
GAPflow Presenter:
Marco Fariselli
Embedded ML Engineer
marco.fariselli@greenwaves-technologies.com

2

GreenWaves Technologies

• Fabless semiconductor startup founded in 2014.

• We design and sell extreme performance processors for
energy constrained devices

• 45 people, HQ in Grenoble, France

• Offices in Bologna, Italy, Shanghai, China, Copenhagen,
Denmark. Global sales footprint.

GAP8
In production since 2020
one of the very first
commercially available
RISC-V processor and AI
microcontroller

Cool Vendors in AI Semiconductors,
Alan Priestley, Saniye Alaybeyi, April

29, 2019.

Best hardware product
Embedded World 2023

Embedded Technologies Award 2023
Les Assises de l’Embarqué

GAP9
Second generation
ultra-low power AI and
DSP enabled
Microcontroller

3 Company Proprietary

• Born from research groups:
• PULP (Unibo & ETH Zurich)
• RISC-V

• Push Edge AI to the limits
• Specialized HW
• Optimized SW
• 10-100 GOPS @ <10mW always-on

• Programmability
• RISC-V open source ISA
• High level tools

Foundations of GAP

Low
Latency
DSP

General
DSP

Neural
Networks

4 Company Proprietary

• GAP Architecture

• GAPflow
• NNtool: Graph optimizations / Quantization
• Autotiler: Memory management

• NE16

• Hands-on

Outline

GAP Architecture

6 Company Proprietary

Cluster
DMA

GAP9 Architecture

Compute Cluster w/ CNN acceleratorFC Domain

NE16
CNN

Engine

4 Shared FPUs

On-Chip L3 eMRAM Flash
[2MB]

Off-Chip L3 Flash/Ram (OSPI/Hyper/… - Optional)
[>8MB]

L2 Memory SRAM
[1.5 MB]

FC
Core

I2S

GPIO

SPI

HyperBus

…

UART

I/Os

SFU L1 TCDM
Memory [128kB]

Core
5

Core
6

Core
7

Core
8

Cluster Ctrl
(Core 9)

Periph
uDMA

GAP9 SoC

LUT
Decomp

Core
1

Core
2

Core
3

Core
4

7 Company Proprietary

LUT
Decomp

GAP9 Architecture

Compute Cluster w/ CNN acceleratorFC Domain

NE16
CNN

Engine

4 Shared FPUs

On-Chip L3 eMRAM Flash
[2MB]

Off-Chip L3 Flash/Ram (OSPI/Hyper/… - Optional)
[>8MB]

L2 Memory SRAM
[1.5 MB]

FC
Core

I2S

GPIO

SPI

HyperBus

…

UART

I/Os

SFU L1 TCDM
Memory [128kB]

Core
5

Core
6

Core
7

Core
8

Cluster Ctrl
(Core 9)

Core
1

Core
2

Core
3

Core
4

Periph
uDMA

GAP9 SoC Hierarchical Compute paradigm
• 4 independent frequency domains:

FC - I/Os - Cluster - SFU
• “Turn-on when you need”Cluster

DMA

8 Company Proprietary

GAP9 Architecture

Compute Cluster w/ CNN acceleratorFC Domain

NE16
CNN

Engine

4 Shared FPUs

On-Chip L3 eMRAM Flash
[2MB]

Off-Chip L3 Flash/Ram (OSPI/Hyper/… - Optional)
[>8MB]

L2 Memory SRAM
[1.5 MB]

FC
Core

I2S

GPIO

SPI

HyperBus

…

UART

I/Os

SFU L1 TCDM
Memory [128kB]

Core
5

Core
6

Core
7

Core
8

Cluster Ctrl
(Core 9)

Core
1

Core
2

Core
3

Core
4

Periph
uDMA

GAP9 SoC Hierarchical Compute paradigm
• 4 independent frequency domains:

FC - I/Os - Cluster - SFU
• “Turn-on when you need”LUT

Decomp
Cluster
DMA

Hierarchical Memory Architecture
(w/o D-Cache)
• L1: 128kB – 1 Cyc/Access
• L2: 1.5MB – 10-100 Cyc/Access
• L3: >2MB – 100-1000 Cyc/Access
• DMA and uDMA for background

copies+decompression

9 Company Proprietary

GAP9 Architecture
Hierarchical Compute paradigm
• 4 independent frequency domains:

FC - I/Os - Cluster - SFU
• “Turn-on when you need”

Compute Cluster w/ CNN acceleratorFC Domain

NE16
CNN

Engine

4 Shared FPUs

On-Chip L3 eMRAM Flash
[2MB]

Off-Chip L3 Flash/Ram (OSPI/Hyper/… - Optional)
[>8MB]

L2 Memory SRAM
[1.5 MB]

FC
Core

I2S

GPIO

SPI

HyperBus

…

UART

I/Os

SFU LUT
Decomp

L1 TCDM
Memory [128kB]

Core
5

Core
6

Core
7

Core
8

Cluster Ctrl
(Core 9)

Core
1

Core
2

Core
3

Core
4

Periph
uDMA

GAP9 SoC

Hierarchical Memory Architecture
(w/o D-Cache)
• L1: 128kB – 1 Cyc/Access
• L2: 1.5MB – 10-100 Cyc/Access
• L3: >2MB – 100-1000 Cyc/Access
• DMA and uDMA for background

copies+decompression

Heterogeneous Compute Units
• 10 General Purpose RISC-V Cores
• 4 Shared FPUs (half/single precision)
• Conv/MatMul HW Accelerator (NE16)
• Low-Latency time-domain DSP

Accelerator (SFU)

Cluster
DMA

GAPflow

11 Company Proprietary

Computational Graph:
• Nodes = Computational Layers

• e.g. Conv2D, MatMul, MatAdd, Pooling, ...
• COMPUTATIONAL COST

• Edges = Tensors
• e.g. Input, Output, Weights, ...
• MEMORY COST

• Static: constant at every network run (weights/bias)
• Dynamic: different depending on the network inputs (in/out)

Neural Network from GAPflow POV

12 Company Proprietary

GAPflow enables DNN inference on Parallel-Ultra Low Power GAP MCUs

Data
collection and
preparation

Model Design
and Training

Inference
only Graph

GAPflow GAP
Deployment

from graph
representation to GAP

optimized C code

13 Company Proprietary

What is GAPflow?

MAIN GOAL: turn complex DSP/NN computational
graphs into optimized C code for GAP9

int RunNetwork (uint8_t*
input_data)
 {
 …..….
 }

GAPflow

14 Company Proprietary

GAP9 Graph Optimization
• Static topology optimization to minimize number of operations and

memory overhead
• Quantization: reduce memory usage up to 16x and enable integer only

arithmetic when performance is critical

What is GAPflow?

MAIN GOAL: turn complex DSP/NN computational
graphs into optimized C code for GAP9

int RunNetwork (uint8_t*
input_data)
 {
 …..….
 }

GAPflow

Automatic C Code Generation
• Map the graph operations into the Optimized SW library of GAP9
• Optimal Memory Management: automating memory allocation and data

transfers

Validate the Solution
• Validate the numeric precision/accuracy of the deployable model in a

user-friendly environment (python)

15 Company Proprietary

GAPflow: Overview

NNTool

Autotiler

ATModel

GAP code

Platform
Simulator
GVSOC

• Optimizes data movement across the memory
hierarchy

• Computes optimal tiling sizes
• Generates GAP code with double/triple-buffer

mechanism using optimized SW Library
primitives

• Static Topology optimizations (node fusion)
• Quantization w/ calibration dataset (optional)
• Validate numerically the deployable solution
• Generates an IR of the graph (ATModel)

