
Semantic fuzzing of the Rust
compiler and interpreter

Master’s Thesis

Qian (Andy) Wang

31 July 2023

Advisor: Prof. Dr. Ralf Jung

Department of Computer Science, ETH Zürich

Abstract

This project introduces Rustlantis, a novel fuzzer capable of generating
programs in Rust’s Mid-level Intermediate Representation that are de-
terministic and free from Undefined Behaviour. It has uncovered 13
previously-unknown bugs in the Rust compiler and LLVM which has
caused miscompilations as well as crashes.

i

Acknowledgements

I would like to thank my supervisor, Prof. Ralf Jung, for his expert guidance
on Rust’s semantics, which has been crucial for the success of this project.

I would also like to thank Nikita Popov for his rapid response, investigation
and fixes to bug reports I have filed during the course of this project.

Contents

Contents iii

1 Motivation 1

2 Background 3
2.1 Fuzzing . 3
2.2 Differential testing . 3
2.3 The Rust compiler . 4
2.4 Rust fuzzing . 5
2.5 Mid-level Intermediate Representation 5
2.6 Places . 8

3 Rustlantis 10
3.1 Overview . 10
3.2 Types . 11
3.3 Statements and declarations . 12
3.4 PlaceTable . 13
3.5 Terminators and transparent control flow 16
3.6 Ensuring reducible control flow 19
3.7 Representing memory layout 20
3.8 Pointer offsets . 22
3.9 Picking “interesting” places . 23
3.10 Producing observable and deterministic output 24

4 Evaluation 28
4.1 Testing backends . 28
4.2 Bugs discovered . 29
4.3 Compiler code coverage . 33
4.4 Performance . 37
4.5 Energy efficiency . 39

iii

Contents

5 Future Work 40
5.1 Missing language constructs . 40
5.2 Program reduction . 41
5.3 Keep Rustlantis running . 42

Bibliography 43

A Proof of reducibility 46

iv

Chapter 1

Motivation

Rust emphasises memory safety and logical correctness thanks to its borrow
checker and strong type system. These promises rely on the Rust compiler
correctly compiling the user’s code. But sometimes a compiled program has
the incorrect behaviour due to a bug in the compiler. These bugs are called
miscompilations.

A long-standing miscompilation in the Rust compiler was the incorrect re-
moval of loops even if the compiler cannot tell whether it terminates (#28728).
This resulted in the Rust compiler apparently “proving” the unresolved
Collatz conjecture by optimising this function to return true [1].
pub fn collatz(n: usize) -> bool {

match n {

1 => true,

n if n % 2 == 0 => collatz(n/2),

_ => collatz(3*n + 1),

}

}

The source of this bug is LLVM [2] which Rust relies on for optimisations and
machine code generation. It was originally developed for C and C++, but
was later adopted by compilers of other languages such as Rust and Swift
– these are called language frontends. The C/C++ compiler Clang is by far
the most mature frontend. Other frontends, such as Rust, often enter code
paths in LLVM not used by Clang and therefore ill-exercised and potentially
bug-ridden.

Infinite loops and recursions are Undefined Behaviour in C and C++, there-
fore the compiler can assume that a loop always terminates. This does not
hold for Rust. While LLVM does not require loops to terminate and should
compile Rust loops correctly, its code contained assumptions that only hold
for C/C++, thus miscompiling Rust code.

1

https://github.com/rust-lang/rust/issues/28728

Another infamous example is the noalias attribute on function paramet-
ers which allows LLVM to produce more efficient code, but this is rarely
used when compiling C/C++. Multiple LLVM bugs have been causing the
miscompilation of this attribute, with one fixed and a new one discovered,
leading Rust to flip-flop between emitting and omitting this attribute:

• Feb 2016: Workaround LLVM optimizer bug by not marking &mut

pointers as noalias #31545

• May 2018: Emit noalias on &mut parameters by default #50744

• Sep 2018: Do not put noalias annotations by default #54639

• Mar 2021: Enable mutable noalias for LLVM ≥ 12 #82834

For most software, the severity of a bug may be high or low, but its impact
surface is generally predictable. However, compilers are so fundamental that
the effect of a compiler bug is hard to predict. At best, it could manifest
as a compiler crash or trigger a spurious failure in a test suite. At worst, a
compiled program could silently produce wrong results in production, and
the consequences are unbounded.

We would like to be able to proactively find bugs in the Rust compiler and
fix them before they hit any real users. The Rust compiler has an extensive
test suite, but the above examples have shown that this alone is not sufficient.
Here, we will apply another testing technique to the Rust compiler: fuzzing.

2

https://github.com/rust-lang/rust/pull/31545
https://github.com/rust-lang/rust/pull/50744
https://github.com/rust-lang/rust/pull/54639
https://github.com/rust-lang/rust/pull/82834

Chapter 2

Background

2.1 Fuzzing

Recognising the importance of compiler correctness, a range of techniques
for automated compiler testing have been developed over the years. Fuzzing
has been found to be a successful approach, finding hundreds of bugs in
widely-relied compilers such as GCC and Clang [3, 4, 5].

The idea of fuzzing is fairly simple: we produce a test program, compile it,
and observe the behaviour of the compiled program. If it is incorrect, then
there is a bug in the compiler.

2.2 Differential testing

But how could we tell whether the compiler performed correctly given a
random program? This is known as the test oracle problem [6].

We know that a compiler should never crash by e.g. a segfault or a panic. If
the program contains an error, it should print a diagnostic message and exit
gracefully. It is trivial to observe if the compiler crashed.

However, if the compilation succeeds, we do not know the correct runtime
behaviour of a random program, and cannot easily say whether a miscompil-
ation occurred.

To address this, we use a technique called differential testing [7], where we
compile and run (or interpret) the same random program by different com-
pilers or interpreters and under different optimisation settings – we call them
testing backends. Given a deterministic and UB-free program, all execution
results should be identical. If they differ, then at least one testing backend
has a bug, which can then be manually identified.

3

2.3. The Rust compiler

Random program

Compiled with
optimisations

Compiled without
optimisations

Interpreter ...

=?
Figure 2.1: Visualisation of differential testing

Source AST Mid-level IR (MIR)

rustc

LLVM IR Assembly

LLVM

Binary

Transformations

Transformations

Figure 2.2: Rust’s compilation pipeline

Determinism and UB-freedom are crucial to differential testing. Otherwise,
a difference in observed output is not an indication of a bug in any testing
backend.

2.3 The Rust compiler

The Rust compiler, rustc, compiles a Rust program in several stages, as
represented by Figure 2.2: it first parses the program into an Abstract Syntax
Tree (AST). Then, after several rounds of lowering, produces the Mid-level
Intermediate Representation (MIR). It performs some analyses and optim-
isations on MIR, then lowers this into another intermediate representation
for a codegen backend, which is responsible for further optimisations and
the generation of machine instructions. The default and most commonly
used codegen backend is LLVM, but alternatives are also available (such as
Cranelift).

A lot of things happen in this pipeline, especially when optimisations are
enabled. To compile a Hello World program at the “release” optimisation
level (-C opt-level=3), rustc runs 80 passes on MIR and LLVM runs a

4

2.4. Rust fuzzing

whooping 1235 passes. If a bug is triggered in any one of these passes, then it
could result in a miscompilation. We are therefore most interested in testing
these optimisation stages.

2.4 Rust fuzzing

RustSmith [8] is a random Rust program generator. It is capable of generating
programs utilising a wide range of Rust language constructs, including
assignments, arithmetic operations, references, functions, loops, and many
more. However, it only produces safe Rust programs. This automatically
guaranteed that the program is UB-free as Rust guarantees that all safe
programs are UB-free. But it also prevented RustSmith from producing
unsafe operations, such as raw pointer dereference and transmutation (bit
casting). These could exercise more edge cases in the compiler, as most
programs written in Rust do not use unsafe.

RustSmith was able to trigger bugs in then-current and historical versions of
Rust, but it did not discover any previously-unknown ones. This made it of
limited use in proactively finding and fixing bugs.

We could extend RustSmith to produce unsafe operations. However, Rust
is not a small language and unsafe especially imposes some very intricate
constraints to a program it must uphold to avoid UB.

We propose a new fuzzer named Rustlantis with a new approach: instead
of generating normal (surface) Rust programs, we target the Mid-level IR
instead.

MIR encapsulates the semantics of a Rust program using a small set of
constructs and contains little implicitness and syntax sugars found in surface
Rust. This makes UB much easier to reason about. Nonetheless, compiling a
MIR program still exercises the most complex and error-prone parts of the
pipeline, namely optimisation passes performed by rustc and LLVM.

Therefore, MIR is an ideal fuzzing target for Rustlantis.

2.5 Mid-level Intermediate Representation

MIR is a control-flow graph (CFG) where each function body contains one
or more successor basic blocks, in turn containing zero or more statements.
Statements within a basic block are to be executed top-down with no branch-
ing or function calls. A basic block always ends with one terminator which
can lead to one or more basic blocks. The program’s control flow, such as if-
statements, loops and function calls, are represented by different terminators.
In addition to basic blocks, MIR function bodies also contain declarations of
local variables and their types. Figure 2.3 shows an example function in MIR.

5

2.5. Mid-level Intermediate Representation

fn f(arg: bool) -> i32 { mir!(

let cond: bool;

{

cond = arg;

Goto(bb1)

}

bb1 = {

match cond {

false => bb2,

_ => bb3,

}

}

bb2 = {

cond = true;

Goto(bb1)

}

bb3 = {

RET = 42;

Return()

}

)}

(a) As code

bb0
cond = arg;

Goto(bb1)

bb1
match cond {

false => bb2,

_ => bb3,

}

bb2
cond = true;

Goto(bb1)

bb3
RET = 42;

Return()

(b) As control flow graph

Figure 2.3: An example MIR function

There are two textual formats for MIR: the output format of --emit=mir flag
of rustc, and the custom MIR format [9]. The main difference is that the
--emit=mir format is output-only and cannot be compiled by rustc, whereas
custom MIR can be. Custom MIR can also be mixed with functions written
in surface Rust syntax in the same file, and can be configured to be injected
into different stages of the compilation pipeline. For these reasons, we will
be generating the custom MIR format.

The grammar of the subset of MIR we will be generating is as follows:
pub enum Statement {

/// a = b;

Assign(Place, Rvalue),

}

pub enum Rvalue {

/// x

Use(Operand),

/// !x

UnaryOp(UnOp, Operand),

6

2.5. Mid-level Intermediate Representation

/// x + y

BinaryOp(BinOp, Operand, Operand),

/// x as i32

Cast(Operand, Ty),

/// Checked(x + y)

CheckedBinaryOp(BinOp, Operand, Operand),

/// addr_of!(x) or addr_of_mut!(x)

AddressOf(Mutability, Place),

/// (x, y) or [x, y, z] or Foo { a: x }

Aggregate(AggregateKind, IndexVec<FieldIdx, Operand>),

}

pub enum Operand {

Copy(Place),

Move(Place),

Constant(Literal),

}

pub enum UnOp { Not, Neg }

pub enum BinOp {

Add, Sub, Mul, Div, Rem,

BitXor, BitAnd, BitOr,

Shl, Shr,

Eq, Lt, Le, Ne, Ge, Gt,

}

pub enum Mutability { Not, Mut }

pub enum AggregateKind {

Tuple,

Array(Ty),

Adt(Ty),

}

The Place component appears very often in MIR. It represents a memory
location. We will talk about this in detail in Section 2.6.

