THE (EVER MORE) ELECTRIC SOCIETY A PUSH TO THE LIMITS OF MODERN POWER ELECTRONICS

CHRISTIAN KOITZSCH

BOSCH

Agenda

1. Introduction to **Bosch** and Bosch Corporate Research

- 2. Trends and Drivers of the More Electric Society
- 3. Examples

a. Automated Driving - Fault tolerant Drives

b. Distributed Energy Generation - SOFC

c. Electrified Powertrain - Wide Band Gap Semiconductors

4. Future of Research Work

INTRODUCTION


BOSCH &

BOSCH RESEARCH

Bosch

Invented for Life – a guiding principle deeply rooted in our origin

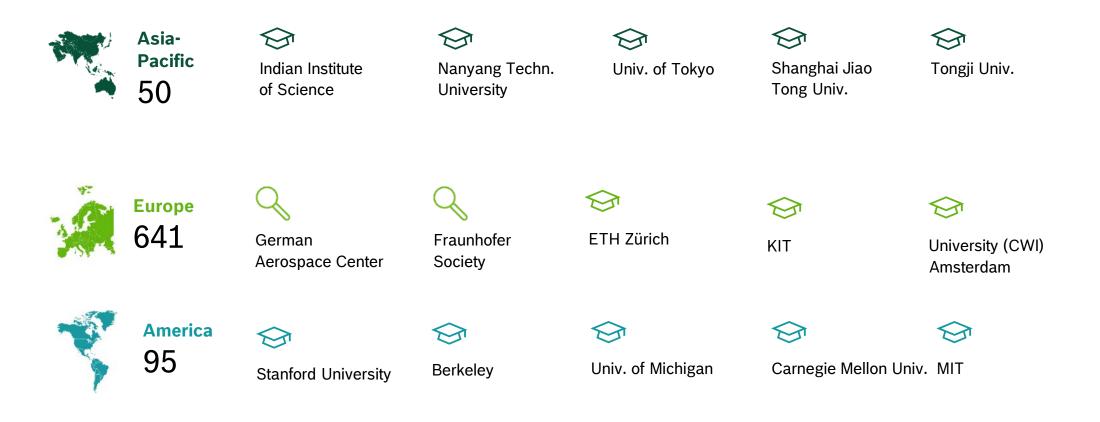
"Improvements in the world of technology and business should always also be beneficial for mankind"

On May 24, **1884**, aged 22, he set out from Rotterdam aboard a Dutch steamer headed for New York City. Robert Bosch found a job in an **Edison factory** manufacturing all types of electrical equipment, including arc lamps, light fixtures, remote-reading thermometers, and phonographs. But not everything went quite to plan. He experienced a **period of unemployment** before once again finding a job at the Edison Machine Works. Bosch decided to return to Germany after a year in the U.S. On his way home, he stopped off in England and spent half a year working for **Siemens** Brothers in Woolwich, on the outskirts of London.

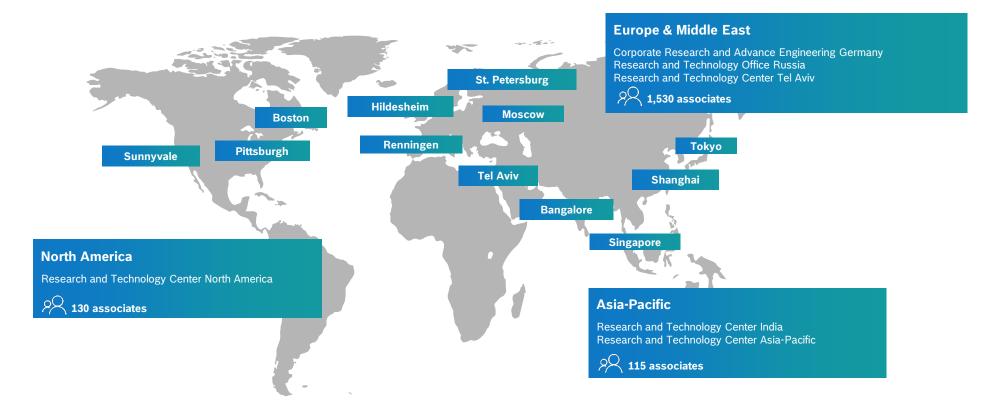
Bosch Research: Figures, Facts and Locations

