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Abstract

Rust is a modern systems programming language designed to be a memory-safe
alternative to fast languages like C and C++. It provides certain safety mech-
anisms that constrain the programmer to write code in a provably safe way.
Yet some problems cannot nicely be solved within these limitations. To address
these cases, Rust provides ”unsafe Rust”, which allows the programmer to par-
tially bypass Rust’s safety restrictions. When unsafe Rust is used incorrectly
it might result in undefined behavior, which causes unexpected outputs of the
program. The first step towards preventing programmers from running into un-
defined behavior is to develop an agreed-upon definition for UB. MiniRust is a
vastly simplified version of Rust, that intends to define UB for unsafe Rust. In
this thesis we make the MiniRust specification executable; we extend it to cover
more Rust programs; we derive tools for it, including a Rust to MiniRust com-
piler; and finally, we prove some of MiniRusts internal consistency requirements
in Coq.

Zusammenfassung

Rust ist eine moderne Programmiersprache, welche eine sichere Alternative zu
performanten Sprachen wie C und C++ darstellt. Sie stellt bestimmte Sicher-
heitsmechanismen bereit, die Programmier dazu verpflichten auf eine beweis-
bar sichere Art zu programmieren. Manche Probleme lassen sich nicht gut
innerhalb dieser Limitationen lösen. Um diese Fälle zu behaldeln stellt Rust
die Subsprache ”unsafe Rust” bereit, welche Programmern es erlaubt Teile der
Sicherheitsrestriktionen zu umgehen. Das falsche Verwenden von ”unsafe Rust”
kann undefiniertes Verhalten nachsichziehen, welches unerwartete Ausgaben des
Programms hervorruft. Der erste Schritt, um zu verhindern, dass Programmier
undefiniertes Verhalten herbeiführen, ist eine klare Definition für undefiniertes
Verhalten zu entwickeln. MiniRust ist eine deutlich vereinfache Version von
Rust, welche eben dies anstrebt. In dieser Arbeit machen wir die MiniRust-
Spezifikation ausführbar; wir erweitern sie, sodass sie mehr Rust Programme
abbilden kann; wir entwickeln Werkzeuge für sie, unter Anderem ein Rust nach
MiniRust compiler; und wir beweisen einige von MiniRusts internen Konsisten-
zanforderungen in Coq.
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Chapter 1

Introduction

Rust is a modern systems programming language that promises to be blazingly
fast, while also guaranteeing memory safety. The language achieves this by
providing powerful abstractions, and performing numerous compile-time checks
to guard against different kinds of problems.
In some scenarios however, the programmer might need to bypass these safety
measures.This can be worthwhile whenever the fastest solution to a problem can
not be expressed within the boundaries of safe Rust. To address these cases,
Rust provides ”unsafe Rust”. Using unsafe Rust allows the programmer to lift
certain restrictions of the language.It provides the programmer with direct con-
trol over the memory. This however means that programmers have to guarantee
the memory safety of their software themselves again. Typically this is done by
implementing a safe abstraction that internally makes use of unsafe Rust. This
is encouraged, as it allows the programmer to verify the safety of an unsafe
operation locally, independent of how the abstraction will be used in the rest
of the code base. As you have to explicitly opt-in to unsafe Rust by enclosing
potentially dangerous operations in an unsafe block, the usage of unsafe Rust
is explicit and can be located effectively.
Misusing unsafe Rust can lead to undefined behavior, or UB for short. This
refers to situations during the execution of a program, where the language does
not specify a clear behavior. Typical examples for this are out-of-bounds array
accesses, use-after free errors, dereference of a null pointer and so on. In these
cases, the compiler is free to choose any behavior for your program. In the
best-case scenario, this causes a crash which the programmer can then debug;
but in the worst-case the software works fine, until some time in production.
The concept of undefined behavior can be exploited by compiler developers
to optimize your code. Concretely, this means that all cases which lead to
undefined behavior can immediately be eliminated. To make this more tanglible,
consider this simple example:
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if condition {

// ... dereference a null pointer ...

foo();

} else {

bar();

}

If condition is true, the program will raise UB as it dereferences a null pointer.
Hence, the given code snippet can be optimized to directly call bar() instead.
This is legal, because the compiler is allowed to insert any behavior it likes in
the case of UB. And in this case, calling bar() was the chosen behavior.

A precise definition of whether an unsafe Rust program has undefined behavior
or not, is advantageous for everyone. Compiler developers can confidently and
safely optimize out every case of undefined behavior that might come up; and
Rust programmers can directly verify that their unsafe Rust segments are indeed
safe.
Yet, finding a good specification for undefined behavior for Rust is hard. Defin-
ing undefined behavior in a too strict way, prohibits the programmer to do
certain reasonable operations. Whereas defining undefined behavior in a too
lax manner takes freedom from the compiler to optimize your code. Addition-
ally, Rust is a very complex language. So formalizing undefined behavior for
it is a very extensive task either way. Rust supports many features that are
orthogonal to the question of whether a program has undefined behavior. Con-
cepts like modules, generics, pattern matching are useful features of Rust, but
when trying to define UB they can be considered unnecessary complexity.

This brings us to MiniRust. MiniRust is a drastically reduced version of Rust,
that gets rid of all features that are unnecessary for defining unsafe Rusts be-
havior. Ralf Jung conceived MiniRust as part of his pursuit to formally specify
Rusts semantics.
MiniRust is sufficiently simple, so that its semantics can be formally expressed
using an acceptably concise definition. And by compiling a Rust program to
MiniRust, we can lift MiniRusts semantics up to Rust. Effectively, defining
Rusts semantics in terms of MiniRusts semantics. This is the key idea, on how
MiniRust might help define Rusts semantics.
MiniRusts semantics itself is defined by an operational semantics - a step-by-
step manual specifying how to execute MiniRust code. To make this semantics
precise and testable, it was written as an interpreter. Next to simply running
MiniRust code, this interpreter has the additional task detecting undefined be-
havior. And for non-deterministic programs, where a simple execution is insuf-
ficient to detect undefined behavior effectively, it provides a definition for UB
instead.
In order to keep the interpreters code accessible, it was implemented in specr
lang. This new dialect of Rust is intended to be simpler, and easier to read
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than Rust itself. Rust puts a strong focus on performance, whereas specr lang
prefers simplicity at the cost of speed.

Thesis Structure and Contributions

In this thesis, we have worked on improving MiniRust from many different
angles.
First, we worked on making MiniRust executable, by implementing a compiler
for specr lang. This allows us to run MiniRust programs, and lets us check
whether the interpreter is implemented correctly. After introducing Rust and
MiniRust in the Chapters 2 and 3, we present specr lang in Chapter 4, and we
discuss the implementation of our specr lang compiler in Chapter 5.

In Chapter 6 we present our work on the MiniRust interpreter itself. We ex-
tended the MiniRust specification, so that it is able to cover a larger set of Rust
programs correctly.

Recall that the core idea of MiniRust is to be a compilation target for Rust.
This allows us to use MiniRusts semantics to specify Rusts semantics. Hence,
in Chapter 7 we talk about minimize, our Rust to MiniRust compiler. Addi-
tionally, we discuss further tools implemented for MiniRust. These include a
pretty printer and test suites.

And finally in Chapter 8, we tackled a few internal consistency properties of
MiniRust. These properties govern how MiniRust represents values in memory.
We formalized them in Coq, and proved them for all MiniRust types.

Related Work

Let us briefly mention a few projects related to MiniRust.

First and foremost, we want to mention Miri [Mir]. Miri is an interpreter for
MIR - Rusts mid-level intermediate representation. It is designed to find unde-
fined behavior in Rust programs, somewhat similarly to MiniRust. MiniRust
itself is an idealized version of Miri. Whereas Miri is intended mostly to detect
UB in practice, MiniRusts focus lies on formally and accessibly specifying UB.

Another related project is a-mir-formality [A m]. It too works on MIR, but in
comparison to Miri, this project aims to define a full formal model for MIR.
MiniRust differs from this, due to its specific focus on unsafe Rust.

Another project that notably influenced MiniRust is Cerberus [Cer]. Cerberus’
goals are similar to those of MiniRust, although for the C programming lan-
guage.
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Chapter 2

Preliminaries I: Rust

In this Chapter, we will briefly introduce the reader to the Rust programming
language. As we cannot squeeze a full detailed introduction to Rust into a
preliminaries Chapter, we will limit ourselves to the Rust features relevant to
this work. For a more universal introduction to Rust we refer to the Rust book,
see https://doc.rust-lang.org/book/. This Chapter is intended for readers
with no prior experience with Rust. So if you feel comfortable with Rust you
may simply skip this Chapter.

2.1 Introduction

In this section, we will provide a few hands-on Rust programs to get the reader
familiar with Rust syntax. So, let’s get started.

Hello world

fn main() {

println!("Hello world!");

}

This is a typical ”Hello world” program. We declare a function named main,
which only executes a single println! that prints the string ”Hello world!” to
the standard output. It is worth noting that main is a special name - Rust will
look for a function with this name as an entry point to your program.

A recursive factorial function

fn factorial(n: u32) -> u32 {

if n == 0 {

1

} else {

factorial(n-1) * n

4
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}

}

fn main() {

let n: u32 = 5;

let fact_n = factorial(n);

println!("The factorial of {n} is {fact_n}."); // prints "The factorial of 5 is 120."

}

This snippet defines a function factorial, which gets an argument n of type
u32 and also returns a u32. The type u32 represents an unsigned integer of 32
bits. 1 The implementation of factorial is a typical recursive implementation.

• factorial(0) simply returns 1, whereas

• factorial(n) for n > 0 returns factorial(n-1) * n

The main function declares two variables n and fact_n. Note that n gets an
explicit type annotation n: u32, whereas fact_n does not. In many contexts
Rust can infer the types of variables automatically, so they can be left out.

2.2 Structs

Structs allow you to bundle your data into compound objects.

struct Person {

name: String,

age: u32,

}

This struct expresses that a Person consists of a name and an age.

fn main() {

let x = Person {

name: String::from("John"),

age: 21,

};

println!("My name is {}", x.name);

println!("I am {} years old", x.age)

}

This is how you construct a Person. We constructed a person named ”John” at
the age of 21. The expressions x.name and x.age are used to access the fields
of a struct.
A close relative of the struct is the tuple:

1Rust provides u8, u16, u32, u64, u128 for unsigned integers with different sizes, and
respectively i8, i16, i32, i64, i128 for signed integers. Finally there are usize and isize to
represent unsigned and signed integers with the same number of bits as a pointer.
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fn main() {

let tuple: (i32, i32) = (2, 3);

println!("The numbers are {} and {}", tuple.0, tuple.1);

}

Tuples store multiple values as well. The inner values can be accessed using .0

or .1 and so on.

2.3 Enums

An enum allows you to define types, that hold values chosen from a set of distinct
variants. These types are generally called sum types!
Let us consider an example.

enum OptionNumber {

SomeNum(i32),

NoNum,

}

Here we define a new type named OptionNumber. An OptionNumber may either
be SomeNum equipped with a given i32, or it might be a NoNum without a number.

fn unwrap_or_default(x: OptionNumber, default: i32) -> i32 {

match x {

OptionNumber::SomeNum(n) => n,

OptionNumber::NoNum => default,

}

}

We define a function unwrap_or_default using an OptionNumber. If the given
OptionNumber stores a number we return it, and otherwise we return the number
default. This match block is the typical way you work with enums, it allows
us to safely access the values stored within enums.

fn main() {

let opt = OptionNumber::SomeNum(42);

println!("{}", unwrap_or_default(opt, 0)); // prints 42

let opt = OptionNumber::NoNum;

println!("{}", unwrap_or_default(opt, 0)); // prints 0

}

In this code snippet we call unwrap_or_default twice, once with a number and
once without it.
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2.4 Generics

Now, we might intend to use OptionNumber and its functions but we don’t want
it to store an i32, but some other types. This is where we need generics:

enum Option<T> {

Some(T),

None,

}

Our new type Option<T> is the generic version of OptionNumber. The type
Option<T> we have just defined is used very regularly in Rust. It is defined in
Rusts standard library, see here.
Not only types can be generic, but functions can be generic too:

fn unwrap_or_default<T>(x: Option<T>, default: T) -> T {

match x {

Option::Some(n) => n,

Option::None => default,

}

}

The above code is the generic version of our unwrap_or_default function from
the last section.