The main differences between custom MIR and surface Rust are:

• The RHS of an assignment (an Rvalue) can perform only one ”oper-
ation”. For instance, chaining multiple arithmetic operations is not
allowed.

• Everything is implicitly unsafe. Unsafe operations in surface Rust,
such as dereferencing raw pointers, can be carried out directly.

• All local variables are declared at the top of the function1 with a type
annotation. They are uninitialised until written to.

1This is not strictly required, but we do this for consistency

7

2.6. Places

• Function parameters are functionally the same as local variables de-
clared with let, except that they are initialised with the value supplied
by the caller upon function entry.

• All local variables and parameters are declared as-if with a mut binding
and can be assigned multiple times2.

• There is a special local variable RET which refers to the return slot. It
can be read from or written to anywhere in the function, and its value
is copied to the caller upon return. In surface Rust, there is no way to
access the return slot directly.

• Arithmetic and bitwise operations are wrapping and cannot panic.
Checked can be used to perform checked addition, subtraction, and
multiplication. It produces a tuple ({integer}, bool), where the
boolean indicates the check result.

• There is no Deref coercion. Dereferencing must be explicit.

MIR has more than a dozen types of terminators. We will focus on these
four:

• Goto(BasicBlock): Unconditionally enter another basic block

• SwitchInt(discriminant: Place, switch_targets: [(<literal>,

BasicBlock)], fallthrough: BasicBlock) or match: Evaluate the
value of the discriminant, then enter the basic block with the matching
value. If nothing matches, enter the fallthrough basic block.

• Call(return_place: Place, target: BasicBlock, function:

Function, arguments: [Operands]): Call another function, then enter
target after it has returned.

• Return(): Copy the value of the return slot to the return_place in the
corresponding Call terminator, then return from the current function
and enter the target basic block.

2.6 Places

The concept of place expression is important in MIR. This is similar to lvalues

in C. Syntactically, a place expression contains a local variable and zero or
more projections. Rustlantis can generate 3 types of projections:

• Tuple or struct field: a.0, a.foo

• Primitive array index: a[0], a[i]

• Pointer dereference: *a
2This means that MIR is not in single-static assignment form

8

2.6. Places

Arbitrarily many (or none) projections can be chained together in a place
expression. There is no length restriction. However, one caveat of the MIR
dialect Rustlantis will generate is that if a dereference is part of the place
expression, then it must be the first projection. For instance, *(a.foo) is not
allowed, as the dereference is after a field projection.

A place refers to the memory location a place expression evaluates to at a point
in the program. Due to pointers, syntactically identical place expressions may
evaluate to different places at different points in the program. For instance,

1 let x: (i32, i32);

2 let y: (i32, i32);

3 let a: *mut (i32, i32);

4 {

5 a = addr_of_mut!(x);

6 (*a).0 = 42;

7 a = addr_of_mut!(y);

8 (*a).0 = 42;

9 }

(*a).0 on line 6 is syntactically identical to (*a).0 on line 8, but the former
refers to the same location as x.0, whereas the latter refers to y.0. We also
note that pointers may alias, so there may be multiple place expressions
referring to the same location.

9

Chapter 3

Rustlantis

The name Rustlantis is a reference to Space Shuttle Atlantis, which
docked with space station Mir 7 times under the Shuttle–Mir
program.

3.1 Overview

Rustlantis can generate programs containing the following MIR constructs:

• Types: All primitive integer and floating point types, bool, char, arrays,
tuples, raw pointers, and structs.

• Functions.

• Terminators: Goto, Return, SwitchInt (match), Call.

• Intrinsic functions: arith_offset (for pointer arithmetics) and transmute

(for bit-casting).

• Operators: all arithmetic, logical and bitwise operations on integers
and floating points, and checked arithmetic operations on integers.

• All primitive literal expressions, as well as tuple, array, and struct
aggregate expressions.

• Creating pointers with addr_of! and addr_of_mut!, and dereferencing
them.

• Casts between integers, floating points, char, and bool.

Rustlantis takes a seed as the command-line argument. It is guaranteed to
always produce the same program with a given seed.

Rustlantis generates single-file programs containing a main function which
calls other generated functions. The source program can either be compiled
into an executable and then executed natively, or be interpreted by Miri [10],
a Rust interpreter.

10

3.2. Types

By design, programs generated by Rustlantis are terminating, deterministic,
and free from Undefined Behaviour under the Tree Borrows [11] aliasing
model. A difference in output between different testing backends always
indicates a bug in at least one of the backends or a bug in Rustlantis.

The rest of this Chapter describes the generation process in detail.

3.2 Types

Composite types, such as tuples, arrays, and structs can contain other types
which can in turn also be composite. This meant that the amount of possible
types in a Rust program is infinite.

Rustlantis determines a finite amount of types by first populating the typing
context, which contains all the types that may appear in the subsequently
generated program. The typing context is first populated with primitive types,
and then raw pointers, tuples, and structs are iteratively added by randomly
combining existing types. These compound types can nest arbitrarily up to a
depth limit, but structs cannot transitively contain a field of its own type.

By generating all the types in advance, instead of on the fly, Rustlantis can
assign each type a fixed weight, controlling the distribution of variable types
in the program. This allows us to increase the frequency of more “interesting”
types. For instance, the weights of types that transitively contain a pointer
sum up to 20%, in contrast to integer primitives which sum up to 10%. isize
alone weighs 10%, as this is the type used for pointer offsets and index
projections. Table 3.1 shows a selection of types generated and their assigned
weights.

Type Weight

isize 10%

i8 1.00%

[i8; 8] 1.00%

*const u8 1.37%

(i16, i8, *const u8) 1.37%

*mut (i16, i8, *const u8) 1.37%

struct Adt50 {fld0: u64, fld1: char} 1.00%

struct Adt61 {fld0: Adt50} 1.00%

...

Table 3.1: A partial selection of types in a seeded typing context and their weights

11

3.3. Statements and declarations

3.3 Statements and declarations

Rustlantis bootstraps by generating the entry function, fn0, with a list of
parameters of random types. fn0 is called in main supplied with random
literals. Each literal is wrapped in std::hint::black_box(), so the compiler
cannot optimise using their values.

The generation process of Rustlantis is similar to an interpreter or CPU,
but instead of executing code, it is producing them. Within a basic block,
Rustlantis generates statements or declarations top-down, one at a time. It
maintains a Cursor which specifies the current function and current basic
block (represented as fnx:bby). All new statements are added to the end of
a basic block and existing statements are never modified, therefore Rustlantis
does not need to keep track of the statement index in a basic block.

Rustlantis first enters fn0:bb0. At each step, Rustlantis decides whether it
should generate a statement or declaration.

Each statement is generated by recursively descending on its syntactical
components:

Assign(Place, Rvalue)

Use(Operand) UnaryOp(UnOp, Operand) ...Place picker

Operand picker

Place picker Literal

NotNeg Operand picker

Place picker Literal

For an assignment statement, Rustlantis needs to choose two sub-components:
a Place and an Rvalue. The Place is the left-hand side of the assignment. A
dedicated function will provide a list of candidate places, which is described
later in Section 3.4.

Assuming for now that we have chosen a Place from the candidate list, we
call a function to generate the Rvalue. This is not always successful. For
instance, if the LHS Place is a pointer, but there is no expressible place in
the current function with the pointee type, then it is impossible to assign any
Rvalue to the LHS. When this happens, Rustlantis removes the chosen Place

from the candidate list, picks another place and then tries again. This repeats

12

3.4. PlaceTable

until either a valid pair of Place and Rvalue is found, or the candidate list
becomes empty and an error is returned.

This choose-remove-retry process can be expressed as the following pseudo-
code function
function generate_assignment(lhs_candidates: [Place]):

while lhs_candidates.not_empty()

lhs = lhs_candidates.pick()

case generate_rvalue(lhs)

rvalue => return Statement::Assign(lhs, rvalue),

error => lhs_candidates.remove(lhs),

end case

end while

// We have no candidate left

return error

end function

The function which generates an Rvalue has 7 variant candidates to choose
from. The choice is made in the same choose-remove-retry manner as the
Place choice: a random variant is chosen and a function is called to try to
generate an Rvalue of this variant, if this fails, then the variant is removed
from the candidate list and the process starts again.

When an Operand is required as a part of an Rvalue variant, we first try to
pick a place as above. If this fails and the required Operand type is expressible
as a literal, we generate a random literal expression.

After recursively trying all options, the root which generates the Assign

statement may run out of place candidates. In this case, a new local variable
is declared in the current function, and the type is randomly chosen using
the weights in the typing context.

3.4 PlaceTable

Recalling the definition of a place expression: a local variable chained with a
series of projections. This naturally gives rise to a graph structure, where
nodes are places, and edges are projections from one place to another.

The data structure PlaceTable is responsible for keeping track of all places in
the program, globally. Figure 3.1 shows a representation of the PlaceTable’s
content when the cursor is on line 7.

When a local declaration is generated, the local is added to PlaceTable,
along with all the places reachable from the local through projections. Deref
projection edges are added not on allocation of a pointer, but when a state-
ment assigning to the pointer is generated. We know at all times where an

13

3.4. PlaceTable

initialised pointer is pointing to. If a pointer is overwritten, the old Deref

edge is removed and a new one is added targeting the new pointee.

1 fn fn1() { mir!(

2 let _1: (i32, bool);

3 let _2: *const bool;

4 {

5 _1 = (42, true);

6 _2 = addr_of!(_1.1);

7 // <- Current Cursor

8 }

9)}

1:(i32, bool)

i32 bool

2:*const bool

F
i
e
l
d
I
d
x
(
0
)

F
i
e
l
d
I
d
x
(
1
)

De
re
f

Figure 3.1: PlaceTable contents

Note this isn’t quite the right memory model for Rust: unlike C and C++,
Rust does not have strict aliasing or “typed memory”. This means that a
local variable does not contain a fixed set of places upon creation, and the
same memory location can be referred to by different place expressions of
different types (assuming the alignment constraint is satisfied). Nonetheless,
PlaceTable is a valid, albeit restricted, approximation to Rust’s full memory
model.

Each node in PlaceTable also keeps track of some information about the
runtime state of the place, such as whether it is initialised. In case a literal
assignment to it is generated, the value of the literal is saved as the known
value of the place (until it is overwritten by a non-literal). The information
in a node can be propagated to another node when an operation that copies
between places is generated.

