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1 Introduction

1.1 Overview

Rust [1] is a modern systems programming language with strong safety guarantees. Rust programs are
compiled by the Rust compiler, rustc. Among many other things, at one point in the compilation process,
rustc automatically inserts destructor calls for places whenever they go out of scope. In Rust, the destructor
calls are known as drops. Initially, they are inserted wherever a drop might be necessary. Only later, in
a separate pass called drop elaboration, the individual drop statements are adjusted (elaborated) such that
during the eventual execution of the compiled program, destructors will be called exactly where and when
necessary.

If drop elaboration is done incorrectly, it can have disastrous consequences during program execution. Me-
mory safety violations such as use-after-free or double-free can easily occur if we mistakenly run a destructor
on an already moved value. On the other hand, if we mistakenly leave out a destructor call, we are likely to
leak resources that would have been deallocated by the destructor.

Despite the great impact of potential bugs, the formal properties of the drop elaboration pass are poorly
understood. Drop elaboration is a complex compiler pass partly because it itself operates in several distinct,
yet logically connected, passes: To elaborate even a single drop statement, we need information about the
potential states of the place being dropped, for which we first may need to analyze the entire function in which
the drop appears. Then, if static analysis alone is not sufficient for us to determine how to elaborate a drop,
we also need to modify various program locations to make sure we keep track of the required information
dynamically. To store this information, we introduce additional local variables which are read by the code
that some of the drops elaborated to.

To improve the formal understanding of the drop elaboration pass, we implement our own simplified version
of it in the formal proof management system Coq [2], we formulate a formal specification of its correctness,
and we provide the foundations for a proof of that specification.

1.1.1 Motivating Example 1

In rustc, drop elaboration operates on the Rust mid-level intermediate representation (MIR), which, as the
name suggests, is one of several intermediate representations used by the compiler. It is around halfway
between the initial Rust source code and the final assembly.

Functions in MIR have the form of control-flow graphs (CFGs). One Rust function is represented by what we
call one MIR body1. In rustc, each MIR body carries with it a whole range of information, not all of which
is interesting or useful in our discussions of drop elaboration. For our purposes, we reduce the representation
of an MIR body to only

1. a CFG representing the executable part, and

2. a list of typed declarations of the represented function’s local variables including the declarations of
the function’s arguments, which are marked as such.

Figure 1 shows an example. Let us first focus on the the body shown on the left side of the figure. There,
local variables 0, 1, ..., 6 are declared. 0 is (always) for the return value and 1 and 2 are for the
function’s arguments n and b respectively. The example has 4 basic blocks, numbered 0, 1, 4, and 5. In
basic block 4, we see an example of a drop. The 2 in drop( 2) is the place that is being dropped – in this
case the local variable 2 corresponding to the function argument b: Box<i32>. Crucially, in the body
on the left, basic block 4 will be run in all possible executions. Therefore, in that case, if the drop always
actually called the destructor, the destructor of 2 would be called even if 2 had already been deinitialized
by the move 2 in basic block 1.

That was the body before drop elaboration. On the right side of the figure, we see the body after drop
elaboration. During drop elaboration, rustc introduced the boolean flag 7. Instead of the previous basic
block 4, we now have basic block 10, where execution branches on the value of that flag. If the flag is
true (0x01), the execution continues with the drop in basic block 9, while if the flag is false (0x00), the

1From rustc middle::mir::Body.
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execution avoids the drop and returns. This is desirable because the flag 7 will be true if and only if basic
block 1 has not executed, in other words, if and only if the local variable 2 has not been moved and thereby
deinitialized.

Let us try to understand how the compiler came up with this elaboration. As part of the drop elaboration
pass, rustc performed a static analysis of the given body. It concluded that the program location of the
drop( 2) in basic block 4,

• 2 might be uninitialized (if n > 0 and basic block 1 has executed), and also

• 2 might still be initialized (if the n > 0 branch has not been taken and basic block 1 has not executed).

In such a case, rustc cannot statically determine whether the drop should execute. Therefore, it resorts
to introducing the boolean flag 7 whose purpose it is to dynamically (at execution time) track if 2 is
initialized.

At the beginning of the function, 7 is set to true because 2 is a function argument and as such will always
be initialized at the beginning. Then, if the n > 0 condition holds, basic block 1 executes, 2 is moved and
7 is accordingly set to false. If n > 0 does not hold, 2 is not moved and 7 remains set to true. In any
case, when execution reaches basic block 10, which the original drop was elaborated to, 2 is initialized if
and only if 7 is set to true. That makes it sound to then execute the drop( 2) in basic block 9 conditionally
on the value of 7, as is achieved by the switchInt( 7) that we see in the after-elaboration body.

1.1.2 Motivating Example 2

The previous examples illustrates several basic principles of rustc drop elaboration, but it does not show
the intricacy that comes up when drop elaboration interacts with some the more complex types that Rust
values and places can have.

Tuples and structs play a key role in Rust. At the level of MIR, they are represented in the same way, which
is close to tuples in surface Rust: A tuple or struct s with, for example, 3 fields, is entirely determined by
those 3 fields – s.0, s.1, and s.2.

Similarly to Figure 1, we show an MIR body before drop elaboration on the left of Figure 2. Again, it has
only a single drop: drop( 2) in basic block 6. When looking at the rest of the CFG (or at the original Rust
source), we notice that some parts of 2 will be or might be deinitialized when basic block 6 is reached. It
is the drop elaboration’s task to make sure that only the initialized parts will be dropped.

To achieve that, it had to replace basic block 6 by basic blocks 23, 34, 35, 37, and 38. These make use of
the (also newly introduced) boolean flags 12 and 13. 12 tracks whether 2.0.1 (bxs.0.1) is initialized
and 13 whether 2.0.0 (bxs.0.0) is initialized. At first, both are set to true because 2.0.0 and 2.0.1

are initialized as being part of the argument 2. Later, the respective flag is set to false when either 2.0.0

or 2.0.1 is moved. At the end, basic blocks 38 and 37 conditionally drop 2.0.0 based on the value of 13

and 35 and 34 do the same for 2.0.1 using the value of 12.

The compiler was able to statically deduce that 2.1 (and its subfields) is always already deinitialized (due
to the move in basic block 5), so we see no drops of that place. Similarly, 2.2 is always left initialized, so
the drop drop( 2.2) in basic block 23 is unconditional.

1.1.3 Our Approach

In this project, we do not verify the actual rustc drop elaboration implementation. At this time, we find it
more important to focus on the more abstract ideas of drop elaboration and we believe that working with
the real rustc implementation (itself written in Rust) would cause us to spend a considerable amount of
effort on the less interesting technical details of that implementation.

We define our own, simplified implementation of drop elaboration in the formal proof management system
Coq. This greatly lowers the proof engineering burden thanks to Coq’s naturally built-in support for proofs.
To further simplify our task, we include only a fraction of the features of the rustc drop elaboration in our
implementation. Crucially, the input and output language (which is also defined by us in Coq) targeted by
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fn g(b: Box<i32>) { }

fn f(n: u32, b: Box<i32>) {

if n > 0 {

g(b);

}

}

fn f(_1: u32, _2: Box<i32>) -> ()
let mut _3: bool;
let mut _4: u32;
let _5: ();
let mut _6: Box<i32>;
debug n => _1;
debug b => _2;

0

_4 = _1
_3 = Gt(move _4, const 0_u32)

switchInt(move _3)

1

_6 = move _2

_5 = g(move _6)

otherwise

4

drop(_2)

0

return

5

return

return

fn f(_1: u32, _2: Box<i32>) -> ()
let mut _3: bool;
let mut _4: u32;
let _5: ();
let mut _6: Box<i32>;
let mut _7: bool;
debug n => _1;
debug b => _2;

0

_7 = const true
_4 = _1
_3 = Gt(move _4, const 0_u32)

switchInt(move _3)

1

_7 = const false
_6 = move _2

_5 = g(move _6)

otherwise

10

switchInt(_7)

0

return

5

return

9

drop(_2)

return

0

otherwise

Figure 1: Rust source (top), MIR before drop elaboration (bottom left), and MIR after drop elaboration
(bottom right) for an example function f. Note how drop elaboration introduced the boolean flag 7 and
replaced basic block 4 by basic blocks 9 and 10.

