Michalis Kokologiannakis, Ralf Jung and Peter Muller

RESEARCH TOPICS IN
SOFTWARE ENGINEERING

ETHzurich Autumn 2024

Objectives

« Learn how to present technical work
* Learn how to understand and evaluate research papers

« Learn about key research directions in the area

ETHzurich

Preparing a Talk

ETHzurich

Check your
presentation date

'

Study your
paper(s)

'

Create draft
presentation

'

Meet advisor,
get feedback

Preparing a Talk: Start Early

* Preparing a good presentation takes time
Check your
presentation date
I « Start early!
N Study your
paper(s)

'

R Create draft
presentation

'

Meet advisor,
get feedback

ETHzurich

Preparing a Talk: Study Paper

Check your * 3 'C’s of reading
presentation date - Carefully: look up terms,
1 possibly read cited papers
. Study your - CnchIIy: fllnd.llmlta.tlons, flaws
paper(s) - Creatively: think of improvements
| Create draft « Try examples by hand
presentation

Try tools If available

'

Meet advisor,
get feedback

Consult with TA If questions

ETHzurich

Preparing a Talk: Create Draft

Check your
presentation date

'

Study your
paper(s)

'

Create draft
presentation

!

Meet advisor,
get feedback

Explain the motivation for the work

Clearly present the technical solution
and results

- Use your own example, not the one in
the paper
- Include a demo if appropriate

Outline limitations or improvements

Focus on the key concepts
- Do not present all of the detalls

ETHzurich

Preparing a Talk: Get Feedback

Check your
presentation date

'

Study your
paper(s)

'

Create draft
presentation

!

Meet advisor,
get feedback

* Prepare for the meeting
- Schedule early

- Send slides in advance
- Write down questions

 Make sure you address feedback
- Take notes

* Meeting is mandatory!
- At least one week bhefore the talk

ETHzurich

Grading

* Presentation
- Understanding of the paper and its context
- Structure and content
- Presentation style (speech, slides, visualization, own examples)
- Discussion

 Participation
- Did you ask good questions?
- Did you attend all sessions?

« We will also take into account:
- the difficulty of the paper
- suggestions you received from your TA
- time you had to prepare

ETHzurich

Feedback

« We will discuss strengths and weaknesses of your talk in class
- Let us know upfront if you'd prefer not to

« Arrange a meeting with your TA to get detailed feedback

ETHzurich

Schedule

« We will meet once a week, with two presentations per session

- Next meeting on October 8 (no session the next two weeks!)
- 22 presentations in total

« Detaliled schedule will be published online shortly
- https://pls.inf.ethz.ch/education/Research Topics Iin Software Engineering.html

- Including names of teaching assistants

ETHzurich

10

https://pls.inf.ethz.ch/education/Research_Topics_in_Software_Engineering.html

Your Talk: Timing

 Your talk should be 30 minutes
plus discussion

* 1.5 -2 minutes per slide

« The pace of your talk is important
- If you are too fast, the audience cannot follow
- If you are too slow, people get bored

* Practice your talk
- Track a checkpoint after circa 10 minutes

ETHzurich

11

our Talk: Structure

Ownership Transfer
in Universe Types

Peter Mller Arsenii Rudich
Microsoft Research ETH Zurich
USA Suitzerland

Title slide

External Uniqueness

= Partition context into
clusters

- Clusters can be unique or not
= At most one read-write
reference into a unique
cluster

- Arbitrary aliasing within cluster
- any references not restricted
= Unique clusters are
transferred as a whole

Solution

unique Node head; head
free Node getNodes() { becomes
free Node res = release(this.head) it
this.head = new rep<head> Node()
lllegal: head is "> return res;
unusable }
lerr‘;?r?a"unn void merge(peer List 1) { nis tranns!erved to
free Node n = I.getNodes() head" cluster of
. this and becomes:
rep<head> Node Ih

unusable
Ih = capture(n, rep<héad> Node)

Il connect node structures;

}

Muller — 0OPS

Evaluation,
experiments,
demo

Ownership

= Establish
ownership
hierarchy

= Enforce
restrictions

Motivation,
background

Related Work

= External Uniqueness [ci:
- Type safe ownership transfer
- Destructive reads and borrowing
= AliasJava [Aldrich et al., OOP
- Type safe ownership transfer
- Lent variables break encapsulation

= Alias burying Boyland, SP&E '01]

- Static analysis to track temporary aliases
- High annotation overhead, limited by static analysis

= Object invariants [Mller et al., SCP ‘06]

- Similar to enforcement of uniqueness invariant

Related work

Merging List Representations

[Node] [Node] [Node
=

Remaining
stack and heap
references are

ill-typed

Required:
unique
references

Problem

Summary

External uniqueness enables transfer

- Temporary aliases permitted

- Call-backs: restrictions of Universes + static analysis

- Capturing: external unigueness + viewpoint adaptation
- No destructive reads, no global analysis

- Owner-as-modifier property enforced
Implementation in JIML

- More expressive

- Inference of transfer operations and annotations for locals
Meet me at the Microsoft booth

- Also to get a Spec# demo

Summary,
conclusions

ETHzurich

Your Talk: Examples

« Examples are crucial for the understanding
- Yours and the audience’s
- Prepare your own example!