Whenever the program generator needs a place, we gather all local variables
and perform a depth-first search through PlaceTable starting from each
of them. This gives us the full list of expressible places. Then, using the
information in PlaceTable, we filter out the places that could produce an
ill-formed program or trigger UB if used in the current context.

For instance, when we are selecting the divisor of a Div binary operation,
we can restrict the selection to places with the same type as the dividend, is
initialised, and has a non-zero known literal value.

14

3.4. PlaceTable

a: i32

init: false

val: N/A

b: *const i32

init: true

val: N/A

*b: i32

init: true

val: 10

Type is i32, is initialised, and not zero

a: i32

init: false

val: N/A

a: i32

init: false

val: N/A

b: *const i32

init: true

val: N/A

b: *const i32

init: true

val: N/A

*b: i32

init: true

val: 10

The filtering guarantees that all place candidates are valid choices that will
not result in a compile error or UB.

When Rustlantis enters a new function, all the local variables in the previous
function (the caller) are no longer accessible. To keep track of which local is
currently accessible, we add a stack data structure to PlaceTable alongside
the existing graph. The stack contains a list of Frames, which represents a
call frame.

Each Frame contains a list of nodes in the PlaceTable graph which are locals
declared in the function. Nodes are added to the last Frame whenever a local
declaration is generated, and place candidate searches start from the locals
in the current frame.

Besides locals, each Frame additionally contains the return place node in the
caller1, and a list of arguments that were Moved into the current function in
the Call terminator.

We need to know the node for the return place in the caller because it is UB
to access it until the function returns. Similarly, it is also UB to access a place
that is a Move argument until the function returns, so we keep track of these
in the Frame.

When we are picking a place, we filter out return place and Moved-in nodes
in all Frames in the call stack, as illustrated by Figure 3.2.

After a function has returned, all its local variables are deallocated. Accessing
a deallocated place is UB, so we add information about whether a place has
been deallocated to PlaceTable. Deallocated places can never be chosen.
This prevents UB if a function returns a pointer to a local variable.

1This must be a specific node in PlaceTable, not a place expression. This is because the
return place expression may evaluate to different places before and after the call if it contains
a dereference. In MIR, the return place expression is evaluated before entering the call.

15

3.5. Terminators and transparent control flow

1 fn fn1() { mir!(

2 let _1: i32;

3 let _2: *mut i32;

4 let _3: Foo;

5 let _4: *mut Foo;

6 {

7 _2 = addr_of_mut!(_1);

8 _3 = Foo { /* ... */ };

9 _4 = addr_of_mut!(_3);

10 Call(_1, bb1, fn2(_2, Move(_3), _4))

11 }

12 bb1 = {

13 // Return target

14 }

15)}

16
17 fn fn2(

18 _1: *mut i32,

19 _2: Foo,

20 _3: *mut Foo

21) -> i32 { mir!(

22 {

23 // <- Current Cursor

24 }

25)}

_1:i32 _2: *mut i32

_3: Foo _4: *mut Foo

_1:i32

_3:Foo

fn1

RET _1:*mut i32

_2: Foo _3: *mut Foo

fn2

Figure 3.2: PlaceTable contents with multiple functions

3.5 Terminators and transparent control flow

Once a random amount of statements is reached in a basic block, a terminator
is generated, and the generation of the basic block is complete. Rustlantis
needs to resume its generation by setting the Cursor elsewhere. To keep the
information in PlaceTable accurate at all times, Rustlantis needs to generate
the program in the exact same order as it would be executed. This means
that we need to resume generation in the same basic block as the one the
new terminator would take us. We will talk about how we guarantee this for
each of the 4 terminators.

Goto

When a Goto terminator is selected, an empty basic block is added to the
current function and the cursor is set to it to resume generation there.

16

3.5. Terminators and transparent control flow

SwitchInt

SwitchInt is the most complex terminator, as there are multiple potential
successors. Our strategy is illustrated by Figure 3.3 and described below.

fn fn0() { mir!(

let x: i32;

bb1 = { x = 42; /*...*/ }

bb2 = {

match x {

...

}

}

)}

(i)

fn fn0() { mir!(

let x: i32;

bb1 = { x = 42; /*...*/ }

bb2 = {

match x {

0 => bb1,

1 => bb3,

_ => bb4,

}

}

bb3 = {}

bb4 = {}

)}

(ii)

fn fn0() { mir!(

let x: i32;

bb1 = { x = 42; /*...*/ }

bb2 = {

match x {

0 => bb1,

1 => bb3,

_ => bb4,

}

}

bb3 = { /* copy of bb1 */ }

bb4 = { /* copy of bb1 */ }

)}

(iii)

fn fn0() { mir!(

let x: i32;

bb1 = { x = 42; /*...*/ }

bb2 = {

match x {

0 => bb1,

1 => bb3,

42 => bb5,

_ => bb4,

}

}

bb3 = { /* copy of bb1 */ }

bb4 = { /* copy of bb1 */ }

bb5 = { /* <- New Cursor */ }

)}

(iv)

Figure 3.3: Steps of generating a SwitchInt

(i) First, we pick a place with a known value as the discriminant.

(ii) Then, we generate a list of decoy arms paired with literals that we know
are not the known value of the discriminant. The target of a decoy
arm can be a random existing basic block like bb1, or new empty basic

17

3.5. Terminators and transparent control flow

blocks like bb3 and bb4.

(iii) If we have added new decoy basic blocks, we fill them with an identical
copy of the content in a random existing basic block, including state-
ments and the terminator (if there are no existing ones to choose from,
we add to it the Return terminator and no statements). This is guar-
anteed to be syntactically well-formed, as all identifiers mentioned in
existing basic blocks have already been declared. The semantic effect of
the content is irrelevant, as these basic blocks will never be executed at
runtime.

(iv) Finally, we add the real target basic block and pair it with the known
value of the discriminant. We move the Cursor to it and resume
generation.

This approach guarantees that all statements are executed at most once, and
all functions are entered exactly once. Our generation order is in lockstep
with the real execution order of the program, thereby guaranteeing that all
UB can be prevented using the accurate information in PlaceTable.

Although Rustlantis knows the precise value of the discriminant, the compiler
cannot always spot, and sometimes must not exploit this information. For
instance, the discriminant value may come from dereferencing a pointer
which is a function parameter. The compiler would have to find the value
of its pointee from the callers - potentially multiple levels up the call chain.
And a call could be repeated in decoy basic blocks, so the compiler cannot
easily guarantee that the pointer parameter always points to the same value.

This strategy allows us to produce a CFG similar to the ones that can be
produced from surface Rust programs containing loops, if-else/match state-
ments, and break statements. The resulting CFG can be quite complex and
exercise edge cases in the compiler.

This strategy is similar in spirit to the Equivalence Modulo Inputs [12]
approach to compiler testing. EMI mutates code paths which are not executed
under a given input, thus preserving the program semantics under that
input. But a compiler cannot statically know which code path will be taken,
allowing the mutated parts to trigger miscompilations that change executed
the program semantics. Our decoy arms and basic blocks serve a similar
purpose to the mutated code paths in the EMI approach.

Call

When a Call terminator is selected, we pick a random place as the return
place, and a random amount of operands as arguments. Then we add an
empty basic block to the current function as the return target and add a
new function using the types of the selected return place and arguments as

18

3.6. Ensuring reducible control flow

the signature. Finally, we set our cursor to the first basic block of this new
function.

We need to know the return target basic block to know where to resume
once we return from the new function, so we need to maintain a return target
stack as a part of Rustlantis’ global state. The return target is pushed onto
the stack whenever a Call terminator is generated.

We also push a new Frame to PlaceTable’s call stack containing the return
place node and all Move arguments generated in the terminator.

Return

When a Return terminator is selected, we must first check PlaceTable to see
if the return slot RET is initialised, as it is UB to return from a function with
an uninitialised return slot, even if the return value is never used in the caller.
If RET uninitialised, we cannot produce a Return terminator, so we return an
error to the caller to select another terminator instead.

Once the function returns, we

1. Copy RET’s PlaceTable node content to the return place.

2. Pop the last Frame off the PlaceTable call stack.

3. Mark all places reachable with non-Deref projections from locals in the
poped Frame as deallocated in PlaceTable.

4. Set our cursor to the return target basic block in the caller and resume
generation.

3.6 Ensuring reducible control flow

A reducible control flow graph is a CFG that can be expressed using loop,
if-else, and break statements only. Irreducible control flow is only possible
in the presence of goto statements. Since surface Rust does not have goto
statements, all MIR generated from surface Rust programs are reducible.
However, it is possible to write custom MIR programs with an irreducible
CFG. The canonical example of an irreducible CFG is a loop with two entries,
as shown in Figure 3.4

Currently, there is no formal requirement that MIR must be reducible at all
times. Some optimisations can in fact make MIR irreducible2.

Nonetheless, MIR from surface Rust before any optimisations will remain
reducible for the foreseeable future as there is no plan to add goto into the
language, and some passes may rely on this fact.

2https://github.com/rust-lang/rust/issues/114047#issuecomment-1649793275

19

https://github.com/rust-lang/rust/issues/114047#issuecomment-1649793275

3.7. Representing memory layout

fn f(arg: bool){ mir!(

{

match arg {

true => bb1,

_ => bb2,

}

}

bb1 = {

Goto(bb2)

}

bb2 = {

Goto(bb1)

}

)}

bb0
match cond {

true => bb1,

_ => bb2,

}

bb1

Goto(bb2)

bb2

Goto(bb1)

Figure 3.4: An irreducible CFG in MIR

Rustlantis guarantees the generated program has a reducible control flow.
We provide a formal proof in Appendix A.

3.7 Representing memory layout

The default type representation (repr(rust)) does not guarantee fixed
memory layouts for tuples and structs. This means that we cannot rely
on these types to have any specific size, or that their elements reside at spe-
cific offsets (other than requiring elements to be aligned). Figure 3.5 shows
some possible memory layouts of (i8, i16). Although a specific version of
the Rust compiler may use a fixed layout computation algorithm, this cannot
be relied on. Indeed, the Rust compiler has a flag -Z randomize-layout to
make the layout of each type in the default representation unpredictable.

i8 9-byte padding i16

i16 i8

i16 i8 11-byte padding

5-byte padding i8 4-byte padding i16

Figure 3.5: Some possible memory layouts of (i8, i16)

Reading padding bytes is UB. We usually don’t need to worry about where

20

3.7. Representing memory layout

the padding bytes are as PlaceTable does not contain any place expression
overlapping with paddings.

However, the transmute intrinsic requires the source and destination to have
the same size (otherwise it’s a compile error). Additionally, it reads the from
source place according to the destination’s type layout, and it must not read
padding bytes from source (otherwise it’s UB).

i16 4-byte padding i8 Source

2 bytes at offset 0

1 byte at offset 6

Figure 3.6: Representation of copying by transmute

We can transmute a fully initialised value to a destination of the same type,
as they are guaranteed to have the same size and padding (which are never
accessed). But this is trivially optimisable to a normal copy assignment by
the compiler.

