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GreenWaves Technologies

• Fabless semiconductor startup founded in 2014.

• We design and sell extreme performance processors for 
energy constrained devices

• 45 people, HQ in Grenoble, France

• Offices in Bologna, Italy, Shanghai, China, Copenhagen, 
Denmark. Global sales footprint.

GAP8
In production since 2020 
one of the very first 
commercially available 
RISC-V processor and AI 
microcontroller

Cool Vendors in AI Semiconductors,
Alan Priestley, Saniye Alaybeyi, April 

29, 2019.

Best hardware product
Embedded World 2023

Embedded Technologies Award 2023
Les Assises de l’Embarqué

GAP9
Second generation 
ultra-low power AI and 
DSP enabled 
Microcontroller
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• Born from research groups:
• PULP (Unibo & ETH Zurich)
• RISC-V

• Push Edge AI to the limits
• Specialized HW
• Optimized SW
• 10-100 GOPS @ <10mW always-on

• Programmability
• RISC-V open source ISA
• High level tools

Foundations of GAP

Low 
Latency
DSP

General
DSP

Neural 
Networks
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• GAP Architecture

• GAPflow
• NNtool: Graph optimizations / Quantization
• Autotiler: Memory management

• NE16

• Hands-on

Outline



GAP Architecture
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Cluster 
DMA

GAP9 Architecture

Compute Cluster w/ CNN acceleratorFC Domain

NE16 
CNN 

Engine

4 Shared FPUs

On-Chip L3 eMRAM Flash
[2MB]

Off-Chip L3 Flash/Ram (OSPI/Hyper/… - Optional)
[>8MB]

L2 Memory SRAM 
[1.5 MB]

FC
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I2S

GPIO

SPI

HyperBus

…

UART

I/Os

SFU L1 TCDM 
Memory [128kB]
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Core
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Core
8

Cluster Ctrl 
(Core 9)
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GAP9 SoC
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LUT 
Decomp

GAP9 Architecture

Compute Cluster w/ CNN acceleratorFC Domain

NE16 
CNN 

Engine

4 Shared FPUs

On-Chip L3 eMRAM Flash
[2MB]

Off-Chip L3 Flash/Ram (OSPI/Hyper/… - Optional)
[>8MB]

L2 Memory SRAM 
[1.5 MB]

FC
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I2S

GPIO
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HyperBus

…

UART
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SFU L1 TCDM 
Memory [128kB]

Core
5

Core
6

Core
7

Core
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(Core 9)

Core
1

Core
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Core
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Core
4

Periph 
uDMA

GAP9 SoC Hierarchical Compute paradigm
• 4 independent frequency domains: 

FC - I/Os - Cluster - SFU
• “Turn-on when you need”Cluster 

DMA
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GAP9 Architecture

Compute Cluster w/ CNN acceleratorFC Domain

NE16 
CNN 

Engine

4 Shared FPUs

On-Chip L3 eMRAM Flash
[2MB]

Off-Chip L3 Flash/Ram (OSPI/Hyper/… - Optional)
[>8MB]

L2 Memory SRAM 
[1.5 MB]
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8
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3

Core
4

Periph 
uDMA

GAP9 SoC Hierarchical Compute paradigm
• 4 independent frequency domains: 

FC - I/Os - Cluster - SFU
• “Turn-on when you need”LUT 

Decomp
Cluster 
DMA

Hierarchical Memory Architecture 
(w/o D-Cache)
• L1: 128kB – 1 Cyc/Access
• L2: 1.5MB – 10-100 Cyc/Access
• L3: >2MB – 100-1000 Cyc/Access
• DMA and uDMA for background 

copies+decompression
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GAP9 Architecture
Hierarchical Compute paradigm
• 4 independent frequency domains: 

FC - I/Os - Cluster - SFU
• “Turn-on when you need”

Compute Cluster w/ CNN acceleratorFC Domain

NE16 
CNN 

Engine

4 Shared FPUs

On-Chip L3 eMRAM Flash
[2MB]