2.5 Traits

Another fundamental concept of Rust are traits. They allow you to define
common functionality across multiple types.

trait ToString {

fn to_string(&self) -> String;

}

This trait is intended to be implemented by types that are convertible to a
String.
Thus in order to implement to ToString for a type, we need to specify a
to_string method.

struct Person {

name: String,

age: u32,

}

impl ToString for Person {

fn to_string(&self) -> String {

format!("{} ({})", self.name, self.age)

}

}
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We can now convert a Person to a string by using the to_string method.

fn main() {

let p = Person {

name: String::from("Clara"),

age: 21,

};

println!("{}", p.to_string()); // "Clara (21)"

}

The real power of traits becomes apparent when used in conjunction with gener-
ics. When implementing a generic function, you can use the syntax <T: ToString>

to restrict your function to be only applicable for the types T that implement
ToString. Adding this constraint allows you to use the to_string method on
values of the type T:

fn print<T: ToString>(t: T) {

println!("{}", t.to_string());

}

2.6 Move semantics

In this section, we talk about what happens to the variable x when we do any
of the following operations:

• let y = x;

• foo(x);

• let o = Object { field: x, };

What all of these code snippets have in common, is that we intend to give x to
a new location in memory. Either by putting it into a new variable, giving it to
a function, or storing it within a struct.

Copy types

For most types we have encountered so far, the answer to this question is clear:
The value from x will be copied byte-by-byte over to the new location. This,
for example happens for integers.
Generally, any type that implements Rusts marker trait Copy is allowed to be
copied byte-by-byte, as it simply contains plain old data.

Heap allocations

Let us briefly present a few types, where this is not so easy.

• Box<T>: A pointer type that uniquely owns a heap allocation of type T,
and
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• Vec<T>: A contiguous growable array of T, allocated on the heap.

• String: A UTF-8–encoded, growable string.

What these types have in common is that they internally store a pointer, whereas
the actual data lies on the heap. Now we want to argue that byte-by-byte copying
is not acceptable for those types. For example, let us consider a Vec. When we
byte-by-byte copy it, we end up having two different Vecs pointing to the same
memory. If one Vec is mutated, re-allocated, or freed - the other Vec could be
corrupted:

let mut v = vec![1, 2, 3];

let v2 = v;

v.push(4); // might reallocate

println!("{}", v2[0]); // -> might be undefined behavior

In this scenario, v could re-allocate its memory while freeing the original data.
This would leave v2 in an invalid state!

Move semantics

Rust’s solution for this problem is that v is not allowed to be used after this
operation. This is called a move. Effectively we have moved the Vec from v to
v2. Trying to access v after the move will raise a compile-time error.

Clone

Sometimes though, you might not want to move your data at all. You might
prefer it to be cloned instead. In scenarios like these, one can make use of
the Clone trait. An implementor of the Clone trait has to provide a clone

method, which clones the data. All heap-allocated types we have covered before
implement Clone, so using ...

let v2 = v.clone();

... does the trick.

2.7 References

If you intend to point to some piece of data without owning it, references are
typically the way to go. References are effectively pointers, but with certain
safety guarantees.

fn main() {

let mut x = 2;

let y = &mut x; // `y` is a mutable reference to `x`

*y = 3;
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let z = &x; // `y` is an immutable reference to `x`

println!("{}", *z);

}

In this example we use references to set x to three, and then print x.
Again, References have certain safety mechanisms; so you might be wondering
what happens if we try to take a reference of something that is freed too early.

fn main() {

let y: &i32;

{

let x = 2;

y = &x;

} // `x` is freed here, but `y` is still pointing to `x`!

println!("{}", *y);

}

You will find that the Rust compiler rejects this code with the error message
`x` does not live long enough: Crisis averted! But, in some occasions, the
rules that make references safe will turn out to be too restrictive to express
what you wanted to express. In occasions like these, one has to make use of the
unsafe alternative raw pointers..

2.8 Unsafe

Rust is a language with a special focus on safety, hence it is quite restrictive
in what it allows you to do. Yet sometimes those restrictions might not work
for your particular use-case. For example, if you wish to get the last bits of
performance. In this case, you might require unsafe Rust. Unsafe Rust allows
you to do certain unsafe operations, like dereferencing a raw pointer and reading
from a union field. To opt-in to unsafe Rust, one has to put a unsafe { ... }

block around the unsafe operation that one is willing to do.
Unsafe Rust should generally be avoided if there is a safe alternative, but as
MiniRust is trying to specify how unsafe Rust behaves, it is highly relevant to
this Master’s Thesis.

Raw pointers

Unsafe Rust allows you to dereference a raw pointer.

fn main() {

let y: *const i32;
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{

let x = 2;

y = &x as *const i32;

} // `x` is freed here, but `y` is still pointing to `x`!

println!("{}", unsafe { *y });

}

This example is the same as 2.7, but now we use raw pointers instead of refer-
ences. If you try to compile this, the Rust compiler will be happy to do so - as
we are now using pointers instead of references. But when you run this code it
will result in undefined behavior.

Unions

Another thing that is possible within unsafe is the use of unions:

union IntOrBool {

i: i64,

b: bool,

}

The union IntOrBool stores either an integer or a boolean. The important
difference between enums and unions is that a union does not know which of
both it stores. So you might access the wrong field:

fn danger() {

let x = IntOrBool { i: 42 };

unsafe {

println!("{}", x.b);

}

}

This function danger defines x to be an IntOrBool storing an integer. But then
it prints the boolean inside of this union. This is undefined behavior.
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Chapter 3

Preliminaries II: MiniRust

In this Chapter we will provide a brief introduction to MiniRust. We will mostly
explain MiniRust as a language, and only occassionally provide some insights
into the interpreter. If the reader has further interest in the implementation
of the interpreter, we recommand taking a look into MiniRusts code at https:
//github.com/RalfJung/minirust. After all, this implementation is written
to be read!

3.1 Functions

The first central concept we intend to explain are functions. A MiniRust func-
tion is somewhat similar to a Rust function, although quite a bit more low-level.
A function consists of two things:

• The locals

• The instructions

A local is a piece of memory that the function can use to store and read inter-
mediate results. A local variable (including function arguments) in Rust will
typically become a local in MiniRust. But there are some additional locals in
MiniRust, namely

• the return local, which stores the return value of the function, and

• temporary values that the compiler needed to store somewhere

Just like MIR and LLVM IR, we will follow the convention of naming locals as
an underscore followed by a number: _0, _1 etc.
The instructions of a function are stored within BasicBlocks. A BasicBlock is
a sequence of Statements that are executed in order, followed by a Terminator
that decides what to do after this BasicBlock.
Let us consider the first example of a MiniRust function:
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fn fourty_two() -> _0 {

let _0: i32@align(4);

start bb0:

_0 = 42;

return;

}

Figure 3.1: A simple MiniRust function

This function simply returns the number 42. We will go through it line by line
to explain what happens:

• fn fourty_two() -> _0

We declare the function fourty_two with no arguments, and _0 as its
return local

• let _0: i32@align(4);

We declare the local _0. It stores one i32, further it has to be allocated
with alignment 4. This means that the address of _0 is required to be
divisible by four.
The integer types of MiniRust are the same as their Rust equivalents.
Hence also u8, i128, usize, isize etc. are supported in MiniRust.

• start bb0:

We declare a basic block bb0. start means that this is the first basic
block being executed when this function gets called.

• _0 = 42;

This is an assign statement, it stores the number 42 within the local _0.

• return;

This is the return Terminator. It gives back control to the function that
called fourty_two in the first place.

3.2 Value expressions vs place expressions

Consider this new function identity. It will return the number it receives as
input.
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fn identity(_1) -> _0 {

let _0: i32@align(4);

let _1: i32@align(4);

start bb0:

_0 = load(_1);

return;

}

Figure 3.2: The identity function

This example contains two new things. First-of-all, we have a function argu-
ment local, namely _1. Secondary, the assign statement _0 = load(_1) is new.
The expression load(_1) reads the value stored within the local _1. There is
a very important distinction between _1 and load(_1). This is the distinction
between place expressions and value expressions. load(_1) or for example the
number 42 are value expressions. On the other hand _1 is a place expressions,
which merely stores a value. One can think of places as pointers to a piece of
memory. Hence, one fundamental difference is that you cannot write to a value,
but you can write to a place. The assign statement stores a value within a place.
For example, _0 = 42;.

Analog to the distinction between place expressions and value expressions, there
is a distinction between place types and value types (or just ”types”). You have
already seen a place type in action, the line let _0: i32@align(4); associates
a place type to the local _0. A place type is just an ordinary type in conjunction
with an alignment requirement. Recall that a place can be seen as a pointer:
An alignment requirement forces the address of that pointer to be divisible by a
given divisor. Currently, we only considered the type i32, but in the following
sections, this will change.

3.3 Program

A MiniRust program is a collection of functions with one dedicated start func-
tion. It is the fundamental unit that can be executed.

start fn main() -> _0 {

let _0: bool@align(1);

start bb0:

_0 = calculation(42) -> bb1;

bb1:

return;

}

fn calculation(_1) -> _0 {

let _0: i32@align(4);
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let _1: i32@align(4);

start bb0:

_0 = /* some computation */ ;

return;

}

The novel thing to see here is that there is a start fn. 1 Just as a start basic
block is the first basic block being executed in a function, the start function is
the first function being executed in a program.
Additionally, the snippet contains this: _0 = calculation(42) -> bb1 - the
function call Terminator. It means that we call the function calculation with
the argument 42, store its return value within _0, and then jump to the basic
block bb1.

3.4 Machine

In the last Section we have presented the Program, MiniRusts central unit of
execution. Generally, in all previous Sections we introduced MiniRust - the
language. But now we will take a small peak into MiniRusts interpreter.
In order to define how this execution works, we need to store the state of the
program somewhere. This is where the Machine comes in. A machine fully
expresses the state of a program at a particular point in its execution. Among
other things, the Machine consists of the program, the Memory and the stack
frame with its instruction pointer.
A Machine can be constructed using the new function, which gets a Program

as an argument. It will set everything up to make the program start. Also,
it will reject programs that have certain statically detectable flaws using the
well-formedness checker. This checker will find type errors, usage of dead locals
and similar problems.
Next to the new function, Machine provides a step method. This method will
execute the next instruction of the program. When the program terminates,
step will return a TerminationInfo. This TerminationInfo informs us about
the way to program terminated: Whether it was a graceful shutdown, or whether
undefined behavior has been raised.

3.5 Loops

In this subsection, we will introduce a few more of MiniRusts control flow prim-
itives. Concretely we will learn how to express loops in MiniRust.
We start by an iterative algoritm to calculate whether a number is even. As we
want to show some control flow, we will not make use of the modulus operator,
and instead subtract 2 until the number is either 0 or 1.

1For the sake of completeness, we want to mention that during the development of this
thesis, the rules for start fn changed. The start fn main would be considered ill-formed by
the current version of MiniRust. For more details, check 6.1.
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fn is_even(_1) -> _0 {

let _0: bool@align(1);

let _1: u64@align(8);

start bb0:

if load(_1) < 2 {

goto -> bb2;

} else {

goto -> bb3;

}

bb2:

_0 = load(_1) == 0;

return;

bb3:

_1 = load(_1) -<u64> 2;

goto -> bb0;

}

Figure 3.3: An iterative is_even function

Again, we explain the new concepts:

• bool@align(1)

We have seen another type! Namely bool.

• load(_2) < 2

This is an integer comparison. It compares whether the number stored
within _2 is less than 2, and returns true or false accordingly.

• if load(_2) < 2

if is another Terminator: It receives a value expression of type bool as
argument, and jumps to either one of the two basic blocks.

• _0 = load(_1) == 0;

The == comparison checks whether two numbers have the same value, and
returns a boolean accordingly.

• load(_1) -<u64> 2

This is an integer subtraction. It subtracts two from the number stored in
_1. The generic parameter <u64> expresses that the output type of this
subtraction is a u64.

3.6 Interlude: Encoding of values

Up to this point, we enjoyed a rather high-level perspective on MiniRusts values.
We worked with integers and booleans without the need to specify how they are
laid out in memory. However, when the programmer starts to use certain low-
level operations, this model will fall apart. To name an example, transmuting
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one type into another is common in low-level programming, but MiniRust can
only support it if it represents values as byte sequences.

MiniRust provides two representations of data

• The high-level value representation
It considers everything like a human would think about it. Any integer is
just a mathematical integer. A boolean is either true or false and so on.

• The low-level byte representation
Everything is a sequence of bytes in memory.

Each MiniRust type provides an encode and a decode function that converts
between these two representations. The function encode will convert a value to
a list of bytes, and decode will do the converse.

Encoding and decoding of values in MiniRust are facilitated in the following
operations:

• The load(p) value expression:
It decodes the bytes stored within the place p. If this byte pattern does
not represent any value, it raises undefined behavior.

• The assign statement p = v:
The value v will be stored in the place p. To do that, the value needs to
be encoded first.

The way MiniRust understands memory is, in practice, a bit more involved than
an ordinary sequence of bytes. To motivate this, consider the following example:

fn ub() -> _0 {

let _0: u8@align(1);

start bb0:

_0 = load(_0);

return;

}

Figure 3.4: This function raises UB.