To support transmutations between places of different types, we need to
represent the size and memory layout of places in our PlaceTable. As we
are only dealing with types using the default representation, any types that
may contain padding have an indeterminable size and element layout and
therefore cannot be transmuted. However, there are types with guaranteed
sizes and no paddings. These include primitive integers, floating points,
bool, char, pointers to Sized types (which are all the types in Rustlantis),
and arrays of these types (including arrays of arrays).

We say places of these types fit into a Run, which represents a contiguous
region of memory of a known size and without padding bytes. Places of
types fitting into a Run are associated with one in its PlaceTable node. In
the case of arrays, bytes in its Run are shared with its elements since both
the array type and its element types have known sizes and are paddingless.
Figure 3.7 shows a representation of PlaceTable with Runs.

When we are picking the argument to a Call terminator calling transmute,
we restrict the place candidates to ones that have an associated Run of the
same size.

transmute has an additional constraint regarding value validity: the bit
pattern in the source must represent a valid value for the destination type.
Of the types Rustlantis generates, only bool and char can contain invalid bit

21

3.8. Pointer offsets

_1:(i8, i16)

i8 i16

.0
.1

Run Run

_2:[i8; 3]

i8i8 i8

[0
] [

1
]

[2]

Run

Figure 3.7: Places pointing to Runs

patterns. It is possible to uphold this validity constraint using the known
value information, but we have not yet implemented this fine-grained filtering.
For now, we simply prevent transmutations to bool and char types.

3.8 Pointer offsets

We use arith_offset to offset pointers, which takes a pointer and an isize

offset as arguments. This intrinsic is never UB to call (its non-intrinsic
counterpart, wrapping_offset, is a safe function). We only need to guarantee
the validity of the offsetted pointer when it is later dereferenced.

We only pick places with known values as the offset argument but without
restrictions on its value. We keep track of the offset amount from its original
pointee in the PlaceTable node of each pointer-typed place, accumulating
with the known value offset on each call to arith_offset.

Whenever we are walking PlaceTable to find place candidates, we only visit
projection (Deref) of pointers whose offset value is 0. The offset value is
zero if the pointer has never been offsetted, or if all its offsets add up to zero
and therefore “roundtripped”. This guarantees that we can dereference the
pointer without UB.

With information on known values and Runs, it is possible to offset pointers
to array elements to other elements within the same array and dereference
them while having a non-zero offset. Unfortunately, we did not have time to
implement this.

22

3.9. Picking “interesting” places

3.9 Picking “interesting” places

If place candidates are picked uniformly at random, the resulting program
will contain a large number of unused assignments, as the LHS of an as-
signment may never be used or is overwritten before it is used. Unused
assignments are trivially optimised out early in the compilation pipeline,
never exercising the more interesting parts of the compiler.

Additionally, we assume that complex series of operations are more likely to
trigger miscompilations. Therefore, we would like to expose the results of
complex operations to the output values. Printing out a place containing a
literal that was assigned immediately before is not very interesting.

We introduce a measure to represent the data complexity of each place, indicat-
ing the amount and complexity of operations which took place to result in the
value in a place. The field complexity is added to each node in PlaceTable,
and this complexity is propagated between places through dataflow. On each
assignment, the complexity value of the Rvalue is calculated and becomes
the new complexity of the LHS place.

The complexity value of each Rvalue is calculated as follows:

• Literal operands have a complexity value of 1

• Move and Copy operands take the complexity value from its underlying
Place

• Rvalue::AddressOf takes the complexity value from its pointee Place.

• Other Rvalues’ complexity value is the sum of all its Operands’

The complexity of a place with multiple fields (structs and tuples) is the
maximum complexity of its field places.

The complexity of a place is used as a weight in place selection: while picking
a place to be read (such as for an Operand), we favour places containing
complex data to propagate the complexity.

This means that the complexity of places can accumulate in a positive feed-
back loop. We cap the complexity of each place at 100 to prevent some from
having an exceptionally high complexity and getting chosen every time.

During place candidate selection, the weight of each place is further aug-
mented: we always favour places containing a dereference projection, and
especially favour places dereferencing a pointer that has been “roundtripped”
by pointer offsetting.

We perform additional weight augmentations depending on the selection
context: if the place is for a function argument, we favour places that are

• pointers,

23

3.10. Producing observable and deterministic output

• offsetted pointers, or

• places with known values.

If the place is for the LHS of an assignment, we ignore its complexity, but
favour places that are uninitialised.

Besides place picking, we also weigh the selection of all other syntactical
choices, including Rvalues, BinOps, UnOps, and so on. For instance, we do
not want to generate Use too often because it is not very interesting, but we
do want to generate AddressOf often as pointers are complex to optimise.
But unlike weights of places, these weights are empirically determined,
hard-coded, and not influenced by the state of the generated program.

3.10 Producing observable and deterministic output

A generated program must expose its runtime state to the outside world.
Otherwise, we have no way of knowing whether the testing backends de-
viate from each other. However, the states in programs are very often
non-deterministic. For instance, allocating a stack variable is regarded as a
non-deterministic action as the address depends on the OS and is (often in-
tentionally) unpredictable. Should non-determinism be exposed through the
output, differential testing will encounter a large number of false negatives.
So we must ensure only deterministic values can influence the output.

We categorise types into two groups: ones whose values (bit patterns) are
always deterministic, and ones which may be non-deterministic. Of the types
that may be produced by Rustlantis, two kinds may have non-deterministic
values.

1. Pointers: their values are determined by the OS at runtime.

2. Floating points: if a floating point operation produces a NaN value, its
“payload” bits are unspecified.

Deterministic types are therefore all the types that are not and do not contain
pointers and floating points.

Data can flow from deterministic types into non-deterministic ones without
restriction, but dataflow from non-deterministic types into deterministic ones
needs to be carefully controlled to prevent leakage of non-determinism into
the observable outputs. There are three ways this leakage can happen:

• pointer-to-int casts and transmutes,

• pointer comparisons, and

• floating point-to-int transmutes (casts are deterministic as the NaN

payload do not affect cast results).

24

3.10. Producing observable and deterministic output

Rustlantis does not generate these three operations to guarantee that all
values of the deterministic types can be part of the observable output.

It happens to be the case that all of the deterministic types implement (or can
derive) the Debug trait. Before we generate a Return terminator, we choose
some local variables weighed by their complexity values and call a gadget
function, dump_var (Figure 3.8), to print them to the standard output.

#[inline(never)]

fn dump_var(

f: usize,

var0: usize, val0: impl Debug,

var1: usize, val1: impl Debug,

var2: usize, val2: impl Debug,

var3: usize, val3: impl Debug,

) {

println!("fn{f}:_{var0} = {val0:?}\n\

_{var1} = {val1:?}\n\

_{var2} = {val2:?}\n\

_{var3} = {val3:?}");

}

Figure 3.8: Slow dump var

The gadget takes the function name, and the names and values of four
variables and print them out. It is called multiple times if more than 4
variables are chosen to be dumped, and a variable of the unit type () is
supplied if the number of chosen variables is not a multiple of 4.

The arity 4 is experimentally chosen to be the fastest. It is about 10% faster
than dumping variables individually.

The printed string makes it immediately obvious which variable in which
function has a different value in different testing backends. However, this
causes a significant slow-down in the differential testing speed. It made each
generated program 2.6 times slower to run compared to ones where chosen
variables are supplied to std::hint::black_box (so they are not optimised
out) but not printed. The culprit is the interpreter Miri, which is very slow
when printing a large amount of data to standard output. Instead of printing
individual variables, we need to find a data structure that captures the value
of each variable efficiently and results in a difference when any of the values
are different.

The solution is hashing. It happens to be the case that all deterministic types
also implement the Hash trait. We can modify our dump_var function to hash
each value with a global hasher, as shown in 3.9. The hash value is printed

25

3.10. Producing observable and deterministic output

only once before the program exits.

static mut H: DefaultHasher = DefaultHasher::new();

#[inline(never)]

fn dump_var(

val0: impl Hash,

val1: impl Hash,

val2: impl Hash,

val3: impl Hash,

) {

unsafe {

val0.hash(&mut H);

val1.hash(&mut H);

val2.hash(&mut H);

val3.hash(&mut H);

}

}

pub fn main() {

fn0(/* fn0 arguments */);

println!("hash: {}", unsafe { H.finish() });

}

Figure 3.9: Fast dump var

The hash version only made the generated program 0.6% slower to run
compared to the no-output baseline. However, this significantly reduces the
debuggability of the generated program when it causes a miscompilation, as
we do not have visibility over which variable in which function had different
values. This made reducing the usually thousand-line-long program down
to a minimal reproducible example difficult.

To preserve both speed and bug visibility, we observe the fact that the vast
majority of programs do not trigger miscompilations, and will produce the
same output whichever dump_var we use, miscompilations from the small
minority of programs should be detectable by both versions of dump_var. We
can have the best of both worlds by using the fast dump_var usually, and
when a different hash is detected, we generate the program with the slow,
debug dump_var and run differential testing again to see the difference with
better visibility.

As compiler optimisations are highly volatile, sometimes a small change
can trigger or suppress a miscompilation. We minimise the chance of the
bug being sensitive to the variant of dump_var by annotating it with the

26

3.10. Producing observable and deterministic output

#[no_inline] attribute so that optimisations are unlikely across calls to
dump_var. Nonetheless, there may still be programs that only result in a
difference with the fast dump_var, but the bug disappears when it is tested
again with the debug dump_var. In this case, we still have a reproduction
and are still able to investigate the miscompilation, only more difficult.
Some programs may only trigger observable miscompilations with the debug
dump_var. We will miss these. However, fuzzing through programs far more
quickly likely results in overall more bugs being discovered, so this is a
worthy trade-off to make.

27

Chapter 4

Evaluation

4.1 Testing backends

We used the following differential testing backends in our fuzzing campaign:

1. Compiled with MIR optimisations and LLVM optimisations

2. Compiled with only LLVM optimisations

3. Compiled with only Cranelift optimisations

4. Interpreted with Miri

Cranelift [13] is a machine code generator developed by Bytecode Alliance.
It translates Cranelift IR into target-specific machine instructions. rustc can
generate Cranelift IR and use Cranelift as the machine code generator as an
alternative to LLVM IR and LLVM. It is comparatively new to LLVM and far
less widely used, therefore we hypothesised that it may contain more bugs
due to its immaturity.

Miri [10] is a Rust interpreter which executes MIR. It can detect and report
UB encountered during runtime. If Miri reports UB on a Rustlantis-generated
program, then there is a bug in Rustlantis and the execution results of the
same program from other testing backends must be discarded. This has
occurred during development, but we have fuzzed over tens of millions of
programs on the most recent versions of Rustlantis and no UB has been
reported.