Off-Chip L3 Flash/Ram (OSPI/Hyper/… - Optional)
[>8MB]

L2 Memory SRAM 
[1.5 MB]

FC
Core

I2S

GPIO

SPI

HyperBus

…

UART

I/Os

SFU LUT 
Decomp

L1 TCDM 
Memory [128kB]

Core
5

Core
6

Core
7

Core
8

Cluster Ctrl 
(Core 9)

Core
1

Core
2

Core
3

Core
4

Periph 
uDMA

GAP9 SoC

Hierarchical Memory Architecture 
(w/o D-Cache)
• L1: 128kB – 1 Cyc/Access
• L2: 1.5MB – 10-100 Cyc/Access
• L3: >2MB – 100-1000 Cyc/Access
• DMA and uDMA for background 

copies+decompression

Heterogeneous Compute Units
• 10 General Purpose RISC-V Cores
• 4 Shared FPUs (half/single precision)
• Conv/MatMul HW Accelerator (NE16)
• Low-Latency time-domain DSP 

Accelerator (SFU)

Cluster 
DMA

 



GAPflow
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Computational Graph:
• Nodes = Computational Layers

• e.g. Conv2D, MatMul, MatAdd, Pooling, ...
• COMPUTATIONAL COST

• Edges = Tensors
• e.g. Input, Output, Weights, ...
• MEMORY COST

• Static: constant at every network run (weights/bias)
• Dynamic: different depending on the network inputs (in/out)

Neural Network from GAPflow POV
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GAPflow enables DNN inference on Parallel-Ultra Low Power GAP MCUs

Data 
collection and 
preparation

Model Design 
and Training

Inference 
only Graph

GAPflow GAP 
Deployment

from graph 
representation to GAP 

optimized C code
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What is GAPflow? 

MAIN GOAL: turn complex DSP/NN computational 
graphs into optimized C code for GAP9

int RunNetwork (uint8_t* 
input_data)
   { 
                  …..….
   }

GAPflow
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GAP9 Graph Optimization
• Static topology optimization to minimize number of operations and 

memory overhead
• Quantization: reduce memory usage up to 16x and enable integer only 

arithmetic when performance is critical

What is GAPflow? 

MAIN GOAL: turn complex DSP/NN computational 
graphs into optimized C code for GAP9

int RunNetwork (uint8_t* 
input_data)
   { 
                  …..….
   }

GAPflow

Automatic C Code Generation
• Map the graph operations into the Optimized SW library of GAP9
• Optimal Memory Management: automating memory allocation and data 

transfers

Validate the Solution
• Validate the numeric precision/accuracy of the deployable model in a 

user-friendly environment (python)
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GAPflow: Overview

NNTool

Autotiler

ATModel

GAP code

Platform
Simulator 
GVSOC

• Optimizes data movement across the memory 
hierarchy 

• Computes optimal tiling sizes
• Generates GAP code with double/triple-buffer 

mechanism using optimized SW Library 
primitives

• Static Topology optimizations (node fusion)
• Quantization w/ calibration dataset (optional)
• Validate numerically the deployable solution
• Generates an IR of the graph (ATModel)

NNTool

Autotiler 
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Minimize number of nodes/edges:
• Remove useless reshapes/transpose by moving them accross the graph
• Layer Fusion: known sequence of nodes merged together thanks to specialized hand-

written backend SW
• Expressions compiler: fuses an arbitrary sequence of piecewise/broadcastable 

operations and dynamically generates GAP C code for it

Topology Optimizations
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x activation input tensor
w weight parameter tensor
b bias parameter tensor
y activation output tensor

Quantization: Background

+

x0

x1 x2
x3

w0

w1 w2

w3

b

y

Convolution Operation
� =   � ∙�+�
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DL frameworks operates with real numbers
Floating-point 32-bit format (FP32)
Inference requires FPU engines