In this function, we load _0 before initializing it: Thus it is clear that this
function has undefined behavior, so MiniRust should raise UB here. But the
question is, how does MiniRust detect that this is undefined behavior? It does
not matter which byte the memory stores at _0, every byte can be flawlessly
decoded into a u8. To solve this, the memory can not be understood as storing
sequences of raw bytes - these bytes need some additional information. This
brings us to the so-called AbstractByte: It either stores a byte, or it is unini-
tialized.
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By representing our memory as a sequence of AbstractByte, we are now able
to detect uninitialized reads! Similarly, the functions encode and decode will
use AbstractByte instead of plain bytes. We will attach even more information
to our AbstractBytes, but more on that later.

3.7 Composite types

So far we’ve only seen MiniRusts integer and boolean types. In this subsection
we will introduce three new kinds of composite types that MiniRust supports.
Note that MiniRust does not yet support enums!

Arrays

Arrays are the simplest kind of composite type. They allow for a new place
expression, namely indexing: array[index].
We will demonstrate arrays by yet another example function that simply returns
42. This time, it will create the array [41, 42, 43] and index it at 1. The
array will be stored in _1:

fn fourty_two_v3() -> _0 {

let _0: u64@align(8);

let _1: [u64; 3]@align(8);

start bb0:

storage_live(_1);

_1[0] = 41;

_1[1] = 42;

_1[2] = 43;

_0 = load(_1[1]));

storage_dead(_1);

return;

}

Note that reading or writing to an array outside of its bounds will raise undefined
behavior.

Tuples

Both Rust tuples and Rust structs can be understood as a MiniRust tuple. A
MiniRust tuple stores a list of types, but additionally it stores them at explicitly
given offsets.
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tuple T0 (8 bytes) {

at byte 0: i32,

at byte 4: i32,

}

tuple T1 (16 bytes) {

at byte 0: i32,

at byte 8: i32,

}

Figure 3.5: Two simple tuple types.

This first definition defines the type T0: It has a size of 8 bytes, and two i32

fields at offsets 0 and 4.
The second tuple type is very similar, even though it has larger amounts of
padding, i.e. unused space within the tuple.
Similar to arrays, we also have a place expression to access fields of a tuple.

fn fourty_two_v4() -> _0 {

let _0: u64@align(8);

let _1: T0@align(4); // see the T0 definition from above!

start bb0:

storage_live(_1);

_1.0 = 41;

_1.1 = 42;

_0 = load(_1.1);

return;

}

Unions

The last kind of composite type that MiniRust supports are unions.
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union T0 (8 bytes) {

at byte 0: u64,

at byte 0: bool,

}

fn ub() -> _0 {

let _0: bool@align(1);

let _1: T0@align(8);

start bb0:

storage_live(_1);

_1.0 = 42;

_0 = load(_1.1);

storage_dead(_1);

return;

}

First, we declare a union T0. This looks pretty similar to a tuple definition,
the only difference is that fields are allowed to overlap. In our scenario, the two
fields are even at the same offset (namely zero). The function ub creates a union
T0 and writes 42 into its u64 field. It then returns, the bool interpretation of
this. This raises undefined behavior, as a bool can only be 0 or 1.

3.8 Pointers

We will now introduce pointers, again we will do so by example:

fn fourty_two_v2() -> _0 {

let _0: i32@align(4);

let _1: (*layout(size=4, align=4))@align(8);

start bb0:

_1 = &raw _0;

deref<i32@align(4)>(load(_1)) = 42;

return;

}

This function takes a pointer to _0, and then it writes 42 to it. The new local
_1 will store this pointer.
There are again three new concepts to explain in this example:

• let _1: (*layout(size=4, align=4))@align(8);

Let us first consider the pointer type *layout(size=4, align=4): One
can think of this type as *mut i32, but MiniRusts pointers are not type-
safe. They only store the layout information of the inner type. It consists
of the size and its alignment constraints. Hence the exact inner type i32
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will be forgotten, and only layout(size=4, align=4) will be remem-
bered.

• _1 = &raw _0;

The &raw _0 is an addr_of value expression. It converts a place to a
pointer value pointing to that place. This statement stores the raw pointer
to _0 in _1.

• deref<i32@align(4)>(load(_1)) = 42;

The value load(_1) is a pointer value pointing to some place in memory.
The place expression deref can be used to address this place. As MiniRust
only remembers the layout of the inner type, deref needs to explicitly
state the inner place type again.

Note that there are two kinds of pointers at play here: Places can be understood
as pointers to values, but additionally some values are pointers as well. addr_of
and deref are used to convert between the place pointer world and the value
pointer world.

For the sake of completeness, let us briefly mention two further pointer opera-
tions that MiniRust supports.

• pointer offset :
In addition to dereferencing pointers, we want to be able to offset pointers.

• Integer-Pointer casts:
Another important feature is the possibility to cast pointers to integers
and back using the ptr2int and int2ptr expressions.

3.9 Provenance

We have now established the basics of pointers. Yet there is one issue: Our
current model allows pointers from one allocation to be offseted into another
allocation, and dereferenced there. For example, if we had a pointer x and a
pointer y: If we now offset the pointer x by y - x, we will end up in allocation
y. This might not look like a problem, but if we allow programmers to do that,
certain compiler optimizations are not possible anymore.
Let us consider an example:

x = 2;

*y.offset(i) = 3;

return x;

When the compiler sees this code, it cannot optimize this to simply return 2,
because a write to y.offset(i) might actually write to x. 2

2See a more complete example at [Jun]
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In practice, this causes miscompilations by major compilers, as they wrongly as-
sume that x and y are pointing to distinct allocations. To combat this problem,
we forbid the programmer to change the allocation by offsetting.
For MiniRust to detect, whether pointers change their allocations, a pointer
has to keep track of the so-called provenance. The provenance remembers from
which allocation the pointer originally came. And, whenever a pointer is deref-
erenced, it will check whether it is in-bounds in its original allocation.
As pointers that are stored in memory need to remember their allocation, we
need to extend the AbstractByte by provenance.
Now, we can present the final definition an AbstractByte: 3

enum AbstractByte {

Uninit,

Init(u8, Option<Provenance>),

}

3.10 Nondeterminism

So far we have had the luxury that MiniRust was able to find each case of
undefined behavior simply by executing the program once. Yet, when we enter
the realm of non-determinism this luxury fades.
Let us consider an example:

fn ub_or_not() -> _0 {

let _0: bool@align(1);

let _1: usize@align(8);

start bb0:

_1 = ptr2int(&raw _0);

if load(_1) % 2 == 0 {

goto -> bb1;

} else {

goto -> bb2;

}

bb1:

_0 = load(_0);

return;

bb2:

_0 = true;

return;

}

3In MiniRust, AbstractBytes are actually generic over the provenance. For the sake of
simplicity we leave that out.
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This function checks whether the address of _0 is even or not. If it is even, the
function goes to basic block bb1 where it raises UB due to an uninitialized load
of _0. If it is odd, the function returns gracefully.
Memory allocation is fundamentally non-deterministic in MiniRust. The ad-
dress that is chosen for a new memory allocation is selected non-deterministically
from the set of feasible addresses. Thus some executions of this program might
allocate _0 at an odd - and some on an even address.

Definition 1 (Memory allocation non-determinism). A program doing a mem-
ory allocation is said to have undefined behavior whenever it raises undefined
behavior for at least one feasible address.

Following this definition, the program given before does indeed have undefined
behavior, because there is a non-deterministic choice that makes it raise unde-
fined behavior.
It is worth noting that most previously shown programs were already non-
deterministic. In fact, every program that executes a function having any allo-
cated local is non-deterministic, as the local needs to be allocated in memory.
But for previous programs this non-deterministic choice did not affect the out-
come of the program.

int-to-pointer casts

Another source of non-determinism is int-to-pointer casts. Recall that prove-
nance is used to remember the allocation from which certain pointers come.
For int-to-pointer casts, this is not so easy. The original allocation is not known
when casting an int to a pointer. MiniRusts solution is to predict the provenance
from a feasible set of previously exposed provenances.

Definition 2 (int-to-pointer cast non-determinism). A program doing an int-
to-pointer cast is said to have undefined behavior whenever it has undefined
beaviour for all of the feasible provenances.

There is an important distinction between those two definitions. Memory alloca-
tion is interpreted daemonically. This means that a program has UB whenever
one of the choices raises UB. On the other hand, int-to-pointer casts are in-
terpreted angelically. This means that a program has UB whenever all of the
choices raise UB.
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Chapter 4

specr lang

Recall from the Introduction that MiniRust is written in a new language, a
dialect of Rust named specr lang. This language is designed to be readable by a
Rust-knowing audience. But where Rust prefers performance, specr lang values
readability and simplicity.
In this Chapter, we will explain how specr lang differs from Rust, and in the
next one, we’ll talk about the specr lang to Rust compiler.
Generally, Rust is quite explicit about anything that might affect performance.
For example:

• memory layout of data

• where clones happen

• memory management

specr lang on the other hand, tries to abstract over those things, and intends to
redirect focus towards what is being expressed using the software.
Note that the exact set of features specr lang were to offer wasn’t clear before
this thesis. In the following sections we will see what it converged to.

4.1 Implicit Copying

Recall from the section 2.6 that in Rust, types a moved instead of being cloned
per default. So, whenever you don’t want a value to move, but instead you
intend to clone it, you need to call the .clone() method.
This default makes sense for Rust, as often enough you move out of a variable
which you don’t even need afterwards. So inserting a move is much faster and
less resource consuming, than inserting a full clone of your data.
Still, move semantics per default is not a great idea for specr lang, as specr
lang intends to be readable and concise. The explicit cloning is more verbose
than necessary, and hence should not be part of specr lang. This is why specr
lang does not have move semantics per default, but instead it will copy values
implicitly.
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4.2 Recursive enums

In Rust, enums cannot recurse without any form of indirection. This poses
problems for the MiniRust specification, as it requires a lot of recursive enums:
ValueExpr, PlaceExpr, Type, Value etc. To explain why Rust forbids this, let
us look at a simple example. This simple enum - defining the natural numbers
Nat - is not valid in Rust:

enum Nat {

Zero,

Succ(Nat),

}

Rust forbids this, as a Nat needs to store

• at least one bit to differentiate between Zero and Succ

• and sizeof(Nat)-many bytes to store the Nat for the Succ variant

So we quickly end-up with the equation
sizeof(Nat) = 1 + sizeof(Nat) for which there can be no solution.
So what you typically have to do in Rust to make this work, is explicitly inserting
an indirection:

enum Nat {

Zero,

Succ(Box<Nat>),

}

This is now valid in Rust, as Nat doesn’t need to store a whole other Nat but
only a pointer. Next to the fact that we have just implemented the natural
numbers as as linked list, which is a crime in of itself,
there are other problems with this approach:
When using this Nat type, we have to always work around this Box:

fn succ(n: Nat) -> Nat {

Nat::Succ(Box::new(n))

}

fn pred(n: nat) -> Nat {

match n {

Nat::Zero => Nat::Zero,

Nat::Succ(m) => *m,

}

}

So, when constructing a Nat::Succ we need to create a Box using Box::new,
and when matching upon a Nat::Succ we need to dereference the Box to access
the Nat.
As specr lang highly values conciseness, this is not acceptable for us.
This is why enum indirection can be done as follows in specr lang:
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enum Nat {

Zero,

Succ(#[specr::indirection] Nat),

}

fn succ(n: Nat) -> Nat {

Nat::Succ(n)

}

fn pred(n: nat) -> Nat {

match n {

Nat::Zero => Nat::Zero,

Nat::Succ(m) => m,

}

}

So you need to still explictly insert an indirection using the attribute #[specr::indirection] ,
but when constructing or matching upon the Nat::Succ variant, you can simply
ignore the fact that the Nat is behind an indirection.

4.3 Literate programming

A central goal of specr lang is to be easily understandable, and well documented.
So, choosing plain code as a medium might not be the best solution.
Thus instead, specr lang makes use of a certain form of literate programming (see
[Knu84]). This entails that specr lang is primarily written in a text document
which explains the design of the software. And within those explanations we
embed snippets of specr lang code.
We chose markdown as a host language for our text document.
Generally, specr lang code is embedded into markdown files. And code blocks
are used to express

```rust

...

```

This allows MiniRust to write long comments in markdown, and similar things.
It’s worth noting that specr lang has a module system, so not all snippets are
in ”the same module”. specr lang has a one-to-one correspondence between
directories and modules. So if two files are in the same directory, they are in
the same module. This is a difference to Rust, as each Rust file opens its own
module. This difference was taken deliberately in order to lessen the noise of
importing things.

26



4.4 Breaking down large pieces of code

In order for literate programming to work nicely, the underlying source code
should not have too large blocks of code. This is why specr lang provides a few
features that allow you to decompose your code into smaller pieces.

