MiniRust
toolchain relevant to this thesis in some more detail.

It was mentioned in the introduction that the specification is given as a refer-
ence interpreter. This means that running Rust code on any computer should
result in the same behavior as the one displayed by the interpreter given in
the specification. At the heart of this interpreter is the Machine which con-
tains the program, memory, thread state and other bookkeeping data. The
machine can be executed step by step. On each step it chooses a thread to
execute one instruction. The step may end the execution when the program
terminates or undefined behavior occurs. The semantics of the instructions
together with the scheduling give the operational semantics in step seman-
tics.

In some ways MiniRust specifies a wider spectrum of behavior than Rust.
This is because MiniRust’s specification is not there to restrict Rust’s possi-
ble future behavior. Sometimes, like in the memory representation, further
optimizations might be added to the compiler and therefore only some guar-
antees are given.

2.3.1 Type Handling

In MiniRust, types are defined in terms of fundamental data types given in
/spec/lang/types.md. They reflect the Rust data types in that there is a boolean
data type, integers, pointers, tuples, arrays, unions, and, with this thesis,
enums. The types used by the programmer are then defined through those
data types.

Values of MiniRust types exists on two layers. First there are the values, on
which MiniRust actually operates. This layer intends to capture the mathe-
matical concepts without having to deal with the memory representation and

https://github.com/minirust/minirust
https://github.com/minirust/minirust/tree/master/spec
https://github.com/minirust/minirust/blob/master/spec/lang/types.md


16 2.3. MiniRust

other limitations of hardware. The definition of those values can be found in
/spec/lang/values.md. In the case of enums the value is an instance of a vari-
ant, since there are no instances of the entire enum type. This is similar to the
values of Rust enums described in chapter 2.1 which combine the discrimi-
nant with the fields. This thesis will refer to those variant instances when it
mentions enum values in the context of MiniRust.

The second layer is what is actually stored in memory. MiniRust describes a
memory interface in /spec/mem that allows it to model, for example, concur-
rent access. Instructions usually do not directly interact with this layer other
than to store or load a value. The way those instructions encode and decode
MiniRust’s types from memory is called the representation relation and can
be found in /spec/lang/representation.md.

MiniRust furthermore enforces well-formedness. For each type and value
there is some validation. For example the fields of tuples may not overlap,
or an integer has to be in the range of its type. Value validation runs before
encoding. If the validation succeeds, then the encoding of this value is guar-
anteed to succeed as well. But the bytes in memory might encode an invalid
value. This is detected upon loading the value which leads to the interpreter
stopping with undefined behavior, as loading an invalid value is undefined
behavior as described in chapter 2.1.4.

Those well-formedness checks as well as some more for program syntax are
described in /spec/lang/well-formed.md. Chapter 3.1.4 will discuss the well-
formedness requirements of enum types.

2.3.2 Place expressions

Similar to Rust’s Place and its projections there are place expressions in
MiniRust. These evaluate to a pointer and a type.

Those expressions include getting the place of a local variable, a field of a
tuple, or an element of an array.

Place expressions are used to load or store values from and to memory. It
is here that the two layers of MiniRust’s type handling come together. When
Statement::Assign assigns a value to a place, it first checks that the value

https://github.com/minirust/minirust/blob/master/spec/lang/values.md
https://github.com/minirust/minirust/tree/master/spec/mem
https://github.com/minirust/minirust/blob/master/spec/lang/representation.md
https://github.com/minirust/minirust/blob/master/spec/lang/well-formed.md


Chapter 2. Background 17

is well-formed and then uses the representation relation to encode it into
bytes, which then are written to memory. ValueExpr::Load evaluates a
place expression and tries to load a value from the pointer using the repre-
sentation relation of the type that the place was evaluated into.

2.3.3 Tuples

MiniRust tuples will come up a lot, as they represent both Rust tuples and
structs. For structs, the Rust compiler in the earlier stages of the compilation
process turned all named field references into references by index. After this,
all structs and tuples are treated equivalently in the MIR.

MiniRust uses tuples to describe both Rust tuples and structs. They are de-
fined by their size, alignment and fields. Fields are described by their types
and offsets. All bytes outside the fields but within the size are considered
padding, and will be uninitialized when writing the tuple to memory, as de-
fined by the representation relation of tuples.

Listing 9 gives examples of structs and tuples, all of which will be converted
to a MiniRust tuple with a size of 8 bytes, an alignment of 4 bytes and the
two fields. At offset 0 is the u16 and at a 4 byte offset is the i32 due to its
alignment4.

1 struct Unnamed(u16, i32);
2 struct Named { field_one: u16, field_two: i32 }
3

4 let x = (0u16, 42i32);

Listing 9: Examples of structs and tuples that will be converted to the same
MiniRust tuple type.

4At least in the version of the compiler at the time of writing.