Corporate Sector Research and Advance Engineering at a glance

+12 top research facilities around the globe



BOSCH Research


Bosch Research: Scientific Environment

Connected with the best in the world

Bosch Research: Figures, Facts and Locations

An eye for the big picture through a global presence

Bosch Research: Figures, Facts and Locations Renningen Campus

TRENDS AND DRIVERS TOWARDS A MORE ELECTRIC SOCIETY

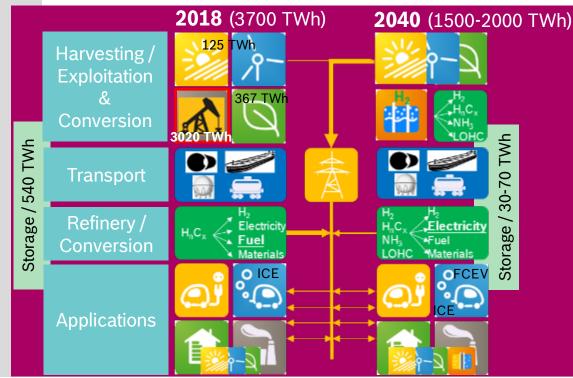
Trends and Drivers towards a more Electric Society The Internet of Things / Ubiquitous Robotics

Autonomous Driving

10

I4.0 / Industrial Robotics

Consumer Electronics


Internet of Things: Sensors + AI + Actors

© Robert Bosch GmbH 2019. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Trends and Drivers towards a more Electric Society But...there is the storage problem

New primary energy: Electricity (PV_{LCOE^*} : 1.5 ct/kWh (2025) within ±30° latitude) \rightarrow Transport & storage will require energy conversion technologies

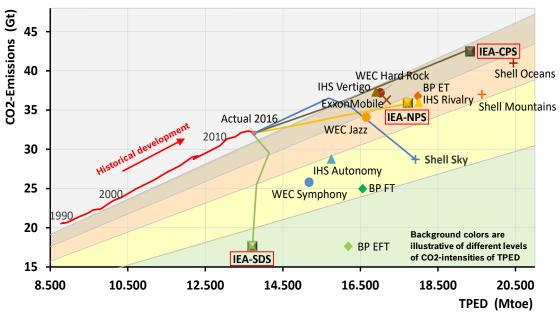
Use electricity from renewables directly wherever possible.

2018: Primary energy supply, transport & storage is mainly fossil. 76% primary energy imported (DE).

2025 - 2040: CO₂ neutral & clean energy systems:

- Trend from large to small standardized units
- Energy trading still expected (electricity, H₂, eFuels, ...)
- Diversity in energy carriers and way of transportation for different applications
- Storage capacity (30-70 TWh for DE)

© Robert Bosch GmbH 2019. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights



Trends and Drivers towards a more Electric Society And there will be no abundancy of green energy...

Energy-related CO₂ emissions vs. total energy demand in 2040

Scenario synopsis to compare KPIs

12

Findings

- KPIs clearly illustrate the differences between the scenarios available.
- Scenarios include "current policies projections", "likely development scenarios" and "normative <2°C scenarios", with IEA offering the full spread.
- Only normative scenarios manage to reduce CO₂ emissions.
- Noting how large the challenge is to reduce CO₂ emissions, a global state of "opulence of energy" does not seem conceivable soon.

Globally, clean energy will stay a rare good, until midcentury at the least.

Scenarios cover a wide range of developments and illustrate the enormous dimension of possible future changes.

Trends and Drivers towards a more Electric Society And information is Energy...

The Landauer Limit

Each single bit operation in computers must use an absolute minimum amount of energy:

= 2.75 zepto-joules at roomtemperature

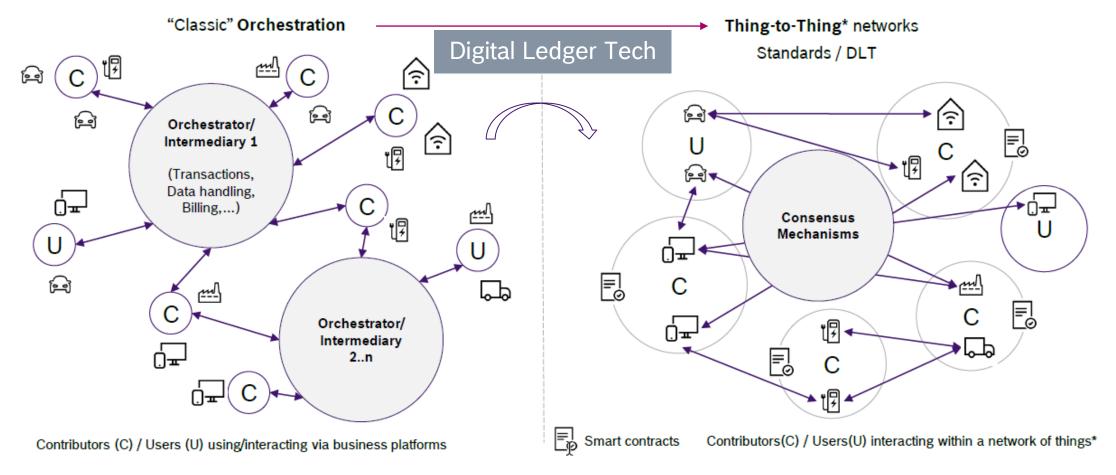
(R. Landauer, 1961, IBM Research)

Physics: 2nd law of thermodynamics. If a system is going from a state of higher concentration to lower concentration, it gets increasingly disordered. That loss of order is called entropy, and it comes off as waste heat (in computing e.g. when a bit is erased).