NNTool

Autotiler

Company Proprietary

Minimize number of nodes/edges:
• Remove useless reshapes/transpose by moving them accross the graph
• Layer Fusion: known sequence of nodes merged together thanks to specialized hand-

written backend SW
• Expressions compiler: fuses an arbitrary sequence of piecewise/broadcastable

operations and dynamically generates GAP C code for it

Topology Optimizations

C
on

vo
lu

tio
n

R
eL

U

Po
ol

L2
Memory

L1
Cluster

L1
Cluster

L1
Cluster

L2
Memory

L1
Cluster

L1
Cluster

L2
Memory

L1
Cluster

L2
Memory

Data

C
on

vo
lu

tio
n

R
eL

U

Po
ol

L2
Memory

L1
Cluster

L1
Cluster

L2
Memory

L1
Cluster

L1
Cluster

Data

17 Company Proprietary

x activation input tensor
w weight parameter tensor
b bias parameter tensor
y activation output tensor

Quantization: Background

+

x0

x1 x2
x3

w0

w1 w2

w3

b

y

Convolution Operation
� = � ∙�+�

18 Company Proprietary

DL frameworks operates with real numbers
Floating-point 32-bit format (FP32)
Inference requires FPU engines

+

x0

x1 x2
x3

w0

w1 w2

w3

b

y

1.9-0.30.653

-7.88

-45.6537
6.7

-3.6

5.21

5.6

Convolution Operation
� = � ∙�+�

Quantization: Background

19 Company Proprietary

Quantization maps any real value into a set of integer values
COMPRESSION to n-bit integer values up to 4x compression with 8-bit

quantization
LATENCY Inference requests integer low-precision operation 8-bit convolution up to 4x

(even more due to the lower BW) faster than FP32 in SW (even more with dedicated HW like
NE16)

+

x0

x1 x2
x3

w0

w1 w2

w3
Convolution Operation
� = � ∙�+�

b

y

201

-8

-45
6

-3

5

6

Quantization: Background

20 Company Proprietary

Quantization: Background

Any real tensor value is mapped into the 8-bit domain (INT8) through an affine
transformation:
https://arxiv.org/abs/1712.05877 (TFLite compliant)

� = � (� −�)
���� − ����
2�����

� = 0 if symmetric
ranges ���� =− ����

�

�

���� ����

Convolution Operation

��� = ��� ∙���� = � ∙� � =
����
��
 �∙�

Affine
transformation

Integer only MACs
X is a quantized value, x is a real value

INT8

• 4x memory reduction
• >4x speed up thanks to specialized HW
• But accuracy???

https://arxiv.org/abs/1712.05877

21 Company Proprietary

Optimal quantization: Decompressor
• LUT based quantization allows non-uniform

quantization
• Clustering (KMeans) can lead to better

approximation (higher compression rates)
� = � (� −�)

� = 퐿��[�]

L2 Memory SRAM
[1.5 MB]

L1 TCDM
Memory [128kB]

LUT
Decomp

Cluster
DMA

2-8 bits LUT indices
saved in L3-L2

8-16 bits (e.g. float16)
decompressed symbols

Standard SW
Kernels

low BW (1 sym/cyc)
*performance gain if you can
move from L3 to L2

lower mem footprint

Linear quantization

Optimal quantization

22 Company Proprietary

(1) Quantization Ranges obtained:
• From a graph quantized with third-paties tools: Onnx+NNCF or TFLite quantization
• Using GAP Nntool Post-Training Quantization with a calibration dataset

(2) Cast from FP32 to FP16 done by GAP NNtool. No Calibration dataset required. Typically, lossless.

Quantization

Scheme Weights Activations Affine
Transformation

POW2 (QX.Y) 16-bit (symmetric, PerTensor) 16-bit (symmetric, PerTensor) � = � ∗ 2−�

int8 2-8bits (symmetric, PerChannel) 8- or 16bit (asym. PerTensor) � = (� −�) ∗ �
Float16 16-bit (bfloat16/f16ieee) 16-bit (bfloat16/f16ieee) -
LUT 2-8bits (LUT) (not supported) � = 퐿��[�]

* TFLite quantization, https://arxiv.org/abs/1712.05877

(1)

(1)

(2)

https://arxiv.org/abs/1712.05877

Company Proprietary

Mixed-Precision Quantization
GAP NNTool enables layer-wise selection of quantization scheme and number of bits