For readability, we made several simplifications to the MIR produced by the compiler before displaying it
here. We removed some features that were not relevant to our discussion, such as basic blocks that handle
unwinding, some type annotations, assignments to locals of the unit type, or basic blocks that consisted of
only the goto terminator.

All examples were produced by rustc 1.81.0-nightly.

5



fn g(b: Box<i32>) { }

fn gg(bpair: (Box<i32>, Box<i32>)) { }

type Boxes =

((Box<i32>, Box<i32>),

(Box<i32>, Box<i32>),

(Box<i32>, Box<i32>));

fn f(n: u32, bxs: Boxes) {

if n == 1719 {

g(bxs.0.0);

} else {

g(bxs.0.1);

}

gg(bxs.1);

}

fn f(_1: u32, _2: Boxes) -> ()
let _3: ();
let mut _4: bool;
let mut _5: u32;
let _6: ();
let mut _7: Box<i32>;
let _8: ();
let mut _9: Box<i32>;
let _10: ();
let mut _11: (Box<i32>, Box<i32>);
debug n => _1;
debug bxs => _2;

0

_5 = _1
_4 = Eq(move _5, const 1719_u32)

switchInt(move _4)

1

_7 = move (_2.0.0)

_6 = g(move _7)

otherwise

3

_9 = move (_2.0.1)

_8 = g(move _9)

0

5

_11 = move (_2.1)

_10 = gg(move _11)

return return

6

drop(_2)

return

7

return

return

fn f(_1: u32, _2: Boxes) -> ()
let mut _4: bool;
let mut _5: u32;
let _6: ();
let mut _7: Box<i32>;
let _8: ();
let mut _9: Box<i32>;
let _10: ();
let mut _11: (Box<i32>, Box<i32>);
let mut _12: bool;
let mut _13: bool;
let mut _14: bool;
debug n => _1;
debug bxs => _2;

0

_14 = const true
_12 = const true
_13 = const true
_5 = _1
_4 = Eq(move _5, const 1719_u32)

switchInt(move _4)

1

_13 = const false
_7 = move (_2.0.0)

_6 = g(move _7)

otherwise

3

_12 = const false
_9 = move (_2.0.1)

_8 = g(move _9)

0

5

_14 = const false
_11 = move (_2.1)

_10 = gg(move _11)

return return

38

switchInt(_13)

return

7

return

23

drop(_2.2)

return

34

drop(_2.0.1)

return

35

switchInt(_12)

0

otherwise

37

drop(_2.0.0)

return

0

otherwise

Figure 2: Rust source (top left), MIR before drop elaboration (bottom left), and MIR after drop elaboration
(right) for an example function f. As in Figure 1, the displayed MIR has been simplified. We see that flags
12, 13, and 14 have been introduced and the drop in basic block 6 elaborated to partially conditional
drops in basic blocks 23, 34, 35, 37, and 38. Note that the flag 14 is never read in the displayed MIR, but
it is read in one of the basic blocks that handle unwinding, all of which we have removed.
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our drop elaboration implementation is neither Rust nor Rust MIR but our own, custom, simplified, Rust-
like language (hereafter we usually refer to it as just “our language”). Despite all the limitations listed here,
we believe that our project advances the formal understanding of the core features of Rust drop elaboration
and prepares for the formal verification of their correctness.

As a whole, our project consists of three main parts: the definition of our Rust-like language (of its syntax
and semantics), the definition of the drop elaboration function on programs in that language, and the for-
malization of a meaningful correctness statement for that elaboration. Together with the formal correctness
statement, we also provide some partial proofs. All these parts are realized in Coq. The Coq formalization
is a major part of this project, and appendix A details how it is available.
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2 Background

2.1 Rust

In this section, we clarify some of the Rust concepts mentioned in the discussion of the examples above. We
introduce other relevant concepts too.

2.1.1 Places

In the examples above, we sometimes referred to local variables and their fields as places. Intuitively, a place
is a region of memory that can store a value.

In Rust, generally, a place is given by specifying a local variable and a list of projections. There exist
several kinds of projections such as dereferencing, downcasting to a variant of an enum, accessing an array
index, or accessing a tuple field. In this project, the language we work with is restricted such that only the
field-of-a-tuple projection is relevant. For example, 2.0.1 is a place specified by the local variable 2 and a
list of the two projections, .0 and .1, i.e., accessing field 0 of 2 and then accessing field 1 of 2.0. To give
another simple example, any local variable is a place described by the local variable itself and an empty list
of projections.

Each place has an associated type, which is the common type of all the values that the place might hold.
In our simplified language, any type is either a tuple or an atomic type which is not built out of other
constituent types. We will call any place with a non-tuple type a leaf place and any place with a tuple
type a non-leaf place. Also, if p and p′ are places derived from the same local variable such that the list
of projections of p is a prefix of the list of projections of p′, we say that p′ is a descendant of p and p an
ancestor of p′. Note that with this definition, each place is also both a descendant and an ancestor of itself.

2.1.2 Places Being Initialized

At any given point during the execution of an MIR body and for any given place declared in that body, we
can define whether the place is initialized, uninitialized, or partially initialized. Each leaf place is always
either initialized or uninitialized. At any point, an arbitrary place is initialized if all its descendant leaf
places are initialized, uninitialized if all its descendant leaf places are uninitialized, and partially initialized
if some of its descendant leaf places are initialized and some uninitialized.

When an MIR body starts executing, a place is initialized if and only if it is a descendant of a local variable
which is a function argument in that body. All other places (i.e, those that are descendants of non-argument
local variables) are uninitialized at the start. During execution, there are two operations that affect which
places are initialized. An assignment to a place initializes all its descendants. Conversely, moving out of a
places deinitializes all its descendants.

2.1.3 Destructors

Drops are closely tied to the notion of destructors. We think of every type as having an associated destructor,
which is an MIR function with an argument of the given type and no return value. In our project, the only
type construction we are concerned with is the tuple/struct. In such a simplified context, the destructor of
a type

• first, calls that type’s implementation of Drop::drop. If the type does not implement the Drop trait,
there is no action in this part. Then,

• second, if the type is a tuple, the destructor sequentially calls the destructor of each of the tuple’s fields
in the order of their declaration.2

For many common types, the destructor has no effect. These include, for example, types implementing the
Copy trait such as bool or integer types like u64, i32.

Destructors are important to us because the behavior of drop statements is defined in terms of calls to the
appropriate destructors; see 2.1.4.

2See https://doc.rust-lang.org/reference/destructors.html.

8

https://doc.rust-lang.org/reference/destructors.html


2.1.4 Semantics of drop Before And After Drop Elaboration

As we will see later (3.2.5), to formalize the desired correctness property of the drop elaboration pass, we
need to understand (and then formalize) the semantics of MIR drop statements.

Importantly, the semantics of drop is different before and after drop elaboration. We call it the pre-
elaboration semantics and the post-elaboration semantics in the respective cases.

In the post-elaboration semantics, a drop of a place amounts to calling that place’s destructor.

