

GAP*flow* Presenter:

Marco Fariselli Embedded ML Engineer marco.fariselli@greenwaves-technologies.com

GreenWaves Technologies

- Fabless semiconductor startup founded in 2014.
- We design and sell **extreme performance** processors for **energy constrained devices**
- 45 people, HQ in **Grenoble,** France
- Offices in **Bologna**, Italy, **Shanghai**, China, **Copenhagen**, Denmark. Global sales footprint.

Best hardware product Embedded World 2023

Embedded Technologies Award 2023 Les Assises de l'Embarqué

GAP8

In production since 2020 one of the very first commercially available RISC-V processor and AI microcontroller

Second generation ultra-low power AI and DSP enabled **Microcontroller**

Gartner COOL **VENDOR** 2019

Cool Vendors in AI Semiconductors, Alan Priestley, Saniye Alaybeyi, April 29, 2019.

Foundations of GAP

- Born from research groups:
	- **PULP** (Unibo & ETH Zurich)
	- **RISC-V**
- Push **Edge AI** to the limits **Allect Low**
	- Specialized HW
	- Optimized SW
	- 10-100 GOPS @ <10mW always-on

	Neural

• **Programmability**

- RISC-V open source ISA
- High level tools

Outline

- **GAP Architecture**
- **GAP***flow*
	- **NNtool**: Graph optimizations / Quantization
	- **Autotiler**: Memory management
- **NE16**
- **Hands-on**

GAP9 SoC

Hierarchical Compute paradigm

- **GAP9 SoC** . *A* independent frequency • **4** independent frequency domains: **FC - I/Os - Cluster - SFU**
	-

Hierarchical Compute paradigm

- **GAP9 SoC** . *A* independent frequency • **4** independent frequency domains: **FC - I/Os - Cluster - SFU**
	-

Core Core **Hierarchical Memory Architecture**
 Hierarchical Memory Architecture
 Hierarchical Memory Architecture

- $L1: 128kB 1$ Cyc/Access
- L2: 1.5MB 10-100 Cyc/Access
- L3: >2MB 100-1000 Cyc/Access
- DMA and uDMA for background copies+decompression

Hierarchical Compute paradigm

- **4** independent frequency domains: **FC - I/Os - Cluster - SFU GAP9 SoC** . *A* independent frequency
- *"Turn-on when you need"* **L1** TCDM

^{Core} | **Hierarchical Memory Architecture**
 Hierarchical Memory Architecture (w/o D-Cache)

- $L1: 128kB 1$ Cyc/Access
- L2: 1.5MB 10-100 Cyc/Access
- L3: >2MB 100-1000 Cyc/Access
- DMA and uDMA for background copies+decompression

Heterogeneous Compute Units

- 10 General Purpose RISC-V Cores
- 4 Shared FPUs (half/single precision)
- Conv/MatMul HW Accelerator (NE16)
- Low-Latency time-domain DSP Accelerator (SFU)

GAPflow

Neural Network from GAPflow POV

Computational Graph:

- *Nodes = Computational Layers*
	- e.g. Conv2D, MatMul, MatAdd, Pooling, ...
	- *COMPUTATIONAL COST*

• *Edges = Tensors*

- e.g. Input, Output, Weights, ...
- *MEMORY COST*
	- *Static*: constant at every network run (weights/bias)
	- *Dynamic*: different depending on the network inputs (in/out)

GAP*flow* **enables DNN inference on Parallel-Ultra Low Power GAP MCUs**

GREENWAVES

What is GAP*flow***?**

MAIN GOAL: turn complex DSP/NN computational graphs into optimized C code for GAP9

What is GAP*flow***?**

MAIN GOAL: turn complex DSP/NN computational graphs into optimized C code for GAP9

GAP9 Graph Optimization

- **Static topology optimization** to minimize number of operations and memory overhead
- **Quantization:** reduce memory usage up to 16x and enable integer only arithmetic when performance is critical

Validate the Solution

• Validate the numeric precision/accuracy of the deployable model in a user-friendly environment (python)

Automatic C Code Generation

- Map the graph operations into the **Optimized SW library** of GAP9
- **Optimal Memory Management:** automating memory allocation and data transfers

GAPflow: Overview

NNTool

- **Static Topology optimizations (node fusion)**
- **Quantization** w/ calibration dataset (optional)
- **Validate** numerically the deployable solution
- Generates an IR of the graph (*ATModel)*

