
Formalization of Rust Drop Elaboration
Bachelor’s Thesis Project Description

Viktor Fukala

supervised by Isaac van Bakel and Prof. Dr. Ralf Jung

Programming Language Foundations Lab, ETH Zürich

February 29, 2024

1 Introduction and Motivation

Rust [1] is an emerging low-level programming language which provides strong safety guarantees and as such
aims to help programmers avoid common errors due to, for example, accessing unallocated or uninitialized
memory, or data races.

In Rust, whenever an initialized local variable inside a function is overwritten or goes out of scope, it is
dropped (its destructor is called). When compiling any function, the Rust compiler (rustc) initially inserts
a drop statement for a variable whenever it goes out of scope regardless of whether it is initialized at that
point or not. Later, in a rustc pass known as drop elaboration, some of the drop statements are removed,
enclosed in conditional statements, or otherwise changed so that only the variables that are initialized at
the time of the original drop are actually dropped. To be able to dynamically track which variables are
initialized, rustc might also have to introduce additional statements throughout the entire function, not
only near the original drop statements. These statements use auxiliary boolean flags to store which variables
are initialized and they further contribute to the complexity of the drop elaboration pass.

As one step on a journey towards the ability to formally verify the Rust compiler, this project’s goal is

• to define a simplified model programming language,

• to formally define the drop elaboration step operating on programs in this language, and

• to prove that this elaboration step has the desired properties we expect it to have.

2 Background

2.1 Rust Drop Elaboration

rustc doesn’t perform drop elaboration directly on the Rust source code but instead on the generated Rust
mid-level intermediate representation (MIR) which is in the form of a control-flow graph (CFG).

2.1.1 Conditional Drops

Figure 2.1.1 shows MIR with an already elaborated drop. We can see that rustc has introduced an auxiliary
variable to keep track of whether x has been moved. We say that this drop is a conditional drop.

2.1.2 Partial Drops

In Rust, if the type of a variable is a struct that doesn’t implement the Drop trait, the variable can be partially
moved out of. In that case, drop elaboration must make sure that a drop of this variable is elaborated to
only drop the fields that are haven’t been moved out. We call this partial dropping and an example of it is
shown in Figure 2.1.2.

1



fn g(b: Box<i32>) { }

fn f(n: u32, b: Box<i32>) {

if n > 0 {

g(b);

}

}

fn f(_1: u32, _2: Box<i32>) -> () {

debug n => _1;

debug b => _2;

let mut _0: ();

let mut _3: bool;

let _4: ();

let mut _5: std::boxed::Box<i32>;

let mut _6: bool;

bb0: {

_6 = const false;

_6 = const true;

_3 = Gt(_1, const 0_u32);

switchInt(move _3)

-> [0: bb2, otherwise: bb1];

}

bb1: {

_6 = const false;

_5 = move _2;

_4 = g(move _5)

-> [return: bb2, unwind continue];

}

bb2: {

switchInt(_6)

-> [0: bb3, otherwise: bb4];

}

bb3: {

return;

}

bb4: {

drop(_2)

-> [return: bb3, unwind continue];

}

}

Figure 1: Rust source on the left and the corresponding Rust MIR after drop elaboration on the right. rustc
introduces the boolean flag 6 which is set to true whenever variable 2 is initialized. In bb2 at the end of
the function, 2 is decided to be dropped if and only if the flag is set.

2



fn g(b: Box<i32>) { }

struct Boxes {

b1: Box<i32>,

b2: Box<i32>,

}

fn f(bxs: Boxes) {

g(bxs.b1);

}

fn f(_1: Boxes) -> () {

debug bxs => _1;

let mut _0: ();

let _2: ();

let mut _3: std::boxed::Box<i32>;

bb0: {

_3 = move (_1.0: std::boxed::Box<i32>);

_2 = g(move _3)

-> [return: bb1, unwind: bb4];

}

bb1: {

drop((_1.1: std::boxed::Box<i32>))

-> [return: bb3, unwind continue];

}

bb2 (cleanup): {

resume;

}

bb3: {

return;

}

bb4 (cleanup): {

drop((_1.1: std::boxed::Box<i32>))

-> [return: bb2,

unwind terminate(cleanup)];

}

}

Figure 2: Rust source on the left and the corresponding Rust MIR after drop elaboration on the right. At
the end of the function in bb1, a drop of bxs (represented by 1) has been elaborated to only drop bxs.b2

(represented by 1.1) because bxs.b1 has already been moved. Note that if we disregard the possibility
of unwinding (which we will in this project), only basic blocks bb0, bb1, and bb3 are relevant in this code
listing.