Asymmetric
int8 Bfloat16

NNTool automatically inserts
quantize/dequantize nodes to match

quantization range between connected
nodes

���16 = �(����8 −�)

����8 = ���16/� +�

G.quantize(
 node_options={
 “DEPTHSWISE_CONV_2D_0_1_fusion”:
 {
 “scheme”: “FLOAT”,
 “float_type”=”bfloat16”
 }
 }
)

24 Company Proprietary

Mixed-Precision Quantization: Use case
LSTM256 GRU256 LSTM128 GRU128

k 256 256 128 128

RNN_0 LSTM(257,256) GRU(257, 256) LSTM(257,128) GRU(257, 128)

RNN_1 LSTM(257,256) GRU(257, 256) LSTM(128 128) GRU(128, 128)

Param 1.24 M 0.985 M 0.493 M 0.411 M

% rnn
params 84% 80% 66.5% 59.8%

The majority of the weights are
due to RNN layers!

1x257 STFT
Magnitude

features
Li

ne
ar

 +
 R

eL
U

R
N

N
_0

R
N

N
_1

Li
ne

ar
 +

 R
eL

U

Li
ne

ar
 +

 S
ig

m

[1
x2

57
]

[1
 x

 k
]

[1
 x

 k
]

[1
 x

 2
57

]

1x257 STFT
Spectral
Mask

LSTM or GRU
layers

To
 F

P1
6

Fr
om

 F
P1

6

INT8 is lightweight but LOSSY

• avg PESQ loss: -0.3, STOI loss: 0.015
• 2x mem compression

Quant Type LSTM256 GRU256 LSTM128 GRU128
PESQ STOI Mem PESQ STOI Mem PESQ STOI Mem PESQ STOI Mem

FP32 2.79 0.94 4.75 2.78 0.94 3.76 2.76 0.94 1.88 2.69 0.94 1.56
FP16 2.79 0.94 2.37 2.78 0.94 1.88 2.76 0.94 0.94 2.69 0.94 0.78
INT8 2.42 0.92 1.18 2.48 0.93 0.93 2.51 0.92 0.47 2.36 0.93 0.39

TinyDenoiser models trained on Valentini dataset: FP32 baseline

25 Company Proprietary

Mixed-Precision Quantization: Use case
LSTM256 GRU256 LSTM128 GRU128

k 256 256 128 128

RNN_0 LSTM(257,256) GRU(257, 256) LSTM(257,128) GRU(257, 128)

RNN_1 LSTM(257,256) GRU(257, 256) LSTM(128 128) GRU(128, 128)

Param 1.24 M 0.985 M 0.493 M 0.411 M

% rnn
params 84% 80% 66.5% 59.8%

Li
ne

ar
 +

 R
eL

U

R
N

N
_0

R
N

N
_1

Li
ne

ar
 +

 R
eL

U

Li
ne

ar
 +

 S
ig

m

[1
x2

57
]

[1
 x

 k
]

[1
 x

 k
]

[1
 x

 2
57

]

LSTM or GRU
layers

To
 F

P1
6

Fr
om

 F
P1

6

FP16FP16 INT8

The majority of the weights are
due to RNN layers!

MixedFP16-INT8 present low accuracy
degradation (PESQ: 0.06, STOI: <0.01)
while 1.4-1.7x mem compression vs FP16

Quant Type LSTM256 GRU256 LSTM128 GRU128
PESQ STOI Mem PESQ STOI Mem PESQ STOI Mem PESQ STOI Mem

FP32 2.78 0.94 4.75 2.78 0.94 3.76 2.76 0.94 1.88 2.69 0.94 1.56
FP16 2.78 0.94 2.37 2.78 0.94 1.88 2.76 0.94 0.94 2.69 0.94 0.78
INT8 2.42 0.92 1.18 2.48 0.93 0.93 2.51 0.92 0.47 2.36 0.93 0.39

MixFP16-
INT8 2.73 0.93 1.37 2.72 0.94 1.13 2.69 0.93 0.67 2.63 0.94 0.55

TinyDenoiser models trained on Valentini dataset: FP32 baseline

No need for expensive QAT !!!