Argmatch

MiniRust has quite a few methods that require to match over a large number
of cases, where additionally each case does a non-trivial amount of work. This
can lead to quite unreadable code, where the reader might quickly lose track of
what you are actually implementing. To solve this problem, specr lang allows
you to split up match blocks into different functions, hence whenever another
match arm begins the full context is presented again, so you are not as easily
lost. Syntactically, this looks as follows:

impl Server {

fn handle(&mut self, msg: Message) {

match msg {

Message::NewClient(ip_addr) => {

// ...

// ...

// ...

},

Message::ClientDisconnected(client) => {

// ...

// ...

// ...

},

}

}

}

// ... can be equivalently written in specr lang as ...
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impl Server {

#[specr::argmatch(msg)]

fn handle(&mut self, msg: Message) { .. }

}

impl Server {

fn handle(&mut self, Message::NewClient(ip_addr): Message) {

// ...

// ...

// ...

}

}

impl Server {

fn handle(&mut self, Message::ClientDisconnected(client): Message) {

// ...

// ...

// ...

}

}

Figure 4.1: Argmatch Example: handling a message

Separated trait impls

Similar to argmatch splitting up large match blocks, we also want to split up
large trait implementations. In Rust, implementing a trait for a type needs to
be done in one large impl block. In specr lang, you can separate that block into
as many subblocks as you need to make it readable.
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impl Foo for () {

fn foo1(&self) { ... }

fn foo2(&self) { ... }

}

// ... can be equivalently written in specr lang as follows:

impl Foo for () {

fn foo1(&self) { ... }

}

impl Foo for () {

fn foo2(&self) { ... }

}

Figure 4.2: Separated trait impls Example

4.5 The standard library ”libspecr”

specr lang provides a standard library called libspecr, see https://docs.rs/

libspecr. The items exposed by libspecr can roughly be separated into three
categories:

• General purpose data structures: For example collections like List<T>,
Set<T>, Map<T>, and the mathematical integer Int would fall into this
category.

• specification-specific items: This category covers things that are generally
useful when writing a low-level specification. For example Align, Size,
Endianness and similar things are provided here.

• The non-determinism framework : You might recall from the MiniRust in-
troduction, that MiniRust is fundamentally non-deterministic (see 3.10).
libspecr provides two primitives pick and predict to non-deterministically
choose from a feasible set of options, either deamonically or angelically.
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Chapter 5

Compiling specr lang to
Rust

In this Chapter, we focus on making MiniRust executable. Recall that MiniRust
is written in specr lang, a Rust dialect with a strong focus on readability. At the
beginning of this project, specr lang had no interepreter or compiler, or even
checker. This means that you cannot ”run” MiniRust, and it is only usable to
be read. This is what we changed in this Chapter.
Let us briefly summarize the general procedure of the compiler: The tool
specr-transpile will

• look for markdown files,

• filter out their specr lang code snippets,

• compile them to Rust,

• and collect the results into a Rust library crate.1

Where to look for input files, and where to generate the output crate can be
configured by using a specr-transpile config file. The generated Rust library
crate has a dependency on libspecr, the standard library and runtime of specr
lang.
Now the interesting part is how the ”compile them to Rust” step works con-
cretely: One solution would be to write a full compiler with parser, then name
resolution macro expansion, type deduction etc. which will finally result in
Rust. Yet, this doesn’t make sense, as our target language is already Rust -
and it takes forever to write such a compiler. Hence, we decided to only use
syntactical transformations. We use Rusts parser syn (see [Syn]) to parse the
input. This is possible as specr lang is syntactically similar enough to Rust so
that the parser could not tell the difference. After the transformations on the

1A Rust crate is a compilation unit. Intuitively it can be understood as a Rust project.
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AST are done, we use the prettyplease crate ([Pre]) to convert the AST back
to a String.
Doing all operations on a syntactical level has quite a few disadvantages though.
We will not be able to know the type of a variable, we won’t be able to resolve
names (i.e. if there are multiple items named X, we won’t be sure which is
which). This makes the transformations pretty hard, as they should work even
though the code we work with is quite opaque.
The transformations for argmatch and separated trait impls work by con-
verting the specr lang code to the respective Rust equivalent provided in the fig-
ures 4.1 and 4.2. As these translations are not too interesting, we will not cover
them in more detail. One the other hand some concepts like implicit copy

and enum indirection require more involved solutions, and hence will receive
more attention in this Chapter.

5.1 Implicit Copying

Recall that specr lang does not inherit Rusts move semantics, but instead of
moving specr lang implicitly copies the value.
The options to achieve this we considered were:

add .clone() where necessary

The first idea, we had was that we should tranform the code in a way that
adds .clone() whenever an expression might be copied. Generally, cloning
something that already was a reference, is not really a problem. (As immutable
references aren’t really used in specr lang) The question is rather, how do we
find out when not to clone. The problems were:

• we don’t want to clone a mutable reference

• we don’t want to clone large datastructures for performance reasons

The second problem can be rather easily solved by using immutable datastruc-
tures for collections; or by wrapping large types in an Rc, a reference counted
smart pointer. The first problem on the other hand can’t be solved that easily.
There are multiple approaches and problems with this approach. To see an
example on why it might be hard, consider the following code:

foo.bar()

converting this to, say

foo.clone().bar()

breaks if bar gets &mut self as receiver. But, this cloning might be necessary
if bar gets self instead.
Yet, there might be multiple types having a method named bar Thus only if
we know the type of a we can truly figure out whether we are allowed to clone
here or not. Recall that this transpiler works on a syntactical level, hence type-
dependent decisions are off the charts.
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Make every type Copy

We chose to use Copy. Making every user-facing type Copy has a range of re-
strictive consequences. First, one should note that Copy types cannot be Drop2,
which means our collections cannot simply free their data upon being dropped.
A second consequence is that having a manual Clone implementation is futile,
as it will be bypassed when copied. This already prevents doing reference count-
ing, as we need a Clone implementation that cannot be bypassed - in order to
keep track of the reference count.
The solve all of those problems we implemented a smart pointer GcCow<T> that
implements Copy even if T does not. This allows us to use non-Copy types -
for example collection types - under the hood, while still providing a Copy-only
API.
In the next section, we will talk about how we implemented GcCow<T> by using
garbage collection.

5.2 Gc

In the last section we have already motivated our need for a Copy smart pointer
- namely GcCow<T> - in order to wrap non-Copy types. This smart pointer will
allow to implement Copy collection types like List<T>, and it will help us later
on when resolving enum indirection. To implement such a smart pointer, we
chose to use garbage collection.
In search of a feasible garbage collector, we looked through crates.io. The
problem is that the promising garbage collection libraries - like rust-gc - do
not implement Copy for their smart pointers. Hence, we resorted to writing our
own very minimalistic garbage collector within libspecr.
Our garbage collector has three central components:

• GC_STATE: A singleton object storing all garbage collected objects.

• GcCow<T>: Our ”clone-on-write” Copy smart pointer.

• GcCompat: A trait expressing that a type is compatible with our garbage
collector.

Note that the programmer using specr lang, does not need to interact with the
GC_STATE, a GcCow or the GcCompat trait. These concepts are implemented
in a hidden3 module in libspecr, and are only used in libspecrs internal data
structures and the generated Rust code.

2Implementing the Drop trait allows you to specify a destructor, a function that is called
upon destruction of the object.

3hidden does not mean private, but excluded from the public API visible in the documen-
tation. These items are required to be public so that the generated code can use them.
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5.2.1 The Gc state

The GC_STATE stores the garbage collected objects as Box<dyn GcCompat>. 4

This allows us to store values of different types in one common type at the
cost of an additional indirection. Now, the GC_STATE cannot simply store all
objects as a Vec, as removing an object would change the indices of all successive
objects. Hence it uses a Vec<Option<_>> to store all objects, and freeing an
object simply sets it to None.

5.2.2 The smart pointer GcCow<T>

As an object will only have a unique index in the GC_STATE during its lifetime,
we can use that index to refer to objects. This leads us to the definition of
GcCow<T>:5

struct GcCow<T: GcCompat> {

index: usize // index into the GC_STATE.

}

As GcCow<T> simply consists of a usize, it can implement the Copy trait. And
additionally, copying a GcCow<T> is pleasantly cheap!

Now, the only way to obtain a GcCow<T> is by calling GcCow::new(t) for some
t: T. This function, will store t in the GC_STATE and return a GcCow with the
index of t. This guarantees that a GcCow<T> will always store the index to a T.

To get the inner value of a GcCow<T>, we can call the method extract(). It
will look up the index in the GC_STATE, and then use the Any trait to downcast
the dyn GcCompat back to T.
The type GcCow<T> has an important restriction, which is that the allocated ob-
ject in the GC_STATE is immutable. Instead, if you intend to imitate mutation,
you need to create a new GcCow. This is a deliberate design decision for the GC.
Allowing mutation of objects inside of the GC_STATE can easily cause accidental
effects: If you give someone a Copy of your GcCow<T>, they might mutate your
object, as a GcCow only stores an index.

5.2.3 Cleaning up

The heart of our garbage collector is the mark and sweep algorithm. It will
determine which objects are still reachable from a given root object, and it
will then free all unreachable objects. The mark and sweep algorithm can be
invoked by calling the function mark_and_sweep<T: GcCompat>(root: T).

4This is called dyn trait in Rust. It allows you to use traits to perform dynamic dispatch.
5Additionally, GcCow<T> stores a PhantomData<T> to prevent the ”parameter T is never

used” compiler error.
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As a full mark_and_sweep run takes a notable amount of time, the algorithm
will only start if enough memory has been allocated since its last invocation.
Now, in order to determine what objects are still reachable from root, we only
need to traverse the ”points to”-graph. In this graph, every garbage collected
object represents a node, and whenever an object contains a GcCow pointing to
another object, this is represented as an edge in the graph.
This leads us to the central method points_to of the GcCompat trait.

pub trait GcCompat {

fn points_to(&self, buffer: &mut HashSet<usize>);

...

}

Calling x.points_to(buffer) will find all objects that x points to, and insert
their GC_STATE indices into buffer. How we implement the GcCompat trait for
all relevant types will be explained in the next section.

5.3 Requirements for user-facing types

Only types implementing GcCompat can be used for garbage collection. And as
we want to use garbage collection for all types that the user has access to, it is
mandatory that we implement GcCompat for all user-facing types, including the
types that the users define themselves.
Further, we have already established that all user-facing types should implement
Copy so that the user does not have to think about move semantics and cloning.
In this section, we will explain how we made every user-facing type Copy and
GcCompat. In order to implement these traits, we present different solutions for
types defined by specr lang and user-defined types.

Additionally, we need to insert the generic bound T: Copy + GcCompat for all
generic types T we encounter.6 For example the specr lang the code ...

struct X<T>(T);

fn foo<T>() { ... }

... compiles to the following Rust code:

struct X<T: Copy + libspecr::hidden::GcCompat>(T);

fn foo<T: Copy + libspecr::hidden::GcCompat>() { ... }

5.3.1 Types defined by specr lang

As specr lang provides quite a few types, we will not present an exhaustive list
of implementations. Instead, we will briefly showcase a few types defined in

6This Rust syntax is expressing that T has to implement both Copy and GcCompat.
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libspecr, and discuss how they implement both GcCompat and Copy.

The most central implementation of GcCompat is the GcCow<T>: GcCompat im-
plementation:

impl<T: GcCompat> GcCompat for GcCow<T> {

fn points_to(&self, buffer: &mut HashSet<usize>) {

buffer.insert(self.index);

}

}

This effectively states that a GcCow<T> only points to a single object - its object.
As users never access GcCow<T> directly, this implementation is only used by
other types that internally contain a GcCow<T>.

Also, one can simply implement Copy for GcCow<T> as it effectively only stores
a usize. All further types we will consider only store Copy primitive types and
GcCow in order to remain Copy.

List<T>

As we want our List<T> type to be Copy, we will need to wrap a collection type
in a GcCow. We decided against implementing our List<T> as a GcCow<Vec<T>>:
As our garbage collector only supports immutable data, a tiny mutation of a
Vec would require a new reallocation of the Vec. This is why our List<T> type
is instead backed by a RRB-Vector (see [rbb-vector]) optimized for this use
case. We use the implementation provided by the im crate:

struct List<T: GcCompat + Copy> {

vec: GcCow<im::Vector<T>>

}

The GcCompat implementation of List<T> simply calls points_to on the inter-
nal vec. This adds the index referring to the im::Vector<T> to the buffer.
Now, to complete the picture we need to also implement GcCompat for im::Vector<T>.
The points_to method of im::Vector<T> needs to locate all garbage collected
objects, that are pointed to by its elements. Hence it calls points_to for each
element individually:

impl<T: GcCompat + Clone> GcCompat for im::Vector<T> {

fn points_to(&self, buffer: &mut HashSet<usize>) {

for t in self.iter() {

t.points_to(buffer);

}

}

}
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Int

libspecr provides the Int type, a mathematical (i.e. unbounded) integer. In-
ternally Int contains a BigInt defined by the num-bigint crate ([Num]). We
cannot directly use BigInt as it does not implement the Copy trait. Hence we
use a GcCow<BigInt> instead.