Autotiler

- **Optimizes data movement** across the memory hierarchy
- Computes **optimal tiling sizes**
- Generates **GAP code** with double/triple-buffer mechanism using **optimized SW Library primitives**

Topology Optimizations

Minimize number of nodes/edges:

- **Remove** useless reshapes/transpose by moving them accross the graph
- **Layer Fusion:** known sequence of nodes merged together thanks to specialized hand written backend SW
- **Expressions compiler**: fuses an arbitrary sequence of piecewise/broadcastable operations and dynamically generates GAP C code for it

 $y = \sum x \cdot w + b$

x activation input tensor *w* weight parameter tensor *b* bias parameter tensor *y* activation output tensor

DL frameworks operates with **real numbers** Floating-point 32-bit format (FP32) **Inference requires FPU engines**

Quantization maps any real value into a set of **integer values**

- **COMPRESSION** to n-bit integer values up to **4x** compression with 8-bit ∩^{∕1} quantization
- **LATENCY** Inference requests integer low-precision operation 8-bit convolution up to **4x** ㎡ ን (even more due to the lower BW) faster than FP32 in SW (even more with dedicated HW like NE16)

Optimal quantization: Decompressor

- LUT based quantization allows non-uniform quantization
- quantization
• Clustering (KMeans) can lead to better approximation (higher compression rates)

(1) Quantization Ranges obtained:

- From a graph quantized with third-paties tools: *Onnx+NNCF* or *TFLite* quantization
- Using GAP Nntool Post-Training Quantization with a calibration dataset
- (2) Cast from FP32 to FP16 done by GAP NNtool. No Calibration dataset required. Typically, lossless.

GREENWA

22 **Company Proprietary**

Mixed-Precision Quantization

GAP NNTool enables layer-wise selection of quantization scheme and number of bits

-6.05<(i8-0.00)*0.04724222<6.00 forced

Mixed-Precision Quantization: Use case

- avg PESQ loss: **-0.3**, STOI loss: **0.015**
- 24 Company Proprietary • **2x** mem compression

Mixed-Precision Quantization: Use case

The majority of the weights are due to RNN layers!

PESQ STOI Mem PESQ STOI Mem PESQ STOI Mem

while **1.4-1.7x** mem compression vs FP16

Fast prototyping

- Deploy in few lines
- Complete control of:
	- Graph manipulations
	- Quantization
	- Testing
	- Deployment settings
- Check of consistency

G = NNGraph.load_graph("model.onnx") **G.adjust_order() G.fusions("scaled_match_group")** stats = G.collect_statistics(repr_dataset()) **G.quantize(stats, graph_qopts, node_qopts)**

Test the final graph in python

Prepare the graph for deployment

for data in test_data: outs = **G.execute(data, dequantize=True)** $ok = check(out)$

If not satisfied: requantize

if not ok: # update **node_qopts** and start over

Check consistency on target

```
26 Company Proprietary
                      res = G.execute_on_target(data, model_settings)
                      check_equal(res.output_tensors, outs)
                      res.print_basic_mem_infos()
                      res.print_performance()
                      ...
```
Validation of the solution

• Check deployed model accuracy:

On-device: use directly the final platform to test the accuracy (**very slow**)

(c) NNTool: bit-accurate numpy backend, the user can test accuracy in a python environment without need of device (**fast**)

```
G = NNGraph.load_graph(file_path)
stats = G.collect_statistics(calibration_dataset)
G.quantize(stats, quantization_options)
G.adjust_order()
G.fusions("scaled_match_group")
# Ready for inference
acc1 = 0for in data, target in test dataset:
    outq = G.execute(in_data, quantize=True)
    acc1 += np.array(out[-1][0]) == target
```
Prepare your model for deployment (quantization+graph manipulation)

Run inference and check results

GAP Autotiler

GAP does not have a data CACHE:

- Silicon Area
- Energy Efficiency
- NN/DSP algo have predictable data traffic

Compute Cluster w/ CNN accelerator FC Domain Cluster
DMA DMA **p** [128kB] **Core NE16 CNN**
 Core Core Core Core Core 4 Shared FPUs *On-Chip* **L3** eMRAM Flash [2MB] *Off-Chip* **L3** Flash/Ram (OSPI/Hyper/…) [>8MB] **L2** Memory SRAM [1.5 MB] GPIO **II FC IIIPE16 CNN Description of the Experiment of Texas Designation of Texas Designation of the U** $\overline{\mathbf{r}}$ is the set of \mathbf{r} SPI Periph HyperBus **SFU** … UART TUDMA **I/Os** Decom
D **LUT** L1 TCDM Memory $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ Core Core Core 5 6 7 Core Core Core 6 | 7 | 8 || 7 | 8 || 8 Periph || Cluster Ctrl | Core | (Core 9) uDMA Core Core Core Core | 1 | 2 | 3 | 2 3 4 1 Core 3 | 4 || \Box 4

Generate C code for all data movement at compile time

Core

Autotiler User Kernel: NN Node to the GAP architecture

Computation dataflow

Ahead of time

Store data (parameters & input vector) in L2 (or L3)

At run time, for any computational node:

Partition and Load data (parameters & input tensors) to L1

Run data-parallel/CNN Engine computation

Store data (output tensors) back in L2 (or L3)

//tile sizes of In, Weights, Bias computed offline //L1 buffer allocated to handle double buffering

DMA load first tiles to L1 memory buffer

DMA load next tiles to L1 memory buffer

ParConv() on L1 tile ParReLU() on L1 tile ParPool() on L1 tile

DMA write results (Out) to L2

Mapping a NN Node to the GAP HW/SW architecture

Autotiler Graph: Static allocation

Autotiler Graph: Static allocation

TECHNOLOGIES

2. Graph mode: Mem allocation inter-layer

MobilenetV1 L2 RAM Graph Memory allocation Strategy

MobilenetV1 L2 RAM Graph Memory allocation Strategy

TECHNOLOGIES

MobilenetV1 L2 RAM Graph Memory allocation Strategy

Enabling complex NN on energy constrained devices

https://arxiv.org/ftp/arxiv/papers/2311/2311.01057.pdf

Nano drones autonomous navigation

https://arxiv.org/pdf/2407.12675

TinyML: best performance HW and SW

Latency:

- 7-18x faster than second best submitted result
(Synthiant) (Synthiant)
- Up to 3x faster than industry leader yet to be available (Synthara)
- Up to 15x faster than latest research chips $(DIANA)$ (DIANA)
- 2-4x faster than other publicly available SW **KWS** AD WWW IC libraries/tools with same HW (GAP9)

Energy:

- 2-5x lower energy than second best submitted result
- Up to 4x better than not yet available HW
- *DIANA and GAP9 Unibo data not available for energy

Energy normalized to GAP9 GAPflow

Workshop

Exercise:

- 1. Create graph in nntool to compute a matrix multiplication $(C = A^*B)$ using int8 quantization and profile it in different scenarios:
	- a) A (32x64) and B (64x128) variable
	- b) A (32x64) variable and B (64x128) constant is it better than a)? Why? Can you improve it more?
- 2. Add a resize node in front of the mobilenet v2 we deployed (DO NOT use the PATCH trick)
	- a) Force the input to be stored in L3 RAM
- 3. Deploy a yolox model like we did for the mobilenet v2. Can all the optimizations we did be applied straight-forward? (maybe you have to change something :))

Convolution HW acceleration: NE16

NN Digital Accelerators

• Two main families:

- Convolvers:
	- Filter specific (difficult to generalize)
	- Maximal data reusage
	- Work well in Depth-wise convolutions
	- Examples: NE16

• MatMul Accelerators:

- Adapts well to any type of filter sizes
- Does not work in Depth-wise
- Requires Im2Col
- Most commonly used approach
- Examples: Google TPU, NVDLA

Implement the spatial filter as an **adder tree**

- More Options available:
	- **Combining** ideas of the 2 families
	- Exploit **serialization**: e.g. bit-serial multipliers
	- Exploit **sparsity**

NN Digital Accelerators

• Two main families:

- Convolvers:
	- Filter specific (difficult to generalize)
	- Maximal data reusage
	- Work well in Depth-wise convolutions
	- Examples: NE16

• MatMul Accelerators:

- Adapts well to any type of filter sizes
- Does not work in Depth-wise
- Requires Im2Col
- Most commonly used approach
- Examples: Google TPU, NVDLA

Implement the spatial filter as an **adder tree**

- More Options available:
	- **Combining** ideas of the 2 families
	- Exploit **serialization**: e.g. bit-serial multipliers
	- Exploit **sparsity**

Why bit serialization?