Miri interprets MIR using the compile-time function evaluation (CTFE) mech-
anism implemented in rustc. CTFE is also used for the optimisation of
compiled code by evaluating known values at compile time. So a bug in Miri
can indicate a potential miscompilation too.

The combination of testing backends allows us to detect bugs in rustc, LLVM,
Cranelift, and Miri/CTFE: A bug in rustc can cause backend 1 to be different.

28

4.2. Bugs discovered

A bug in LLVM can cause backends 1 and 2 to be different. A bug in Cranelift
can cause backend 3 to be different. A bug in Miri/CTFE can cause backends
1 and 4 to be different.

4.2 Bugs discovered

Fuzzing with Rustlantis is trivially parallelisable as multiple instances can
be running simultaneously with different seeds using GNU Parallel [14]. It
is therefore well-suited on HPC clusters. Rustlantis has been fuzzing on
the Euler cluster of ETH Zürich, which is an x86 64-based Linux platform.
13 previously-unknown bugs have been discovered after 4.5 CPU years of
fuzzing. Table 4.1 provides a breakdown of these bugs by the origin of the
bug. Table 4.2 lists all bug reports filed to the relevant projects, including
two reports whose root causes have been previously reported.

Miscompilation Crash

rustc 3 2

LLVM 6 2

Cranelift 0 0

Table 4.1: Overview of previously-unknown bugs discovered by Rustlantis

9 out of the 13 previously-unknown bugs are miscompilations, the most
serious type of compiler bug. LLVM contained the most bugs, this is un-
surprising as it is the most complicated part of the compilation pipeline by
far.

Despite being new, Cranelift held up well with no bugs discovered by
Rustlantis. Of course, this is not proof that Cranelift is overall more correct
than LLVM, but it does serve as evidence in favour of Cranelift. This is likely
because it performs little optimisations and its developers have dedicated
fuzzing and formal verification efforts to ensure its correctness [13]:

[Cranelift] is carefully fuzzed as part of Wasmtime with differen-
tial comparison against V8 and the executable Wasm spec, and
the register allocator is separately fuzzed with symbolic veri-
fication. There is an active effort to formally verify Cranelift’s
instruction-selection backends.

We’ll take a closer look at a selection of the bugs discovered by Rustlantis in
the following subsections.

29

4.2. Bugs discovered

Date Report Type Origin First report

24 March rust#109567 Miscompilation rustc rust#102403
Const eval gives x%x wrong sign when x is a negative float

27 April rust#110902 Crash rustc New bug
Assertion failure in RenameReturnPlace

28 April rust#110947 Miscompilation rustc New bug
ConstProp propagates over mutating borrows

10 May rust#111426 Crash rustc New bug
ReferencePropagation prevents partial initialisation

12 May rust#111502 Miscompilation rustc New bug
*const T in function parameters annotated with readonly

29 May
rust#112061

Miscompilation LLVM New bug
llvm#63019

Aliasing analysis merges loads from different offsets

30 May llvm#63013 Crash LLVM New bug
Phi nodes assumed to be non-empty

31 May llvm#63033 Crash LLVM New bug
Assertion failure in RegisterCoalescer

1 June
rust#112170

Miscompilation LLVM New bug
llvm#63055

Constant folding produces invalid boolean values

2 June rust#112213 Miscompilation LLVM llvm#51838
Write to dangling pointer is hoisted before branching

11 June
rust#112526

Miscompilation LLVM New bug
llvm#63266

Aliasing analysis is broken for overflowing pointer offsets

12 June rust#112548 Miscompilation LLVM New bug
Safe program miscompiled on Apple silicon macOS

18 June
rust#112767 Miscompilation LLVM New bug
llvm#63430

Copy elision corrupts stack arguments with two parts

23 June llvm#63475 Miscompilation LLVM New bug
Copy elision reads stack arguments from the wrong offsets

6 July rust#113407 Miscompilation rustc New bug
Subnormal f64 to f32 cast is wrong

Table 4.2: All bugs encountered by Rustlantis

30

https://github.com/rust-lang/rust/issues/109567
https://github.com/rust-lang/rust/issues/102403
https://github.com/rust-lang/rust/issues/110902
https://github.com/rust-lang/rust/issues/110947
https://github.com/rust-lang/rust/issues/111426
https://github.com/rust-lang/rust/issues/111502
https://github.com/rust-lang/rust/issues/112061
https://github.com/llvm/llvm-project/issues/63019
https://github.com/llvm/llvm-project/issues/63013
https://github.com/llvm/llvm-project/issues/63033
https://github.com/rust-lang/rust/issues/112170
https://github.com/llvm/llvm-project/issues/63055
https://github.com/rust-lang/rust/issues/112213
https://github.com/llvm/llvm-project/issues/51838
https://github.com/rust-lang/rust/issues/112526
https://github.com/llvm/llvm-project/issues/63266
https://github.com/rust-lang/rust/issues/112548
https://github.com/rust-lang/rust/issues/112767
https://github.com/llvm/llvm-project/issues/63430
https://github.com/llvm/llvm-project/issues/63475
https://github.com/rust-lang/rust/issues/113407

4.2. Bugs discovered

Wrong comparison of AliasResults

The original generated program had over 6,500 lines. We reduced and rewrote
it into surface Rust and filed rust#112061 on 29 May. A Rust contributor
@Nilstrieb further reduced it into LLVM IR and filed llvm#63019.

This is the minimal reproducible example:
1 define i8 @test(i1 %c, i64 %offset, ptr %ptr) {

2 start:

3 %alloca = alloca [8 x i8], align 8

4 store i64 u0x1122334455667788, ptr %alloca, align 8

5 %gep.2 = getelementptr i8, ptr %alloca, i64 2

6 %gep.dynamic = getelementptr i8, ptr %alloca, i64 %offset

7 br i1 %c, label %join, label %if

8
9 if:

10 br label %join

11
12 join:

13 %phi = phi ptr [%gep.dynamic, %start], [%gep.2, %if]

14 store i8 0, ptr %alloca, align 8

15 %load1 = load i64, ptr %alloca, align 8

16 store i64 %load1, ptr %ptr, align 8

17 %load2 = load i8, ptr %phi, align 1

18 ret i8 %load2

19 }

Note that %load1 on line 15 loads eight bytes from the stack allocation
%alloca without any offset, and %load2 loads one byte from the same stack
allocation but is either offset by the constant 2 or the dynamic value %offset,
depending on the taken branch. LLVM cannot say that %load1 and %load2

have the same initial byte, as the addresses could be different.

However, LLVM 16.0.4 incorrectly reasoned that %load1 and %load2 are
loaded from the same address, turning %load2 into a simple truncation of
%load1

15 %load1 = load i64, ptr %alloca, align 8

16 store i64 %load1, ptr %ptr, align 8

17 %0 = lshr i64 %load1, 16

18 %1 = trunc i64 %0 to i8

19 ret i8 %1

The bug was serious: any load from the same allocation but different offsets
may be incorrectly merged into one. The fix was merged into LLVM on 31
May and backported to LLVM 16.0.5 release.

31

https://github.com/rust-lang/rust/issues/112061
https://github.com/Nilstrieb
https://github.com/llvm/llvm-project/issues/63019

4.2. Bugs discovered

undef in booleans

The generated program has over 11,000 lines. We reduced this and got a
pure-LLVM IR reproduction with the help of llvm-reduce [15]. We filed
rust#112170 and llvm#63055.

An LLVM contributor @nikic further reduced this into a 3-line function
define i64 @test(double %arg) {

%fcmp = fcmp une double 0x7FF8000000000000, %arg

%ext = zext i1 %fcmp to i64

ret i64 %ext

}

0x7FF8000000000000 is a bit pattern of NaN under IEEE-754 double-precision
floating-point format [16]. The instruction fcmp une checks if the operands
are not equal. The value of %fcmp should be true as NaN does not equate
anything (not even itself), therefore the function should return 1.

However, LLVM 16.0.4 generates the following x86 assembly, which returns
255.
test:

movl $255, %eax

retq

This is due to the fcmp une instruction being incorrectly folded into an 8-bit
long undef constant, which can contain any bit pattern.

The fix was merged into LLVM on 1 June.

ConstProp across mutating pointer

Unlike the previous two, this is a miscompilation in rustc. The reduced MIR
was rewritten into surface Rust and further reduced to this example:

1 pub fn fn0() -> bool {

2 let mut pair = (1, false);

3 let ptr = core::ptr::addr_of_mut!(pair.1);

4 pair = (1, false);

5 unsafe {

6 *ptr = true;

7 }

8 let ret = !pair.1;

9 return ret;

10 }

fn0 should return true, but instead it returned false. This is due to Rust’s
ConstProp MIR optimisation incorrectly propagating the constant value of

32

https://github.com/rust-lang/rust/issues/112170
https://github.com/llvm/llvm-project/issues/63055
https://github.com/nikic

4.3. Compiler code coverage

pair.1 (false) from line 4 to line 8 in the presence of a live pointer to the
place.

Notably, this reproduction has UB under the Stacked Borrows [17] aliasing
model and therefore invalid, as ptr would have been invalidated by the
assignment on line 4 and its later use on line 6 would not be allowed. But
now that Tree Borrows has been implemented in Miri as an alternative
to Stacked Borrows and allows this program, the Rust compiler must not
miscompile it.

This also demonstrated the effectiveness of Rustlantis in exposing bugs that
are hard to find in manual testing. One Rust project contributor said [18]:

I’ve been suspecting such a bug without managing to reproduce
it for a few months.

4.3 Compiler code coverage

Code coverage measures the number of statements and branches in a code
base that have been exercised by a test suite. Coverage of the compiler source
code is a metric commonly used by authors of existing compiler fuzzers [4, 5,
8] to measure how diverse the generated programs are.

We built Rust 1.70.0 with coverage instrumentation enabled in both rustc (by
using Mayank Sharma’s patch which modifies rustc’s bootstrapping script
[19]) and LLVM (with CMake flag LLVM BUILD INSTRUMENTED COVERAGE =

"On"). Using this instrumented compiler, we compiled 300 Rustlantis-generated
programs with the maximum optimisation flags -Z mir-opt-level=4 -C

opt-level=3 to gather the coverage data. We then used grcov1 and lcov2 to
process these coverage data.

We also generated 300 programs with RustSmith and gathered coverage
information using the same Rust build and compilation flags to serve as a
comparison with Rustlantis’ numbers. The RustSmith thesis [8] contained
some coverage statistics, but we will not use them for comparison as the Rust
version and number of files tested are different.

We are most interested in the coverage of four parts of the compiler which
we believe are the most bug-prone. These steps are labelled in red in Figure
4.1.

