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Objectives

« Learn how to present technical work
* Learn how to understand and evaluate research papers

« Learn about key research directions in the area
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Preparing a Talk
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Check your
presentation date
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Study your
paper(s)
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Create draft
presentation
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Meet advisor,
get feedback




Preparing a Talk: Start Early

* Preparing a good presentation takes time
Check your
presentation date
I « Start early!
N Study your
paper(s)

'

R Create draft
presentation

'

Meet advisor,
get feedback
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Preparing a Talk: Study Paper

Check your * 3 'C’s of reading
presentation date - Carefully: look up terms,
1 possibly read cited papers
. Study your - CnchIIy: fllnd.llmlta.tlons, flaws
paper(s) - Creatively: think of improvements
| Create draft « Try examples by hand
presentation

Try tools If available

'

Meet advisor,
get feedback

Consult with TA If questions
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Preparing a Talk: Create Draft

Check your
presentation date

'

Study your
paper(s)

'

Create draft
presentation

!

Meet advisor,
get feedback

Explain the motivation for the work

Clearly present the technical solution
and results

- Use your own example, not the one in
the paper
- Include a demo if appropriate

Outline limitations or improvements

Focus on the key concepts
- Do not present all of the detalls

ETHzurich



Preparing a Talk: Get Feedback

Check your
presentation date

'

Study your
paper(s)

'

Create draft
presentation

!

Meet advisor,
get feedback

* Prepare for the meeting
- Schedule early

- Send slides in advance
- Write down questions

 Make sure you address feedback
- Take notes

* Meeting is mandatory!
- At least one week bhefore the talk

ETHzurich



Grading

* Presentation
- Understanding of the paper and its context
- Structure and content
- Presentation style (speech, slides, visualization, own examples)
- Discussion

 Participation
- Did you ask good questions?
- Did you attend all sessions?

« We will also take into account:
- the difficulty of the paper
- suggestions you received from your TA
- time you had to prepare

ETHzurich



Feedback

« We will discuss strengths and weaknesses of your talk in class
- Let us know upfront if you'd prefer not to

« Arrange a meeting with your TA to get detailed feedback

ETHzurich



Schedule

« We will meet once a week, with two presentations per session

- Next meeting on October 8 (no session the next two weeks!)
- 22 presentations in total

« Detaliled schedule will be published online shortly
- https://pls.inf.ethz.ch/education/Research Topics Iin Software Engineering.html

- Including names of teaching assistants

ETHzurich
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https://pls.inf.ethz.ch/education/Research_Topics_in_Software_Engineering.html

Your Talk: Timing

 Your talk should be 30 minutes
plus discussion

* 1.5 -2 minutes per slide

« The pace of your talk is important
- If you are too fast, the audience cannot follow
- If you are too slow, people get bored

* Practice your talk
- Track a checkpoint after circa 10 minutes

ETHzurich
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our Talk: Structure

Ownership Transfer
in Universe Types

Peter Mller Arsenii Rudich
Microsoft Research ETH Zurich
USA Suitzerland

Title slide

External Uniqueness

= Partition context into
clusters

- Clusters can be unique or not
= At most one read-write
reference into a unique
cluster

- Arbitrary aliasing within cluster
- any references not restricted
= Unique clusters are
transferred as a whole

Solution

unique Node head; head
free Node getNodes( ) { becomes
free Node res = release( this.head ) it
this.head = new rep<head> Node( )
lllegal: head is "> return res;
unusable }
lerr‘;?r?a"unn void merge( peer List 1) { nis tranns!erved to
free Node n = I.getNodes( ) head" cluster of
. this and becomes:
rep<head> Node Ih

unusable
Ih = capture( n, rep<héad> Node )

Il connect node structures;

}

Muller — 0OPS

Evaluation,
experiments,
demo

Ownership

= Establish
ownership
hierarchy

= Enforce
restrictions

Motivation,
background

Related Work

= External Uniqueness [ci:
- Type safe ownership transfer
- Destructive reads and borrowing
= AliasJava [Aldrich et al., OOP
- Type safe ownership transfer
- Lent variables break encapsulation

= Alias burying Boyland, SP&E '01]

- Static analysis to track temporary aliases
- High annotation overhead, limited by static analysis

= Object invariants [Mller et al., SCP ‘06]

- Similar to enforcement of uniqueness invariant

Related work

Merging List Representations

[Node ] [Node ] [ Node
=

Remaining
stack and heap
references are

ill-typed

Required:
unique
references

Problem

Summary

External uniqueness enables transfer

- Temporary aliases permitted

- Call-backs: restrictions of Universes + static analysis

- Capturing: external unigueness + viewpoint adaptation
- No destructive reads, no global analysis

- Owner-as-modifier property enforced
Implementation in JIML

- More expressive

- Inference of transfer operations and annotations for locals
Meet me at the Microsoft booth

- Also to get a Spec# demo

Summary,
conclusions
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Your Talk: Examples

« Examples are crucial for the understanding
- Yours and the audience’s
- Prepare your own example!