18 2.3. MiniRust

2.3.4 Toolchain

The implementation of enums is spread over multiple parts of the MiniRust
toolchain. Here is an overview of the relevant parts for this thesis:

The specification in /spec of the MiniRust repository specifies the inter-
preter, its syntax and step semantics. This is what this thesis from now on
refers to when it talks about MiniRust.

It is written in a language called specr lang . This programming language
has been defined for this project with a syntax very similar to Rust, but has
additional features like garbage collection, so the specification does not have
to deal with Rust’s ownership model.

Specr-transpile can be used to turn the specification into a Rust library
crate that can further be used to create MiniRust programs and execute them.
This program is located in the MiniRust-Tooling repository, where the library
providing the data types used in the specification, libspecr, is located as well.

The MiniRust library crate produced by specr-transpile is used in the following
two tools:

Minitest is located at /tooling/minitest in the MiniRust repository. It con-
tains many test cases to verify that the MiniRust reference interpreter works
as intended. Those test cases could also be considered to be examples of
Rust behavior.

Minimize is located at /tooling/minimize in the MiniRust repository. This is a
transpiler that translates Rust programs to MiniRust. It does so by using the
rustc Rust compiler interface to lower the code into MIR and then mapping
the MIR to MiniRust code. Afterwards the MiniRust programs are executed.

Minimize comes with its own test suite of Rust programs and their expected
output (standard out and standard error) that it can run to test the transpiler.

The implementation of the translation of Rust enums to MiniRust is an impor-
tant part of this thesis, since many Rust programs use enums in, for example,
iterators.

https://github.com/minirust/minirust/tree/master/spec
https://github.com/minirust/minirust-tooling/tree/main/specr-transpile
https://github.com/minirust/minirust-tooling/tree/main/libspecr
https://github.com/minirust/minirust/tree/master/tooling/minitest
https://github.com/minirust/minirust/tree/master/tooling/minimize


3. Implementation

3.1. MiniRust

The following chapters describe the implementation of enums and some other
related parts in MiniRust.

3.1.1 Enum type

An enum in MiniRust is defined as a 6-tuple (σ, α, τδ, ∆, V,D). The first two
parts denote the size σ and alignment α of the enum. The next two parts, ∆
and τδ, are the set of every discriminant for this enum and their type, since
discriminants in Rust can be of any integer type and both signed and un-
signed.

Furthermore, the relation between the discriminants and the variants is given
in V . The tag encoding from the Rust memory representation described in
chapter 2.1.3 was split into two parts. The variants come with a so-called
tagger to encode their discriminant. The discriminator D is used to decode
the discriminant in the enum.

3.1.2 Enum variants

Discriminants can be somewhat arbitrarily assigned[11] to the variants, so
MiniRust needs a general mapping from discriminant to variant. This map-
ping is given by V : ∆ → (τ, T, ρ) where τ is the variant type that describes
the data of the variant.

19



20 3.1. MiniRust

The tagger T : ρ → (τZ,Z) describes at which offsets ρ ⊂ N, given by the vari-
ant, an integer with type τZ has to be written to encode the discriminant. With
a niche tag encoding, as discussed in chapter 2.1.3 about the Rust memory
representation, the untagged variant would write nothing while some new
experimental tag encoding might write two or even more integers.

Note that the concept of a variant type deviates quite heavily from Rust,
where the variants contain fields. MiniRust allows the type of the variant to
be any type as long as it has the same size as the enum, for reasons given
later.

Using a tuple gives the semantics of the fields in a semantically equivalent
way to Rust, see chapter 4.2 for a detailed discussion. Therefore tuples should
be used to represent Rust enum variants. There is no reason to have any
differences between accessing fields in a tuple and in a variant.

Using something other than a tuple for the variant type is allowed in MiniRust
and just specifies more behavior than possible with Rust.

Listing 10 shows the implementation of the variants in the specification. It
uses Map for relations, since it keeps track of its keys, eliminating the need to
store the sets ∆ and ρ separately. The Map can also be turned into an iterator
of all its key-value pairs, which is particularly useful to iterate over the entries
in the tagger in the representation relation.



Chapter 3. Implementation 21

1 pub enum Type {
2 ..
3 Enum {
4 variants: Map<Int, Variant>,
5 discriminant_ty: IntType,
6 discriminator: Discriminator,
7 size: Size,
8 align: Align,
9 }
10 }
11

12 pub struct Variant {
13 pub ty: Type,
14 pub tagger: Map<Offset, (IntType, Int)>,
15 }

Listing 10: The MiniRust enum definition.

3.1.3 Discriminator

The final element to discuss is the discriminator D. It is defined as a decision
tree to decide which discriminant is encoded in the memory for an enum
value. The tree nodes can be any value from D given below.