The pre-elaboration semantics is more complex. In it, the behavior of a drop of place depends on which
descendants of the place are initialized. If the place itself is initialized, the drop simply calls its destructor.
Otherwise, if it is a leaf place, then it must be uninitialized and the drop is a no-op. In the final case, the
behavior of the drop can be defined recursively as that of the sequence of drop statements dropping the
place’s fields in order, starting with .0.

2.2 Coq

Coq is a formal proof management system based on the formal language of the calculus of inductive con-
structions. Coq has been used in many formal developments in programming language research, several of
which specifically about Rust, such as RustBelt [3] using the Iris framework [4].

Discussions in this text are themselves independent of the technical details of Coq. They are however a
somewhat informal treatment of what it otherwise precisely defined in our formal development, which is
written entirely in Coq (see 5.4 and A).
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3 Language

For the purposes of our project, we formally define a language on which our implementation drop elaboration
operates. This is necessary to formulate formal statements about the properties of drop elaboration and to
formulate formal proofs of those statements.

In the ideal case, this language that we formalize would be very close to Rust MIR because it is MIR on which
the real drop elaboration in rustc operates. Unfortunately, we think that would be impractical because of
the relatively high complexity of MIR. Formalizing a language very close to MIR would not only be tedious,
it would also be unnecessary or even counterproductive because it would make it harder to focus on only the
features that are relevant to drop elaboration, which, ultimately, is the object of our study in this project.

For these reasons, our language has simplifications with respect to MIR. Some simplifications replace an
MIR mechanism with an alternative, simpler one: Instead of control-flow graphs, bodies are represented
by inductively defined commands and expressions more similar to surface Rust (or some other high-level
imperative programming language). Some simplifications abstract over a MIR mechanisms that are not
directly relevant to drop elaboration: Memory which is not local to the current function, the heap, is
represented by an opaque type and only manipulated in opaque ways through function calls or drops.
Finally, some simplifications simply leave MIR features out: Our language does not support enum types.

Before we discuss the more formal technical details of our language, let us go back to the examples in Figure
1 and Figure 2 and demonstrate how they can be replicated in our language. For this, we turn to Figure 3
and Figure 4.

Expectably, the structure of the examples should resemble that of the original ones. However, there are also
noticeable differences. Again, these differences primarily serve the purpose of simplifying the representation
and focusing on drop elaboration. As motivation of a more formal discussion later, we informally mention a
list of some of those observable differences here below:

• All types with a trait Drop implementation (such as Box<T>) and abstractly represented by a single
type Droppable. Besides Droppable, the types that we support for leaf places Num (an unbounded
integer) and Bool.

• In 4, we see that dropping the third field of bxs (bxs.2), which is always initialized, was elaborated
to two drops – one for each of its two leaf descendants. The actual MIR drop elaboration produces
to only a single drop of the entire bxs.2. This is because in our formalization of the post-elaboration
semantics, we only allow dropping values of type Droppable and not tuples consisting of them.

• Due to the specifics of how we formalized the semantics, we need to introduce the forget command
to make sure that the execution behavior of the pre-elaboration program is always the same as that of
the post-elaboration program. See also 3.2.6.

• We introduced the local variable tmp because the function calls that we support always take one
argument and return one value, which we must assign somewhere. As detailed later (3.2.4), function
calls play an important role in the semantics of our language because they enable interaction with
otherwise opaque values of the Droppable type.

• A read of any place is explicitly annotated with copy or move for clarity. (MIR leaves copy-accesses
unannotated.)
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b : Droppable

n : Num

tmp : Num

if (copy n) > 0 then

tmp := g(move b)

end;

drop b

b : Droppable

n : Num

tmp : Num

flag : Bool

flag := true;

if (copy n) > 0 then

tmp := g(move b);

flag := false

end;

if (copy flag) then

drop b;

flag := false

end;

forget b;

flag := false

Figure 3: A reproduction of the example in Figure 1 in our language. Box on the left shows the body before
drop elaboration; box on the right after drop elaboration. Each body has a list of local declarations (shown
at the top) and an executable command (shown after the declarations).

bxs : ((Droppable, Droppable),

(Droppable, Droppable),

(Droppable, Droppable))

n : Num

tmp : Num

if (copy n) == 1719 then

tmp := g(move bxs.0.0)

else

tmp := g(move bxs.0.1)

end;

tmp := gg(move bxs.1);

drop bxs

bxs : ((Droppable, Droppable),

(Droppable, Droppable),

(Droppable, Droppable))

n : Num

tmp : Num

flag1 : Bool

flag2 : Bool

flag1 := true;

flag2 := true;

if (copy n) == 1719 then

tmp := g(move bxs.0.0);

flag1 := false

else

tmp := g(move bxs.0.1);

flag2 := false

end;

tmp := gg(move bxs.1);

if (copy flag1) then

drop bxs.0.0;

flag1 := false

end;

if (copy flag2) then

drop bxs.0.1;

flag2 := false

end;

drop bxs.2.0;

drop bxs.2.1;

forget bxs;

flag1 := false;

flag2 := false

Figure 4: A reproduction of the example in Figure 2 in our language. Body before and after drop elaboration
on the left and on the right respectively.
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3.1 Syntax

The complete syntax of our the executable snippets of our language can be concisely described as follows:

n ∈ Z
d ∈ D
x ∈ V arId

f ∈ FuncId

field ∈ {0, 1, 2, . . . }
Place p ::= x | p.field
Exp e ::= copy p | move p | e⊙ e | true | false | n | d | (e, . . . , e)
Command c ::= skip | p := e | c; c | if e then c else c end | while e do c end

| drop p | forget p | p := f(e)

As for the parts which warrant further comments:

• D is the set of all droppable values, which can be any arbitrary fixed set (see also 3.2.4).

• V arId and FuncId are the sets of variable and function identifiers respectively. We set them to be
the sets of strings; although many other sets would be admissible too.3

• The ⊙ symbol stands for any one of several binary operators that we support. These operators take
integer or boolean operands and produce integer or boolean values. They include, for example, integer
addition, integer equality, and the logical OR. They have little interaction with drop elaboration, so
we don’t discuss them much further.

• (e, . . . , e) is the syntax for tuples where each field is given by some expression. The dots are not to be
read verbatim – they stand for a comma-separated list of expressions.

• In contrast to surface Rust but more similarly to MIR, function do not appear in expressions, only as
standalone commands. The syntax for a function call (which always also comes with assignment of the
return value), p := f(e), resembles the syntax for an assignment, p := e, but they are two definitely
separate commands in the syntax.

• We usually abbreviate if e then c else skip end as just if e then c end.

Note that constant droppable values do not typically appear in the input or output programs. Droppable
values are intended to be introduced primarily through the return values of functions. We do include the
“d” variant for Exp because such constants appear in partially executed programs and we reuse the same
syntactic representation for them.

3.2 Semantics

3.2.1 Expression Evaluation

In all situations, we use the following evaluation-context-based semantics of expression evaluation (reusing
metavariables from 3.1):

V alue v ::= true | false | n | d | (v, . . . , v)
ECtx E ::= − | E ⊙ e | v ⊙ E | (v, . . . , v, E, e, . . . , e)

v1 [⊙] v2 = v

⟨l, v1 ⊙ v2⟩
exp
⇝ ⟨l, v⟩

exp-bop
p ∈ init(l)

⟨l, copy p⟩ exp
⇝ ⟨l, l(p)⟩

exp-copy
p ∈ init(l)

⟨l, move p⟩ exp
⇝ ⟨l \ p, l(p)⟩

exp-move

⟨l, e⟩ exp
⇝ ⟨l′, e′⟩

⟨l, E[e]⟩ exp
⇝ ⟨l′, E[e′]⟩

exp-ctx

3The only requirement would be that V arId is infinite so that it is always possible to pick an unused variable identifier when
generating a flag.