* Tryto find a running example
- For motivation, problem, and solution
- Explain in detail (takes time)

 Reduce code example to the absolute necessary

- Most people hate reading code
- Use visualizations

Ownership Modifiers

class List {

L\
rep Node head;

} Node Node

; -
.\ .\
\ \
\d \-

class Node {

any Object element; ) »
peer Node prev, next: = Ownership modifiers

describe ownership
relative to current object

ETHzurich
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Your Talk: Design

Use a
descriptive
title Uniqueness Invariant
Use a In each pre- or post-state
large font of a method, there is at

(at least 18pt) most one usable read-

write reference into each
unique cluster of an
object inside the current
context

Do not
overload slide

Peter Miller — OOPSLA 2007

Include slide
numbers

Use
visualizations

ETHzurich
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File Home Insert Design Transitions Animations Slide Show Review View Help Acrobat Storyboarding IguanaTeX Q Tell me what you want to do 8 share
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Bz Copy -~ ] Reset - U ab Replace - (uh)
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Clipboard & Slides Font Paragraph Drawing Editing Adobe Acrobat

Ownership Owner-as-Modifier Discipline Ownership Modifiers Viewpoint Adaptation

class List {

Ownership Transfer ' = Establish e o class il i

. void add( any Object 0 ) {
! B 3 ownership Crosrsmg‘ oz rep Node head; head = new rep Node( o, null, head ),
in Universe Types hierarchy boucriwdarlwes are
read-only
. . - No field updates
Peter Miiller Arsenii Rudich B = Enforce - Only calls of pure class Node { class Node { Type of field
Microsoft Research ETH Zurich 7~ L methods any Obiect element: any Object element,
USA Switzerland 7 [ode | restrictions i § - = Ownership modifiers peer Node prev, next, access X'.f or
X = Owner controls peer Node prev, next; call x.f( ) is
= ) describe ownership Node( any Objecto, peer Node p, peer Noc 1 ) [N
modifications relative to current obj ¥
T > T

Peter Miller — OOPSLA2007 Peter Miller — OOPSLA2007

Merging List Representation: External Unigueness Extended Type System Maintaining Uniqueness Maintaining Uniqueness Uniqueness Invariant
= Partition context into )
Ty = One unique cluster class List {

. Y = Destructive reads = Alias buryin unique Node head; In each pre- or post-state
- Clusters can be unique or not per unique field rying q p! p

= n = heact peer List backup; = of a method, there is at
= At most one read-write ’

. ; Set head void add( any Object o) { most one usable read-
reference into a unique 7 (RGN @R Borrowed rep<head> n = head;

. write reference into each

(REmETITE, cluster - rep<this> for references ﬂa,c upadd(© )< Do el unique cluster of an

= stack and heap - Arbitrary aliasing within cluster rep N . = head; obiect inside the current

P [Fode | [Tiock [Peer] Ny into non-unique cluster unique Node head, d \ Mark all locals of type ]l

Required: references are - any references not restricted 0 . § n-append(o); rep<f> unusable for all f

unique ill-typed ) - re|?<f> for references into void add( any Objecto) { Use (multiple] Declare which fields ) context

A = Unique clusters are unique cluster for field f rep<head> n = head, il S are accessed } o becomes usable again
transferred as a whole n-append(o), 3

Peier Miler — OOPSLAZ007 OPSLAZ007 Peter Miller— OOPSLA2007 Peter Miler — OOPSLA 2007

Peter Miler — OOPSLA2007 Peter Miller — OOPSLA2007

Ownership Transfer Static Analysis: Summary Merging List Representations: Solution

= New ownership modifier free = Set of unusable variables for each program point class List{ class List {

e Node head: p— e Node head External Uniqueness  (clark » External uniqueness enables transfer
- i i Uniqueness is. ¥ " - Type safe ownership transfer i i
:l.war free \‘/“a‘rlables are ‘(h only re c ) } qlab\lshed free Node getNodes() { e r— free Node getNodes() { P! P - Temporary aliases permitted