• rustc’s MIR passes

• rustc’s MIR lowering to LLVM IR

• LLVM’s passes
1https://github.com/mozilla/grcov
2https://github.com/linux-test-project/lcov

33

https://github.com/mozilla/grcov
https://github.com/linux-test-project/lcov

4.3. Compiler code coverage

Source AST Mid-level IR (MIR)

rustc

LLVM IR Assembly

LLVM

Binary

Lowering

Lowering

Transformations

Transformations

Figure 4.1: Coverage-measured parts

• LLVM’s LLVM IR lowering to machine instructions

Unfortunately, Rust does not currently support branch coverage instrumenta-
tion3, so we only have this information for code belonging to LLVM.

MIR optimisation

This crate lives under compiler/rustc mir transform directory of the Rust
repository. It performs optimisations on MIR and has been responsible for
2 out of 3 rustc miscompilations and both rustc crashes discovered by
Rustlantis.

Rustlantis RustSmith
Total Hit Cov. Hit Cov.

Lines 12638 5272 41.7% 5754 45.5%

Functions 1416 512 36.2% 563 39.8%

Table 4.3: Coverage of rustc mir transform

Lowering to LLVM IR

This crate lives under compiler/rustc codegen llvm. It is responsible for
lowering MIR to LLVM IR, two intermediate representations with sometimes
subtly different semantics. One miscompilation (rust#111502) was arguably
due to this crate, but ultimately it was fixed by changing rustc mir transform.

3https://github.com/rust-lang/rust/issues/79649

34

https://github.com/rust-lang/rust/issues/111502
https://github.com/rust-lang/rust/issues/79649

4.3. Compiler code coverage

Rustlantis RustSmith
Total Hit Cov. Hit Cov.

Lines 13700 4219 30.8% 4189 30.6%

Functions 1211 388 32.0% 385 31.8%

Table 4.4: Coverage of rustc codegen llvm

LLVM Passes

LLVM has two types of passes: analysis passes, which compute information
about the IR without mutating it, and transform passes, which modify the IR.
Only transform passes can directly introduce errors, but since it often relies
on information from analysis passes, bugs in either type of pass can result
in miscompilation. rust#112061 and rust#112526 were due to bugs in these
passes.

Analysis passes live under llvm/lib/Analysis directory of the LLVM Project
repository

Rustlantis RustSmith
Total Hit Cov. Hit Cov.

Lines 57800 25764 44.6% 23107 40.0%

Functions 3772 1826 48.4% 1714 45.4%

Branches 38438 19308 50.2% 17360 45.2%

Table 4.5: Coverage of LLVM Analysis passes

Transform passes live under llvm/lib/Transform directory of the LLVM
Project repository

Rustlantis RustSmith
Total Hit Cov. Hit Cov.

Lines 189316 54925 29.0% 48366 25.5%

Functions 11032 2979 27.0% 2806 25.4%

Branches 117258 40990 35.0% 36890 31.5%

Table 4.6: Coverage of LLVM Transform passes

Lowering to machine instructions

After passes on the IR, LLVM needs to lower LLVM IR into target-specific
machine instructions. Again, this is not a simple, mechanical step as it

35

https://github.com/rust-lang/rust/issues/112061
https://github.com/rust-lang/rust/issues/112526

4.3. Compiler code coverage

involves steps like representing LLVM data types as native types with specific
sizes, deciding on the ABIs of functions, and so on.

There are two steps in machine instruction lowering: a target-independent
pass, and a target-specific one. The target-independent pass was responsible
for rust#112170, and the x86-specific pass was responsible for llvm#63475.

Target-independent passes live under llvm/lib/Codegen directory of the
LLVM Project repository.

Rustlantis RustSmith
Total Hit Cov. Hit Cov.

Lines 189276 57980 30.6% 54277 28.7%

Functions 9594 3529 36.8% 3358 35.0%

Branches 114890 43904 38.2% 41460 36.1%

Table 4.7: Coverage of LLVM target-independent codegen

Target-specific passes live under llvm/lib/Target directory of the LLVM
Project repository. We only performed the instrumentation on x86-64 archi-
tecture, so we only have data for llvm/lib/Target/X86.

Rustlantis RustSmith
Total Hit Cov. Hit Cov.

Lines 93589 24454 26.1% 21627 23.1%

Functions 4043 1459 36.1% 1372 33.9%

Branches 76894 26112 34.0% 23724 30.9%

Table 4.8: Coverage of LLVM X86-specific codegen

Discussion

The LLVM coverage percentage is meaningful for comparison only. It is not
possible to reach 100% coverage by generating Rust programs, as Rust cannot
produce all possible forms of IR.

100% coverage on MIR optimisations is also impossible, as some MIR passes
(such as EarlyOtherwiseBranch) have been disabled due to known correct-
ness issues, but the code remains.

Compared to RustSmith, Rustlantis has around 4 p.p. lower coverage of
Rust’s MIR optimisation, marginally higher coverage of Rust’s LLVM IR
generator, around 4 p.p. higher coverage of LLVM’s passes, and around 2
p.p. higher coverage of LLVM’s machine code generator. The difference in

36

https://github.com/rust-lang/rust/issues/112170
https://github.com/llvm/llvm-project/issues/63475

4.4. Performance

coverage is not significant, and does not reflect the difference in the fuzzers’
effectiveness: Rustlantis encountered 15 bugs (2 were previously known)
on the most recent Rust versions; RustSmith encountered 5 (all previously
known) which also fuzzed historic Rust versions.

We conclude that compiler coverage is not a very good predictor for the
effectiveness of a fuzzer in terms of its ability to find bugs, especially mis-
compilation bugs.

4.4 Performance

Figure 4.2 shows the fuzzing (both generation and execution) throughput on
an AMD EPYC™ 7742 processor with 48 of its physical cores made available
to Rustlantis.

Figure 4.2: Fuzz rate by parallelism

As expected, the throughput increases linearly with the number of parallel
instances up to a plateau when it is using all available CPUs. But the plateau
did not start until 56 parallel instances, slightly higher than the number of
available cores. This is likely because the program generation, compilation,
or execution of the compiled program does not fully utilise a core all the
time, it is therefore more efficient to overcommit CPUs so other instances can
fill in the idle gaps.

Figure 4.3 shows where time was spent on programs of different sizes.
The timings include both compilation and execution for the compiler-based
testing backends.

37

4.4. Performance

Figure 4.3: Fuzz time breakdown by line count

We can see that Rustlantis’ program generation consumes very little time –
less than 5% of the total time for programs below 8000 lines, which is the
vast majority.

Interestingly, Miri the interpreter is the fastest testing backend, despite having
a general reputation of being slow. Miri almost certainly is slower at execution
when compared to a compiled binary, but it has the advantage of not having
to compile or optimise anything, which is rather slow in LLVM.

38

4.5. Energy efficiency

4.5 Energy efficiency

The machines we used did not record the energy consumption of our fuzzing
jobs, but we can estimate this.

We will assume all our Euler jobs are done on nodes with two sockets of
AMD EPYC™ 7742 processors, the most common node type in the Euler
cluster. Two sockets (128 cores) of this CPU consume 240 W on average
during Linux kernel compilation [20]. Our fuzzing jobs ran for about 394
hours on Euler, usually using 96 cores in parallel. Assuming the power input
is evenly distributed on all CPU cores, our fuzzing job consumes 180 W of
power on the CPU, which totalled 255 MJ, or 71 kWh of electrical energy.

The fuzzer also ran on an M1 Mac mini for about 96 hours, which has a peak
CPU power consumption of 39 W [21]. This meant that it consumed at most
13 MJ, or 3.7 kWh of electrical energy.

Altogether, 4.5 CPU years of fuzzing consumed 75 kWh of electricity, which
is around 4 days’ worth of electricity consumption per capita in Switzerland
[22]. Note that this only accounts for the energy consumed by the CPU
packages; other parts of the Euler cluster, such as the cooling system, certainly
also consumed a notable amount of energy, but this is difficult to estimate.

39

Chapter 5

Future Work

5.1 Missing language constructs

Rustlantis does not generate some common constructs in Rust, such as

• References

• Enums

• Unions

• Recursive types

• Heap-allocated (Boxed) types

• Zero-sized types

• Manually dropped types

• Non-#[repr(rust)] types

• ... and many more

Supporting these constructs would greatly increase the coverage of compiler
code and potentially discover more bugs. For instance, bugs related to the
noalias LLVM attribute mentioned in the first chapter can only be triggered
with &mut function parameters.

But supporting these constructs imposes many challenges. For instance, the
addition of references means that we have to maintain aliasing constraints
imposed by the Tree Borrows model. Allowing struct, enum, and union
definitions to refer to themselves makes it possible to create self-referential
values. This is certainly interesting to generate but it also makes PlaceTable
cyclic, requiring our graph walk algorithms to take this into account.

40

5.2. Program reduction

5.2 Program reduction

Most Rustlantis-generated programs are between 3000-7000 lines long (Figure
5.1). This is too long to be a useful bug report for Rust maintainers. As a
result, if a generated program triggers a bug, it must be reduced to a far
smaller minimal complete verifiable example (MCVE) to be submitted as a bug
report.

Figure 5.1: Size distribution of 1000 random programs

This problem is known as test case reduction. For the bugs discovered by
Rustlantis, we primarily reduced the test cases manually, with the help of a
very simple script that comments out one line at a time and checks whether
the bug is still reproducible
function reduce

for line in line_count(prog)-1 to 0

comment_out(line)

result = differential_test(prog)

if not has_bug(result) or has_ub(result)

uncomment(line)

else

remove(line)

end if

end for

end function

This script is naive and inefficient. Many sophisticated techniques have been
proposed in prior research [23], but we did not have time to adopt them to
MIR programs.

41

5.3. Keep Rustlantis running

When the bug is in LLVM and we were able to isolate a reproduction in
LLVM IR form, we used llvm-reduce [15] tool to reduce the size of the IR
code. However, we found that this tool tends to introduce new UB during
reduction and thus invalidates the test program, so it cannot be fully relied
on.

5.3 Keep Rustlantis running

Upon completion of this project, we will no longer have access to Euler
or other HPC clusters. But Rustlantis has shown to be capable of finding
bugs and there are certainly still more bugs to be found. It would be highly
regrettable for Rustlantis to become a one-off academic project and fade into
obscurity due to the lack of compute resources, forfeiting all its potential.

Fortunately, after reaching out to The Rust Foundation, they have expressed
interest in providing compute resources to keep Rustlantis running through
its Cloud Compute Program1. The details are yet fully determined, but we
are confident that Rustlantis will be actively used, maintained, and continue
to find new bugs and regressions in the future.

1https://foundation.rust-lang.org/news/2022-06-09-cloud-compute-program-u

pdate/

42

https://foundation.rust-lang.org/news/2022-06-09-cloud-compute-program-update/
https://foundation.rust-lang.org/news/2022-06-09-cloud-compute-program-update/

Bibliography

[1] sirkib, Tail recursion assumed to terminate? Rustc ’solves’ the Collatz con-
jecture, Social Media. [Online]. Available: https://web.archive.org/
web/20210227112302/https://www.reddit.com/r/rust/comments/

ltm4ko/tail_recursion_assumed_to_terminate_rustc_solves/.