12



Expressions are evaluated as part of configurations, ⟨l, e⟩, which are pairs consisting of the state of local

variables, l, and the expression to evaluate, e.
exp
⇝ is the relation of executing a basic evaluation step and

exp
⇝

extends it with the possibility of executing within an arbitrary evaluation context.

init(l) denotes the set of all places initialized in the local state l and l \ p denotes the local state l but with
the place p deinitialized. For more details, see 3.2.3 and 3.3.3.

3.2.2 Command Execution Besides drop

Here below, we describe the structural operational semantics of the most part of our language. These rules
apply in all situations. We do not include the semantics of drop because it is different before and after drop
elaboration – we discuss its semantics further below.

CCtx C ::= p := − | if − then c else c end | p := f(−)

p ∈ dom(l)

G ⊢ ⟨l, h, p := v⟩⇝ ⟨l[p 7→ v], h, skip⟩
exec-asgn

G ⊢ ⟨l, h, c1⟩⇝ ⟨l′, h′, c′1⟩
G ⊢ ⟨l, h, c1; c2⟩⇝ ⟨l′, h′, c′1; c2⟩

exec-seq

G ⊢ ⟨l, h, skip; c⟩⇝ ⟨l, h, c⟩
exec-seq-skip

G ⊢ ⟨l, h, if true then c else c′ end⟩⇝ ⟨l, h, c⟩
exec-if-then

G ⊢ ⟨l, h, if false then c′ else c end⟩⇝ ⟨l, h, c′⟩
exec-if-else

G ⊢ ⟨l, h, while e do c end⟩⇝ ⟨l, h, if e then c; while e do c end else skip end⟩
exec-while

p ∈ dom(l)

G ⊢ ⟨l, h, forget p⟩⇝ ⟨l \ p, h, skip⟩
exec-forget

callG(f, varg, h, h
′, vret)

G ⊢ ⟨l, h, p := f(varg)⟩⇝ ⟨l, h′, p := vret⟩
exec-call

⟨l, e⟩ exp
⇝ ⟨l′, e′⟩

G ⊢ ⟨l, h, C[e]⟩⇝ ⟨l′, h, C[e′]⟩
exec-ctx

We express command execution as a relation on the set of possible configurations, which is the set of triples
of the form ⟨l, h, c⟩, where l is, again, the local state, h is the heap, and c is the command to execute. The
execution relation is parametrized by a global context G; G ⊢ ⟨l, h, c⟩⇝ ⟨l′, h′, c′⟩ is the statement that the
configuration ⟨l, h, c⟩ executes in one step to the configuration ⟨l′, h′, c′⟩ in the global context G.

We unified the semantics of evaluating expressions nested inside commands in a single rule, exec-ctx.
It uses the definition of the CCtx evaluation context, which captures the need to evaluate expressions in
assignments, if-commands, and function calls.

3.2.3 Local State

The local state l can be viewed as a partial map from a set of places to values, mapping the fully initialized
places to their values. As given by the exp-copy and the exp-move rule, only initialized places can be
read. On the other other hand, to assign or “forget” a place, it has to exist but it needs not be initialized,
which is expressed in exec-asgn and exec-forget by p ∈ dom(l). dom(l) is the set of all places that exist
in the local state l and, in general, dom(l) ⊇ init(l). As an example, if l0 is a local state at the beginning
of the execution of a function, a place representing a local variable which is not a function argument will
always be in the difference dom(l0) \ init(l0) (the place exists but it is not initialized).

l[p 7→ v] stands for the local state l updated to map the place p to the value v. This also updates the images
of all descendants of p such that they are either mapped to the corresponding subfield of v4 or do not appear
in dom(l[p 7→ v]) at all.

4Inductively on the structure of values, we define a subfield of a value v to be either v itself or, if v is a tuple, a subfield of
one the fields of v.
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The precise structure of the local state is defined in 3.3.3.

3.2.4 Global Context

The global context G carries the complete information about the execution behavior of functions that might
be called and of drops (see 3.2.5). Correspondingly, it defines two relations: callG and dropG. callG relates
five objects: the function identifier f , the passed function argument varg, the heap before the call h, the heap
after the call h′, and the return value vret. callG(f, varg, h, h

′, vret) means that it is possible that starting
with heap h and given the argument varg, the function f executes to heap h′ and returns vret. Given any
f , varg, and h, there is no restriction on the number of pairs of h′ and vret for which callG(f, varg, h, h

′, vret)
holds. In particular, the non-existence of any such h′ and vret can signify that it is invalid to call f in h with
the given varg. On the other hand, multiple such h′ and vret encode non-deterministic behavior of f .

Analogously, dropG is a relation on three sets instead of five. In particular, dropG(d, h, h
′) means that it is

possible that dropping the droppable value d ∈ D in the heap h executes to heap h′.

Note we have described neither the set of all droppable values D nor the set of all possible heap states
in any way. They are intentionally left unspecified and the entire formalization is parametrized by what
these sets are. This means that the statements that we prove about our language and our drop elaboration
implementation hold for any choice of the set of heap states, D, and G.

3.2.5 Drop

The semantics of drop is the only part that differs between the pre-elaboration and post-elaboration seman-
tics. Post elaboration, we have just

p ∈ init(l) ∧ l(p) ∈ D ∧ dropG(l(p), h, h
′)

G ⊢ ⟨l, h, drop p⟩⇝ ⟨l, h′, forget p⟩
exec-drop-post

,

which means that only places initialized with a droppable value can be dropped and that has the effect of
transforming the heap precisely as given by the dropG relation. The drop executes to a forget, which will
just deinitialize the place p in the local state as per exec-forget.

On the other hand, in the pre-elaboration semantics, we have

p ∈ dom(l) ∧ smartdropG(l(p), h, h
′)

G ⊢ ⟨l, h, drop p⟩⇝ ⟨l, h′, forget p⟩
exec-drop-pre

.

In contrast to exec-drop-post, the exec-drop-pre rule allows to also execute drops of uninitialized or
partially-initialized places and places which are initialized with values other than droppable values. Intu-
itively, the smartdropG relation represents the combined effect of dropping all values d ∈ D to which subfields
of the dropped v are initialized.

Concretely, for x ∈ {true, false} ∪ Z ∪ {⊥}, smartdropG(x, h, h
′) ⇐⇒ h = h′, where ⊥ represents an

uninitialized value. For d ∈ D, smartdropG(d, h, h
′) ⇐⇒ dropG(d, h, h

′). And for structs,

smartdropG((v1, . . . , vk), h, h
′)

⇐⇒
∃h0, h1, . . . , hk. h0 = h ∧ smartdropG(v1, h0, h1) ∧ · · · ∧ smartdropG(vk, hk−1, hk),

for any, even partially-initialized, values v1, . . . , vk. Note that this respects the rule that dropping a tuple
drops its fields in the order of their declaration, which is followed in rustc (refer to 2.1.3).

Note the differences between exec-drop-pre and exec-drop-post. In the pre-elaboration semantics
(exec-drop-pre), drop is relatively complex and powerful because it be used on a wide variety of val-
ues. It accesses information which actually cannot be directly accessed during execution: whether a place
is initialized or not. On the other hand, in the post-elaboration semantics (exec-drop-post), drop is
restricted to the simple case of always only dropping initialized droppable values from D.
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3.2.6 Forget

The forget command does not have a direct equivalent in the Rust MIR and it might be unclear why we
introduce it in our language.