* Source: Nature, 12. Sept. 2018

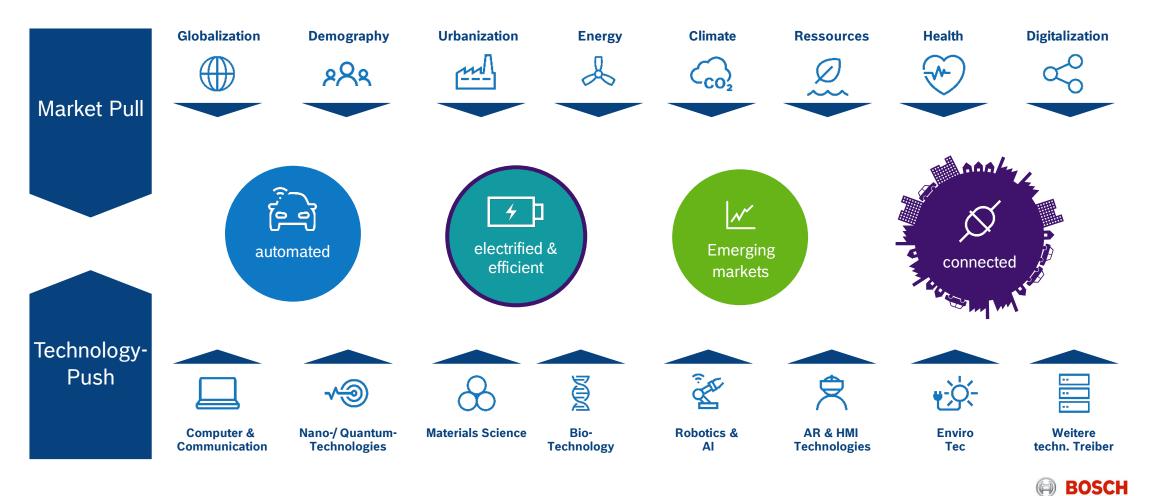
ICT could use 20.9 percent of the world's electricity consumption by 2025*.

9,000 terawatt hours (TWh)


ENERGY FORECAST Widely cited forecasts suggest that the total electricity demand of information and communications technology (ICT) will accelerate in the 2020s, and that data centres will take a larger slice. Networks (wireless and wired) Production of ICT Consumer devices (televisions, computers, mobile phones) Data centres

The chart above is an 'expected case' projection from Anders Andrae, a specialist in sustainable ICT. In his 'best case' scenario, ICT grows to only 8% of total electricity demand by 2030, rather than to 21%.

© Robert Bosch GmbH 2019. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights


Trends and Drivers towards a more Electric Society And the Economy of Things is on the horizon

14

Bosch Research: Strategic Focus Points From Megatrends & Technologies to Strategic Focus

RESEARCH AGENDA TOWARDS A MORE ELECTRIFIED SOCIETY

RESEARCH EXAMPLES

Agenda

1. Introduction to **Bosch** and Bosch Corporate Research

2. **Trends and Drivers** of the More Electric Society

3. Examples

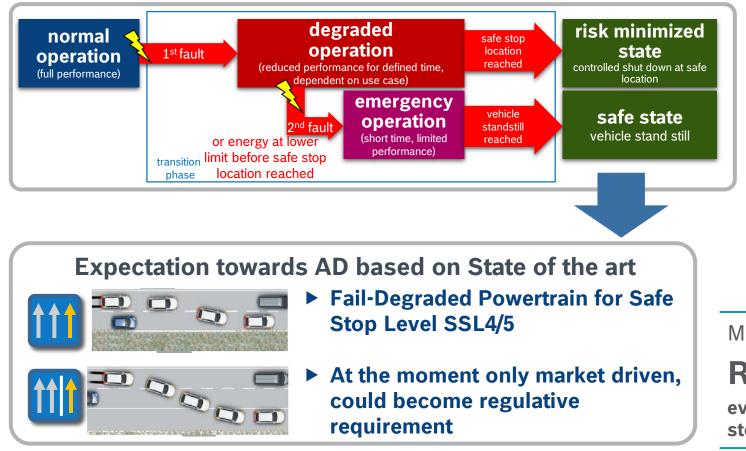
a. Automated Driving - Fault tolerant Drives

b. Distributed Energy Generation – SOFC with **ultra reliable** electronics

c. Electrified Powertrain - Wide Band Gap Semiconductors for low losses

4. Future of Research Work

Research Example - Fail-Degraded Powertrain Impact on Future Powertrain



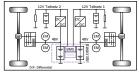
Powertrain Requirements	Privately Owned Automated Vehicles	Publicly Shared Automated Vehicles
Typical trips	urban & long distances	mainly urban, including limited highways
Purchase decision criteria	system cost & emotions	TCO ¹⁾
Peak power / peak Torque	as today	reduced
Mean engine speed	as today	increased
Safety requirements	as today / extended	extended