+

x0

x1 x2
x3

w0

w1 w2

w3

b

y

1.9-0.30.653

-7.88

-45.6537
6.7

-3.6

5.21

5.6

Convolution Operation
� =   � ∙�+�

Quantization: Background
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Quantization maps any real value into a set of integer values
COMPRESSION to n-bit integer values up to 4x compression with 8-bit 

quantization
LATENCY Inference requests integer low-precision operation 8-bit convolution up to 4x 

(even more due to the lower BW) faster than FP32 in SW (even more with dedicated HW like 
NE16)

+

x0

x1 x2
x3

w0

w1 w2

w3
Convolution Operation
� =   � ∙�+�

b

y

201

-8

-45
6

-3

5

6

Quantization: Background
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Quantization: Background

Any real tensor value is mapped into the 8-bit domain (INT8) through an affine 
transformation:
https://arxiv.org/abs/1712.05877  (TFLite compliant)

� = � (� −�) 
���� − ����
2�����

� = 0 if symmetric 
ranges ���� =− ����

�

�

���� ����

Convolution Operation

��� =   ��� ∙���� =   � ∙� � =
����
��
 �∙�

Affine 
transformation

Integer only MACs
X  is a quantized value, x  is a real value

INT8

• 4x memory reduction
• >4x speed up thanks to specialized HW
• But accuracy???

https://arxiv.org/abs/1712.05877
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Optimal quantization: Decompressor
• LUT based quantization allows non-uniform 

quantization
• Clustering (KMeans) can lead to better 

approximation (higher compression rates)
� = � (� −�) 

� = 퐿��[�] 

L2 Memory SRAM 
[1.5 MB]

L1 TCDM 
Memory [128kB]

LUT 
Decomp

Cluster 
DMA

2-8 bits LUT indices
saved in L3-L2

8-16 bits (e.g. float16)
decompressed symbols

Standard SW
Kernels

low BW (1 sym/cyc)
*performance gain if you can 
move from L3 to L2

lower mem footprint

Linear quantization

Optimal quantization
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(1) Quantization Ranges obtained: 
• From a graph quantized with third-paties tools: Onnx+NNCF or TFLite quantization
• Using GAP Nntool Post-Training Quantization with a calibration dataset

(2) Cast from FP32 to FP16 done by GAP NNtool. No Calibration dataset required. Typically, lossless.

Quantization

Scheme Weights Activations Affine 
Transformation

POW2 (QX.Y) 16-bit (symmetric, PerTensor) 16-bit (symmetric, PerTensor) � = � ∗ 2−�

int8 2-8bits (symmetric, PerChannel) 8- or 16bit (asym. PerTensor) � = (� −�) ∗ �
Float16 16-bit (bfloat16/f16ieee) 16-bit (bfloat16/f16ieee) -
LUT 2-8bits (LUT) (not supported) � = 퐿��[�]

 

   

* TFLite quantization, https://arxiv.org/abs/1712.05877

(1)

(1)

(2)

https://arxiv.org/abs/1712.05877
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Mixed-Precision Quantization
GAP NNTool enables layer-wise selection of quantization scheme and number of bits

Asymmetric 
int8 Bfloat16

NNTool automatically inserts 
quantize/dequantize nodes to match 

quantization range between connected 
nodes

���16 = �(����8 −�)

����8 =  ���16/� +�

G.quantize(
  node_options={
    “DEPTHSWISE_CONV_2D_0_1_fusion”:
    {
       “scheme”: “FLOAT”,
       “float_type”=”bfloat16”
    }
  }
)
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Mixed-Precision Quantization: Use case
LSTM256 GRU256 LSTM128 GRU128

k 256 256 128 128

RNN_0 LSTM(257,256) GRU(257, 256) LSTM(257,128) GRU(257, 128)

RNN_1 LSTM(257,256) GRU(257, 256) LSTM(128 128) GRU(128, 128)

Param 1.24 M 0.985 M 0.493 M 0.411 M

% rnn 
params 84% 80% 66.5% 59.8%

The majority of the weights are 
due to RNN layers!
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1x257 STFT 
Spectral 
Mask

LSTM or GRU 
layers
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6
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6