1 1 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0

One-step solution**:**

- more **power efficient**
- more area (**more complex**)
- not scalable (less bit, same power) e.g. 4x8bits = 8x8bits

*Bit-Serial*solution**:**

- Each cycle compute 1bit product
- less area (**simpler**)
- less bits, less cycles (energy) e.g. $4x8bits \sim 1/2$ time of 8x8bits

0 0 0 0 0 0 0 0 *shift & add* $|0|1|0|1|1|1|0$

0 1 0 1 1 1 0 1 0

. x8 CREENIM

GREENWA

• Why 3x3? Widely adopted in many vision NN (SqueezeNet, VGG, ...)

• **Design choices:**

- **3x3 filter** computed in parallel --> each adder tree has 9 filter elements
- **3x3 output pixels** computed in **parallel** --> 9 adder trees
- **16 input channels** computed in **parallel** --> each adder tree has 16 channels

- Why 3x3? Widely adopted in many vision NN (SqueezeNet, VGG, ...)
- **Design choices:**
	- **3x3 filter** computed in parallel --> each adder tree has 9 filter elements
	- **3x3 output pixels** computed in **parallel** --> 9 adder trees
	- **16 input channels** computed in **parallel** --> each adder tree has 16 channels

- Why 3x3? Widely adopted in many vision NN (SqueezeNet, VGG, ...)
- **Design choices:**
	- **3x3 filter** computed in parallel --> each adder tree has 9 filter elements
	- **3x3 output pixels** computed in **parallel** --> 9 adder trees
	- **16 input channels** computed in **parallel** --> each adder tree has 16 channels

- Why 3x3? Widely adopted in many vision NN (SqueezeNet, VGG, ...)
- **Design choices:**
	- **3x3 filter** computed in parallel --> each adder tree has 9 filter elements
	- **3x3 output pixels** computed in **parallel** --> 9 adder trees
	- **16 input channels** computed in **parallel** --> each adder tree has 16 channels

- Why 3x3? Widely adopted in many vision NN (SqueezeNet, VGG, ...)
- **Design choices:**
	- **3x3 filter** computed in parallel --> each adder tree has 9 filter elements
	- **3x3 output pixels** computed in **parallel** --> 9 adder trees
	- **16 input channels** computed in **parallel** --> each adder tree has 16 channels

- **5x5 input buffer**
- **32 output channels before reiterating**

NE16 - 3x3 Convolver (ONLY?)

- How does it do 1x1 (aka MatMul)?
	- **1x1 filter** computed in parallel --> each adder tree has 1 filter elements
	- **Parallelize on the weight bits (no more bit serial here!!!)** --> 2-8 bits in parallel
	- **3x3 output pixels** computed in **parallel** --> 9 adder trees
	- **16 input channels** computed in **parallel** --> each adder tree has 16 channels

- **5x5 input buffer**
- **32 output channels before reiterating**

Theory is cool, but reality?

Reality is often disappointing

Why is 1x1 so bad in reality?

• In both modes before starting the accumulation we need to load the input buffer !!!!

1x1 mode has lower MAC/Load ratio --> it could go faster but it is bounded by the input buffer load

NE16HW accelerator – heterogeneous performance

- Operating modes:
	- **3x3** w/ pad (w/ stride 1x1 or 2x2)
	- **1x1** (MatMul)
	- *Linear* (MatVector multiply)
	- **DepthWise 3x3** w/ pad (w/ stride 1x1 or 2x2)
- NE SW Library:
	- We can combine parallel SW (8 cores) $\vec{\epsilon}$ ⁶⁰ and NE16 to achieve the best $\frac{1}{40}$ performance in many scenarios, e.g. Im2Col + NE16-1x1

NE16 Real Use Case Performance

Company Proprietary

Architecture design still matters

Even with dedicated HW, NN architecture can help AI on the edge, e.g.:

- **3x3 Non-Separable** Convolution:
	- NE16-friendly --> **120MAC/Cyc**
- **3x3 DepthSeparable** Convolution: 3x3 DW + 1x1 PW
	- non NE16-friendly \rightarrow 6MAC/Cyc + 60MAC/Cyc \sim 0.6 **20MAC/Cyc**

[Depthwise Convolution is All You Need for Learning Multiple Visual Domains]

Hands-on