Yet, there are two disadvantages of this solution:

• You cannot allocate a BigInt in a const context :
For example const BEST_NUMBER: Int = Int::from(42); would not be
possible. Yet definitions like these are common in the MiniRust code base
and thus need to be supported.

• Every integer operation causes a new BigInt allocation in the GC_STATE:
This causes an unreasonable blow up of the GC_STATE and loss of perfor-
mance in arithmetically heavy sections of the code.

To solve both of these problems, Int provides both a ”Big” variant to allow for
unbounded integers, and a ”Small” variant for numbers that fit on the stack.

enum Int {

Big(GcCow<BigInt>),

Small(i128),

}

The GcCompat implementation of Int, will call points_to on the GcCow<BigInt>
in case of Int::Big, and otherwise will not add anything to buffer.

5.3.2 User-defined types

Now, let us come to the question: How do we implement Copy and GcCompat

for types that the programmers using specr lang create themselves? The first
part of this problem has a simple solution: Copy can be implemented by adding
an attribute, given that your type only consists of other Copy types.
In practice this looks as follows:

#[derive(Copy, Clone)] // This attribute was inserted by specr-transpile

struct MyUserDefinedType {

field1: CopyType1,

field1: CopyType2,

}

7

Let us now consider the harder question: How do we implement GcCompat for
user-defined types? In order to solve this problem, we have implemented a

7We need to implement Clone aswell, as Copy can only be implemented for types that
already implement Clone.
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derive macro (see the gccompat-derive crate) that automatically implements
the GcCompat trait for any new type. What this derive macro will do is, it will
traverse through the data structure, until it reaches a type for which libspecr

already provided a GcCompat implementation. To make the transformations of
this derive macro graphical, we present a few examples:

struct UserDefinedType {

field1: u32,

field2: List<SomeOtherType>,

field3: OtherUserDefinedType,

}

// generated using gccompat-derive:

impl GcCompat for UserDefinedType {

fn points_to(&self, buffer: &mut HashSet<usize>) {

self.field1.points_to(buffer);

self.field2.points_to(buffer);

self.field3.points_to(buffer);

}

}

For structs, the proc macro iterates over the fields of our struct, and checks
what the fields individually point to.

In this particular example, the first field is an u32. The points_to implemen-
tation of u32 does nothing - as u32 points to nothing. Hence nothing gets added
to the buffer.
But the second field stores a List<T>. As we have explained previously, a
List<T> internally stores a GcCow that manages the actual data. The points_to
implementation of List<T> will now add the index stored within the GcCow to
the buffer.
Finally, for the third field, we encounter another user-defined type. So here, the
traversal continues and we recursively call points_to on our OtherUserDefinedType.

Let us now also look at how gccompat-derive handles enums:

enum OneOrTwo<T> {

One(T),

Two { t1: T, t2: T },

}

// generated using gccompat-derive:

impl<T: GcCompat> GcCompat for OneOrTwo<T> {

fn points_to(&self, buffer: &mut HashSet<usize>) {

match self {

OneOrTwo::One(t) => {

t.points_to(buffer);
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}

OneOrTwo::Two { t1, t2 } => {

t1.points_to(buffer);

t2.points_to(buffer);

}

}

}

}

For enums, gccompat-derive generates a match block, whereas every variant
of the enum is handled similarly to how a struct is handled. side note: This
example also showcases how gccompat-derive handles generics!

Limitations

Our goal is to implement Copy and GcCompat for every user-facing type, but
there are two elusive exceptions:

• Closures do not implement GcCompat, and

• Mutable references do not implement Copy

This does not mean that the use of either of them is forbidden in specr lang; in
fact both of them are frequently used in the MiniRust codebase. But it has the
implication, that they are excluded from garbage collection and hence can not
be part of type definitions. For example this type definition will fail to compile:

struct Foo(&'static mut i32);

This is due to the fact, that Rust is not able to implement Copy for this type.

5.4 Enum indirection

This section explains how enum indirection (the attribute #[specr::indirection]
is resolved in the specr lang compiler. First-of all, the indirection chosen for a
#[specr::indirection] is GcCow<_>. This is the only option, as we need some
form of indirection that implements Copy, thus all standard options like Box, Rc
are not acceptable.
We will demonstrate the transformations required to implement enum indirec-
tion using an example:

enum Nat {

Zero,

Succ(#[specr::indirection] Nat),

}

fn succ(n: Nat) -> Nat {

Nat::Succ(n)
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}

fn pred(n: nat) -> Nat {

match n {

Nat::Zero => Nat::Zero,

Nat::Succ(m) => m,

}

}

compiles to

enum Nat {

Zero,

Succ(libspecr::hidden::GcCow<Nat>),

}

fn succ(n: Nat) -> Nat {

Nat::Succ(libspecr::hidden::GcCow::new(n))

}

fn pred(n: nat) -> Nat {

match n {

Nat::Zero => Nat::Zero,

Nat::Succ(m) => {

let m = m.extract();

m

},

}

}

The compiler does three things:

1. look for #[specr::indirection] and wrap the respective type within a
GcCow<_>

2. Whenever we encounter a construction of the variant where we added
an indirection before, we insert a GcCow::new(_) around the respective
expression

3. Whenever we encounter a match of the variant where we added an indi-
rection, we prepend the match block with let m = m.extract(); This
will shadow the variable m: GcCow<T> with the extracted variable m: T

instead. 8

One subtle yet important detail, is that this handling of match blocks needs to
be done after all argmatches were already resolved. This is due to the fact, that

8Declaring a new variable with the same name as an old variable will shadow that old
variable, making it effectively unreachable until the new variable goes out of scope.
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every argmatch results in another match block, so doing these transformations
in the wrong order will make it miss some match blocks.

Limitations

Not all enum variants are used in a fully-qualified way. Consider this example:

enum Nat {

Zero,

Succ(#[specr::indirection] Nat),

}

use Nat::*;

fn one() -> Nat {

Succ(Zero)

}

In this example, the variants Succ and Zero are used without prefixing them
by Nat. As Succ and Zero are only defined as Nat, the algorithm is able to
figure this out though. The problem arises, if there are multiple enum variants
sharing the same name. If we extend our previous code by this declaration:

enum Foo {

Succ(i32),

Bar(u32),

}

we will encounter a naming collision for the variant Succ. To make this concrete,
if we write something like this

let x = Succ(y);

specr-transpile cannot know whether it should wrap y in a GcCow::new(_) or
not. If Nat::Succ is in scope a GcCow::new is necessary - but if Foo::Succ is
in scope, a GcCow::new is not allowed. This will result in a compile-time error.

In the long run, it is probably advisable to implement full name resolution to
mitigate this problem. We presume that this will be necessary for the specr
lang to Coq compiler either way.
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Chapter 6

Advances in the MiniRust
specification

MiniRust puts a strong focus on precisely specifiying the semantics of unsafe
Rust. Hence much effort went into figuring out the correct semantics of unsafe
operations and the handling of memory. But as MiniRust is a rather small
language, it is missing certain features that prevents it from representing a
large set of Rust programs. In this Chapter we present contributions to the
MiniRust specification that extend MiniRust to make it more expressive.

6.1 Intrinsics

The original set of MiniRust features was somewhat restricted. For example,
MiniRust programs could not have any side-effects, which made it more com-
plicated to observe whether the programs does what you expect it to do. Or to
name another example, every memory allocation MiniRust were function locals,
so there were no dynamic memory allocations.
To solve these problems we introduced intrinsics. Intrinsics are built-in pro-
cedures that a MiniRust program can invoke. They distinguish themselves to
functions, as they won’t be put on the stack-frame when called; and they are
untyped, meaning that calling a intrinsic with the wrong type of argument will
result in a runtime error.
Just like for functions, calling an intrisic is a terminator, i.e. the last instruction
of a basic block.
We will now introduce the different intrinsics that we have added:

Exit

Previously, MiniRust programs had no way to gracefully terminate their execu-
tion. They either raised undefined behavior at some point, or ran in an infinite
loop. This is why we introduced the exit intrinsic.
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Alongside to the introduction of the exit intrinsic, we introduced never-returning
functions. Previously, each MiniRust function was forced to provide a return
local even though it did not intend to return. Let us see an example:

start fn never_returning() -/> {

start bb0:

_ = exit();

}

This function never_returning does not have a return local as expressed by
the strikethrough arrow -/>. It does not need a return local, as it makes use of
the exit intrinsic instead of returning.
Never-returning functions are used for start functions, and might play a role
in expressing Rusts !-returning functions.

If a never-returning function actually returns, it will raise undefined behavior:

start fn bad_function() -/> {

start bb0:

return;

}

Dynamic memory

We added the intrinsics allocate and deallocate, which allow you to allocate
pieces of memory and free them again. The allocate intrinsic will return a
pointer to a freshly allocated piece of memory. It receives two integer arguments,
the size of the allocation, and its alignment. Additionally, the deallocate

intrinsic accepts the pointer as an argument, plus the size and alignment. The
deallocate intrinsic will raise undefined behavior, if

• there is no live allocation starting at the given pointer

• the size or alignment do not match the allocation

Let us see a simple example showcasing dynamic memory:

start fn f0() -/> {

let _0: (*layout(size=4, align=4))@align(8);

start bb0:

storage_live(_0);

_0 = allocate(4, 4) -> bb1;

bb1:

_ = deallocate(load(_0), 4, 4) -> bb2;

bb2:

_ = exit();

}

This simple example, allocates memory and directly frees it again.
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Printing

Previously, when running a MiniRust program the only feedback one receives is
whether

• the program terminated normally, or

• what kind of undefined behavior was raised

This makes it very hard to understand whether the execution of the program
happened as intended, in particular for programs that did not raise undefined
behavior. In order to tackle this issue, we introduced the print and eprint

intrinsics. They allow you to print a value to stdout or stderr respectively. Call-
ing these intrinsics will not change the state of the Machine, but only generate
the side-effect of printing a value. As intrinsics are untyped, print and eprint

are able to print values of different types. We utilize these intrinsics to write
tests, checking whether MiniRust behaves as intended.

start fn f0() -/> {

start bb0:

_ = print(42) -> bb1;

bb1:

_ = exit();

}

6.2 Globals

The Rust programming language provides certain features that require memory
allocations to be live during the whole execution of the program. A typical
example of this are Rusts statics.

static STATIC_FOURTY_TWO: u32 = 42;

fn main() {

let number: u32 = STATIC_FOURTY_TWO;

}

This static declaration will introduce a static memory allocation storing the
number 42. Whenever STATIC_FOURTY_TWO is referenced, the program will im-
plicitly dereference a pointer into that static allocation.
Currently, MiniRust has no capabilities to express those static allocations. In
order to solve this problem, we extended both the MiniRust syntax and the
interpreter by globals.
A global is a static memory allocation, that we allocate in the Machine::new

function, right before the program starts being executed. Using globals we can
derive the following MiniRust program to represent our Rust program from
above.
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global(0) {

bytes = [2a 00 00 00],

align = 4 bytes,

}

start fn f0() -/> {

let _0: u32@align(4);

start bb0:

storage_live(_0);

_0 = load(deref<u32@align(4)>(global(0)));

_ = exit();

}

As you can see there are quite a few differences between the Rust and MiniRust
versions. First of all you might notice that globals contain raw memory. global(0)
does not contain the number 42, but instead its encoded representation. 1 Fur-
ther, the global(0) expresses that it is required to be allocated at alignment
4.2 Additionally, you can see that MiniRust is quite explicit about globals being
pointers. This is why global(0) will be dereferenced and loaded.

Now, this is not the complete picture of globals. There are Rust constructions
that are simply not expressible by this.
Let us provide an example:

static X: u32 = 42;

static Y: &'static u32 = &X;

In this example, we again have our statically allocated 42, but additionally we
have a new static that stores a reference to X. As a reference is just a kind of
pointer, the global associated with Y simply needs to store the address of X. But
as X will be allocated at program startup, its address has not been determined
yet!

Hence, in order for Y to point to X we need a new feature, namely a relocation.
In MiniRust this looks as follows:

global(1) {

bytes = [00 00 00 00 00 00 00 00],

align = 8 bytes,

at byte 0: global(0), // relocation to `X` aka `global(0)`

}

This new global represents the static Y. You might notice that its bytes are
left blank, and instead we have a ‘at byte 0: global(0)‘ annotation. This is a

1In order to make the examples in this section concrete, we consider a 64-bit little endian
system.

2This follows from the fact that u32 requires an alignment of 4.
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relocation. It expresses that the at the beginning of the allocation (at byte 0),
we have to insert a pointer to global(0).

Machine::new can now simply allocate all globals first; and then - given that
all addresses are now determined - resolve all relocations.

