
RESEARCH TOPICS IN
SOFTWARE ENGINEERING

Ralf Jung and Peter Müller

Autumn 2023

2

Objectives

 Learn how to present technical work

 Learn how to understand and evaluate research papers

 Learn about key research directions in the area

3

Preparing a Talk

Check your
presentation date

Study your
paper(s)

Create draft
presentation

Meet advisor,
get feedback

4

Preparing a Talk: Start Early

 Preparing a good presentation takes time

 Start early!

Check your
presentation date

Study your
paper(s)

Create draft
presentation

Meet advisor,
get feedback

5

Preparing a Talk: Study Paper

 3 ‘C’s of reading
- Carefully: look up terms,

possibly read cited papers
- Critically: find limitations, flaws
- Creatively: think of improvements

 Try examples by hand

 Try tools if available

 Consult with TA if questions

Check your
presentation date

Study your
paper(s)

Create draft
presentation

Meet advisor,
get feedback

6

Preparing a Talk: Create Draft

 Explain the motivation for the work

 Clearly present the technical solution
and results
- Use your own example, not the one in

the paper
- Include a demo if appropriate

 Outline limitations or improvements

 Focus on the key concepts
- Do not present all of the details

Check your
presentation date

Study your
paper(s)

Create draft
presentation

Meet advisor,
get feedback

7

Preparing a Talk: Get Feedback

 Prepare for the meeting
- Schedule early
- Send slides in advance
- Write down questions

 Make sure you address feedback
- Take notes

 Meeting is mandatory!
- At least one week before the talk

Check your
presentation date

Study your
paper(s)

Create draft
presentation

Meet advisor,
get feedback

8

Grading
 Presentation

- Understanding of the paper and its context
- Structure and content
- Presentation style (speech, slides, visualization, own examples)
- Discussion

 Participation
- Did you ask good questions?
- Did you attend all sessions?

 We will also take into account:
- the difficulty of the paper
- suggestions you received from your TA
- time you had to prepare

9

Feedback

 We will discuss strengths and weaknesses of your talk in class
- Let us know upfront if you’d prefer not to

 Arrange a meeting with your TA to get detailed feedback

10

Schedule

 We will meet once a week, with two presentations per session
- Next meeting on October 10
- 22 presentations in total

 Detailed schedule will be published online shortly
- https://pls.inf.ethz.ch/education/Research_Topics_in_Software_Engineering.html
- Including names of teaching assistants

11

Your Talk: Timing

 Your talk should be 30 minutes
plus discussion

 1.5 – 2 minutes per slide

 The pace of your talk is important
- If you are too fast, the audience cannot follow
- If you are too slow, people get bored

 Practice your talk
- Track a checkpoint after circa 10 minutes

12

16

Peter Müller – OOPSLA 2007

Solution in our Implementation
class List {
unique Node head;
free Node getNodes() {
Node res = this.head;
this.head = new Node();
return res;

}
void merge(peer List l) {
Node lh = l.getNodes();
// connect node structures;

} … }

release
happens when
free reference

is returned capture
happens when

free reference is
assigned to field

14

Peter Müller – OOPSLA 2007

Static Analysis: Summary

 Set of unusable variables for each program point

 Manipulation of unusable-set
- peer call marks all locals of type rep<f> unusable (for each f)
- release(o), where o’s ownership modifier is rep<g>, marks all

locals of type rep<g> and field g unusable
- Reading a free variable v marks v unusable
- Assigning to a variable v removes v from the unusable-set

 Checks
- No reading of unusable variables
- No unusable fields upon calls or method termination

13

Peter Müller – OOPSLA 2007

Ownership Transfer

 New ownership modifier free
- Invariant: free variables are the only read-write

reference to a unique cluster
- Reading a free variable makes it unusable

 release(o) makes unique object o free
- o has type rep<g>
- Marks g and all variables of type rep<g> unusable

 capture(o, T) transfers free object o to
owner described by type T

u  free = free
free  u = any

12

Peter Müller – OOPSLA 2007

Uniqueness Invariant

In each pre- or post-state
of a method, there is at
most one usable read-
write reference into each
unique cluster of an
object inside the current
context

List

PeerNode Node

11

Peter Müller – OOPSLA 2007

class List {
unique Node head;

void add(any Object o) {
rep<head> n = head;

n.append(o);
}

}

class List {
unique Node head;
peer List backup;
void add(any Object o) {
rep<head> n = head;
backup.add(o);

n.append(o);
}

}

Maintaining Uniqueness

class List {
unique Node head;
peer List backup;
void add(any Object o) {
rep<head> n = head;
backup.add(o);
n = head;
n.append(o);

}
}

Mark all locals of type
rep<f> unusable for all f

n becomes usable again

List

PeerNode Node

Re-establish uniqueness
before peer call

List

10

Peter Müller – OOPSLA 2007

Maintaining Uniqueness

 Destructive reads  Alias burying
n = head;

n.append(o);

n = head;

n.append(o);

Set head
to null

Declare which fields
are accessed

Track aliasing
statically

Set n
to null

Use (multiple)
result values

Borrowed
receiver

unique Node head;

9

Peter Müller – OOPSLA 2007

Extended Type System

 One unique cluster
per unique field

 Refined ownership
modifiers
- rep<this> for references

into non-unique cluster
- rep<f> for references into

unique cluster for field f

List

PeerNode Node

class List {
unique Node head;
void add(any Object o) {
rep<head> n = head;
n.append(o); } }

