
RESEARCH TOPICS IN

SOFTWARE ENGINEERING

Michalis Kokologiannakis, Ralf Jung and Peter Müller

Autumn 2024

2

Objectives

• Learn how to present technical work

• Learn how to understand and evaluate research papers

• Learn about key research directions in the area

3

Preparing a Talk

Check your

presentation date

Study your

paper(s)

Create draft

presentation

Meet advisor,

get feedback

4

Preparing a Talk: Start Early

• Preparing a good presentation takes time

• Start early!

Check your

presentation date

Study your

paper(s)

Create draft

presentation

Meet advisor,

get feedback

5

Preparing a Talk: Study Paper

• 3 ‘C’s of reading

- Carefully: look up terms,

possibly read cited papers

- Critically: find limitations, flaws

- Creatively: think of improvements

• Try examples by hand

• Try tools if available

• Consult with TA if questions

Check your

presentation date

Study your

paper(s)

Create draft

presentation

Meet advisor,

get feedback

6

Preparing a Talk: Create Draft

• Explain the motivation for the work

• Clearly present the technical solution

and results

- Use your own example, not the one in

the paper

- Include a demo if appropriate

• Outline limitations or improvements

• Focus on the key concepts

- Do not present all of the details

Check your

presentation date

Study your

paper(s)

Create draft

presentation

Meet advisor,

get feedback

7

Preparing a Talk: Get Feedback

• Prepare for the meeting

- Schedule early

- Send slides in advance

- Write down questions

• Make sure you address feedback

- Take notes

• Meeting is mandatory!

- At least one week before the talk

Check your

presentation date

Study your

paper(s)

Create draft

presentation

Meet advisor,

get feedback

8

Grading

• Presentation

- Understanding of the paper and its context

- Structure and content

- Presentation style (speech, slides, visualization, own examples)

- Discussion

• Participation

- Did you ask good questions?

- Did you attend all sessions?

• We will also take into account:

- the difficulty of the paper

- suggestions you received from your TA

- time you had to prepare

9

Feedback

• We will discuss strengths and weaknesses of your talk in class

- Let us know upfront if you’d prefer not to

• Arrange a meeting with your TA to get detailed feedback

10

Schedule

• We will meet once a week, with two presentations per session

- Next meeting on October 8 (no session the next two weeks!)

- 22 presentations in total

• Detailed schedule will be published online shortly

- https://pls.inf.ethz.ch/education/Research_Topics_in_Software_Engineering.html

- Including names of teaching assistants

https://pls.inf.ethz.ch/education/Research_Topics_in_Software_Engineering.html

11

Your Talk: Timing

• Your talk should be 30 minutes

plus discussion

• 1.5 – 2 minutes per slide

• The pace of your talk is important

- If you are too fast, the audience cannot follow

- If you are too slow, people get bored

• Practice your talk

- Track a checkpoint after circa 10 minutes

12

16

Peter Müller – OOPSLA 2007

Solution in our Implementation

class List {

unique Node head;

free Node getNodes() {

Node res = this.head;

this.head = new Node();

return res;

}

void merge(peer List l) {

Node lh = l.getNodes();

// connect node structures;

} … }

release

happens when

free reference

is returned
capture

happens when

free reference is

assigned to field

14

Peter Müller – OOPSLA 2007

Static Analysis: Summary

▪ Set of unusable variables for each program point

▪ Manipulation of unusable-set
- peer call marks all locals of type rep<f> unusable (for each f)

- release(o), where o’s ownership modifier is rep<g>, marks all

locals of type rep<g> and field g unusable

- Reading a free variable v marks v unusable

- Assigning to a variable v removes v from the unusable-set

▪ Checks
- No reading of unusable variables

- No unusable fields upon calls or method termination

13

Peter Müller – OOPSLA 2007

Ownership Transfer

▪ New ownership modifier free
- Invariant: free variables are the only read-write

reference to a unique cluster

- Reading a free variable makes it unusable

▪ release(o) makes unique object o free
- o has type rep<g>

- Marks g and all variables of type rep<g> unusable

▪ capture(o, T) transfers free object o to
owner described by type T

u free = free

free u = any

12

Peter Müller – OOPSLA 2007

Uniqueness Invariant

In each pre- or post-state

of a method, there is at

most one usable read-

write reference into each

unique cluster of an

object inside the current

context

List

PeerNode Node

11

Peter Müller – OOPSLA 2007

class List {

unique Node head;

void add(any Object o) {

rep<head> n = head;

n.append(o);