Manipulation of unusable-set

- Destructive reads and borrowin, o e M .
free Node res = release( this AT happens when | Node res = this head; . 9 - Call-ba.cks. reslrlctlan§ of Un|ver58§ + sla.llc ana\y5\§
- peer call marks all locals of type rep<f- unusable (for each f) “¥his head = new rep<head> Node{ ) free reference \ his head = new Node( ); AliasJava [Aldric - Capturing: external uniqueness + viewpoint adaptation
- release( 0), where o's ownership modifier is rep<g>, marks all llegal: head is Y-, return res s retumed return res capture - Type safe ownership transfer - No destructive reads, no global analysis
locals of type rep<g and field g unusable sl ) ) happens when - Lent variables break encapsulation - Owner-as-modifier property enforced
- Reading a free variable v marks v unusable . P ; free reference is
3 B g void merge( peer List 1) { nis transferred to void merge( peer List1) {
= release( o ) makes unique object o free - Assigning to a variable v removes v from the unusable-set termination

free Note = 1 gethiodes ) head" cluster of Noth I antNodss( ) assigned to field Alias burying i 0 Implementation in JML
- o has type rep<g> this and becomes

- Static analysis to track temporary aliases - More expressive
X rep<head> Node Ih; o 1/ connect node structurés;
- Marks g and all variables of type rep<g> unusable Checks ulusave

Ih = capture( n, rep<h&ad> Node ) y - High annotation overhead, limited by static analysis - Inference of transfer operations and annotations for locals
= capture( o, T ) transfers free object o to - No reading of unusable variables /] connect node structures;

Object invariants [ I 6 = Meet me at the Microsoft booth
owner described by type T - No unusable fields upon calls or method termination } - Similar to enforcement of uniqueness invariant - Also to get a Spec# demo
Peter Miler— OOPSLAZ007 Peter Milker — OOPSLA2007 Peler Miller— 00PSLAZ007

Solution in our Implementation Related Work Summary

- Reading a free variable makes it unusable

Peter Miler - OOPSLA 2007 Peter Miler— OOPSLA2007

Peter Miller — OOPSLAZ007
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Powerpoint vs. Latex

Powerpoint

« Visualizations and
animations are easy

« Don’t over-do it!

Latex

* Visualizations and
animations are painful

« Don’t under-do it!

Creating Animations is Fun

What Is Beamer?

@ Beamer is a flexible BTEX class for making slides and
presentations.

@ It supports functionality for making PDF slides complete with
colors, overlays, environments, themes, transitions, etc

@ Adds a couple new features to the commands you've been
working with.

@ As you probably guessed, this presentation was made using
the Beamer class.

ETHzurich
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Merging List Representations

/

\

Required: i

unique

references

)

&

Remaining

~

stack and heap

references are
ll-typed

J
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Your Talk: Avoid Frequent Mistakes

« Don't try to present all detalls

- Focus on a few key messages:
Motivation, problem, main idea, main result

 Don't stare at the screen or your laptop
- Look at the audience

« Come prepared
- Study paper in depth
- Rehearse your talk (but not too much)

ETHzurich
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References

« We strongly recommend studying Markus Puschel’s small guide to giving
presentations:

http://www.inf.ethz.ch/personal/markusp/teaching/qguides/guide-presentations.pdf

« We also recommend this presentation by Derek Dreyer on "How to give talks that
people can follow":

https.//www.youtube.com/watch?v=TCytsY8pdsc

ETHzurich 19


http://www.inf.ethz.ch/personal/markusp/teaching/guides/guide-presentations.pdf
https://www.youtube.com/watch?v=TCytsY8pdsc

What should | do next?

« Look at the list of available papers.

e Send us your top 5 choices via the selection form.

 If you do not submit your selection by Sept. 18 (tomorrow), we will assume that
you are no longer interested in taking the seminatr!

ETHzurich
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https://docs.google.com/document/d/1nxVBJkH5syMm4-W8aPd2KDUlnStNQdlEicpxgzZMvbA/edit
https://docs.google.com/forms/d/e/1FAIpQLSfs6gOIrKo4MB6EiCMVGMFzge_-B_re7ASUxJp617FvhQ_Pbg/viewform?usp=sf_link
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