D := {invalid} ∪

{known(δ ∈ ∆)} ∪

{branch(τZ,N,Z → D)}

The two leaf nodes invalid and known(δ) signify that the evaluation has come
to an end. invalid signifies that no valid discriminant is encoded and therefore
the entire enum value is invalid. Reading a field or the discriminant from such
an enum is undefined behavior. known(δ) signifies that the discriminant is
known to be δ ∈ ∆.



22 3.1. MiniRust

Finally branch(τZ,N,Z → D) branches on some integer that is read using the
integer type τZ at the offset∈ N. Given this integer, some branch is selected by
the child mapping Z → D. Figure 3.1 gives an example of a complex discrim-
inator where x denotes the value that was read to continue on this branch.

branch(u8, 1)

known(2) branch(i16, 2) invalid

known(−2) known(−1) known(0)

x = 0 x = 1 otherwise

x < -1 x = -1 otherwise

Figure 3.1: Example discriminator

The split of the tag encoding into the discriminator and taggers was origi-
nally suggested in a document about enum encoding by Jakob Degen[12].
However, the discriminator design underwent some changes. In the original
sketch invalid values are encoded as missing entries in the branch. But this
does not work for zero-variant enums, since a branch would require reading
from a non-existent value. Further the branching now happens on arbitrary
integer types instead of only bytes. This way, the enum definition does not
have to care about the integer endianness.

Listing 11 shows how the discriminator is implemented.
branch(τZ,N,Z → D) was made to work in practice by having the child map-
ping be from ranges to subtrees. This way a branch on a 64-bit value does not
always require a map with 264 entries, which would fill up the entire address
space of a modern computer. Often the number of variants is small and a
large chunk of values leads to the same result.

Secondly, a fallback was introduced for all values that have no entry in the
map. This is to ensure that the branching is fully defined for any value that is
read.



Chapter 3. Implementation 23

1 pub enum Discriminator {
2 Invalid,
3 Known(Int),
4 Branch {
5 offset: Offset,
6 value_type: IntType,
7 fallback: Discriminator,
8 /// A left-inclusive right-exclusive range of
9 /// values that map to some Discriminator.
10 children: Map<Range, Discriminator>,
11 },
12 }

Listing 11: The discriminant decision tree.

3.1.4 Enum type well-formedness

Not every enum that can be represented in MiniRust is valid, for various rea-
sons described in this chapter. To check that the enum type is valid, the fol-
lowing well-formedness checks are done:

The size must be a multiple of the alignment.
This must hold for every type in MiniRust, enums included.

All discriminants can be represented using the discriminant type.
Otherwise some discriminants could not be assigned to variables of the dis-
criminant type. As the biggest integer type is 128 bits long, this means that
there is an upper and lower limit on which discriminants can be represented
in MiniRust. However the same limitations apply to Rust.

The variant types must be well-formed.
Otherwise, downcasting an enum value into a variant could return an invalid
type.

The variant types must have the same size as the enum.
This is mostly for practical reasons, because if some variant type was smaller,



24 3.1. MiniRust

the question of which enum bytes it covers would arise. When using tuples as
mentioned before, the size can easily be set to be the size of the enum, which
just generates padding if necessary. This limits what types other than tuples
can be directly used for the variant types. Since this is additional specification
of behavior, this limitation does not affect the semantics needed for Rust.

The variant type must not have a larger alignment than the enum.
A larger alignment for the variant type would mean that it might get mis-
aligned when allocating an enum value.

The tagger must be well-formed.
Each value written must be representable by its given integer type, which
in turn must be well-formed. Additionally each value must be written in the
bounds of the enum.

Please note the absence of an alignment check for the integer that is written.
Rust allows tags to be at an arbitrary offset. One example where this happens
is shown in listing 12.

1 /// Inner is directly tagged with i16.
2 #[repr(i16)]
3 enum Inner {
4 V1 = -32767,
5 V2 = -32768,
6 }
7

8 #[repr(C, packed)]
9 struct WeirdNicheAlign {
10 x: u8,
11 /// Because of the packed layout inner has offset
12 /// of 1, and it has a niche for 'Option' to use.
13 /// 'None' will write a 16-bit tag at an offset of 1.
14 inner: Inner
15 }

Listing 12: Enum with a Niche that has alignment 1 for a 16-bit value.



Chapter 3. Implementation 25

The discriminator must be well-formed.
The discriminator is recursively checked. Discriminator::Invalid is al-
ways well-formed. Discriminator::Known must return a discriminant with
a corresponding variant.

For Discriminator::Branch the following must hold for its parts: The in-
teger type must be well-formed. The value read must be in bounds of the
enum, again the offset does not have to be aligned for the integer type. And
the fallback must be well-formed.

Each entry in the child mapping is checked for four things: The entire range
must be valid and representable given the integer type. Additionally, the
range may not overlap with any other range in the children. And lastly, the
resulting discriminator is checked for well-formedness.