[2] C. Lattner and V. Adve, ‘LLVM: A compilation framework for lifelong
program analysis and transformation,’ in CGO, San Jose, CA, USA,
Mar. 2004, pp. 75–88.

[3] M. Marcozzi, Q. Tang, A. F. Donaldson and C. Cadar, ‘Compiler fuzz-
ing: how much does it matter?’ Proc. ACM Program. Lang., vol. 3,
no. OOPSLA, Article 155, 2019. doi: 10.1145/3360581. [Online]. Avail-
able: https://doi.org/10.1145/3360581.

[4] X. Yang, Y. Chen, E. Eide and J. Regehr, Finding and understanding bugs
in C compilers, Conference Paper, 2011. doi: 10.1145/1993498.1993532.
[Online]. Available: https://doi.org/10.1145/1993498.1993532.

[5] V. Livinskii, D. Babokin and J. Regehr, ‘Random testing for C and
C++ compilers with YARPGen,’ Proc. ACM Program. Lang., vol. 4,
no. OOPSLA, Article 196, 2020. doi: 10.1145/3428264. [Online]. Avail-
able: https://doi.org/10.1145/3428264.

[6] W. Howden, ‘Theoretical and empirical studies of program testing,’
IEEE Transactions on Software Engineering, vol. SE-4, no. 4, pp. 293–298,
1978. doi: 10.1109/TSE.1978.231514.

[7] W. M. McKeeman, ‘Differential Testing for Software,’ Digit. Tech. J.,
vol. 10, pp. 100–107, 1998.

[8] M. Sharma, ‘Rustsmith a randomized program generator for rust,’
Thesis, Imperial College London, 2022. [Online]. Available: https:
//www.imperial.ac.uk/media/imperial- college/faculty- of-

engineering/computing/public/2122-ug-projects/2122-individual-

43

https://web.archive.org/web/20210227112302/https://www.reddit.com/r/rust/comments/ltm4ko/tail_recursion_assumed_to_terminate_rustc_solves/
https://web.archive.org/web/20210227112302/https://www.reddit.com/r/rust/comments/ltm4ko/tail_recursion_assumed_to_terminate_rustc_solves/
https://web.archive.org/web/20210227112302/https://www.reddit.com/r/rust/comments/ltm4ko/tail_recursion_assumed_to_terminate_rustc_solves/
https://doi.org/10.1145/3360581
https://doi.org/10.1145/3360581
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1145/3428264
https://doi.org/10.1145/3428264
https://doi.org/10.1109/TSE.1978.231514
https://www.imperial.ac.uk/media/imperial-college/faculty-of-engineering/computing/public/2122-ug-projects/2122-individual-projects/RustSmith---a-Randomized-Program-Generator-for-Rust.pdf
https://www.imperial.ac.uk/media/imperial-college/faculty-of-engineering/computing/public/2122-ug-projects/2122-individual-projects/RustSmith---a-Randomized-Program-Generator-for-Rust.pdf
https://www.imperial.ac.uk/media/imperial-college/faculty-of-engineering/computing/public/2122-ug-projects/2122-individual-projects/RustSmith---a-Randomized-Program-Generator-for-Rust.pdf
https://www.imperial.ac.uk/media/imperial-college/faculty-of-engineering/computing/public/2122-ug-projects/2122-individual-projects/RustSmith---a-Randomized-Program-Generator-for-Rust.pdf
https://www.imperial.ac.uk/media/imperial-college/faculty-of-engineering/computing/public/2122-ug-projects/2122-individual-projects/RustSmith---a-Randomized-Program-Generator-for-Rust.pdf

Bibliography

projects/RustSmith--- a- Randomized- Program- Generator- for-

Rust.pdf.

[9] Module std::intrinsics::mir. [Online]. Available: https : / / doc .

rust - lang . org / std / intrinsics / mir / index . html (visited on
30/06/2023).

[10] T. R. Project, Miri, https://github.com/rust-lang/miri.

[11] N. Villani, ‘Tree Borrows,’ M.S. thesis, ENS Paris-Saclay, 2023. [Online].
Available: https://github.com/Vanille-N/tree-borrows/blob/
eeb44c2509a6fa3f6e55f4bd75f5fd416a576676/half/main.pdf.

[12] V. Le, M. Afshari and Z. Su, ‘Compiler validation via equivalence
modulo inputs,’ in Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI ’14, Edin-
burgh, United Kingdom: Association for Computing Machinery, 2014,
pp. 216–226, isbn: 9781450327848. doi: 10.1145/2594291.2594334.
[Online]. Available: https://doi.org/10.1145/2594291.2594334.

[13] B. Alliance, Cranelift Code Generator, 2018. [Online]. Available: https:
//github.com/bytecodealliance/wasmtime/tree/main/cranelift.

[14] O. Tange, ‘GNU Parallel - The Command-Line Power Tool,’ ;login: The
USENIX Magazine, vol. 36, no. 1, pp. 42–47, Feb. 2011. doi: 10.5281/
zenodo.16303. [Online]. Available: http://www.gnu.org/s/parallel.

[15] D. T. Ferrer, ‘LLVM-Reduce for testcase reduction,’ 2019 LLVM De-
velopers’ Meeting, 2019. [Online]. Available: https : / / llvm . org /
devmtg/2019-10/talk-abstracts.html#tech22.

[16] ‘Ieee standard for floating-point arithmetic,’ IEEE Std 754-2019 (Revi-
sion of IEEE 754-2008), pp. 1–84, 2019. doi: 10.1109/IEEESTD.2019.
8766229.

[17] R. Jung, H.-H. Dang, J. Kang and D. Dreyer, ‘Stacked borrows: an
aliasing model for Rust,’ Proc. ACM Program. Lang., vol. 4, no. POPL,
Article 41, 2019. doi: 10.1145/3371109. [Online]. Available: https:
//doi.org/10.1145/3371109.

[18] C. Gillot, Issue comment, 2023. [Online]. Available: https://github.
com/rust-lang/rust/issues/110947#issuecomment-1527815558.

[19] M. Sharma, Rust, https://github.com/rustsmith/rust, 2022.

[20] M. Larabel, ‘AMD EPYC 7003 ”Milan” Linux Benchmarks - Superb
Performance,’ 2021. [Online]. Available: https://www.phoronix.com/
review/epyc-7003-linux-perf/7 (visited on 28/06/2023).

[21] Apple, Mac mini power consumption and thermal output (BTU) information,
Dataset, 2023. [Online]. Available: https://support.apple.com/en-
gb/HT201897 (visited on 28/06/2023).

44

https://www.imperial.ac.uk/media/imperial-college/faculty-of-engineering/computing/public/2122-ug-projects/2122-individual-projects/RustSmith---a-Randomized-Program-Generator-for-Rust.pdf
https://www.imperial.ac.uk/media/imperial-college/faculty-of-engineering/computing/public/2122-ug-projects/2122-individual-projects/RustSmith---a-Randomized-Program-Generator-for-Rust.pdf
https://www.imperial.ac.uk/media/imperial-college/faculty-of-engineering/computing/public/2122-ug-projects/2122-individual-projects/RustSmith---a-Randomized-Program-Generator-for-Rust.pdf
https://www.imperial.ac.uk/media/imperial-college/faculty-of-engineering/computing/public/2122-ug-projects/2122-individual-projects/RustSmith---a-Randomized-Program-Generator-for-Rust.pdf
https://www.imperial.ac.uk/media/imperial-college/faculty-of-engineering/computing/public/2122-ug-projects/2122-individual-projects/RustSmith---a-Randomized-Program-Generator-for-Rust.pdf
https://doc.rust-lang.org/std/intrinsics/mir/index.html
https://doc.rust-lang.org/std/intrinsics/mir/index.html
https://github.com/rust-lang/miri
https://github.com/Vanille-N/tree-borrows/blob/eeb44c2509a6fa3f6e55f4bd75f5fd416a576676/half/main.pdf
https://github.com/Vanille-N/tree-borrows/blob/eeb44c2509a6fa3f6e55f4bd75f5fd416a576676/half/main.pdf
https://doi.org/10.1145/2594291.2594334
https://doi.org/10.1145/2594291.2594334
https://github.com/bytecodealliance/wasmtime/tree/main/cranelift
https://github.com/bytecodealliance/wasmtime/tree/main/cranelift
https://doi.org/10.5281/zenodo.16303
https://doi.org/10.5281/zenodo.16303
http://www.gnu.org/s/parallel
https://llvm.org/devmtg/2019-10/talk-abstracts.html#tech22
https://llvm.org/devmtg/2019-10/talk-abstracts.html#tech22
https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1145/3371109
https://doi.org/10.1145/3371109
https://doi.org/10.1145/3371109
https://github.com/rust-lang/rust/issues/110947#issuecomment-1527815558
https://github.com/rust-lang/rust/issues/110947#issuecomment-1527815558
https://github.com/rustsmith/rust
https://www.phoronix.com/review/epyc-7003-linux-perf/7
https://www.phoronix.com/review/epyc-7003-linux-perf/7
https://support.apple.com/en-gb/HT201897
https://support.apple.com/en-gb/HT201897

Bibliography

[22] Presence Switzerland, Energy – Facts and Figures, 2023. [Online]. Avail-
able: https://www.eda.admin.ch/aboutswitzerland/en/home/
wirtschaft/energie/energie---fakten-und-zahlen.html.

[23] J. Chen et al., ‘A Survey of Compiler Testing,’ ACM Comput. Surv.,
vol. 53, no. 1, Feb. 2020, issn: 0360-0300. doi: 10.1145/3363562. [On-
line]. Available: https://doi.org/10.1145/3363562.

[24] M. S. Hecht and J. D. Ullman, ‘Characterizations of reducible flow
graphs,’ J. ACM, vol. 21, no. 3, pp. 367–375, Jul. 1974, issn: 0004-5411.
doi: 10.1145/321832.321835. [Online]. Available: https://doi.org/
10.1145/321832.321835.

45

https://www.eda.admin.ch/aboutswitzerland/en/home/wirtschaft/energie/energie---fakten-und-zahlen.html
https://www.eda.admin.ch/aboutswitzerland/en/home/wirtschaft/energie/energie---fakten-und-zahlen.html
https://doi.org/10.1145/3363562
https://doi.org/10.1145/3363562
https://doi.org/10.1145/321832.321835
https://doi.org/10.1145/321832.321835
https://doi.org/10.1145/321832.321835

Appendix A

Proof of reducibility

To prove that Rustlantis-generated MIR is reducible, we first prove that any
control flow graph satisfying a particular property is reducible. We then
argue that Rustlantis-produced control flow graphs have this property by
construction, thereby proving the reducibility of Rustlantis-generated MIR.

Given a control flow graph, we can number all basic blocks as bb0, bb1, ...,
bbn, where bb0 is the entry block. We say that bbi is lesser than bbj if i < j,
denoted as bbi < bbj, and greater if the other way round. We partition the
basic blocks into two sets: R and D, defined as:

Definition 1 A basic block is in R if and only if it has no successor, or has a
successor greater than or equal to it. A basic block is in D if and only if it has only
lesser successors.