We could remove forget from our syntax, remove the corresponding exec-forget rule, and make our drop
rules directly deinitialize the dropped place, like so:

p ∈ dom(l) ∧ smartdropG(l(p), h, h
′)

G ⊢ ⟨l, h, drop p⟩⇝ ⟨l \ p, h′, skip⟩
exec-drop-pre-no-forget

p ∈ init(l) ∧ l(p) ∈ D ∧ dropG(l(p), h, h
′)

G ⊢ ⟨l, h, drop p⟩⇝ ⟨l \ p, h′, skip⟩
exec-drop-post-no-forget

.

Unfortunately, in such a language, we could not properly elaborate drops of non-leaf places. In the correctness
statement of our elaboration, we assert that a particular execution of a function in the pre-elaboration
semantics is possible if and only if a similar execution of the function after drop elaboration is possible in
the post-elaboration semantics (see 5.3 and 5.1 for details). This could not be reasonably be in this language
without forget:

For example, suppose we have a local variable x: (Droppable, Num), suppose that it is fully initialized,
and also suppose G is such that dropG(d, h, h

′) and callG(f, varg, h, h
′, vret) hold for any d, h, h′, varg and

vret. Then, in pre-elaboration semantics, drop x; x.1 := 3 cannot execute because after the drop, x has
been removed from the local state, so the place x.1 does not exist in the local state. However, in the
post-elaboration semantics, drop x.0; x.1 := 3, which the original command naturally elaborates to, can
always execute because the place x.1 still exists.

In our actual language, we can elaborate to drop x.0; forget x; x.1 := 3, which, correctly, will not be
able to execute.

3.3 T-Trees And T-Forests

Let us clarify how we represent the local state. The descendants of a places of a local variable are naturally
organized in a tree structure such that places are descendants of one another in the tree if and only if they
are descendants as places. Since a tuple can have an arbitrary number of fields, nodes in such a tree can
have an arbitrary number of children.

3.3.1 T-Trees

We call such trees T-trees5. A T-tree is defined over some base set of objects that can be stored in its leaves.
Specifically, given a set S the set ttree(S) can be defined inductively as containing all the elements S and
all the lists (tuples) of elements of ttree(S).

1. S ⊆ ttree(S)

2. k ≥ 0 ∧ t1, . . . , tk ∈ ttree(S) =⇒ (t1, . . . , tk) ∈ ttree(S)

We can define the domain of a T-tree as the set of all lists of indexes that represent one of its subtrees. For
t ∈ ttree(S),

1. if t ∈ S, then dom(t) = {()} (only the empty list)

2. if t = (t1, . . . , tk), then dom(t) = {()} ∪
⋃k

i=1{I prepend i | I ∈ dom(ti)}.

Given a T-tree t ∈ ttree(S) and I ∈ dom(t), we use t(I) to denote the subtree of t corresponding to the
path of indices l. t(I) is itself also a T-tree; t(I) ∈ ttree(S). Given some other r ∈ ttree(S), we also write
t[I 7→ r] to denote a new T-tree where the subtree t(I) is replaced by t′.

5T for tuple.
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3.3.2 T-Forests

Since there can be multiple different variables, we define a notion of T-forests. A T-forest over S is just a
partial map V arId ⇀ ttree(S). We write tforest(S) = {f : V arId ⇀ ttree(S)}. For any f ∈ tforest(S),
we define dom(f) as a set of places

dom(f) = {p ∈ Place | ∃var, I, t. f : var 7→ t ∧ I ∈ dom(t) ∧ p = var followed by I}.

For any f ∈ tforest(S), p ∈ dom(f), and r ∈ ttree(S), with p = (var followed by I), we define f(p) =
f(var)(I) and f [p 7→ r] = f [var 7→ f(var)[I 7→ r]]. Additionally, we define we set of all variables to which a
forest assigns some tree: vars(f) = {var ∈ V arId | var ∈ dom(f)}.

3.3.3 Local State As a T-Forest

We can define the local state as a T-forest over the base set V ′
base := Z ∪ {true, false} ∪ D ∪ {⊥}. The

notations that we introduced specifically for the local state in 3.2.1 and 3.2.3 for reading and assigning values
and for the domain of a local state then coincide with those for T-forests. Additionally, for p ∈ dom(l), we
define l \ p = l[p 7→ ⊥] and init(l) = {p ∈ dom(l) | ∀I ∈ dom(l(p)). l(p)(I) ̸= ⊥}.

3.3.4 Types As T-Trees

We also represent types using T-trees: A type is a T-tree over the base set Tbase = {Num, Bool, Droppable}.
The typing context of all local variables is then represented by a T-forest over the same set, which generally
consider to be arbitrary but fixed and denote by Γ ∈ tforest(Tbase).

We need to work with types because the elaboration of a place naturally depends on the place’s type (for
example, drop x.3 might be elaborated to skip if x.3 has type Num, drop x.3 if x.3 has type Droppable,
and drop x.3.0; drop x.3.1.1 if x.3 has type (Droppable, (Num, Droppable))). As such, a particular
elaboration of drops is correct only in the given type context. Therefore, we also need to restrict the values
in the local state with which we execute the function to the types prescribed by Γ and we need to require
that the body that we elaborate only accesses places consistent with Γ. See also 5.2.

For the above purpose, we want to be able to express that a T-tree follows the structure of another ttree.
For T-trees t1 and t2, possibly over different base sets, we write t1 ≼ t2 if either

• t1 is just a leaf (an element from its base set), or

• t1 and t2 are both lists of T-trees, t1 = (t1,i)i and t2 = (t2,i)i, with the same length, and for all i,
t1,i ≼ t2,i.

Note that t1 ≼ t2 implies dom(t1) ⊆ dom(t2) but not the other way around.

For two T-forests f1 and f2, we define that f1 ≼ f2 if for all var ∈ V arId,

(var ∈ dom(f1) ⇐⇒ var ∈ dom(f2)) ∧ (var ∈ dom(f1) =⇒ f1(var) ≼ f2(var))

For example, for any local state l that we attain, it should hold that l ≼ Γ. (This is a statement that we
prove given some assumptions.)
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4 Drop Elaboration

There many possible ways to correctly elaborate a particular function. In both rustc and in our imple-
mentation, the general idea is to introduce a set of boolean flags which track whether individual places are
initialized. Two kinds of accesses to these flags are introduced:

• A flag is assigned when the corresponding place is initialized or deinitialized (assigned true when the
place becomes initialized and false when it becomes uninitialized).

• A corresponding flag is read when it appears as a condition in an if-command around a drop statement
to determine whether a particular place should be dropped.

In contrast to some potential alternatives, we do not need to move drop-commands around the elaborated
function in this approach. We only replace each drop command by some elaborated version of it (e.g. by
enclosing it in an if-command).

Following the above description, one correct implementation of drop elaboration could create a boolean flag
for every droppable leaf place that appears in the function, elaborate any drop of a place p to the sequential
composition of dropping all droppable leaf places descendant of p, and then for each drop of a droppable
leaf place q, drop q, to a conditional which only executes the drop if the flag corresponding to q is true, if
flag(q) then drop q end.

While this is a correct and feasible solution, we make an effort to minimize the footprint that drop elaboration
leaves in the compiled program. Otherwise, the performance of the resulting program is likely to be negatively
affected. Specifically, our main goal is to reduce the number of added boolean flags as much as practically
possible.

In the above-outline approach which adds a flag for every droppable places, some flags are unnecessary. For
some drops, we can statically determine that the place they are dropping will always be initialized when
execution reaches the drop and for some other drops, we can determine that they will always be uninitialized.
For places that only appear in such drops, we do not need a flag.

To that end, we first perform an analysis on the function we are about to elaborate. The goal of the analysis
is to determine, at the each program location of a drop in the function, which places might be initialized
and which might uninitialized.