3.1.5 Enum values and representation relation

A value of an enum is given as a tuple (δ, v) where δ is the discriminant of the
variant and v is the value of the variant type.

Encoding the enum value is simple. First the value v gets encoded. After-
wards, the discriminant is encoded according to the tagger by writing the
specified integers at their offset.

This obviously requires that the tagger does not overwrite any data. Other-
wise, reading from fields where the tagger wrote something could result in
invalid values. Currently, it is up to the user to verify this, as this is not covered
by the well-formedness checks. The reason for not having a well-formedness
check for this, is that MiniRust, at the moment, does not offer a method to
find out which bytes of some type encode data and which are just padding.
The overhead of implementing this was not worth it at the time of this thesis,
considering that the Rust compiler already ensures that the tag and the data
does not overlap, except in the untagged variant during niche encoding.

Decoding an enum from memory is a two-step process. First the discrimina-
tor is evaluated to find the discriminant. If it returns invalid, then the bytes
do not encode a valid enum and the decoding fails with undefined behavior.
After the discriminant has been figured out, the bytes can be decoded as the



26 3.1. MiniRust

variant type. This step can still fail, for example when only data of an enum
has been modified and is now invalid.

Now that the enum type and its representation relation have been defined,
the operations can be defined as well. They will closely follow the operations
laid out in the MIR.

3.1.6 Variant constructor

An enum value can be constructed using ValueExpr::Variant , mirroring
the MIR RValue::Aggregate for enums. It takes a discriminant, the data for
the variant value and the type of the enum. Why is the type needed when the
previous chapter defined an enum value as only its discriminant and value of
the variant paired together? Evaluating a MiniRust ValueExpr returns not
only the value but its type too.

3.1.7 GetDiscriminant and SetDiscriminant

Getting the discriminant is done by using ValueExpr::GetDiscriminant ,
which evaluates the discriminator of the enum on the PlaceExpr it was
given. This currently only requires that the bytes, which are read for the dis-
criminant, are valid. Please note that the validity requirements for reading
the discriminant on its own are still undecided[13], for a detailed discussion
on this see chapter 4.1.

Similarly Statement::SetDiscriminant only runs the tagger on the given
PlaceExpr for the specified discriminant. It does not enforce any validity
requirements at all, as it can be used to produce a valid enum value from
scratch as well. However ValueExpr::Variant should be used for this.
Statement::SetDiscriminant mainly exists because of the MIR statement
described in chapter 2.1.1.



Chapter 3. Implementation 27

3.1.8 Variant Downcast

In order to access data inside an enum value, MiniRust needs to know which
variant should be accessed. PlaceExpr::Downcast takes a PlaceExpr of
the enum value and the discriminant of the variant into which the enum is
downcast.

Evaluating a Downcast makes it evaluate its inner PlaceExpr and return
the same pointer combined with the variant type. As mentioned before, this
variant type might be a tuple holding the fields. On the tuple a field access
can be done the same way as the Rust MIR does on the enum type with a
known variant. Therefore no additional logic to access the fields of a variant
has to be added. However, a field access on variant types that are not a tuple
does not have to be well-defined. Variant types will be discussed in more
detail in chapter 4.2.

3.1.9 Switch terminator

Previously, MiniRust only supported If terminators that branch on a boolean.
But with the introduction of enums a Switch terminator was introduced that
branches on integers. The MiniRust specific If terminator was removed in
favor of it. The old behavior is achieved with a boolean to int cast and switch-
ing on the resulting value.

The Switch terminator evaluates a ValueExpr and tries to find the tar-
get for the value in its case map. If no target was found, then the termi-
nator jumps to a designated fallback. This mirrors the behavior of the MIR
SwitchInt terminator described in chapter 2.1.1.



28 3.2. Minimizer

3.2. Minimizer

The following two sections describe the implementations necessary for con-
verting Rust code containing enums to MiniRust. Most of the translation is
trivial, as MiniRust is modeling Rust MIR. But the way Rust’s compiler rustc
stores types makes the enum type translation a bit harder.

3.2.1 Enum type minimization

For the variant types, minimize creates a tuple type with all the fields and
the same size and alignment as the total enum, as hinted at earlier. Chap-
ter 4.2 gives a more formal reasoning about the validity of this. This leaves
the tag encoding from chapter 2.1.3 to be translated. Recall that Rust uses
two different tag encodings at the time of this thesis, direct and niche tag
encoding.

For direct tag encoding the translation is trivial. The tagger for each variant
writes its discriminant in the tag field. The discriminator in turn reads the tag
field to determine the discriminant. Its fallback is Discriminator::Invalid ,
as all variants have an entry. Note the Rust compiler ensuring that the tag
field is part of the enum and not the variants, and is ensured to be separate
from all the data.

For niche tag encoding the translation gets more involved. Recall that one
variant, called the untagged variant, has data at the tag field and the other
variants write a value that is invalid for that data. The tagger of the untagged
variant does nothing. For the other variants, the tag is computed during min-
imization and the tagger is configured to write it into the field of the tag.