Remark 2 This means that bb0 ∈ R: it is the least block and cannot have lesser
successors.

Unless otherwise quantified, we use r to refer to an arbitrary R basic block,
and d for an arbitrary D basic block. bbi → bbj reads “bbi is a predecessor to
bbj in the CFG” (or equally, bbj is a successor to bbi), and bbi →∗ bbj reads “a
path from bbi to bbj in the CFG”.

We define PrevR(bbi) as the greatest R basic block less than bbi, and NextR(bbi)
as the least R basic block greater than bbi. PrevD and NextD are defined in
the same way. Lp(bbi) denotes the least node in bbi’s predecessor set.

For a control flow graph G, we assume that there is a numbering and R/D
partition scheme such that the following holds:

Property 3 The least predecessor of any non-entry basic block bb is the
greatest R basic block less than bb (Lp(bb) = PrevR(bb)).

In other words, an edge cannot “skip” an R basic block.

46

Corollary 4 A D predecessor of bbi is greater than bbi

This follows from Definition 1.

Theorem 5 If di < dj, then Lp(di) ≤ Lp(dj)

di djLp(di)Lp(dj)Lp(dj)

Proof di is not bb0 as bb0 ∈ R, therefore Lp = PrevR by Property 3. If
Lp(dj) < PrevR(di), we have PrevR(dj) < PrevR(di) < di < dj, but this
is impossible as there is another R block between PrevR(dj) and dj. So
Lp(dj) ≥ PrevR(di) and Lp(dj) ≥ Lp(di). □

Theorem 6 (Intermediate node theorem) Given a path of basic blocks p from
p⟨0⟩ to p⟨n⟩, and a block x not in p where p⟨0⟩ < x < p⟨n⟩, there must be two
adjacent blocks p⟨i⟩ → p⟨i + 1⟩ such that p⟨i⟩ < x < p⟨i + 1⟩.

Proof We can prove this by induction

Base case p has no block excluding p⟨0⟩ and p⟨n⟩

n = 1, and we have p⟨0⟩ < x < p⟨1⟩.

Inductive case Assuming there are p⟨i⟩ < x < p⟨i + 1⟩ when p has k blocks
excluding p⟨0⟩ and p⟨n⟩, to show that there are p⟨i⟩ < x < p⟨i + 1⟩
when p has k + 1 blocks excluding p⟨0⟩ and p⟨n⟩.

Since p has k + 1 blocks excluding p⟨0⟩ and p⟨n⟩, p⟨1⟩ exists. Either p⟨1⟩ > x,
or p⟨1⟩ < x.

Case p⟨1⟩ > x we have p⟨0⟩ < x < p⟨1⟩.

Case p⟨1⟩ < x there is a path from p⟨1⟩ to p⟨n⟩ which has k blocks excluding
p⟨1⟩ and p⟨n⟩. Let this be p′. We have p⟨1⟩ = p′⟨0⟩ < x < p′⟨n − 1⟩ =
p⟨n⟩. Using the inductive hypothesis, we have p′⟨j⟩ < x < p′⟨j + 1⟩,
which means p⟨j + 1⟩ < x < p⟨j + 2⟩ □

Theorem 7 (R dominates greater Rs) If ri < rj, then ri dominates rj.

Proof Assume there are ri < rj where ri does not dominate rj.

This meant that there is a path from bb0 to rj which doesn’t contain ri.

We have bb0 < ri < rj. Due to Theorem 6, there are two adjacent blocks
bbm → bbn such that bbm < ri < bbn.

47

bb0 ... bbm ... ri ... bbn ... rj

If bbm ∈ D, this would contradict Definition 1, as its successor bbn is greater.

If bbm ∈ R, then bbn would have an R predecessor smaller than ri, which is
an R known to be greater. Since bbn ̸= bb0, this contradicts Property 3.

So a path from bb0 to rj without ri is impossible. Thus ri dominates rj. □

Theorem 8 The least predecessor of d dominates d

Proof We prove this by strong induction over all D blocks from the end.

Base case To show that the least predecessor of the greatest D basic block
dlast dominates it.

We have shown that an R basic block dominates all greater R blocks (Theorem
7), so Lp(dlast) (which is R) dominates all its other R predecessors, which are
all greater.

If dlast were to have any D predecessor, it must be greater than dlast due to
Corollary 4; but then dlast is no longer the greatest D block, so dlast has no D
predecessor, only R ones.

Therefore Lp(dlast) dominates all predecessors of dlast, thus it dominates dlast

Inductive case Assume Lp(d) dominates d for all dk ≤ d < dlast, to show
that for di = PrevD(dk), Lp(di) dominates di

As show in the base case, Lp(di) dominates all R predecessors of di.

Consider an arbitrary D predecessor d of di. d > di due to Corollary 4,
therefore dk ≤ d ≤ dlast. From the inductive hypothesis, we have Lp(d)
dominates d.

And since di < d, we have Lp(di) < Lp(d) (Theorem 5). Least predecessors
are R, thus Lp(di) dominates Lp(d) by Theorem 7. As the choice of d is
arbitrary, we have Lp(di) dominates all D predecessors of di.

Therefore Lp(di) dominates all predecessors of di, thus it dominates di. □

Theorem 9 (R dominates greater Ds) If ri < dj, then ri dominates dj.

Proof Either Lp(dj) < ri, ri = Lp(dj), or ri < Lp(dj)

If Lp(dj) < ri, then Lp(dj) < ri < dj, which means that there is an R block
between Lp(dj) and dj. Since dj ̸= bb0, this contradicts Property 3, so
this case is impossible.

48

If ri = Lp(dj), then we have ri dominates dj from Theorem 8.

If ri < Lp(dj), then ri < Lp(dj) < dj. We have ri dominates Lp(dj) from
Theorem 7, and Lp(dj) dominates dj from Theorem 8. So ri dominates
dj. □

Now we are ready to prove G is reducible.

Definition 10 [24, Theorem 6] A control flow graph is reducible if all its edges can
be partitioned into two sets: Forward edges and Backward edges, such that:

• Forward edges form a DAG with all basic blocks reachable from the entry block,
and

• Backward edges are always from a block to its dominator.

Theorem 11 G is reducible

Proof We first provide a scheme to partition edges in G into Forward and
Backward edges:

• ri → rj where ri < rj are Forward edges,

• ri → rj where ri ≥ rj are Backward edges,

• r → d are Forward edges,

• d → r are Backward edges, and

• d → d are Forward edges.

To show that Forward edges form a DAG with all basic blocks reachable
from the entry block:

Lemma 12 All R blocks are reachable from bb0 using only Forward edges.

Proof We can prove this by induction

Base case To show that bb0 → NextR(bb0)

bb0 = PrevR(NextR(bb0)), by Property 3, bb0 is a predecessor to NextR(bb0).
This edge is a Forward edge in the form of ri → rj where ri < rj.

Inductive case Assuming bb0 →∗ bbi contains only edges in the form of
ri → rj where ri < rj, to show that bbi → NextR(bbi)

bbi = PrevR(NextR(bbi)), by Property 3, bbi is a predecessor to NextR(bbi).
This edge is a Forward edge in the form of ri → rj where ri < rj. □

Lemma 13 All D blocks are reachable from bb0 using only Forward edges.

49

Proof By Property 3, all D basic blocks have an R predecessor, thus all D
basic blocks can be reached from an R block. As we have proven in Lemma
12 that all Rs are reachable from bb0, all Ds are subsequently reachable from
bb0. □

Lemma 14 The Forward edges do not form a cycle

Proof Assume there is a cycle. It either contains only R blocks, only D blocks,
or a mix of both.

If the cycle contains R blocks only, then the cycle contains only edges in
the form of ri → rj where ri < rj, which only produces paths with
monotonically increasing blocks. The cycle is impossible.

If the cycle contains D blocks only, then the cycle contains only edges in
the form of d → d. By Definition 1, such paths have monotonically
decreasing blocks. The cycle is impossible.

If the cycle contains both R and D blocks, we can pick an arbitrary R block
in the cycle. To reach a D block then back to the original R block, one
must have gone through r → d and d → r edges; similarly, we can pick
an arbitrary D block in the cycle, to reach an R block then back to the
original D block, one must have gone through d → r and r → d edges.
But d → r is not a Forward edge, thus the cycle is impossible.

Therefore Forward edges cannot form a cycle. □

Lemma 15 Backward edges are always from a block to its dominator

Proof A Backward edge is either in the form of ri → rj where ri ≥ rj, or
d → r.

For edges ri → rj where ri ≥ rj, if ri = rj, then this is true as a basic block
dominates itself. Otherwise, if ri < rj, we have ri dominates rj from
Theorem 7

For edges d → r, we know d > r from Definition 1. Due to Theorem 9, r
dominates d □

Lemma 12, 13, and 14 together satisfy the first property in the reducibility
definition. Lemma 15 satisfies the second property. □

Theorem 16 Rustlantis-generated MIR always has a numbering and R/D parti-
tioning scheme such that Property 3 holds.

Proof Rustlantis naturally has an order in which basic blocks are added.
Under this order, the only time a basic block has only already-added (and
therefore lesser) successors are decoy basic blocks added during the genera-
tion of a SwitchInt terminator. Since their contents are copies of an existing

50

basic block, the terminator can only name an existing basic block. Therefore,
Rustlantis’ decoy basic blocks are D, and Rustlantis’ actually executed (real)
basic blocks are R.

When Rustlantis adds a new basic block, the only terminator that can ref-
erence (and therefore becomes a predecessor) the new block is the one
Rustlantis currently producing, which is always a real basic block as Rustlantis
never moves its generation cursor into a decoy block.

For Goto and Call, there are no blocks between the current and new real
block, therefore the current block is the PrevR of the new one and a prede-
cessor. And it will remain the least predecessor as Rustlantis will not go back
and modify the terminator of existing blocks.

For SwitchInt, there can be new blocks between the current and the new
real block, but the real block is always added last, so the blocks in-between
can only be decoy. So the current block is the PrevR of the new one and a
predecessor. And it will remain the least predecessor as Rustlantis will not
go back and modify the terminator of existing blocks. ■

51

	Contents
	Motivation
	Background
	Fuzzing
	Differential testing
	The Rust compiler
	Rust fuzzing
	Mid-level Intermediate Representation
	Places

	Rustlantis
	Overview
	Types
	Statements and declarations
	PlaceTable
	Terminators and transparent control flow
	Ensuring reducible control flow
	Representing memory layout
	Pointer offsets
	Picking ``interesting" places
	Producing observable and deterministic output

	Evaluation
	Testing backends
	Bugs discovered
	Compiler code coverage
	Performance
	Energy efficiency

	Future Work
	Missing language constructs
	Program reduction
	Keep Rustlantis running

	Bibliography
	Proof of reducibility