26 Company Proprietary

• Deploy in few lines

• Complete control of:
• Graph manipulations
• Quantization
• Testing
• Deployment settings

• Check of consistency

Fast prototyping
G = NNGraph.load_graph(“model.onnx”)
G.adjust_order()
G.fusions(“scaled_match_group”)
stats = G.collect_statistics(repr_dataset())
G.quantize(stats, graph_qopts, node_qopts)

for data in test_data:
 outs = G.execute(data, dequantize=True)
 ok = check(outs)

if not ok:
 # update node_qopts and start over

res = G.execute_on_target(data, model_settings)
check_equal(res.output_tensors, outs)
res.print_basic_mem_infos()
res.print_performance()
...

Prepare the graph for deployment

Test the final graph in python

If not satisfied: requantize

Check consistency on target

Company Proprietary

• Check deployed model accuracy:
On-device: use directly the final platform to test the accuracy (very slow)
NNTool: bit-accurate numpy backend, the user can test accuracy in a python environment without
need of device (fast)

Validation of the solution

Prepare your model for deployment
(quantization+graph manipulation)

Run inference and check results

G = NNGraph.load_graph(file_path)
stats = G.collect_statistics(calibration_dataset)
G.quantize(stats, quantization_options)
G.adjust_order()
G.fusions(“scaled_match_group”)
Ready for inference
acc1 = 0
for in_data, target in test_dataset:
 outq = G.execute(in_data, quantize=True)
 acc1 += np.argmax(outq[-1][0]) == target

28 Company Proprietary

GAP Autotiler

Compute Cluster w/ CNN
accelerator

FC Domain
Cluster
DMA

NE16 CNN
Engine

4 Shared FPUs

On-Chip L3 eMRAM Flash
[2MB]

Off-Chip L3 Flash/Ram (OSPI/Hyper/…)
[>8MB]

L2 Memory SRAM
[1.5 MB]

FC
Core

I2S

GPIO

SPI

HyperBus

…

UART

I/Os

SFU
LUT

Decom
p

L1 TCDM Memory
[128kB]

Core
5

Core
6

Core
7

Core
8

Cluster Ctrl
(Core 9)

Core
1

Core
2

Core
3

Core
4

Periph
uDMA

GAP does not have a data CACHE:
• Silicon Area
• Energy Efficiency
• NN/DSP algo have predictable data

traffic
Generate C code for all data
movement at compile time

L3
RAM

L1
Processing Unit

DMA

L2

uDMA

L3
Flash1

L3
Flash2

Company Proprietary

Compute Cluster w/ CNN acceleratorFC Domain
Cluster
DMA

NE16 CNN
Engine

4 Shared FPUs

On-Chip L3 eMRAM Flash
[2MB]

Off-Chip L3 Flash/Ram (OSPI/Hyper/…)
[>8MB]

L2 Memory SRAM
[1.5 MB]

FC
Core

I2S

GPIO

SPI

HyperBus

…

UART

I/Os

SFU LUT
Decomp

L1 TCDM Memory
[128kB]

Core
5

Core
6

Core
7

Core
8

Cluster Ctrl
(Core 9)

Core
1

Core
2

Core
3

Core
4

Periph
uDMA

Autotiler User Kernel: NN Node to the GAP architecture
Computation dataflow

Store data (parameters & input vector) in L2 (or L3)
Ahead of time

Partition and Load data (parameters & input tensors) to L1
At run time, for any computational node:

Convolution

weights

Run data-parallel/CNN Engine computation

Store data (output tensors) back in L2 (or L3)

Convolution
y

weights

x

� = � ∙�

x y

C
on

v

R
eL

U

Po
ol

DMA
L2 buffer_0

L1 buffer_0

L1 buffer_1
CPU

L3 tensors

uDMA

L2 buffer_1

Conv_Layer0

Tile0

Tile0

Tile0

Tile1

Tile1

Tile1

Tile2

Tile2

Tile2

Tile3L3 -> L2

L2 -> L1

Exec

Mapping a NN Node to the GAP HW/SW architecture

31 Company Proprietary

Autotiler Graph: Static allocation

S0_Inpu
t S0_Weights S0_Output

S0_OutputS1_Weights S1_Output

S0_OutputS2_Wei
ghts S1_OutputS2_Ou

tput

L2 Budget
Layer

0

Layer
1

Layer
2

// layer 0
CNN_ConvolutionPoolAct_SQ8(

“Con_Layer_0”,……);