4.1 Initialization State

Let us specify how we represent the initialization state our analysis computes at each program location. By
initialization state, we mean the statically-computed finite representation of a possibly infinite set of dynamic
program execution states that respect some property about which places are initialized. Specifically, given a
particular local state l and a particular initialization σ, we can always decide whether l has places initialized
in a way consistent with σ or not. If it does, we say that l belongs to σ and write l ∈ σ. Otherwise, l ̸∈ σ.

One simple initialization state representation would be a map from the set of all droppable leaf places to the
set Ibase = {IS INIT, IS UNINIT, UNKNOWN}. While this would also be sensible choice, it does not provide quite
as much information as we would hope for. Specifically, consider a tuple s : (Droppable, Droppable).
Suppose that at some program location, we know that s is either initialized or uninitialized but is not
partially initialized. Such a state would be represented by the map

{s.0 7→ UNKNOWN, s.1 7→ UNKNOWN}.

However, this same map also represents the initialization state where we know nothing at all about how s is
initialized. In other words, such a simple map representation does not capture information about correlations
between which leaf places are initialized. Since this information is useful in limiting the number of number
of generated flags (see 4.2), we choose a more sophisticated representation.

Luckily, we can reuse the notions of T-trees and T-forests. We represent the initialization state of a single
variable of type τ as a T-tree over the base set Ibase such that dom(ι) ⊆ dom(τ). Going back to the example
when we know that the variable s is not partially initialized, that would be represented just by a zero-
depth T-tree ι = UNKNOWN. We can think of each UNKNOWN as being (independently from all other UNKNOWNs)
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substituable by either an IS INIT or a IS UNINIT. So if we have only one UNKNOWN for the entirety of s, then
s is either wholly IS INIT or wholly IS UNINIT but not a mixture of the two.

In particular, this is in contrast to the T-tree ι = (UNKNOWN, UNKNOWN). This represents the initialization
state where each of the two fields is independently UNKNOWN. As such, it allows for the possibility that, for
example, s.0 is initialized but s.1 is not.

Naturally, when a T-tree over Ibase represents an initialization state of a single variable, a T-forest σ over
Ibase with σ ≼ Γ represents an initialization state of the entire local variable context.

4.2 Drop Elaboration Given Initialization State

Now we describe how, given the initialization state that we have computed (see 4.3 for how), we elaborate
any particular drop.

Suppose we want to elaborate drop p at a location for which we have computed the initialization state
σ ∈ tforest(Ibase). We start by looking up the initialization state of the particular place p, which will be
a T-tree ι = σ(p). However, it is possible that p ̸∈ dom(σ) if the initialization state of p is only summarily
described by the initialization state of one of its ancestors. In that case, we define ι := σ(p′), where p′ is the
nearest ancestor of p for which p′ ∈ dom(σ).

We wish to compare ι with the type of the place p, which we denote τ := Γ(p). Since σ ≼ Γ, we necessarily
have ι ≼ τ and, hence, dom(ι) ⊆ dom(τ). Therefore, for each leaf of the T-tree ι at some path I, ι(I) ∈ Ibase,
there is a corresponding subtree of τ , τ ′ := τ(I) ∈ ttree(Tbase). During elaboration, for each leaf of ι, we
consider the corresponding subtree τ ′ and we emit a particular command:

• If the leaf is IS UNINIT, we only emit skip.

• If the leaf is IS INIT, we visit all droppable leaf places in τ ′ and emit a drop of each such place and
sequentially compose all of these.

• If the leaf is UNKNOWN, we generate a flag for the place that corresponds to this place (which is some
descendant of p but not necessarily a leaf place; see also 4.4 for details on flag management). We emit
an if-command with a copy read of the generated flag, the command that would be generate in the
IS INITcase above in the then branch, and skip in the else branch.

Whenever we iterate through all leaves of a T-tree, we visit them in depth-first order, prioritizing the first
fields in each tuple. When we emit a command for each visited leaf, the command resulting from the whole
iteration is the sequential composition of the commands for leaves in that order. This ordering corresponds
to the the semantics defined for smartdropG (3.2.5).

To avoid generating any code or boolean flags when there is nothing to drop, we additionally check each of
the types τ ′ to see it any of its leaves is Droppable and if not, we ignore it altogether instead of following
the procedure outlined above. Then, finally, for each drop p in the original program, we append forget p to
its elaboration to ensure that the elaborated program matches the semantics of the original one (see 3.2.6).

4.3 Initialization Effect and Initialization State

To be able to compute the initialization at various program locations, we need to consider how the ini-
tialization state can be changed by executing various commands. For this purpose, we introduce the
notion of an initialization effect. Any command can be associated with some initialization effect. Each
initialization effect is a representation of a particular map from and to the set of initialization states
(tforest(Ibase) → tforest(Ibase)).

We want to construct initialization effects in such a way that whenever a command c can execute from a local
state l to a local state l′ and a l belongs to an initialization state σ, then l′ also belongs to the initialization
state obtained by applying the initialization effect of c on σ. This property will not immediately follow from
our definition; we instead prove it as a lemma in our formal development.

For the concrete representation of initialization effects, we again turn to T-forests. We represent initialization
effects as T-forests ϵ over the base set Ebase = P({INIT, DEINIT, KEEP}) \ {∅}, where P denotes the set of all
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subsets, with the requirement that ϵ ≼ Γ. INIT, DEINIT, and KEEP represent actions that a command can
have on a place in the local state. It can initialize the place (INIT), it can deinitialize the place (DEINIT),
and it can leave it unaffected as to whether it is initialized (KEEP). For certain commands, it is possible that
they can have one or the other of these three effects (or any of them) on a certain place. That’s why Ebase
contains arbitrary subsets of the three actions.

To define the initialization effects of commands, we introduce several basic operations on initialization effects.
For two initialization effects ϵ1 and ϵ2, we can define their join, ϵ1 ∨ ϵ2, which satisfies

∀l, σ. (l ∈ ϵ1(σ) ∨ l ∈ ϵ2(σ)) =⇒ l ∈ (ϵ1 ∨ ϵ2)(σ),

and their sequential composition ϵ1; ϵ2, which satisfies

∀l, σ. l ∈ ϵ2(ϵ1(σ)) =⇒ l ∈ (ϵ1; ϵ2)(σ).

These can both be given appropriate constructive definitions by recursion on the T-tree structures. For any
place p ∈ dom(Γ), we also define initialize(p) (or deinitialize(p)), which is represented by a T-forest which
has only an INIT (or DEINIT) at p and KEEP elsewhere. Given these building blocks, we can provide our
definition of the maps ϕexp : Exp → tforest(Ebase) and ϕ : Command → tforest(Ebase), which to every
expression and command assign its initialization effect.

e ∈ Exp ϕexp(e) ∈ tforest(Ebase)

copy p KEEP

move p deinitialize(p)

e1 ⊙ e2 ϕexp(e1);ϕexp(e2)

(e1, . . . , ek) ϕexp(e1); . . . ;ϕexp(ek)

true, false, n, d KEEP

c ∈ Command ϕ(c) ∈ tforest(Ebase)

skip KEEP

p := e ϕexp(e); initialize(p)

c1; c2 ϕ(c1);ϕ(c2)

if e then c1 else c2 end ϕexp(e); (ϕ(c1) ∨ ϕ(c2))

while e do c end ϕexp(e); ((ϕ(c);ϕexp(e)) ∨ KEEP)

drop p deinitialize(p)

forget p deinitialize(p)

p := f(e) ϕexp(e); initialize(p)

Note that in the initialization effect of a while, we do not need to consider more than one loop iteration
because it holds for any initialization effect ϵ that ϵ; ϵ = ϵ.