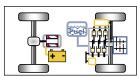
¹⁾Total Cost of Ownership

Research Example - Fail-Degraded Powertrain Expected Future Minimum Safe State

Move the vehicle into a

Risk Minimized Position


even after a vehicle stop on the left lane in stop & go situations.


Research Example - Fail-Degraded Powertrain

Fail-degraded Powertrain – Solution Options

hardware redundancy

BEV (2x e-axle/battery)

HEV (axle split)

inherent redundancy

single component fault \rightarrow degraded mode

- e-machine: 1 phase 🍕
- ICE: 1 component of control system (e.g. ign. coil)

indirect redundancy

- predictive diagnosis & maintenance
 → fault avoided/detected early enough
- externally by services: e.g. reserve car/automated tow car provided within "fault tolerance time"

degree of innovation (& development effort)

total cost (& weight, space)

challenges:

E/E-architecture, mainly

- redundant power net
- fall-back level for ECU failure

benefit: torque splitting \rightarrow efficiency1

Just do it!

challenges:

identify all relevant failure modes

- → extensive system analyses
- \rightarrow find solution with min. add-on cost

Rework the systems!

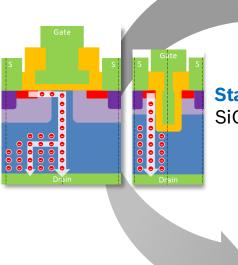
challenges:

Innovate the solutions!

Research Example – Solid Oxide Fuel Cell Prototype Development

		Design 2016	Design 2017	Design 2018
		\rightarrow Proof basic performance data	\rightarrow Proof of concept and show case	\rightarrow Demonstration in Bosch facilities
Nominal power	kW	10.0	6.5	10.0
DC efficiency	%	57.8	73.0	>73
AC net efficiency	%	48.8	59.2	> 60
Power density	kW/m³	1.3	2.0	6.9
Start up time (after 12 h break)	h	not measured	0.5	<0.5 Gefündert durch:
21 © Robert Bosch GmbH 2019. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.				

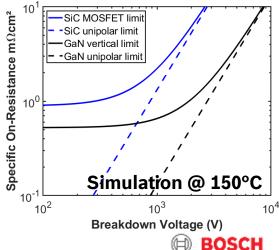
aufgrund eines Beschlusses des Deutschen Bundestages


Research Example – Power Semiconductors SiC@Bosch

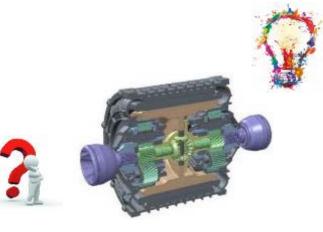
- SiC in Bosch power electronic products for electrified power train (inverter/converter)
- ▶ Benefit of SiC:
 - Converters: enables increase in switching frequency (cost reduction passives)
 - Inverter 6% range increase SiC in WLTP cycle for 1200V devices (800V DC-Link)
- Series Production of Trench-MOSFET planned in Reutlingen Plant for 2022
- ► Trend: 750V (400V DC-Link) to reduce battery cost in volume market
- State of the Art: channel mobility limits cost competitiveness vs. silicon IGBT for 750V class

\rightarrow Research on new WBG power transistor concepts "high η for competitive cost"

SiC Power Transistors in:


- Inverter
- 2 DC/DC Converter
- On-Board-Charger

Research on new concepts for 750V: advanced SiC, vertical GaN


State of the art 1200V: SIC VD / TMOSFET

also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights

Research Example – eAxle Challenging an excellent team

Lighthouse Challenge: "World record" E-Drive w/ highest power density e-Machine with >1000Nm, <50 kg, <20 l as e-Drive with >500 hp

How **experts** tackle these challenges

Combine ideas cross over physical domains & components with enabling technologies

Ideas for a new e-Machine & e-Drive

- High pole numbers (doubled)
- > High outer diameter for high torque
- Gear integration in rotor with less rpm

New technologies in manufacturing & material

- Preformed coils
- Fully potted
- Approx. Halbach ring magnets

New design technologies

- Parametric models
- Multi objective optimization
- (Free shape & topology optimization)

🗎 BOSCH

THANK YOU

6-00 AN

T800 101

BOSCH