// layer 1
CNN_ConvolutionPoolAct_SQ8(

“Con_Layer_1”,……);

// layer 2
CNN_ConvolutionPoolAct_SQ8(

“Con_Layer_2”,……);

S0_Input

S2_Output

S1_Output

S0_Output

S0_Weights

S1_Weights

S2_Weights

32 Company Proprietary

S0_Inpu
t S0_WeightsS0_Output

S0_Output S1_Weights S1_Output

S0_Output S2_Wei
ghts S1_OutputS2_Ou

tput

L2 Budget
Layer

0

Layer
1

Layer
2

// layer 0
CNN_ConvolutionPoolAct_SQ8(

“Con_Layer_0”,……);

// layer 1
CNN_ConvolutionPoolAct_SQ8(

“Con_Layer_1”,……);

// layer 2
CNN_ConvolutionPoolAct_SQ8(

“Con_Layer_2”,……);

S0_Input

S2_Output

S1_Output

S0_Output

S0_Weights

S1_Weights

S2_Weights

Autotiler Graph: Static allocation

33 Company Proprietary

S0_In S0_Out

S0_OutS1_Out

S0_OutS2_
Out

L2 Budget

S0_
W

S1_
W S2_W

L3 Budget

S0_
W

S1_
W S1_OutS2_W

S1_
W S2_W

S1_
W S2_W

Layer
0

Layer
1

Layer
2

// layer 0
CNN_ConvolutionPoolAct_SQ8(

“Con_Layer_0”,……);

// layer 1
CNN_ConvolutionPoolAct_SQ8(

“Con_Layer_1”,……);

// layer 2
CNN_ConvolutionPoolAct_SQ8(

“Con_Layer_2”,……);

S0_Input

S2_Output

S1_Output

S0_Output

S0_Weights

S1_Weights

S2_Weights

Autotiler Graph: Static allocation (tensor promotion)

34 Company Proprietary

Layer 0 Layer 1 Layer 2

Layer
0

Layer
1

Layer
2

S0_Input

S2_Output

S1_Output

S0_Output

S0_Weights

S1_Weights

S2_Weights

No Promotion:

Static Promotion of constants

0
5

10
15
20
25
30
35
40
45

Construct Layer 0 Layer 1 Layer 2 Layer 0 Layer 1 Layer 2

run 1 run 2

0
10
20
30
40
50
60
70
80

Construct Layer 0 Layer 1 Layer 2

...

...

2. Graph mode: Mem allocation inter-layer Energy Weights L3->L2
Energy L2->L1
Energy Execution

Company Proprietary

MobilenetV1 L2 RAM Graph Memory allocation Strategy

L2 Budget

L2Buff_Dyn:
allocated in the
constructor for L2
in/out

L2Buff:
allocated in the
constructor for L2
promoted
constants

Company Proprietary

L2 Budget

L2Buff_Dyn:
allocated in the
constructor for L2
in/out

L2Buff:
allocated in the
constructor for L2
promoted
constants

MobilenetV1 L2 RAM Graph Memory allocation Strategy

Company Proprietary

L2Buff_Dyn:
allocated in the
constructor for L2
in/out

L2Buff:
allocated in the
constructor for L2
promoted
constants

L2 Budget

MobilenetV1 L2 RAM Graph Memory allocation Strategy

38

Enabling complex NN on energy constrained devices

25 msec
windows
(hop length
6.25 msec)

time

Fr
eq

ue
nc

y
bi

ns

RNN-based SE
TinyDenoiser

[0.01, 0.52, 0.92,
0.00, …,0.00,
0,01]