For the discriminator, the tag encoding stores which values are valid for the
field of the tag, including all the valid values of the data in the untagged vari-
ant. This makes it harder to figure out which values are from data and which
are from tagged variants. So the discriminator is set up to branch as follows:
It maps the computed tags to the tagged variants. Furthermore it maps all
values outside the valid range to Discriminator::Invalid . That leaves all
data values, for which the fallback points to the discriminant of the untagged



Chapter 3. Implementation 29

variant, as shown in figure 3.2.

branch(τδ, ρt)

invalid known(δ) known(δuntagged)

x = invalid x = tδ otherwise

Figure 3.2: Niche encoding discriminator.
τδ: discriminant type, ρt: tag field offset, tδ: tag for discriminant δ

Note that in the end, taggers produced by minimize have zero or one en-
try and discriminators have only one top-level branch. This might make the
discriminator and tagger design seem overgeneralized but, since the Rust
memory representation is unstable[5], this feels like a good precaution.

3.2.2 Further changes and implementations

The translation of the following MIR is a trivial one-to-one mapping:

• RValue::Aggregate of enums
→ ValueExpr::Variant

• RValue::Discriminant
→ ValueExpr::GetDiscriminant

• StatementKind::SetDiscriminant
→ Statement::SetDiscriminant

• ProjectionKind::Downcast
→ PlaceExpr::Downcast

Furthermore the Never type ! is translated into a zero-variant enum. The
only difference between the two types is the type coercion, as discussed in
chapter 2.1.2. MiniRust has no concept of type coercion at the moment.



30 3.2. Minimizer

And lastly, the translation of the SwitchInt terminator has been expanded
to support switching on integers and not only booleans, since switching on
a discriminant is now possible. The only remaining type to switch on that is
unsupported is char , which is not implemented in MiniRust at all.



4. Evaluation

For every feature implemented, unit tests were added to ensure that this fea-
ture works as intended. Unit tests for the specification look similar to the one
in listing 13, which ensures MiniRust detecting the discriminator returning a
discriminant, for which there is no variant.

This test shows various helper methods that provide a build interface for
MiniRust programs to make them somewhat human-readable. For a simple
program, with only a main function and no branches, only the local variables
and statements of the function are required. The program is checked for well-
formedness before being run, which in this case fails at validating the local
variable with the enum type upon checking the type for well-formedness.

For minimize, the integration tests are given as rust programs and their out-
put. The output is given in separate files for standard out and standard error.
An example program for a test, that checks that iterators now work, can be
seen in listing 14.

Running the minimize test will translate the program to MiniRust, run it and
then compare standard out and standard error with the content of their re-
spective file. If one or both of the files does not exist, then there should be no
output for that stream. The program in listing 14 should print 162 followed
by a newline character to standard out, which would be the content of the
file for standard out. The file for standard error does not have to exist, since
this program should output no warnings or errors.

31



32

1 #[test]
2 fn ill_formed_discriminator() {
3 let enum_ty = enum_ty::<u8>( // Type of discriminant
4 &[], // Variants, here none
5 discriminator_known(1), // Discriminator:
6 size(0), // known(1) is invalid since
7 align(1) // no variant has discr. 1.
8 );
9 let locals = &[enum_ty];
10 let stmts = &[];
11 let prog = small_program(locals, stmts);
12 assert_ill_formed(prog);
13 }

Listing 13: MiniRust unit test to ensure that the discriminator cannot reach
discriminants which have no variant.

1 struct RepeatN {
2 val: bool,
3 repetitions: u8,
4 }
5

6 impl Iterator for RepeatN {
7 type Item = bool;
8 fn next(&mut self) -> Option<Self::Item> {
9 ..
10 }
11 }
12

13 fn main() {
14 let iter = RepeatN { val: true, repetitions: 3 };
15 let mut sum = 0;
16 for i in iter {
17 sum += i;
18 }
19 print(sum);
20 }

Listing 14: An example minimize test program.



Chapter 4. Evaluation 33

The next subchapters will go over some formal aspects around enums and
the issues that arise from them.

4.1. GetDiscriminant validity

It was mentioned that the requirements for a valid discriminant read are still
being discussed by the Rust team[13]. The debate is inconclusive since the
requirements used in the Rust compiler depend on what it is doing. Nev-
ertheless, here are explanations for two positions to show the problem of
finding suitable validity requirements.

One could require the entire enum value to be valid. But this is not compatible
with enums that have a deconstructor for some variants. It might happen
that data got moved out of a variant field. The bytes of this field would no
longer be guaranteed to be initialized to some valid value. But then, if the
enum needs to be deconstructed for some variant, it would need to check
whether that variant is present in the enum value. This is currently done with
a discriminant read on the now invalid value.