So far we have talked about globals that store only integers - or only pointers.
To fully grasp the power of globals, we have to consider one final example:

static X: (u32, u32) = (42, 42);

static Y: (u64, &'static u32) = (42, &X.1);

In this example, both statics are tuples. And by the design of this example, the
resulting relocation pointing from Y.1 to X.1 can only be described by using
two offsets:

• the offset describing which byte in X to address: This offset is 4 bytes, as
this is the width of the preceding u32.3

• the offset describing where to put the pointer within Y: This offset is 8
bytes, as this is the width of the preceding u64.

This results to the following globals.

global(0) { // represents `X`

bytes = [2a 00 00 00 2a 00 00 00],

align = 4 bytes,

}

global(1) { // represents `Y`

bytes = [2a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00],

align = 8 bytes,

at byte 8: global(1) + 4,

}

The relocation at byte 8: global(1) + 4 expresses both offsets.
Further, note that some of the bytes that make up global(1) are unchanged
by the relocation, and only the second half of bytes is replaced by the pointer
to global(0).

6.3 Further Progress in MiniRust

In addition to the larger changes we have already covered, we also made a set
of smaller changes to MiniRust over the period of working on this Master’s
Thesis. These contributions are not central to this thesis, but as they add up to
a notable improvement for executing MiniRust, we decided to at least mention
a few of them.

3These examples are designed to not have additional padding.
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Operators

While trying to test control flow using if in MiniRust, we noticed that there
is no practical method to generate meaningful booleans. The only options were
using true, false, or transmuting an integer to a bool, using a pointer or a
union.
This made it very hard to implement meaningful tests for MiniRusts control
flow. In order to address this problem, we introduced Rusts <=, >=, <, >, ==, !=
operators for integer types. And while doing that we also quickly added

• the missing remainder operator for integers, and

• a pointer to pointer cast, allowing us to freely change pointer types from
one to the other.

Machine initialization

As you might recall from the MiniRust introduction, a Machine stores the full
state of a program at a given point in its execution. Previously, only the step

function of Machine existed, but there was no way to construct a Machine. This
is why we implemented Machine::new(program: Program): First, it checks
whether the program is well-formed and rejects the program if not. And then
it sets up the initial stack frame and allocates the globals.

Use-after-free

When an allocation is freed in MiniRust, a flag in the allocation is set to indicate
that. When accessing memory, this was overlooked and hence one was able
to access already-freed memory. We quickly fixed that, and now it raises a
use-after-free undefined behavior.

Negative Count Arrays

While proving the generic properties about the encoding, we noticed that MiniRusts
arrays could have a negative number of elements, which would quickly cause
problems.
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Chapter 7

MiniRust Tooling

In Chapter 5 we implemented a specr to Rust compiler. Using this compiler,
we can finally compile the MiniRust specification to a Rust crate. Next to
simply executing MiniRust programs, this also allows us to implement tools in
Rust that can build upon this MiniRust crate. In this Chapter we present the
following tools:

• minimize - a Rust to MiniRust compiler : The whole idea of MiniRust is
to define Rusts semantics in terms of MiniRusts semantics by compiling
Rust to MiniRust while inheriting its semantics. Hence compiling Rust
to MiniRust is a crucial step in this process. In combination with the
MiniRust interpreter, this tool provides an alternative path to execute
Rust code. This can be used to identify inconsistencies between Rust and
MiniRust.

• a MiniRust pretty printer : MiniRust itself does not provide a syntax - it
only provides an abstract syntax, i.e. a data structure representing the
syntax. This makes working with MiniRust programs very hard, as you
simply cannot read a program. For example, when generating a MiniRust
program with minimize, we cannot simply look at it in order to determine
whether the translation was correct.

For those reasons, we developed a work-in-progress syntax for MiniRust,
and implemented a pretty printer for it.

Note that every piece of ”MiniRust code” that we have shown in this
Master’s thesis was generated using this pretty printer!

• MiniRust Testing : Our test suites incorporate a collection of MiniRust
programs. They assert that executing them using MiniRusts interpreter
yields the desired results. We test that MiniRust is able to detect certain
kinds of undefined behavior, and additionally that MiniRust programs
without undefined behavior behave as expected.

Before we start diving into the presented tools, we have to answer one more
question.
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Running MiniRust programs - how to collect garbage?

The MiniRust specification is written as an interpreter. In order to run this
interpreter, we first need to create a machine using Machine::new(program),
and then we can repeatedly call machine.step() to run the program step by
step.

You might recall from Chapter 5 that we have introduced a garbage collector,
yet we have never mentioned how and when we free leftover allocations by call-
ing mark_and_sweep!

As the machine is intended to fully capture the state of a program during ex-
ecution, we can use it as the root for our garbage collector. So, between the
calls to machine.step() we free every garbage collected object that cannot be
reached from the machine anymore, by calling mark_and_sweep(machine).

7.1 Minimize

As alluded to before, Minimize is a Rust to MiniRust compiler.
Implementing such a compiler is generally a rather extensive task due to the
fact that Rust is a very complex language. In order to compile Rust down
to MiniRust, we need to rid Rust of most of its high-level features: Pattern
matching, generics, traits, modules etc. are part of Rust, but are not part of
MiniRust. Implementing such a compiler involves reimplementing a significant
portion of the Rust compiler. So instead, we can actually use the Rust compiler
to do the hard work for us. This is possible, as we can ask the Rust compiler to
output an intermediate format, namely MIR - the mid-level intermediate repre-
sentation. MiniRust itself is an idealized version of MIR. So translating MIR to
MiniRust is a much more viable approach. It is worth emphasizing that MIR is
an intermediate format within the Rust compiler. Implementing this compiler
required us to take a deep dive into the intricacies of the Rust compiler. A
notable amount of work on minimize consisted of pondering the internal API of
rustc.
In order to obtain MIR, we made use of the component rustc-dev. It allows
us to compile a given Rust program, and provides us access to the intermediate
results of the Rust compiler.

As MiniRust and MIR are relatively similar languages, a detailed explanation of
the whole translation procedure is rather redundant. Instead, we will highlight
a few key differences between MiniRust and MIR, and how minimize handles
them.
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Generics

MIR does support generics, while MiniRust does not. This means that in or-
der to translate MIR to MiniRust, we need to resolve generics. This process
is called monomorphization. It works by generating a new function for every
generic invocation of a generic function.

As we don’t want to bother the reader by explaining yet another language -
MIR, we will use a Rust example in order to explain how monomorphization
works.

fn identity<T>(t: T) -> T { t }

fn main() {

let x: u32 = identity::<u32>(42);

let y: i32 = identity::<i32>(42);

}

... will be translated to ...

fn identity_u32(t: u32) -> u32 { t }

fn identity_i32(t: i32) -> i32 { t }

fn main() {

let x: u32 = identity_u32(42);

let y: i32 = identity_i32(42);

}

This translation is rather straight-forward. Yet, not in all scenarios it is this
simple to infer which generic invocations a given function has. The problem
becomes harder if generic functions start calling other generic functions, maybe
even in a circular way.
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fn main() {

foo1::<u32>();

}

fn foo1<T>() {

if some_condition() {

foo2::<T>();

} else {

foo2::<i64>();

}

}

fn foo2<T>() { foo1::<T>(); }

Figure 7.1: A more challenging example for monomorphization.

The key observation to solve this problem is that every function invocation
with fully specified arguments can only call other generic functions with fully
specificed arguments. This means if we start with the main function, which has
no generic arguments and is hence fully specified, we can see which functions
get called from there and so on. In the concrete example given above, we can
do the following:

• Compile main.
Add foo1::<u32> to the todo list.

• Compile foo1::<u32>.
Add foo2::<u32> and foo2::<i64> to the todo list.

• Compile foo2::<u32>.
Nothing to add, foo1::<u32> was already added!

• Compile foo2::<i64>.
Add foo1::<i64> to the todo list.

• Compile foo1::<i64>.
Nothing to add, foo2::<i64> was already added!

• The todo list is empty!

This algorithm is the central piece of minimize. It decides which functions get
translated at all. That minimize uses this algorithm also implies that functions
which do not get called, will never be compiled at all.

Start function

A MIR program starts with its main function, typically returning the unit type
(). In MiniRust the starting function is required to have no return local, so
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returning () is not an option. Further, in contrast to MIR, a MiniRust program
requires an explicit call to exit() to terminate the execution.

Instead of compiling MIRs main function in a special way to address these
differences, minimize inserts a wrapper function that simply calls main and
then terminates using exit.

// This is the translated `main` function.

fn f1() -> _0 {

...

}

// minimizes wrapper function

start fn f0() -/> {

start bb0:

_ = f1() -> bb1;

bb1:

_ = exit();

}

Intrinsics

In Chapter 6 we introduced intrinsics to MiniRust. Now, it would be useful
if Rust programs that were given to minimize are able to call these intrinsics.
Otherwise, minimize is unable to represent a signification portion of MiniRust
programs.

Recall that minimize starts by giving the Rust program into the Rust compiler.
So, if we try calling an intrinsic in our Rust program, the Rust compiler will
reject it with ”cannot find function ‘print‘”.
In order to sidestep the Rust compiler, we implemented an external crate named
intrinsics. This crate provides a function for each intrinsic. Now, by calling
the functions of that crate the Rust compiler will be pleased. And after the
Rust compiler has finished generating MIR, minimize will translate each call
to a function of the intrinsics crate to the call of MiniRusts actual intrinsic
instead.
This allows us to compile the following program using minimize:

extern crate intrinsics;

use intrinsics::{print, allocate, deallocate, exit};

fn main() { unsafe {

let raw_ptr: *mut u8 = allocate(4, 4);

let int_ptr: *mut u32 = raw_ptr as *mut u32;

*int_ptr = 42;

print(*int_ptr); // prints 42
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deallocate(raw_ptr, 4, 4);

exit();

}}

7.2 Pretty printer

MiniRust only defines an abstract syntax which humans cannot read directly. In
particular when writing minimize, this was pretty problematic, as I needed to
read non-trivial MiniRust programs to see if the translation was done correctly.
This motivated us to implement a simple pretty printer for MiniRust programs.

The implementation of the pretty printer works as follows: For every syntactical
concept that MiniRusts abstract syntax provides there is a respective function
that converts it into a String. This includes Program, Function, BasicBlock,
Statement, Terminator, ValueExpr, PlaceExpr, Type and many more. These
functions will recursively call each other, thus recursing through the syntax tree
of the program. For example fmt_program will call fmt_function for every
function; then fmt_function will call fmt_basic_block for all basic blocks etc.

It is worth noting that all the MiniRust code snippets that are contained in this
document were generated by this pretty printer.

composite types

This pretty printer has one feature that is worth highlighting, which is the
way that composite types (unions and tuples) are handled. In the abstract
syntax of MiniRust, types are not declared and then used - but instead the full
type definition needs to be written out whenever a given type is used. This is
unnecessarily verbose, if you use nested types like tuples and unions often in
your code.
So, what this pretty printer does is, whenever it encounters a new composite
type, it associates it with a new name (T0, T1, T2, ...) and prints this name in-
stead of the type definition. And after pretty printing the whole program, it will
insert declarations for all composite types it encountered during the program.
Let us see this in action:

tuple T1 (12 bytes) {

at byte 0: i32,

at byte 4: i32,

at byte 8: i32,

}

tuple T0 (24 bytes) {

at byte 0: T1,

at byte 12: T1,
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}

fn f0(_1) -> _0 {

let _0: T0@align(4);

let _1: T0@align(4);

start bb0:

_0 = move(_1);

return;

}

In this example, the pretty printer will first read f0, while reading that it will
encounter a new tuple type it will name T0. And then, while generating the
type definition for T0 it will encounter another tuple type it will call T1. And
finally T1 does not contain any more new types.

7.3 MiniRust Testing

As part of this thesis, we implemented two separate test suites.

• minitest : This ”pure MiniRust” test suite contains hand-written MiniRust
programs. It executes them using MiniRusts interpreter and compares
their outcome with the expected outcome.

• The minimize test suite: This test suite consists of a collection of Rust
programs. It works by using minimize to convert the Rust programs to
MiniRust, and only then invoking MiniRusts interpreter.

Both test suites are equipped with a shell script named cov.sh that calculates
the test coverage across the MiniRust codebase, and in case of the minimize test
suite, also across the minimize codebase. This script allows us to detect blind
spots of our test suite, and in particular cases of undefined behavior we have
missed. The coverage is represented over a line-by-line basis, and expresses the
number of times a particular piece of code was executed:
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| impl Type {

567| pub fn size<M: Memory + libspecr::hidden::Obj>(self) -> Size {

567| use Type::*;

567| match self {

223| Int(int_type) => int_type.size,

16| Bool => Size::from_bytes_const(1),

158| Ptr(_) => M::PTR_SIZE,

145| Tuple { size, .. } | Union { size, .. } | Enum { size, .. } => size,

^107 ^38 ^0

25| Array { elem, count } => {

25| let elem = elem.extract();

25| elem.size::<M>() * count

| }

| }

567| }

| }

Figure 7.2: Sample output of cov.sh. This example shows that the Type::size
function was evaluated 567 times during the execution of minitest. 223 of those
were ints, and for example 107 of those were tuples.