}

}

class List {

unique Node head;

peer List backup;

void add(any Object o) {

rep<head> n = head;

backup.add(o);

n.append(o);

}

}

Maintaining Uniqueness

class List {

unique Node head;

peer List backup;

void add(any Object o) {

rep<head> n = head;

backup.add(o);

n = head;

n.append(o);

}

}

Mark all locals of type

rep<f> unusable for all f

n becomes usable again

List

PeerNode Node

Re-establish uniqueness

before peer call

List

10

Peter Müller – OOPSLA 2007

Maintaining Uniqueness

▪ Destructive reads ▪ Alias burying

n = head;

n.append(o);

n = head;

n.append(o);

Set head

to null

Declare which fields

are accessed

Track aliasing

statically

Set n

to null

Use (multiple)

result values

Borrowed

receiver

unique Node head;

9

Peter Müller – OOPSLA 2007

Extended Type System

▪ One unique cluster

per unique field

▪ Refined ownership

modifiers
- rep<this> for references

into non-unique cluster

- rep<f> for references into

unique cluster for field f

List

PeerNode Node

class List {

unique Node head;

void add(any Object o) {

rep<head> n = head;

n.append(o); } }

6

Peter Müller – OOPSLA 2007

Viewpoint Adaptation

class List {

rep Node head;

void add(any Object o) {

head = new rep Node(o, null, head);

… }

}

class Node {

any Object element;

peer Node prev, next;

Node(any Object o, peer Node p, peer Node n)

{ … }

}

List

Node Node

Type of field

access x.f or

call x.f() is

determined by:

Tx Tf

5

Peter Müller – OOPSLA 2007

Ownership Modifiers

class List {

rep Node head;

…

}

class Node {

any Object element;

peer Node prev, next;

}

List

Node Node

▪ Ownership modifiers

describe ownership

relative to current object

4

Peter Müller – OOPSLA 2007

Owner-as-Modifier Discipline

▪ References

crossing context

boundaries are

read-only
- No field updates

- Only calls of pure

methods

▪ Owner controls

modifications

Set

List

Node Node

Your Talk: Structure

2

Peter Müller – OOPSLA 2007

Ownership Transfer

in Universe Types

Arsenii Rudich
ETH Zurich

Switzerland

Peter Müller
Microsoft Research

USA

7

Peter Müller – OOPSLA 2007

Merging List Representations

List

List

Node Node Node Node

Peer

Remaining

stack and heap

references are

ill-typed

Remaining

stack and heap

references are

ill-typed

Node Node
Required:

unique

references

15

Peter Müller – OOPSLA 2007

Merging List Representations: Solution

class List {

unique Node head;

free Node getNodes() {

free Node res = release(this.head);

return res;

}

… }

class List {

unique Node head;

free Node getNodes() {

free Node res = release(this.head);

this.head = new rep<head> Node();

return res;

}

… }

class List {

unique Node head;

free Node getNodes() {

free Node res = release(this.head);

this.head = new rep<head> Node();

return res;

}

void merge(peer List l) {

free Node n = l.getNodes();

rep<head> Node lh;

lh = capture(n, rep<head> Node);

// connect node structures;

} … }

head

becomes

unusable

n is transferred to

“head” cluster of

this and becomes

unusable

Uniqueness is

re-established

Illegal: head is

unusable

upon

termination

17

Related Work

▪ External Uniqueness [Clarke and Wrigstad, ECOOP ‘03]

- Type safe ownership transfer

- Destructive reads and borrowing

▪ AliasJava [Aldrich et al., OOPSLA ‘02]

- Type safe ownership transfer

- Lent variables break encapsulation

▪ Alias burying [Boyland, SP&E ‘01]

- Static analysis to track temporary aliases

- High annotation overhead, limited by static analysis

▪ Object invariants [Müller et al., SCP ‘06]