Another way would be to do what MiniRust currently does: Require the bytes,
which are read to determine the discriminant, to be initialized and encode
some valid discriminant. But some optimizations and the code generation in
the Rust compiler rely on the fact that, when the discriminant can be read,
then the entire enum is valid. For example, a switch on the discriminant is
often considered enough to ensure that the entire enum value is valid, and
therefore its fields can be safely read from and written to.

In conclusion the validity requirements used in the compiler seem to contra-
dict each other at the moment, picking whatever is the most useful for the
specific job. Luckily for MiniRust, this does not really matter, as MiniRust is
able to detect undefined behavior and just aborts when it occurs.

With this out of the way, the next two subchapters deal with the generaliza-
tion of behavior in MiniRust and why it is valid.



34 4.2. Using variant types instead of fields

4.2. Using variant types instead of fields

The sections about the implementation should already have hinted on how
using tuples for the variant types yields the same behavior as the fields in
Rust enum variants. This subchapter aims to give a more formal reasoning
for why this is equivalent, and then show how arbitrary variant types are more
general, in the sense that MiniRust can handle more semantics than Rust.

To show this, let us first consider using tuples for the variant types. This is
equivalent to fields when it comes to Rust MIR semantics since the operations
that can be done on Rust enums are the following:

Reading or writing the discriminant. Which does not concern itself with
how the data is structured. All it cares about is where in the bytes the data
is stored, so as not to overwrite it, and what values the encoded data can
assume for a niche tag encoding.

Further it should be clear from theminimize implementation in chapter 3.2.1
that every current Rust tag encoding can be expressed as discriminators and
taggers.

Constructing a variant given the fields. This can be mapped to MiniRust
by first constructing a tuple with the fields and then constructing a variant
using this tuple.

Projecting to a field in a variant. For this to be allowed in the MIR, the vari-
ant has to be known. While a comment in the Rust compiler documentation[14]
mentions that a single-variant enum would not have to be downcast, since
the variant is always known, the compiler in practice still does a downcast.
This is probably because the downcast is a pure reinterpretation of the lay-
out and does not generate code. Therefore it is easier to just not treat this
special case separate, as there is no loss of performance in the compiled pro-
gram. For the purposes of this thesis, this case is ignored. It is very likely that
a field access without downcast will never occur, since very few enums have
only one variant and the only benefit would be a smaller MIR, easily offset by
the amount of work to treat this special case.



Chapter 4. Evaluation 35

In MiniRust the downcast would yield the place with the tuple type on which
the field access is well-defined in a semantically equivalent way.

Downcasting an enum value into a variant. In Rust this only happens if
it is followed by a field projection. Furthermore, it is not well-formed MIR to
downcast when a previous downcast projection already determined the vari-
ant. This means that in Rust a downcast leads to an in-between type that
cannot be treated like the whole enum and essentially only allows a field pro-
jection on it.

In MiniRust, however, this gives the variant type which is well-defined and
allows field projections in the case of a tuple as well as the usual projections
on the variant type.

In conclusion, using tuples as variant types covers the entire range and be-
havior of Rust enum variants in a semantically equivalent manner. Further-
more, it is obvious that a wider range of enum variant semantics can be rep-
resented. A variant with variant type bool is not the same as using a single-
field tuple containing the boolean. The bool does not need a field access
after the downcast to read the value, as it is already a boolean. This means
that MiniRust has well-defined behavior for a wider range of variants than
Rust but covers Rust’s semantics completely.

4.3. Additional representable enums in MiniRust

MiniRust can not only handle more semantics when it comes to variant types,
the generalization of tagger and discriminator allow additional memory rep-
resentations. Consider the enum in listing 15. One byte is not enough to store
the discriminants of all 500 variants, at least 9 bits are required. Because of
the alignment of u16 there is a byte of padding after each of the u81.

1Again, according to the output of the Rust compiler at the time of this thesis.



36 4.4. Minimize

1 enum TwoTags {
2 Data(u8, u16, u8, u16),
3 Empty1,
4 Empty2,
5 ..,
6 Empty499
7 }

Listing 15: Enum which can be represented smaller in MiniRust than in Rust

The two bytes can be used to store the tags of the 500 variants by writing the
upper byte of the discriminant in the first byte of padding and the lower into
the second. The discriminator can deal with such an enum by branching first
on the first byte of padding and then on the lower.

Rust would have to add another 16 bits to the size of the enum as the tag
currently needs to be stored in a single field. Obviously, the discriminator and
tagger could be set up to do so as well. In conclusion, MiniRust can represent
enums in a wider range of representations, some of which use less space than
what Rust currently can do. But there is nothing stopping the Rust compiler
team to add further tag encodings and cover such cases.

4.4. Minimize

This subchapter discusses the two main issues that have arisen while writing
integration tests for minimize.