At last, we outline the definition of the application of initialization effects on initialization states. The
definition of ϵ(σ) is recursive on the T-tree structures:

• If ϵ is a leaf and KEEP ̸∈ ϵ, that is, ϵ ∈ Ebase, then

– ϵ = {INIT} =⇒ ϵ(σ) = IS INIT

– ϵ = {DEINIT} =⇒ ϵ(σ) = IS UNINIT

– ϵ = {INIT, DEINIT} =⇒ ϵ(σ) = UNKNOWN.

• If ϵ is a leaf, KEEP ∈ ϵ, and σ is also a leaf (i.e., σ ∈ Ibase), we define bi = (INIT ∈ ϵ) ∨ (σ ∈
{IS INIT, UNKNOWN}) and bu = (DEINIT ∈ ϵ) ∨ (σ ∈ {IS UNINIT, UNKNOWN}) and

– if bi ∧ bu, then ϵ(σ) = UNKNOWN,
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– if bi ∧ ¬bu, then ϵ(σ) = IS INIT,

– if ¬bi ∧ bu, then ϵ(σ) = IS UNINIT,

– (¬bi ∧ ¬bu is impossible).

• If ϵ is a leaf, KEEP ∈ ϵ, and σ is a list (σ1, . . . , σk), then ϵ(σ) = (ϵ(σ1), . . . , ϵ(σk)).

• If ϵ and σ are both lists, then they necessarily have the same length, so we can write ϵ = (ϵ1, . . . , ϵk)
and σ = (σ1, . . . , σk) and define ϵ(σ) = (ϵ1(σ1), . . . , ϵk(σk)).

4.4 Flag Management and Flag Assignments

In 4.2, we at one point say that we generate a flag for a particular place p. That should be a boolean
flag which, throughout the program, tracks whether p is initialized. However, while a place can be fully
initialized or fully deinitialized (information that can be stored in one boolean), it can also be partially
initialized. Therefore, for the purposes of generating a flag for p, we choose one fixed leaf place p′ among its
descendants, which has the advantage that it cannot be partially initialized. For consistency, we choose p′

to be the first leaf descendant place of p (if p is a leaf place, we choose p itself, otherwise, we pick the first
field of p and recurse).

We can afford to track initializations of p through initializations of p′ because the associated flag will only
be used when p is either entirely initialized or deinitialized, which means that it is initialized if and only if
any one of its descendants is initialized.

For a leaf place, we can introduce a flag that tracks whether it is initialized. To create a name for the flag,
we choose an arbitrary variable identifier which does not appear Γ nor has it been used for another flag
already. During elaboration, we maintain a map of all places and flags already created so that we can avoid
the flags names already used and we can reuse the same flag for the same place. After drop elaboration, for
every place p′ with flag flag, we sequentially compose all atomic commands which initialize (or deinitialize)
p′ with the assignment flag := true (or flag := false).
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5 Drop Elaboration Correctness Proof

Before we can prove that our drop elaboration implementation is correct, we need to formalize what that
means.

In general terms, we say that a drop elaboration of a body is correct if the set of possible executions of the
body in the pre-elaboration semantics has an appropriate one-to-one correspondence to the set of possible
executions of the elaborated body in the post-elaboration semantics. In other words, we want to show that by
preserving the execution behavior, the drop elaboration correctly lowers the program from a language with
a high-level description of drops (pre-elaboration sem.) to one with a low-level description (post-elaboration
sem.).

To formalize this statement, we need to define what it means to execute a body (5.1) and we need to
appropriately constrain the sets of executions that we consider (5.2).

5.1 Body Execution

Similarly to MIR (see 1.1.1), the inputs and outputs of our elaboration function are not just commands but
entire bodies. In our language, a body B consists of a command c ∈ Command, the local typing context
Γ ∈ tforest(Tbase), and a set of variable identifiers A ⊆ vars(Γ), which specifies which of the local variables
are arguments to the function that the body represents.

In the same way as plain command execution, body execution is parametrized by the global context G (see
3.2.4). The execution behavior of a particular body is given a relation between an assignment of arguments
represented by largs ∈ tforest(Vbase) with vars(largs) = A, an initial heap h, and a final heap h′. We say
a body can execute from largs and h to h′ if after completing largs to a local state l0 ∈ tforest(V ′

base)
with vars(l0) = vars(Γ) by assigning ⊥ to every non-argument local variable, there exists a final local state
l′ ∈ tforest(V ′

base) such that G ⊢ ⟨l0, h, c⟩ ⇝ ⟨l′, h′, skip⟩. We intentionally do not include the final local
state l′ in the body execution relation because since drop elaboration adds boolean flags to the local state,
it would make comparing the pre- and post-elaboration execution behavior more complicated.

5.2 Well-Typedness

We call only can guarantee that there is a meaningful relationship between the execution behavior of the
original and the elaborated body if the types given in Γ are respected. One, the argument assignment largs
must have the types declared in Γ, and, two, the command c in the body must only make assignments
consistent with Γ.

To give an example: We might have a variable x : (Droppable, Num) and might have computed an initial-
ization state that at the location of some drop x, the variable x will always be (fully) initialized. We thus
elaborate to drop x.0; forget x. However, to be able to guarantee that our elaboration is correct, we
must be able to exclude executions such as one in which x stores the value (37,−2) because we could execute
drop x in the pre-elaboration semantics but could not execute drop x.0; forget x in the post-elaboration
semantics. The exclusion of such malformed executions is the main purpose of our simple type system.

We define that a (potentially partially initialized) value v ∈ ttree(V ′
base) has type τ ∈ ttree(Tbase) if (recur-

sively) one of the following holds:

• v = ⊥ (v is an uninitialized leaf);

• v and τ are both leaves and v ∈ D and τ = Droppable;

• v and τ are both leaves and v ∈ Z and τ = Num;

• v and τ are both leaves and v ∈ {true, false} and τ = Bool;

• v and τ are both lists of the same length k, v = (v1, . . . , vk) and τ = (τ1, . . . , τk), for all i ∈ {1, . . . , k},
vi has type τi.

Now, we can say that argument assignments largs are well typed with respect to Γ if for all arguments
arg ∈ A, the assigned value largs(arg) has type Γ(arg).
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To define which commands are well typed, we first define a typing relation on expressions (elements of the
syntactic category Exp).

p ∈ dom(Γ)

Γ ⊢ copy p : Γ(p)
type-exp-copy

p ∈ dom(Γ)

Γ ⊢ move p : Γ(p)
type-exp-move

Γ ⊢ e1 : τ1 ∧ Γ ⊢ e2 : τ2 ∧ boptype(⊙, τ1, τ2, τ)

Γ ⊢ e1 ⊙ e2 : τ
type-exp-bop

Γ ⊢ true : Bool
type-exp-true

Γ ⊢ false : Bool
type-exp-false

n ∈ Z
Γ ⊢ n : Num

type-exp-num

d ∈ D
Γ ⊢ d : Droppable

type-exp-droppable
Γ ⊢ e1 : τ1 ∧ · · · ∧ Γ ⊢ ek : τk

Γ ⊢ (e1, . . . , ek) : (τ1, . . . , τk)
type-exp-tuple

To type entire commands, we need to additionally introduce the typing context for functions that might be
called, which we denote Ψ, and for f ∈ FuncId, we use Ψ ⊢ f : τarg → τret to denote that the function f
takes values of type τarg as argument and returns values of type τret. We say that the global context G is
well typed if for all f , varg, h, h

′, and vret,

callG(f, varg, h, h
′, vret) ∧ varg : τarg =⇒ vret : τret.