3



fn f(n: int,

r: ref int,

r2: (ref int, ref int))

{

let mut a = 0;

if n > 0 {

a = f(move r);

a = g(move r2.0)

};

drop r;

drop r2

}

fn f(n: int,

r: ref int,

r2: (ref int, ref int))

{

let mut a = 0;

let mut flag = true;

if n > 0 {

flag = false;

a = f(move r);

a = g(move r2.0)

};

if flag {

drop r

};

if flag {

drop r2.0

};

drop r2.1

}

Figure 3: A possible representation of a program in the model language that we will define, before (left) and
after (right) drop elaboration. Note that the elaborated program is slightly optimized in that it uses only
one boolean flag (flag) for both r and r2.0.

2.2 Coq

Coq [2] is an interactive theorem prover based on the calculus of inductive constructions. It is being used to
formalize logical frameworks (such as Iris [3]) and (parts of) programming languages. We plan to use Coq
to formalize our definitions and theorems, and to check our proofs.

3 Goals

3.1 Program Representation

Although choosing the exact representation of programs in our model language is still a future task for us,
we already expect our representation to have some key differences from the representation in rustc. For the
sake of simplicity, we plan to define a recursive type of statements or expressions to represent the programs
as opposed to the CFG-based MIR used by rustc. Therefore, the drop elaboration step that we formalize
will most likely be more similar to what is shown in Figure 3.1 than what Figures 2.1.1 and 2.1.2 display.

3.2 Core Goals

• In Coq, define the syntax of the model language. The features of the model language should include
local variables (some with and some without drop obligations), conditional statements, loops, calls to
external functions (where values can be moved from local variables into the function’s arguments and
from the function’s return value into a local variable), and drop statements.

• In Coq, define the semantics of the model language before and after drop elaboration.

• In Coq, define the elaboration function which elaborates drops in programs in the model language.
This function should support conditional dropping, but by using information from a data-flow analysis
that we implement, the elaboration function should refrain from introducing unnecessary boolean flags
for variables which are not involved in any non-linear control flow (such as conditionals or loops).

3.3 Extension Goals

• Optimize the elaboration function to avoid unnecessary boolean flags even for variables which are
involved in non-linear control flow (if possible).

• In Coq, prove that our elaboration function preserves whole-program semantics.

4



• Add support for tuples to the model language so that we also model partial dropping.

• Add support for enums to the model language and adjust the data-flow analysis accordingly. The
data-flow analysis should take into account that the different variants of an enum might have different
drop behavior and that at drop time, it might be impossible for the enum value to be of some of the
variants.

• Prove that not only does elaboration preserve the semantics of each individual function but also that in
a program consisting of multiple (potentially mutually recursive) functions, elaborating all the functions
preserves the execution behavior of the entire program.

• Add support for owned pointers (so that we can, for example, model moving out the inner Box in a
Box<Box<T>>).

• Add support for types with custom destructors to the model language.

• In the Iris framework, prove that a pre-elaboration term contextually refines its corresponding post-
elaboration term.

4 Estimated Timeline

Task Duration

defining model language syntax and semantics 3 weeks

defining an unoptimized elaboration function 2 weeks

proving that the elaboration function preserves whole-program semantics 3 weeks

adding support for tuples and partial dropping 2 weeks

adding support for enums 2 weeks

optimizing the elaboration function 2 weeks

adding support for owned pointers 1 week

adding support for custom destructors 2 weeks

writing the final report 3 weeks

References

[1] “Rust programming language.” [Online]. Available: https://www.rust-lang.org/

[2] Coq Reference Manual, 2024. [Online]. Available: https://coq.inria.fr/doc/V8.19.0/refman/

[3] R. Jung, R. Krebbers, J.-H. Jourdan, A. Bizjak, L. Birkeda, and D. Dreyer, “Iris from the ground up: A
modular foundation for higher-order concurrent separation logic,” Journal of Functional Programming,
vol. 28, 2018.

5

https://www.rust-lang.org/
https://coq.inria.fr/doc/V8.19.0/refman/

	Introduction and Motivation
	Background
	Rust Drop Elaboration
	Conditional Drops
	Partial Drops

	Coq

	Goals
	Program Representation
	Core Goals
	Extension Goals

	Estimated Timeline