* Tryto find a running example
- For motivation, problem, and solution
- Explain in detail (takes time)

 Reduce code example to the absolute necessary

- Most people hate reading code
- Use visualizations

Ownership Modifiers

class List {

L\
rep Node head;

} Node Node

; -
.\ .\
\ \
\d \-

class Node {

any Object element;) »
peer Node prev, next: = Ownership modifiers

describe ownership
relative to current object

ETHzurich

13

Your Talk: Design

Use a
descriptive
title Uniqueness Invariant
Use a In each pre- or post-state
large font of a method, there is at

(at least 18pt) most one usable read-

write reference into each
unique cluster of an
object inside the current
context

Do not
overload slide

Peter Miller — OOPSLA 2007

Include slide
numbers

Use
visualizations

ETHzurich

14

H ©-0 T %

OOPSLA 2007-10-25 - PowerPoint

Mueller Peter il O X
File Home Insert Design Transitions Animations Slide Show Review View Help Acrobat Storyboarding IguanaTeX Q Tell me what you want to do 8 share
% Cut | | [lLayout ~ O L Find ﬁ
Bz Copy -~] Reset - U ab Replace - (uh)
, New Arrange N Select ~ Create and Share
~ Format Painter gjige - [Section ~ = . s Select Adobe PDF
Clipboard & Slides Font Paragraph Drawing Editing Adobe Acrobat

Ownership Owner-as-Modifier Discipline Ownership Modifiers Viewpoint Adaptation

class List {

Ownership Transfer ' = Establish e o class il i

. void add(any Object 0) {
! B 3 ownership Crosrsmg‘ oz rep Node head; head = new rep Node(o, null, head),
in Universe Types hierarchy boucriwdarlwes are
read-only
. . - No field updates
Peter Miiller Arsenii Rudich B = Enforce - Only calls of pure class Node { class Node { Type of field
Microsoft Research ETH Zurich 7~ L methods any Obiect element: any Object element,
USA Switzerland 7 [ode | restrictions i § - = Ownership modifiers peer Node prev, next, access X'.f or
X = Owner controls peer Node prev, next; call x.f() is
=) describe ownership Node(any Objecto, peer Node p, peer Noc 1) [N
modifications relative to current obj ¥
T > T

Peter Miller — OOPSLA2007 Peter Miller — OOPSLA2007

Merging List Representation: External Unigueness Extended Type System Maintaining Uniqueness Maintaining Uniqueness Uniqueness Invariant
= Partition context into)
Ty = One unique cluster class List {

. Y = Destructive reads = Alias buryin unique Node head; In each pre- or post-state
- Clusters can be unique or not per unique field rying q p! p

= n = heact peer List backup; = of a method, there is at
= At most one read-write ’

. ; Set head void add(any Object o) { most one usable read-
reference into a unique 7 (RGN @R Borrowed rep<head> n = head;

. write reference into each

(REmETITE, cluster - rep<this> for references ﬂa,c upadd(©)< Do el unique cluster of an

= stack and heap - Arbitrary aliasing within cluster rep N . = head; obiect inside the current

P [Fode | [Tiock [Peer] Ny into non-unique cluster unique Node head, d \ Mark all locals of type]l

Required: references are - any references not restricted 0 . § n-append(o); rep<f> unusable for all f

unique ill-typed) - re|?<f> for references into void add(any Objecto) { Use (multiple] Declare which fields) context

A = Unique clusters are unique cluster for field f rep<head> n = head, il S are accessed } o becomes usable again
transferred as a whole n-append(o), 3

Peier Miler — OOPSLAZ007 OPSLAZ007 Peter Miller— OOPSLA2007 Peter Miler — OOPSLA 2007

Peter Miler — OOPSLA2007 Peter Miller — OOPSLA2007

Ownership Transfer Static Analysis: Summary Merging List Representations: Solution

= New ownership modifier free = Set of unusable variables for each program point class List{ class List {

e Node head: p— e Node head External Uniqueness (clark » External uniqueness enables transfer
- i i Uniqueness is. ¥ " - Type safe ownership transfer i i
:l.war free \‘/“a‘rlables are ‘(h only re c) } qlab\lshed free Node getNodes() { e r— free Node getNodes() { P! P - Temporary aliases permitted