With that, we can now define when a command c is well typed with respect to some local typing context Γ
and global function typing context Ψ, which we denote simply by Γ,Ψ ⊢ c.

Γ,Ψ ⊢ skip
type-com-skip

p ∈ dom(Γ) ∧ Γ ⊢ e : Γ(p)

Γ,Ψ ⊢ p := e
type-com-asgn

Γ,Ψ ⊢ c1 ∧ Γ,Ψ ⊢ c2

Γ,Ψ ⊢ c1; c2
type-com-seq

Γ ⊢ e : Bool ∧ Γ,Ψ ⊢ c1 ∧ Γ,Ψ ⊢ c2

Γ,Ψ ⊢ if e then c1 else c2 end
type-com-if

Γ ⊢ e : Bool ∧ Γ,Ψ ⊢ c

Γ,Ψ ⊢ while e do c end
type-com-while

p ∈ dom(Γ)

Γ,Ψ ⊢ drop p
type-com-drop

p ∈ dom(Γ)

Γ,Ψ ⊢ drop p
type-com-forget

p ∈ dom(Γ) ∧ Γ ⊢ e : τarg ∧Ψ ⊢ f : τarg → Γ(p)

Γ,Ψ ⊢ p := f(e)
type-com-call

Note that this type system does not guarantee that execution will not get stuck (neither in pre-elaboration
nor in post-elaboration) because, for example, the program could try to read an uninitialized place.

5.3 Correctness Statement

The notions of body execution and well-typedness defined in 5.1 and 5.2 allows us to formulate the full
correctness statement for our drop elaboration implementation. Our elaboration takes a body B = ⟨Γ, c, A⟩
as input and produces an elaborated body B′ = ⟨Γ′, c′, A⟩ with the same arguments as output (the command
c′ is constructed as described in 4 and Γ′ by extending Γ with types (simply Bool) of the introduced flags).
We state the elaboration of our correctness as that for any

• global context G,

• global function typing context Ψ,

• argument assignment largs ∈ tforest(Vbase) with vars(largs) = A,

• initial heap h, and

• final heap h′,

if

• G is well typed with respect to Ψ,

• c is well typed with respect to Γ and Ψ, Γ,Ψ ⊢ c,

• largs is well typed with respect to Γ,

then B executes from h and largs to h′ in the pre-elaboration semantics if and only if B′ executes from h and
largs to h′ in the post-elaboration semantics.
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5.4 Proof Formalization in Coq

At the time of writing, we have a Coq implementation of the drop elaboration described in this text and we
have a work-in-progress Coq proof of the correctness statement outlined in 5.3. In our Coq development, we
do provide a proof of the stated correctness statement, but it relies on many unproved lemmas about the
various features of the language and, in some cases, of the drop elaboration itself.

From an earlier iteration of our development, we have a drop elaboration implementation together with a
complete proof of its correctness. In this version, however, the language does not support tuples, so the
elaboration is only concerned with scalar variables. Therefore, many of the concepts introduced in this text,
such as T-trees or the forget command, are not relevant and do not appear there.

Information about the access to our Coq development can be found in A.

5.5 Proof Strategies

Details about how we perform specific parts of the proof can be found in the Coq development. Here, let
us just note that the core of the correctness theorem is proved by structural induction on the syntax of
the executed command c, where the induction hypothesis is that there is some correspondence between the
pre-elaboration semantics executions of c and the post-elaboration semantics executions of elaborated c. In
that proof, in each constructor case of c, we construct a post-elaboration execution given a pre-elaboration
execution and vice versa. To be able to do this, we include, in the induction hypothesis, an invariant that
the actual local state during execution belongs to the initialization state computed by our analysis. In the
while case, we also need to reason by strong induction on the length of the execution trace.
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6 Conclusion

In this project, we have used the proof management system Coq to provide a formal definition of a pro-
gramming language and, on top of it, a formally-defined implementation of drop elaboration to model the
drop elaboration pass in the Rust compiler. To reduce its footprint on the elaborated programs, our drop
elaboration performs non-trivial optimizations such as avoiding generation of superfluous flags when we can
statically determine that whether a place will be initialized or when we can show that entire tuples are
always initialized or uninitialized entirely.

We have formally formulated an adequate correctness theorem for the drop elaboration implementation and
provided a skeleton for its proof. We do provide a full correctness proof for a simpler language with a simpler
drop elaboration, where all local variables are only scalar.

6.1 Future Work

There are many directions in which this project can be extended. The first natural step is the completion
of the correctness proof of the drop elaboration we have defined.

One meaningful way to build on top of this project is to add support for more features that exists in the Rust
MIR and in the actual rustc drop elaboration. One can implement the drop elaboration of enums and of
owned pointers and correspondingly extends the elaboration correctness proof. There is also non-trivial logic
that is required to correctly elaborate drops in the presence of unwinding, which is not currently present in
our formalization. We think that unwinding support would be more meaningful after changing our language
to represent functions as control-flow graphs, which in itself would be an important step towards more
closely reproducing the modelled rustc behavior. Yet another improvement would be to prove elaboration
correctness for not just individual MIR bodies as we do now, but for entire programs that entire programs
consisting of multiple functions that can potentially call each other.

We hope that in future, this work might help serve as a basic for the verification of the actual drop elaboration
implementation in rustc. Although, this goal seems relatively distant at this time and it would require a
formal verifier that can reason about an implementation in Rust as opposed to the Coq specification language.

Lastly, there are several minor points that could be improved in our current formal development. Here are
a few examples:

• For reasons of technical convenience, our drop elaboration currently inserts a number of skip commands
into the elaborated body (we removed them in the examples 3 and 4 for brevity and readability). While
they do not affect the execution behavior, they make the output harder to read and they could be
removed.

• As can be seen in the examples 3 and 4, we insert assignments to the generated boolean flags even at
locations after which the flags will never be read (often around drop and forget commands at the end
of the body). These assignments could be optimized away.

• When elaborating a drop p, where p is a place of type Droppable, we do not need to append a forget p
as we currently do. That is, we could simplify our elaboration from, for example,

if flag then drop p end; forget p

to just
if flag then drop p end

because the forget is only necessary when elaborating drops of tuples or of scalar types other than
Droppable.

• To help simplify our proofs, we might consider making more use of dependent types to avoid defining
behavior for cases we intend to be unreachable. For example, we sometimes have a representation of
a place p and a T-forest representation of a initialization state σ, from which we need to retrieve the
initialization information for just the particular place p. Currently, the retrieve operation returns an
option type because p (and all its ancestors) might be outside of dom(σ). However, we are always
only interested in the result of this operation if both p and σ have a particular relation to the typing
context Γ (p ∈ dom(Γ) and σ ≼ Γ), which guarantees there is an ancestor of p in dom(σ). If we used
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a dependent type that includes the information p ∈ dom(Γ) for p and σ ≼ Γ for σ, we could avoid
the option type for the result of the retrieve operation, which might help reduce the complexity of our
code.
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A Appendix: Coq Development Location

The repository with our Coq development is located at

https://gitlab.inf.ethz.ch/ou-plf/rust-drop-elaboration/.

For the purposes of the thesis, the final version of our Coq development is located on the thesis-final

branch, tagged as to-be-graded and with commit hash

120d9b3d1e868ddd00ce9163b2bb53d099154247.

This version contains two variants of our formalization: In the tuple-support-incomplete-proof directory,
we define a drop elaboration closely follows the description in this text. Unfortunately, its formal correctness
proof relies on a large number of unproved lemmas. The no-tuple-support-complete-proof directory, on
the other hand, stores a simpler version of the elaboration which only supports scalar values and no tuples
and which therefore does not use many of the concepts we have introduced here. However, this variant is
accompanied by a full correctness proof.
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