- Similar to enforcement of uniqueness invariant

Peter Müller – OOPSLA 2007

18

Peter Müller – OOPSLA 2007

Summary

▪ External uniqueness enables transfer
- Temporary aliases permitted

- Call-backs: restrictions of Universes + static analysis

- Capturing: external uniqueness + viewpoint adaptation

- No destructive reads, no global analysis

- Owner-as-modifier property enforced

▪ Implementation in JML
- More expressive

- Inference of transfer operations and annotations for locals

▪ Meet me at the Microsoft booth
- Also to get a Spec# demo

Title slide Splash Motivation,

background

Problem

Solution Evaluation,

experiments,

demo

Related work Summary,

conclusions

3

Peter Müller – OOPSLA 2007

Ownership

▪ Establish

ownership

hierarchy

▪ Enforce

restrictions

Set

List

Node Node

8

Peter Müller – OOPSLA 2007

External Uniqueness

▪ Partition context into

clusters
- Clusters can be unique or not

▪ At most one read-write

reference into a unique

cluster
- Arbitrary aliasing within cluster

- any references not restricted

▪ Unique clusters are

transferred as a whole

List

PeerNode Node

13

Your Talk: Examples

• Examples are crucial for the understanding

- Yours and the audience’s

- Prepare your own example!

• Try to find a running example

- For motivation, problem, and solution

- Explain in detail (takes time)

• Reduce code example to the absolute necessary

- Most people hate reading code

- Use visualizations

5

Peter Müller – OOPSLA 2007

Ownership Modifiers

class List {

rep Node head;

…

}

class Node {

any Object element;

peer Node prev, next;

}

List

Node Node

▪ Ownership modifiers

describe ownership

relative to current object

14

12

Peter Müller – OOPSLA 2007

Uniqueness Invariant

In each pre- or post-state

of a method, there is at

most one usable read-

write reference into each

unique cluster of an

object inside the current

context

List

PeerNode Node

Your Talk: Design

Use a

descriptive

title

Include slide

numbers

Use a

large font

(at least 18pt)

Do not

overload slide

Use

visualizations

16

Powerpoint vs. Latex

Powerpoint

• Visualizations and

animations are easy

• Don’t over-do it!

Latex

• Visualizations and

animations are painful

• Don’t under-do it!

17

Merging List Representations

List

List

Node Node Node Node

Peer

Remaining

stack and heap

references are

ill-typed

Remaining

stack and heap

references are

ill-typed

Node Node
Required:

unique

references

18

Your Talk: Avoid Frequent Mistakes

• Don’t try to present all details

- Focus on a few key messages:

Motivation, problem, main idea, main result

• Don’t stare at the screen or your laptop

- Look at the audience

• Come prepared

- Study paper in depth

- Rehearse your talk (but not too much)

19

References

• We strongly recommend studying Markus Püschel’s small guide to giving

presentations:

http://www.inf.ethz.ch/personal/markusp/teaching/guides/guide-presentations.pdf

• We also recommend this presentation by Derek Dreyer on "How to give talks that

people can follow":

https://www.youtube.com/watch?v=TCytsY8pdsc

http://www.inf.ethz.ch/personal/markusp/teaching/guides/guide-presentations.pdf
https://www.youtube.com/watch?v=TCytsY8pdsc

20

What should I do next?

• Look at the list of available papers.

• Send us your top 5 choices via the selection form.

• If you do not submit your selection by Sept. 18 (tomorrow), we will assume that

you are no longer interested in taking the seminar!

https://docs.google.com/document/d/1nxVBJkH5syMm4-W8aPd2KDUlnStNQdlEicpxgzZMvbA/edit
https://docs.google.com/forms/d/e/1FAIpQLSfs6gOIrKo4MB6EiCMVGMFzge_-B_re7ASUxJp617FvhQ_Pbg/viewform?usp=sf_link

	Slide 1: Research Topics in Software Engineering
	Slide 2: Objectives
	Slide 3: Preparing a Talk
	Slide 4: Preparing a Talk: Start Early
	Slide 5: Preparing a Talk: Study Paper
	Slide 6: Preparing a Talk: Create Draft
	Slide 7: Preparing a Talk: Get Feedback
	Slide 8: Grading
	Slide 9: Feedback
	Slide 10: Schedule
	Slide 11: Your Talk: Timing
	Slide 12: Your Talk: Structure
	Slide 13: Your Talk: Examples
	Slide 14: Your Talk: Design
	Slide 15
	Slide 16: Powerpoint vs. Latex
	Slide 17: Merging List Representations
	Slide 18: Your Talk: Avoid Frequent Mistakes
	Slide 19: References
	Slide 20: What should I do next?