×

Denoised Speech Signal

Noisy Speech Signal

Output
Spectral mask

DSP/NN Mixed-Precision – Denoiser

Multi NN – Licence Plate Smart glasses - object detection

Nano drones autonomous navigation

https://arxiv.org/pdf/2407.12675

https://arxiv.org/pdf/2210.07692

https://ieeexplore.ieee.org/abstract/document/9401730
https://arxiv.org/ftp/arxiv/papers/2311/2311.01057.pdf

39 Company Confidential – Shared under NDA

Latency:
• 7-18x faster than second best submitted result

(Synthiant)
• Up to 3x faster than industry leader yet to be

available (Synthara)
• Up to 15x faster than latest research chips

(DIANA)
• 2-4x faster than other publicly available SW

libraries/tools with same HW (GAP9)

Energy:
• 2-5x lower energy than second best submitted

result
• Up to 4x better than not yet available HW
• *DIANA and GAP9 Unibo data not available for

energy

TinyML: best performance HW and SW

Latency normalized to GAP9 GAPflow

Energy normalized to GAP9 GAPflow

Workshop

41 Company Proprietary

1. Create graph in nntool to compute a matrix multiplication (C = A*B) using int8
quantization and profile it in different scenarios:
a) A (32x64) and B (64x128) variable
b) A (32x64) variable and B (64x128) constant - is it better than a)? Why? Can you improve it

more?

2. Add a resize node in front of the mobilenet v2 we deployed (DO NOT use the PATCH
trick)
a) Force the input to be stored in L3 RAM

3. Deploy a yolox model like we did for the mobilenet v2. Can all the optimizations we did
be applied straight-forward? (maybe you have to change something :))

Exercise:

Convolution HW acceleration:
NE16

43 Company Proprietary

• Two main families:
• Convolvers:

• Filter specific (difficult to generalize)
• Maximal data reusage
• Work well in Depth-wise convolutions
• Examples: NE16

• MatMul Accelerators:
• Adapts well to any type of filter sizes
• Does not work in Depth-wise
• Requires Im2Col
• Most commonly used approach
• Examples: Google TPU, NVDLA

• More Options available:
• Combining ideas of the 2 families
• Exploit serialization: e.g. bit-serial

multipliers
• Exploit sparsity

Implement the spatial
filter as an adder tree

44 Company Proprietary

• Two main families:
• Convolvers:

• Filter specific (difficult to generalize)
• Maximal data reusage
• Work well in Depth-wise convolutions
• Examples: NE16

• MatMul Accelerators:
• Adapts well to any type of filter sizes
• Does not work in Depth-wise
• Requires Im2Col
• Most commonly used approach
• Examples: Google TPU, NVDLA

• More Options available:
• Combining ideas of the 2 families
• Exploit serialization: e.g. bit-serial

multipliers
• Exploit sparsity

Implement the spatial
filter as an adder tree

NE16

45 Company Proprietary

0 1 0 1 1 1 0 1

1 1 0 0 1 0 0 0

1 1 0 0 1 0 0 01 1 0 0 1 0 0 0

One-step solution:
• more power efficient
• more area (more complex)
• not scalable (less bit, same power)

e.g. 4x8bits = 8x8bits

0 1 0 1 1 1 0 1

1 1 0 0 1 0 0 0

0 0 0 0 0 0 0 0

shift & add 0 1 0 1 1 1 0 1

0

0 1 0 1 1 1 0 1 0

0 0 0 0 0 0 0 00shift & add

...

Bit-Serial solution:
• Each cycle compute 1bit product
• less area (simpler)
• less bits, less cycles (energy)

e.g. 4x8bits ~ 1/2 time of 8x8bits

x8

46 Company Proprietary

• Why 3x3? Widely adopted in many vision NN (SqueezeNet, VGG, ...)

• Design choices:
• 3x3 filter computed in parallel --> each adder tree has 9 filter elements
• 3x3 output pixels computed in parallel --> 9 adder trees
• 16 input channels computed in parallel --> each adder tree has 16 channels

3

3

input output

47 Company Proprietary

3

3

• Why 3x3? Widely adopted in many vision NN (SqueezeNet, VGG, ...)