Manipulation of unusable-set

- Destructive reads and borrowin, o e M .
free Node res = release(this AT happens when | Node res = this head; . 9 - Call-ba.cks. reslrlctlan§ of Un|ver58§ + sla.llc ana\y5\§
- peer call marks all locals of type rep<f- unusable (for each f) “¥his head = new rep<head> Node{) free reference \ his head = new Node(); AliasJava [Aldric - Capturing: external uniqueness + viewpoint adaptation
- release(0), where o's ownership modifier is rep<g>, marks all llegal: head is Y-, return res s retumed return res capture - Type safe ownership transfer - No destructive reads, no global analysis
locals of type rep<g and field g unusable sl)) happens when - Lent variables break encapsulation - Owner-as-modifier property enforced
- Reading a free variable v marks v unusable . P ; free reference is
3 B g void merge(peer List 1) { nis transferred to void merge(peer List1) {
= release(o) makes unique object o free - Assigning to a variable v removes v from the unusable-set termination

free Note = 1 gethiodes) head" cluster of Noth I antNodss() assigned to field Alias burying i 0 Implementation in JML
- o has type rep<g> this and becomes

- Static analysis to track temporary aliases - More expressive
X rep<head> Node Ih; o 1/ connect node structurés;
- Marks g and all variables of type rep<g> unusable Checks ulusave

Ih = capture(n, rep<h&ad> Node) y - High annotation overhead, limited by static analysis - Inference of transfer operations and annotations for locals
= capture(o, T) transfers free object o to - No reading of unusable variables /] connect node structures;

Object invariants [I 6 = Meet me at the Microsoft booth
owner described by type T - No unusable fields upon calls or method termination } - Similar to enforcement of uniqueness invariant - Also to get a Spec# demo
Peter Miler— OOPSLAZ007 Peter Milker — OOPSLA2007 Peler Miller— 00PSLAZ007

Solution in our Implementation Related Work Summary

- Reading a free variable makes it unusable

Peter Miler - OOPSLA 2007 Peter Miler— OOPSLA2007

Peter Miller — OOPSLAZ007

slide 10f18 [J4 English (United States) = B g - 1 + 150% (A

Powerpoint vs. Latex

Powerpoint

« Visualizations and
animations are easy

« Don’t over-do it!

Latex

* Visualizations and
animations are painful

« Don’t under-do it!

Creating Animations is Fun

What Is Beamer?

@ Beamer is a flexible BTEX class for making slides and
presentations.

@ It supports functionality for making PDF slides complete with
colors, overlays, environments, themes, transitions, etc

@ Adds a couple new features to the commands you've been
working with.

@ As you probably guessed, this presentation was made using
the Beamer class.

ETHzurich

16

Merging List Representations

/

\

Required: i

unique

references

)

&

Remaining

~

stack and heap

references are
ll-typed

J

ETHzurich

17

Your Talk: Avoid Frequent Mistakes

« Don't try to present all detalls

- Focus on a few key messages:
Motivation, problem, main idea, main result

 Don't stare at the screen or your laptop
- Look at the audience

« Come prepared
- Study paper in depth
- Rehearse your talk (but not too much)

ETHzurich

18

References

« We strongly recommend studying Markus Puschel’s small guide to giving
presentations:

http://www.inf.ethz.ch/personal/markusp/teaching/qguides/guide-presentations.pdf

« We also recommend this presentation by Derek Dreyer on "How to give talks that
people can follow":

https.//www.youtube.com/watch?v=TCytsY8pdsc

ETHzurich 19

http://www.inf.ethz.ch/personal/markusp/teaching/guides/guide-presentations.pdf
https://www.youtube.com/watch?v=TCytsY8pdsc

What should | do next?

« Look at the list of available papers.

e Send us your top 5 choices via the selection form.

 If you do not submit your selection by Sept. 18 (tomorrow), we will assume that
you are no longer interested in taking the seminatr!

ETHzurich

20

https://docs.google.com/document/d/1nxVBJkH5syMm4-W8aPd2KDUlnStNQdlEicpxgzZMvbA/edit
https://docs.google.com/forms/d/e/1FAIpQLSfs6gOIrKo4MB6EiCMVGMFzge_-B_re7ASUxJp617FvhQ_Pbg/viewform?usp=sf_link

	Slide 1: Research Topics in Software Engineering
	Slide 2: Objectives
	Slide 3: Preparing a Talk
	Slide 4: Preparing a Talk: Start Early
	Slide 5: Preparing a Talk: Study Paper
	Slide 6: Preparing a Talk: Create Draft
	Slide 7: Preparing a Talk: Get Feedback
	Slide 8: Grading
	Slide 9: Feedback
	Slide 10: Schedule
	Slide 11: Your Talk: Timing
	Slide 12: Your Talk: Structure
	Slide 13: Your Talk: Examples
	Slide 14: Your Talk: Design
	Slide 15
	Slide 16: Powerpoint vs. Latex
	Slide 17: Merging List Representations
	Slide 18: Your Talk: Avoid Frequent Mistakes
	Slide 19: References
	Slide 20: What should I do next?