This script uses LLVMs coverage tools.

minitest

This test suite runs MiniRust programs and checks that the interpreter yielded
the expected outcome. It defines three functions

• assert_ub(program: Program, ub_message: &str)

• assert_stop(program: Program) and

• assert_ill_formed(program: Program)

These functions run a program using MiniRusts interpreter, and then check
whether it yielded the desired outcome.

A typical minitest case looks as follows:

#[test]

fn null_ptr_example() {

let program = make_null_ptr_program();

assert_ub(program, "dereferencing null pointer");

}

As minitest is executing the MiniRust programs in a thread instead of spawn-
ing a new process, it cannot detect any prints that its tests generate. 1 Thus

1We might address this in the future by making the printing destinations configurable in
MiniRust.
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minitest cannot assert much for a gracefully terminating program, except for the
fact that it indeed terminated. Hence minitest is mostly used to check whether
certain programs have undefined behavior or not; and in particular which kind
of undefined behavior. minitest covers all 35 cases of undefined behavior that
MiniRust currently supports. Further, minitest is invoked in MiniRusts CI. So
any change to MiniRusts specification has to first pass minitest.

Now, the reader might be wondering how we construct MiniRust programs to
use for our test cases: MiniRust does not have a parser. In fact, except for the
work-in-progress output format of our pretty printer, MiniRust does not even
have a syntax. It only provides an abstract syntax - a data structure for our
abstract syntax tree.
As constructing programs using only the abstract syntax quickly becomes in-
feasible, we built an abstraction - a program builder API - that allows us to
construct MiniRust programs using less work.

We want to showcase this abstraction by an example. The following MiniRust
program ...

start fn f0() -/> {

let _0: u32@align(4);

start bb0:

storage_live(_0);

_0 = 42;

_ = exit();

}

... can be constructed using our program builder API as follows:

// We only have a single local `_0`.

// It uses the place type of u32, namely `u32@align(4)`.

let locals = [<u32>::get_ptype()];

// We define the basic block `bb0`.

let bb0 = block!(

storage_live(0),

assign(local(0), const_int::<u32>(42)),

exit()

);

// The function `f0` does not return, has zero arguments, and consists of the given locals and basic blocks.

let f0 = function(Ret::No, 0, &locals, &[bb0]);

// The program consists of a single function `f0`.

let p = program(&[f0]);

For the skeptical reader, who might not be convinced that such a program
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builder is necessary or even helpful, we refer to the same program written using
only the abstract syntax: A.1.
We presume that ultimately, when a stable syntax gets developed for MiniRust,
this builder API will be superseded by a parser for MiniRust programs.

The minimize test suite

This test suite consists of Rust programs. These programs will be converted to
MiniRust programs using minimize; then executed using MiniRusts interpreter;
and finally we check whether they yield the desired result. Thus effectively, this
test suite tests both minimize and the MiniRust interpreter.

A typical minimize test looks as follows:

// test.rs:

extern crate intrinsics;

use intrinsics::print;

fn main() {

let mut x = 1;

while x < 4 {

print(x);

x = x + 1;

}

}

// test.stdout:

1

2

3

Figure 7.3: A typical minimize test

As this test suite executes programs by starting a new process, we can finally
make use of the print intrinsic. This allows us to do interesting computations,
and then verify its result.

Also, having tests being written in plain Rust has a few advantages in itself.
First of all, changes to MiniRust can easily break test cases that are written
in MiniRust, like test cases from minitest. These breaking changes also affect
minimize, but when minimize is updated we do not need to rewrite its tests!
Further, it is generally easier to write a test case for minimize than for minitest,
as writing plain Rust is simpler than using the MiniRust program builder API.
On the flipside, certain tests cannot be expressed as a minimize test, simply
because the MiniRust program in question can not be generated by minimize.
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And further, given a non-trivial Rust program, minimize might generate a very
large MiniRust output. Now, if such a test fails, it is very hard to determine
whether minimize or MiniRust is at fault for this failure.

Generally, we find that using both test suites balances their advantages and
disadvantages nicely. Some tests are better expressed by minitest, and some by
minimizes test suite.
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Chapter 8

Formally verifying
MiniRusts Value encoding

In section 3.6 we briefly introduced MiniRusts encoding system. To summarize,
each MiniRust type provides an encode and a decode function. The encode

function converts Values to their ”in-memory” representation as a list of Ab-
stractBytes. The decode function does the converse. In order for these two
functions to harmonize correctly, they must satisfy certain criteria.

To name a simple example: When we encode a value and then decode it back,
we want to obtain the original value.
Properties like this are fundamental assumptions of MiniRust. If any of them
did not hold it would be considered a specification bug.
Hence in order to guarantee that they indeed hold, we have formalized the
encoding of types in Coq, and proved these desired properties for all MiniRust
types.
In this Chapter we will first formally define the properties and then give some
insights into our Coq implementation at https://github.com/coq-minirust.
But before defining what the properties express, we require to define a few
basics.

8.1 Definitions

We will shortly introduce everything required to know to understand the desired
properties of the encoding.

8.1.1 AbstractByte

MiniRusts memory does not directly store bytes (or u8 in Rusts terms), but
instead it needs to keep track of a few more details. To capture these pieces of
extra information MiniRust defines the AbstractByte type.
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enum AbstractByte {

Uninit,

Init(u8, Option<Provenance>),

}

An AbstractByte has two central differences from a u8:

• An AbstractByte might be uninitialized

• In addition to the u8, an AbstractByte might store a provenance. This
will be relevant for the encoding of pointers, as pointers have to remember
their provenance even when stored in memory.

In order to ease providing examples, we will for the rest of this Chapter assume
that Init and Uninit are always in scope. This means we can describe a piece of
memory with three bytes as for example [Uninit, Uninit, Init(42, None)].

8.1.2 Types and Values

To make MiniRusts encoding, and also its desired properties, a bit more tangible,
we will provide three example MiniRust types and their corresponding Values.
This is not strictly necessary to define the properties, but it helps understand
them better.
The following definitions are simplified versions of the original MiniRust speci-
fication. We refer to types.md for MiniRusts complete type definitions, and to
values.md for the Value definition and the encoding.
We define a MiniRust type as follows:

enum Type {

Bool,

Int {

size: Size,

// `Signed` or `Unsigned`.

signedness: Signedness,

},

RawPointer,

Tuple {

fields: List<(Offset, Type)>,

size: Size,

},

Union {

fields: List<(Offset, Type)>,

size: Size,

chunks: List<(Offset, Size)>,

}

}

A Type::Int is specificed by its Size - represented as bytes or bits - and its
signedness. For example the type u32 would be represented as
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Type::Int {

size: Size::from_bits(32),

signedness: Unsigned,

}

For the sake of simplicity, we have stripped Type::RawPointer of its pointee.
The pointee does not affect the encoding of a raw pointer.

A tuple stores a sequence of fields. A field consists of a byte offset expressing
where to store this field, and the type of the field itself. Additionally, a tuple
type stores the full size it occpuies in memory. To present a simple example,
the tuple type (bool, bool) could be expressed as follows:

Type::Tuple {

fields: list![

(Offset::from_bytes(0), Type::Bool),

(Offset::from_bytes(1), Type::Bool)

],

size: Size::from_bytes(2),

}

Tuples have a notion of padding. Padding are unused bytes, that appear if the
total size of the tuple is larger than the sum of its fields. Padding is occasionally
required to satisfy alignment constraints. For example the type (u8, u16) will
insert a padding byte after the u8 in order to place the u16 at its required
alignment of two.
The last type we are considering is Type::Union. Just like tuples, they store
their fields and their full size. The difference to tuples is that the fields of a union
may overlap. Overlapping fields for a tuple are rejected by the well-formedness
checker!

In order to define which bytes are padding within a union, the union is decom-
posed into chunks. Every chunk is described by an offset and a size. Bytes that
are within a chunk are considered to be relevant for the union, whereas bytes
not contained in any chunk are considered to be padding.

In addition to the types, let us quickly introduce their respective values.

enum Value {

Bool(bool),

Int(Int),

RawPointer {

address: Int,

provenance: Option<Provenance>,

}

Tuple(List<Value>),
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Union(List<List<AbstractByte>>),

}

Most of these cases are rather unsurprising.
The only interesting part of this definition is the Value::Union. While dis-
cussing Type::Union we mentioned that a union only preserves the bytes that
are within one of its chunks. Now, as a union at runtime does not know which
field it contains, it has to simply store all relevant bytes instead. It does so by
storing a list of chunks, where each chunk itself is simply a list of AbstractBytes.
This results in the type List<List<AbstractByte>>.

8.1.3 The Encodings

Now that we have introduced all relevant types and their corresponding values,
we can talk about how the encoding of values in memory works in practice.

Recall that each type provides an encode function converting a Value to its
byte-representation as List<AbstractByte>, and a decode function for the
converse. In this subsection we will break down how these functions work for
each type. We again refer to values.md for the precise definitions.

Before diving into the encodings we have to quickly address one small problem:
Previously we have already explained that encoding of a Value cannot fail,
because each Value needs to have at least one representation in memory. But,
as MiniRust only provides a single Value definition covering all types at once,
we run into problems when encoding a Value with the wrong type. For example,
when trying to store an integer in a bool-local, it would invoke bools encode

function with an integer value which cannot succeed and results in a runtime
panic. Type errors like these will be caught by the well-formedness checker,
hence we will assume that encode is only invoked with values that are valid for
the given type.
With that out of the way, we can start defining the encode and decode functions!

Bool encoding

Encoding a boolean is rather straight forward: encode(Value::Bool(true))

yields [Init(1, None)], whereas encode(Value::Bool(false)) yields [Init(0, None)].
So a boolean uses a single byte to represent itself in memory. This byte is either
one or zero to differentiate between true or false.

Decoding on the other hand has a few more edge cases to handle: Given a list of
AbstractBytes of the shape [Init(x, y)], decoding will succeed only if x=1 or
x=0, yielding Value::Bool(true) and Value::Bool(false) respectively. For
all other cases, decoding will fail. In particular this includes the cases where

• the list of AbstractBytes has zero or more than one element,
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• the AbstractByte is uninitialized,

• the byte is neither 1 or 0

Note that decoding a boolean does not care, whether the AbstractByte is
equipped with a provenance or not. So decoding [Init(1, None)] and [Init(1, Some(prov))]

both succeed with Value::Bool(true).

Integer encoding

Each integer type explicitly states how many bytes it is encoded in using its
size field. If an integer does not fit into this space, encoding will raise a panic.
It is the job of the MiniRust spec to ensure that integer values always fit into
their type. Decoding fails if the number of AbstractBytes is incorrect, or it
contains an Uninit. But again, decoding ignores the provenance of the given
AbstractBytes.

The byte order (LittleEndian or BigEndian) in which an integer shall be en-
coded has to be specified by the Memory. As precisely defining integer encoding
is more laborious than it is insightful, we refer to [PH16] for further details.

RawPointer encoding

Pointers are encoded by encoding their address as an unsigned integer, as ex-
plained above. The size of this integer is, like the byte order, specified by the
Memory.
When encoding a pointer, all resulting AbstractBytes additionally inherit the
provenance stored within our Value::Pointer. And conversely, when decoding
a pointer, the Value::Pointer will adopt the unique provenance specified by
all AbstractBytes. If the AbstractBytes do not agree on a single provenance,
the resulting pointer will obtain None as a provenance instead.

Tuple encoding

Encoding a tuple works by recursively calling encode for all of its fields, given
their respective types. The resulting AbstractBytes will be placed according to
their byte offsets. Also, the padding - bytes that are not covered by any field -
will remain Uninit.
Decoding a tuple works by calling decode for all fields, and combining the
resulting Values into a list. Padding bytes are ignored in this process, they are
even allowed to be Uninit.

Union encoding

Recall that unions consist of multiple chunks of data. The bytes between two
consecutive chunks are considered to be padding.
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As the value representation of a union already stores chunks of AbstractBytes,
encoding them into a single list of AbstractBytes is a rather direct transfor-
mation.
When encoding a union value, we store all chunks at the byte offsets specified in
the Type::Union. All padding bytes are set to Uninit. Conversely, decoding a
union works by extracting the AbstractBytes within each chunk, and collecting
them into a List. Similarly to the decoding of tuples, all padding bytes are
ignored!
Note that the fields of a union are not relevant for its encoding.