6

Peter Müller – OOPSLA 2007

Viewpoint Adaptation
class List {
rep Node head;
void add(any Object o) {
head = new rep Node(o, null, head);
… }

}

class Node {
any Object element;
peer Node prev, next;
Node(any Object o, peer Node p, peer Node n)
{ … }

}

List

Node Node

Type of field
access x.f or
call x.f() is
determined by:
Tx  Tf

5

Peter Müller – OOPSLA 2007

Ownership Modifiers

class List {
rep Node head;
…

}

class Node {
any Object element;
peer Node prev, next;

}

List

Node Node

 Ownership modifiers
describe ownership
relative to current object

4

Peter Müller – OOPSLA 2007

Owner-as-Modifier Discipline

 References
crossing context
boundaries are
read-only
- No field updates
- Only calls of pure

methods

 Owner controls
modifications

Set

List

Node Node

Your Talk: Structure

Ownership Transfer
in Universe Types

Arsenii Rudich
ETH Zurich
Switzerland

Peter Müller
Microsoft Research

USA

7

Peter Müller – OOPSLA 2007

Merging List Representations

List

List

Node Node Node Node

Peer

Remaining
stack and heap
references are

ill-typed

Remaining
stack and heap
references are

ill-typed

Node NodeRequired:
unique

references

15

Peter Müller – OOPSLA 2007

Merging List Representations: Solution
class List {
unique Node head;
free Node getNodes() {

free Node res = release(this.head);

return res;
}

… }

class List {
unique Node head;
free Node getNodes() {

free Node res = release(this.head);
this.head = new rep<head> Node();
return res;

}

… }

class List {
unique Node head;
free Node getNodes() {

free Node res = release(this.head);
this.head = new rep<head> Node();
return res;

}
void merge(peer List l) {

free Node n = l.getNodes();
rep<head> Node lh;
lh = capture(n, rep<head> Node);
// connect node structures;

} … }

head
becomes
unusable

n is transferred to
“head” cluster of

this and becomes
unusable

Uniqueness is
re-established

Illegal: head is
unusable

upon
termination

17

Related Work

 External Uniqueness [Clarke and Wrigstad, ECOOP ‘03]
- Type safe ownership transfer
- Destructive reads and borrowing

 AliasJava [Aldrich et al., OOPSLA ‘02]
- Type safe ownership transfer
- Lent variables break encapsulation

 Alias burying [Boyland, SP&E ‘01]
- Static analysis to track temporary aliases
- High annotation overhead, limited by static analysis

 Object invariants [Müller et al., SCP ‘06]

- Similar to enforcement of uniqueness invariant

Peter Müller – OOPSLA 2007

18

Peter Müller – OOPSLA 2007

Summary

 External uniqueness enables transfer
- Temporary aliases permitted
- Call-backs: restrictions of Universes + static analysis
- Capturing: external uniqueness + viewpoint adaptation
- No destructive reads, no global analysis
- Owner-as-modifier property enforced

 Implementation in JML
- More expressive
- Inference of transfer operations and annotations for locals

 Meet me at the Microsoft booth
- Also to get a Spec# demo

Title slide Splash Motivation,
background

Problem

Solution Evaluation,
experiments,

demo

Related work Summary,
conclusions

3

Peter Müller – OOPSLA 2007

Ownership

 Establish
ownership
hierarchy

 Enforce
restrictions

Set

List

Node Node

8

Peter Müller – OOPSLA 2007

External Uniqueness

 Partition context into
clusters
- Clusters can be unique or not

 At most one read-write
reference into a unique
cluster
- Arbitrary aliasing within cluster
- any references not restricted

 Unique clusters are
transferred as a whole

List

PeerNode Node

13

Your Talk: Examples

 Examples are crucial for the understanding
- Yours and the audience’s
- Prepare your own example!

 Try to find a running example
- For motivation, problem, and solution
- Explain in detail (takes time)

 Reduce code example to the absolute necessary
- Most people hate reading code
- Use visualizations

5

Peter Müller – OOPSLA 2007

Ownership Modifiers

class List {
rep Node head;
…

}

class Node {
any Object element;
peer Node prev, next;

}

List

Node Node

 Ownership modifiers
describe ownership
relative to current object

14

12

Peter Müller – OOPSLA 2007

Uniqueness Invariant

In each pre- or post-state
of a method, there is at
most one usable read-
write reference into each
unique cluster of an
object inside the current
context

List

PeerNode Node

Your Talk: Design

Use a
descriptive

title

Include slide
numbers

Use a
large font

(at least 18pt)

Do not
overload slide

Use
visualizations

16

Powerpoint vs. Latex

Powerpoint
 Visualizations and

animations are easy
 Don’t over-do it!

Latex
 Visualizations and

animations are painful
 Don’t under-do it!

17

Merging List Representations

List

List

Node Node Node Node

Peer

Remaining
stack and heap
references are

ill-typed

Remaining
stack and heap
references are

ill-typed

Node NodeRequired:
unique

references

18

Your Talk: Avoid Frequent Mistakes

 Don’t try to present all details
- Focus on a few key messages:

Motivation, problem, main idea, main result

 Don’t stare at the screen or your laptop
- Look at the audience

 Come prepared
- Study paper in depth
- Rehearse your talk (but not too much)

19

References

 We strongly recommend studying Markus Püschel’s small guide to giving
presentations:
http://www.inf.ethz.ch/personal/markusp/teaching/guides/guide-presentations.pdf