First, minimize currently does not "remember" whether it compiled a spe-
cific type already. Since fields between enum variants are allowed to overlap,
it is possible to write an enum of compact size whose representation gets
huge, if the variant types are not reused. Listing 16 gives an example of such
an enum constructed using macros where each nested enum is present in
four variants. Minimize will compute every inner enum four times which af-
ter 27 iterations means that 427 = 254 enum types have been translated. Us-
ing only one byte for each enum type, which is obviously too little, this would



Chapter 4. Evaluation 37

result in around 18 Petabytes of data. If the types were reused it would only
be 26 enum translations.

1 fn test_big_enum() {
2 macro_rules! fooN {
3 ($cur:ident $prev:ty) => {
4 enum $cur {
5 Empty,
6 First($prev),
7 Second($prev),
8 Third($prev),
9 Fourth($prev),
10 }
11 }
12 }
13

14 fooN!(Foo0 ());
15 fooN!(Foo1 Foo0);
16 ..
17 fooN!(Foo27 Foo26);
18

19 let _foo = Foo27::Empty;
20 }

Listing 16: How to create a huge enum that minimize cannot translate on a
normal computer.

The second issue that arose seems to only concern Option<NonZeroINT>
where NonZeroINT can be any of the integer types, for example NonZeroU8 .
Trying to construct a None variant of this type gets optimized into a constant
scalar which contains the bytes of the value. The problem is that MiniRust
currently does not support creating constant values from bytes directly. The
closest thing would be to load the value from a global allocation, but this is
not semantically equivalent. There is no loading from a pointer happening in
Rust. There are three ways for minimize to deal with such a value that come
to mind:



38 4.4. Minimize

First it could try to decode the enum value from the bytes. This requires a
lot of effort to make it work in minimize and a general rework of constant
translation is probably needed.

Second it could move the bytes into a global allocation and load from this
allocation instead of the constant value. This changes the semantics of the
program in a nontrivial manner which makes the solution undesirable.

The third option is to just not support Option<NonZeroINT> . This is the case
at the moment until some more experimentation reveals more types that run
into this issue, or a more satisfactory solution is found.

The reason for this behavior remains unclear. It seems to happen during con-
stant evaluation, but it is weird that it only seems to concern
Option<NonZeroINT> . All other tested types use a RValue::Aggregate
even for constants.



5. Conclusion

This thesis implements enums in MiniRust in a way that completely covers
the range of possible enum behavior in Rust. The generalization of discrim-
inant encoding and decoding ensures that when Rust implements further
optimizations on this topic, then only minimize needs to be updated to sup-
port this new behavior.

Furthermore, minimize has been extended to support transforming most
Rust enums with two notable exceptions mentioned in the previous chapter
about the performance of minimize. However those only affect niche cases,
almost all real-world use cases are now covered. This unlocks many powerful
tools that the Rust standard library includes, like for example iterators.

The implementation was contributed over multiple pull requests to the MiniRust
repository:

• Enum variant ValueExpr
• Enum memory representation and well-formedness

• Enum Downcast
• Enum GetDiscriminant and SetDiscriminant
• Switch terminator

• Alignment-check fixes (mainly around enums)

• Changes to discriminant handling

• Minimize support for everything enum related but niche tag encoding

• Minimize support for niche tag encoded enums

In the end little work is still required around enums, and a lot of work around
MiniRust in general.

39

https://github.com/minirust/minirust/pull/143
https://github.com/minirust/minirust/pull/146
https://github.com/minirust/minirust/pull/148
https://github.com/minirust/minirust/pull/149
https://github.com/minirust/minirust/pull/150
https://github.com/minirust/minirust/pull/151
https://github.com/minirust/minirust/pull/153
https://github.com/minirust/minirust/pull/152
https://github.com/minirust/minirust/pull/154


40 5.1. Future Work

5.1. Future Work

Starting with the work required around enums, the enum constant scalars for
Option<NonZeroINT>::None need some way of translation. Some ideas on
how were given in chapter 4.4, but they do not seem practical. Next, the type
translation in minimize could be optimized to reuse results. And finally, it
has been mentioned in chapter 3.1.5 about the representation relation that a
well-formedness check for the tagger not overwriting data might make sense
in future.

Furthermore there are still a lot of small parts missing in MiniRust and
minimize which are required for a complete representation of Rust. For ex-
ample Strings and char are not implemented at all. Minimizing
for i in 0..42 {} fails only because of the constant range. Implement-
ing boolean to integer casting and negation was implemented concurrently
to the work on this thesis. Small things like this can be found everywhere in
the MiniRust project.

And finally a possible extension goal for this thesis was to make the coding
interface for MiniRust test cases nicer. At the moment every reference to local
variables is done by giving the index in the array of local variables defined
earlier, which makes it easy to make a mistake. Also, well-formedness does
not tell the programmer where the mistake is, only that the entire program
is not well-formed.