• Design choices:
• 3x3 filter computed in parallel --> each adder tree has 9 filter elements
• 3x3 output pixels computed in parallel --> 9 adder trees
• 16 input channels computed in parallel --> each adder tree has 16 channels

input output

48 Company Proprietary

3

3

• Why 3x3? Widely adopted in many vision NN (SqueezeNet, VGG, ...)

• Design choices:
• 3x3 filter computed in parallel --> each adder tree has 9 filter elements
• 3x3 output pixels computed in parallel --> 9 adder trees
• 16 input channels computed in parallel --> each adder tree has 16 channels

input output

49 Company Proprietary

5

5

3

3

• Why 3x3? Widely adopted in many vision NN (SqueezeNet, VGG, ...)

• Design choices:
• 3x3 filter computed in parallel --> each adder tree has 9 filter elements
• 3x3 output pixels computed in parallel --> 9 adder trees
• 16 input channels computed in parallel --> each adder tree has 16 channels

input output

50 Company Proprietary

5

5

3

3

• 5x5 input buffer
• 32 output channels before reiterating

• Why 3x3? Widely adopted in many vision NN (SqueezeNet, VGG, ...)

• Design choices:
• 3x3 filter computed in parallel --> each adder tree has 9 filter elements
• 3x3 output pixels computed in parallel --> 9 adder trees
• 16 input channels computed in parallel --> each adder tree has 16 channels

input output

51 Company Proprietary

3

3

3

3

• How does it do 1x1 (aka MatMul)?
• 1x1 filter computed in parallel --> each adder tree has 1 filter elements
• Parallelize on the weight bits (no more bit serial here!!!) --> 2-8 bits in parallel
• 3x3 output pixels computed in parallel --> 9 adder trees
• 16 input channels computed in parallel --> each adder tree has 16 channels

input
output

• 5x5 input buffer
• 32 output channels before reiterating

52 Company Proprietary

Theory

3x3

162 MAC/Cyc

1x1

144 MAC/Cyc

Reality
~130 MAC/Cyc

(~80%)
~60 MAC/Cyc

(<50%)

53 Company Proprietary

• In both modes before starting the accumulation we need to load the input buffer !!!!

Input buffer size Number of MACs for the
input buffer MAC/Load ratio

3x3 5x5x16 32x3x3x16x3x3=41472 103.7
1x1 3x3x16 32x3x3x16=4608 32.0

1x1 mode has lower MAC/Load ratio --> it could go
faster but it is bounded by the input buffer load

Company Proprietary

NE16HW accelerator – heterogeneous performance

• Operating modes:
• 3x3 w/ pad (w/ stride 1x1 or 2x2)
• 1x1 (MatMul)
• Linear (MatVector multiply)
• DepthWise 3x3 w/ pad (w/ stride 1x1 or 2x2)

• NE SW Library:
• We can combine parallel SW (8 cores)

and NE16 to achieve the best
performance in many scenarios, e.g.
Im2Col + NE16-1x1

0

20

40

60

80

100

120

140

3x3 1x1 Linear 3x3 DW

M
AC

/C
yc

NE16 Real Use Case Performance

8-RISCY Cores a8w8
NE16 a8w8
NE16 a16w8

8.9x

4.4x

2.7x 1.1x

No perf gain but allows to
keep the HWC order

Company Proprietary

Architecture design still matters

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Op/Cyc MOp Mcyc #Params

Standard vs DepthSeparable 3x3
Convolution on NE16

NonSeparable DepthSeparable

[Depthwise Convolution is All You Need for Learning Multiple Visual Domains]

Even with dedicated HW, NN architecture can help AI on the edge,
e.g.:

• 3x3 Non-Separable Convolution:
• NE16-friendly --> 120MAC/Cyc

• 3x3 DepthSeparable Convolution: 3x3 DW + 1x1 PW
• non NE16-friendly --> 6MAC/Cyc + 60MAC/Cyc ~

20MAC/Cyc

Hands-on

