

Sustainable Energy & Power Electronics

Jan 24, 2020

by

Fred C Lee

University Distinguish Professor and Director Emeritus

of the Center for Power Electronics Systems

Virginia Tech,

1

Energy and Environment

A Few Facts

- Population growth to 9 billion by 2050
- Energy consumption will double by 2050
- 65% global warming coming from energy generation and use

* Courtesy of GE Global Technology Center

Statement of Ocean Acidification

ocav

380 Chin

Before Industry Revolution

Signed by the Academies of Science of 70 nations, June 1, 2009

loda

Courtesy from Sam Baldwin, Chief Scientist

Energy Efficiency & Renewable Energy

Source: Hoegh-Guldberg, et al, Science, V.318, pp.1737, 14 Dec. 2007

Global Warming

4

Energy Consumption Worldwide

Electrical Energy Consumption China: 6,167 TWH US: 3,971 India: 1,243 Japan: 1,020 Russia: 929 S. Korea: 563 Canada: 529 Germany: 529 Brazil: 524 France:441 UK: 307 Italy: 303

***Total electrical energy consumption in 2018:**

21,800TWH

Equivalent to 3257 Nuclear Power Plants Each at 1GW capacity with annual production of 7 TWH

US Energy Consumption

Target Sustainable Energy

Energy Consumption Worldwide by 2050

Paris Accord (2016): to keep the global temperature rise below $+1.5^{\circ}$ C

Global Renewable Energy

Total of renewable energy 2018 : 2351GW

- about 1/3 of total electrical Energy

What is Power Electronics?

Transistor MOSFET IGBT SiC GaN **Thyristor** 2000 1990 1980 2010 2020 1970 1960 6th Decade 11 3rd Decade 2nd Decade 1st Decade 4th Decade 5th Decade

Roles of Power Electronics

1. Renewable Energy

2. Energy Conservation

Impact of Power Electronics to

Energy Conservation

Assuming same percentage by 2050

IT Industries and Consumer Electronics

Trend: Higher performance devices with more compact designs

Efficiency Improvement

Efficiency: from 70% to 95% to 99%

Energy Saving in Lighting

Variable Speed Motor Drives

Challenge: More Cost Effective Power Electronics Solution

Potential Energy Saving though power electronics = 1770NPP

- **1. Electrical Vehicles**
- 2. LED
- 3. Microprocessors
- 4. Data Center
- 5. Wide Bandgap Power Semiconductor Devices

1. Impact of Electric Vehicles

Electrification of Transportation Systems

2. Impact of LED Lighting

Energy saving (2050) = **980** NPP

C = S 3. Impact of Next Generation Microprocessors

Intel's Integrated VR (iVR)

Integrated voltage regulators with f_s >100MHz; Input: 2.4V ; Output: 0.4V-1.4V

Ivy Bridge Core U-series processors

50% energy saving (2050) = 245 NPP

4. Impact of Data Center Power Architecture

Next Generation Data Center

CPES Impact of Game Changing Technologies (2050)

Total Energy Saving (2050): 2615 NPP

Is It Doable?

2351GW renewable energy

- about 1/3 of total electrical Energy

It is not inconceivable !

11% saving from Conservation
16% saving from game changing technologies
10X increase from today's installed capacity

5. WBG Power Semiconductor Devices

* Modified from application note of Powerex Inc.

Wide-Bandgap vs Silicon in Switching losses

GaN: Loss Breakdown

Power Electronics Technologies & Applications

Standard Modular Approaches at all Level, except...,

CPES

GaN Based DC/DC Converter for Data Center

Matrix Transformer with CM Noise Shielding

34

Silicon Based Design

PFC with Integrated Magnetics

Interleaving for DM reduction Balance for CM reduction

Fs > 1MHz

Wide-Bandgap Based design

1MHz 400 W/in³

Improved Efficiency Improved Power density Improved EMI Improved manufacturability

New Design & Manufacturing Paradigm

6.8KW Bidirectional On-Board Charger

WBG Bases OBC Integrated Magnetics

6-layer PCB > 96% **3X** Power density 43W/in³

EV Charge Station

3-Phase Interleaved Bi-Directional CLLC Converter

Eff. > 97% 154W/in³ @ 500KHz (9.4kW/L)

- More Affordable
- ✤ EMI/EMC
- Integration of Renewable Energy into the Electrical Grids seamlessly

Future: Europe Super Grid

[5] Europe super gird, <u>http://en.Wikipedia.org/</u> [6] The WhiteBook for DESERTEC in EU-MENA, <u>http://www.desertec.org/</u>, 2007

Power Electronics & Renewable Energy

while maintaining grid stability and reliability

Thank You