Bibliography

[1] The Rust Team. Rust, . URL https://www.rust-lang.org/. [Accessed on February
8, 2024].

[2] Ferrous Systems. Ferrocene, . URL https://ferrous-systems.com/ferrocene/.
[Accessed on March 7, 2024].

[3] Ralf Jung and contributors. Minirust. URL https://github.com/minirust/
minirust. [Accessed on February 8, 2024].

[4] The Rust Team. Never type, . URL https://doc.rust-lang.org/stable/
reference/types/never.html. [Accessed on March 13, 2024].

[5] The Rust Team. Type layout, . URL https://doc.rust-lang.org/stable/
reference/type-layout.html. [Accessed on March 13, 2024].

[6] The Rust Team. The rustonomicon, . URL https://doc.rust-lang.org/nomicon/.
[Accessed on March 7, 2024].

[7] The Rust Release Team. Announcing rust 1.68.0, . URL https://blog.rust-lang.
org/2023/03/09/Rust-1.68.0.html. [Accessed on March 10, 2024].

[8] Ferrous Systems. Ferrocene language specification, . URL https://public-docs.
ferrocene.dev/main/specification/. [Accessed on March 10, 2024].

[9] The Rust Team. The rust reference, . URL https://doc.rust-lang.org/stable/
reference/. [Accessed on March 7, 2024].

[10] Ferrous Systems. Ferrocene language specification, enums, . URL https:
//public-docs.ferrocene.dev/main/specification/types-and-traits.
html#enum-types. [Accessed on March 17, 2024].

[11] The Rust Team. Enumerations, . URL https://doc.rust-lang.org/stable/
reference/items/enumerations.html. [Accessed on March 13, 2024].

[12] Jakob Degen. Enum layout and discriminant, 2022. URL https://hackmd.io/
@2S4Crel_Q9OwC_vamlwXmw/By4FoVud9. [Accessed on February 13, 2024].

41

https://www.rust-lang.org/
https://ferrous-systems.com/ferrocene/
https://github.com/minirust/minirust
https://github.com/minirust/minirust
https://doc.rust-lang.org/stable/reference/types/never.html
https://doc.rust-lang.org/stable/reference/types/never.html
https://doc.rust-lang.org/stable/reference/type-layout.html
https://doc.rust-lang.org/stable/reference/type-layout.html
https://doc.rust-lang.org/nomicon/
https://blog.rust-lang.org/2023/03/09/Rust-1.68.0.html
https://blog.rust-lang.org/2023/03/09/Rust-1.68.0.html
https://public-docs.ferrocene.dev/main/specification/
https://public-docs.ferrocene.dev/main/specification/
https://doc.rust-lang.org/stable/reference/
https://doc.rust-lang.org/stable/reference/
https://public-docs.ferrocene.dev/main/specification/types-and-traits.html#enum-types
https://public-docs.ferrocene.dev/main/specification/types-and-traits.html#enum-types
https://public-docs.ferrocene.dev/main/specification/types-and-traits.html#enum-types
https://doc.rust-lang.org/stable/reference/items/enumerations.html
https://doc.rust-lang.org/stable/reference/items/enumerations.html
https://hackmd.io/@2S4Crel_Q9OwC_vamlwXmw/By4FoVud9
https://hackmd.io/@2S4Crel_Q9OwC_vamlwXmw/By4FoVud9


42 Bibliography

[13] Jakob Degen Ralf Jung and contributors. Decide on when mir discriminant() operation
is ub. URL https://github.com/rust-lang/rust/issues/91095. [Accessed on
March 10, 2024].

[14] The Rust Team. Place in rustc-middle::mir::syntax, . URL https://doc.rust-lang.
org/stable/nightly-rustc/rustc_middle/mir/syntax/struct.Place.html.
[Accessed on March 12, 2024].

https://github.com/rust-lang/rust/issues/91095
https://doc.rust-lang.org/stable/nightly-rustc/rustc_middle/mir/syntax/struct.Place.html
https://doc.rust-lang.org/stable/nightly-rustc/rustc_middle/mir/syntax/struct.Place.html

	Abstract
	Acknowledgements
	Introduction
	Background
	Rust enums
	Thesis related MIR
	Never Type
	Memory representation
	Undefined Behavior (UB)
	Unsafe Rust

	Ferrocene
	MiniRust
	Type Handling
	Place expressions
	Tuples
	Toolchain


	Implementation
	MiniRust
	Enum type
	Enum variants
	Discriminator
	Enum type well-formedness
	Enum values and representation relation
	Variant constructor
	GetDiscriminant and SetDiscriminant
	Variant Downcast
	Switch terminator

	Minimizer
	Enum type minimization
	Further changes and implementations


	Evaluation
	GetDiscriminant validity
	Using variant types instead of fields
	Additional representable enums in MiniRust
	Minimize

	Conclusion
	Future Work