8.1.4 Definedness

During these encoding definitions you might have noticed a certain trend: No
decoding function ever requires an AbstractByte to be Uninit. It is always
requires it to be Init, or it is irrelevant in case of padding bytes. Similarly,
no decoding function every requires the provenance of an AbstractByte to be
None.
In other words, both initializing AbstractBytes and enriching them with prove-
nance never hinders a list of AbstractBytes from being decoded into a Value.
This works as these two operations only make our AbstractBytes more defined.
Let us formalize this notion.

Given two AbstractBytes a and b, we write a ≤ b to express that b is as least
as defined as a.
We define it as follows:

• Uninit ≤ a for all a: AbstractByte.
Everything is at least as defined as Uninit. Hence, Uninit is the lowest
tier in our definedness hierarchy.

• Init(byte, None) ≤ Init(byte, prov) for all byte and prov.
In other words, initializing an AbstractByte can never make it less de-
fined.

• a ≤ a for all a.
This expresses that ≤ is reflexive. Everything is at least as defined as
itself.

• For all further a, b, the relation a ≤ b does not hold.

There are three level to definedness: Being uninitialized; initialized without
provenance; and initialized with provenance. But note that AbstractBytes

that are related under ≤ can never differ in their u8; or their provenance.

So Init(byte1, None) ̸≤ Init(byte2, None) if byte1 != byte2;
and Init(byte, prov1) ̸≤ Init(byte, prov2) if prov1 != prov2.
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Thus given a ≤ b, the AbstractByte b never changes anything already defined
by a it might only extends it further.

In order to cover the encoded representation of Values, we lift the notion of
definedness to lists of AbstractBytes. Given two List<AbstractByte> a and
b, the relation a ≤ b holds, if a and b have the same length, and they are
pairwise related by ≤.
We have now captured what definedness means for encoded Values. Yet, the
same concept is also applicable to unencoded Values.
We can defined it as follows:

• Value::Pointer { address, provenance: None }

≤ Value::Pointer { address, provenance: prov } for all prov.

• Value::Tuple(vals1)≤ Value::Tuple(vals2) holds, if it holds pairwise
for vals1 and vals2.

• Value::Union(chunks1) ≤ Value::Union(chunks2) holds, if it holds
pairwise for chunks1 and chunks2.

• a ≤ a for all values a.

• For all further a, b, the relation a ≤ b does not hold.

Now let us address the final extension of ≤. Whenever the decoding of a list of
AbstractBytes fails, the decode function will return None. Thus, if we intend
to relate decoded Values using ≤, we have to address that they might be None.
We define ≤ for Option<Value> as:

• None ≤ a for all a.

• Some(a) ≤ Some(b), if a ≤ b.

• For all further a, b, the relation a ≤ b does not hold.

8.2 Properties

We are now ready to define the central properties that we want our encodings
to satisfy. We start by presenting the monotonicity properties: They express
that encode and decode are monotone with respect to ≤.

Monotonicity of encode

• Given two values v1 and v2 with v1 ≤ v2, which are both valid for the
well-formed type ty. Then ty.encode(v1) ≤ ty.encode(v2).

64



This property expresses that, the more defined the input to encode is, the more
defined is its output. To illustrate this property let us compare two pointer
values v1 and v2. Both share the same address but in comparison to v1, the
pointer v2 has a provenance. In this scenario ty.encode(v1) will consist only
of AbstractBytes that have a None provenance, whereas ty.encode(v2) will
have some provenance associated to each of them. Due to the fact that both
pointers share the same address, the lists will not have any other differences.
Thus it follows that ty.encode(v1) ≤ ty.encode(v2).

Monotonicity of decode

• Given two lists of AbstractBytes bytes1 and bytes2 and a well-formed
type ty. Then ty.decode(bytes1) ≤ ty.decode(bytes2).

To make this property a bit more tangible, let us consider an example. Con-
sider what happens when decoding bytes2 = [Init(1, None)] as a bool; it
will result in a Value::Bool(true). Let us now compare this to the less-defined
bytes1 = [Uninit]. Then the expression ty.decode(bytes1)≤ ty.decode(bytes2)

evaluates to None ≤ Some(Value::Bool(true)), which does indeed hold.

Roundtrip I

• Given a value val which is valid for a well-formed type ty.
Then ty.decode(ty.encode(val)) == Some(val).

You might remember this property from the beginning of this Chapter. It effec-
tively expresses that storing a value and then loading it back does not change
that value. This property is the easiest to verify. We encourage the reader to
test this property on a few MiniRust types.

The converse property is a little more nuanced:

Roundtrip II

• Given bytes, a list of AbstractByte, a value val and a well-formed
type ty. If ty.decode(bytes) == Some(val), then ty.encode(val) ≤
bytes.

The reader might have expected the outcome ty.encode(val) == bytes: As
decoding bytes yields val one might have expected that encoding val again
yields bytes.
To explain why equality does not hold in this case, consider ty to be any tuple
type with at least one byte of padding. Further let bytes be any fully initialized
list of AbstractBytes. Decoding bytes and then encoding it back will overwrite
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the padding bytes by Uninit. Thus, even if all other AbstractBytes stay the
same ty.encode(val) == bytes does not hold, but instead only ty.encode(val)
≤ bytes does.

8.3 Coq implementation

We will utilize this final section to shed some light on our Coq implementation
of MiniRusts encoding properties. First, we will explain how we formalized this
task in Coq; and then we will give a brief overview of our proof structure. The
formalization can be divided into three parts.

• Data types and traits,

• Functions, and

• Properties,

8.3.1 Data types and traits

Formalizing MiniRusts data types in Coq was a rather straight-forward trans-
formation. Every enum became an Inductive; every struct became a Record;
and every trait became a Class.
To provide an example, the enum AbstractByte was formalized as follows:

Inductive AbstractByte : Type :=

| Uninit : AbstractByte

| Init : byte -> option Provenance -> AbstractByte.

... which is a pretty direct translation from ...

enum AbstractByte {

Uninit,

Init(u8, Option<Provenance>),

}

Another example we want to quickly mention is the trait Memory. With regard
to encoding, it is responsible for providing the Provenance type, defining the
Endianness and the size of a pointer. This is its formalization in Coq.

Class Memory := {

PTR_SIZE : Size;

ENDIANNESS : Endianness;

Provenance : Type;

P_EQ : Provenance -> Provenance -> bool;

P_EQ_REFLECT : forall x y, Bool.reflect (x = y) (P_EQ x y);

PTR_SIZE_GT0 : PTR_SIZE > 0;

}.
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8.3.2 Functions

Formalizing MiniRusts functions in Coq proved to be a harder task. This was
mostly due to the fact that they were ocassionally written in an imperative
style.
Further, many recursive functions implemented in MiniRust could not be un-
derstood by Coq. Coq only accepts recursive functions, if it can guarantee that
they terminate.
Two examples of this are the encode and decode functions:

Fixpoint decode (ty : Ty) (l : list AbstractByte) : option Value :=

match ty with

| TInt size signedness => decode_int size signedness l

| TBool => decode_bool l

| TPtr ptr_ty layout => decode_ptr ptr_ty layout l

| TTuple fields size => decode_tuple fields size l decode

| TArray elem count => decode_array elem count l decode

| TUnion fields chunks size => decode_union fields chunks size l

end.

As you can see, decode_tuple and decode_array get decode itself as recursive
argument. Proving to Coq that this is valid, and can never cause infinite loops,
due to the fact that we recurse through types, were non-trivial. This was mostly
due to the fact that composite types like tuples that contain lists of tuples of
types, makes it hard for Coq to understand this abstraction.

8.3.3 Properties

Defining the properties that we intend to prove was again a rather simple task.
For example, let us look at how we defined the monotonicity property of decode:

Definition mono2 (ty: Ty) :=

forall (l1 l2: list AbstractByte),

(le l1 l2)

-> le (decode ty l1) (decode ty l2).

The hardest part of defining the properties correctly was defining wf, the well-
formedness requirement for types. The issue was that the well-formedness of
a tuple type depends on the well-formedness of all of its fields types. This
recursive definition was again problematic for Coq.
While proving the desired properties we noticed that we would need to prove
another property first. Thus, we have added a fifth property ENCODE_LEN.
ENCODE_LEN expresses that encoding a value generates a number of AbstractBytes
equivalent to the size of the Type.
After defining all properties, we tied them together in the Record Props:

Record Props ty := {

PR_WF : wf ty;
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PR_RT1 : rt1 ty;

PR_RT2 : rt2 ty;

PR_MONO1 : mono1 ty;

PR_MONO2 : mono2 ty;

PR_ENCODE_LEN : encode_len ty

}.

which allows us to define the central Theorem that we want to prove:

Theorem generic_props (ty: Ty) : wf ty -> Props ty.

8.3.4 Proofs

The proofs were the most involved part of this Coq implementation; they alone
spanned over four thousand lines of code!

The general structure of the proof is an induction over types. This is necessary,
as the properties can only be shown for composite types like tuples if we assume
that their fields already satisfy them.

Theorem generic_props (ty: Ty) : wf ty -> Props ty.

Proof.

induction ty using ty_ind; intros Hwf.

- apply (bool_props Hwf).

- apply (int_props Hwf).

- apply (ptr_props Hwf).

- apply (tuple_props H Hwf).

- apply (array_props IHty Hwf).

- apply (union_props Hwf).

Qed.

As one might have guessed, Coq was not able to deliver a usable induction
scheme for this problem, again due to the fact that Tuple has a weird recursive
occurence. Thus we have implemented our own induction scheme ty_ind, which
we proved by using another induction over the depth of our types.
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Chapter 9

Conclusion

In this final Chapter, we summarize our progress on MiniRust. Additionally,
we mention opportunties for future improvement.

Our first contribution to the MiniRust project consisted of the specr lang to
Rust compiler.
In order to streamline further development on specr lang compilers, we presume
that implementing name resolution is at some point advisable. The current sys-
tem cannot rely on the fact that two equal identifiers refer to the same object,
which makes it easy to introduce naming collisions during code transformations.

A simple yet restrictive alternative would be to disallow the programmer to in-
troduce multiple items with the same name. This could be checked rather easily.

Next up, we extended MiniRusts specification to cover more Rust programs. It
is now able to express termination of programs; the use of dynamic memory;
side-effects like printing; static memory allocations; comparison of integers; and
a few more.
MiniRust is still missing a significant portion of features to represent all Rust
programs. For example enums, floating point numbers, unwinding, unsized
types like slices and dyn trait come to mind.
Next, we implemented three tools for MiniRust. minimize: the Rust to MiniRust
compiler; our pretty printer for MiniRust program; and our test suites. We pre-
sume that while minitest grows, at some point a parser for MiniRust programs
will be valuable.

In addition to the previous contributions, we also proved certain properties
about MiniRust in Coq. We proved that MiniRusts representation of values in
memory is sound, but there is still a lot more to do!
The next step would be to verify the following: ”Making an AbstractByte more
defined can never introduce UB into a program”. This more general statement
does not only concern the encoding relation, but it concerns the full specification.
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In order to simplify proving properties about MiniRust and its programs in
Coq, there are plans to eventually implement a specr lang to Coq compiler.
We predict that implementing such a compiler will be notably harder than the
specr lang to Rust compiler. Specr lang and Rust are syntactically very similar,
so that most of the code could remain unchanged when compiling. Restricting
the features that specr lang inherits from Rust might make this second compiler
significantly easier. Further, a system that allows to prove that certain recursive
functions terminate, needs to be set in place.
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Appendix A

Appendix

A.1 Constructing a MiniRust program from scratch.

let fn_name = FnName(Name::from_internal(0));

let local_name = LocalName(Name::from_internal(0));

let block_name = BbName(Name::from_internal(0));

// define the type `u32`.

let u32_type = Type::Int(IntType {

signed: Unsigned,

size: Size::from_bytes(32).unwrap(),

});

// define the place type `u32@align(4)`.

let u32_place_type = PlaceType {

ty: u32_type,

align: Align::from_bytes(4).unwrap(),

};

// define the `_ = exit();` terminator.

let exit_call = Terminator::CallIntrinsic {

intrinsic: Intrinsic::Exit,

arguments: list![],

next_block: None,

ret: None,

};

// define an integer constant `42`.

let const42 = Constant::Int(Int::from(42));

let const42 = ValueExpr::Constant(const42, u32_type);
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// define the basic block bb0.

let bb0 = BasicBlock {

statements: list![

Statement::StorageLive(local_name),

Statement::Assign {

destination: PlaceExpr::Local(local_name),

source: const42,

}

],

terminator: exit_call,

};

let mut blocks = Map::new();

blocks.insert(block_name, bb0);

let mut locals = Map::new();

locals.insert(local_name, u32_place_type);

// define our function.

let f = Function {

args: list![],

blocks,

locals,

ret: None,

start: block_name,

};

let mut functions = Map::new();

functions.insert(fn_name, f);

// define the program.

let p = Program {

functions,

start: fn_name,

globals: Map::new(),

};
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