INT8 is lightweight but LOSSY

• avg PESQ loss: -0.3, STOI loss: 0.015 
• 2x mem compression

Quant Type LSTM256 GRU256 LSTM128 GRU128
PESQ STOI Mem PESQ STOI Mem PESQ STOI Mem PESQ STOI Mem

FP32 2.79 0.94 4.75 2.78 0.94 3.76 2.76 0.94 1.88 2.69 0.94 1.56
FP16 2.79 0.94 2.37 2.78 0.94 1.88 2.76 0.94 0.94 2.69 0.94 0.78
INT8 2.42 0.92 1.18 2.48 0.93 0.93 2.51 0.92 0.47 2.36 0.93 0.39

TinyDenoiser models trained on Valentini dataset: FP32 baseline
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Mixed-Precision Quantization: Use case
LSTM256 GRU256 LSTM128 GRU128

k 256 256 128 128

RNN_0 LSTM(257,256) GRU(257, 256) LSTM(257,128) GRU(257, 128)

RNN_1 LSTM(257,256) GRU(257, 256) LSTM(128 128) GRU(128, 128)

Param 1.24 M 0.985 M 0.493 M 0.411 M

% rnn 
params 84% 80% 66.5% 59.8%
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FP16FP16 INT8

The majority of the weights are 
due to RNN layers!

MixedFP16-INT8 present low accuracy 
degradation (PESQ: 0.06, STOI: <0.01) 
while 1.4-1.7x mem compression vs FP16

Quant Type LSTM256 GRU256 LSTM128 GRU128
PESQ STOI Mem PESQ STOI Mem PESQ STOI Mem PESQ STOI Mem

FP32 2.78 0.94 4.75 2.78 0.94 3.76 2.76 0.94 1.88 2.69 0.94 1.56
FP16 2.78 0.94 2.37 2.78 0.94 1.88 2.76 0.94 0.94 2.69 0.94 0.78
INT8 2.42 0.92 1.18 2.48 0.93 0.93 2.51 0.92 0.47 2.36 0.93 0.39

MixFP16-
INT8 2.73 0.93 1.37 2.72 0.94 1.13 2.69 0.93 0.67 2.63 0.94 0.55

TinyDenoiser models trained on Valentini dataset: FP32 baseline

No need for expensive QAT !!!
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• Deploy in few lines

• Complete control of:
• Graph manipulations
• Quantization
• Testing
• Deployment settings

• Check of consistency

Fast prototyping
G = NNGraph.load_graph(“model.onnx”)
G.adjust_order()
G.fusions(“scaled_match_group”)
stats = G.collect_statistics(repr_dataset())
G.quantize(stats, graph_qopts, node_qopts)

for data in test_data:
  outs = G.execute(data, dequantize=True)
  ok = check(outs)

if not ok:
  # update node_qopts and start over

res = G.execute_on_target(data, model_settings)
check_equal(res.output_tensors, outs)
res.print_basic_mem_infos()
res.print_performance()
...

Prepare the graph for deployment

Test the final graph in python

If not satisfied: requantize

Check consistency on target
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• Check deployed model accuracy:
On-device: use directly the final platform to test the accuracy (very slow)
NNTool: bit-accurate numpy backend, the user can test accuracy in a python environment without 
need of device (fast)

Validation of the solution

Prepare your model for deployment 
(quantization+graph manipulation)

Run inference and check results

G = NNGraph.load_graph(file_path)
stats = G.collect_statistics(calibration_dataset)
G.quantize(stats, quantization_options)
G.adjust_order()
G.fusions(“scaled_match_group”)
# Ready for inference
acc1 = 0
for in_data, target in test_dataset:
    outq = G.execute(in_data, quantize=True)
    acc1 += np.argmax(outq[-1][0]) == target
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GAP Autotiler

Compute Cluster w/ CNN 
accelerator

FC Domain
Cluster 
DMA

NE16 CNN 
Engine

4 Shared FPUs

On-Chip L3 eMRAM Flash
[2MB]

Off-Chip L3 Flash/Ram (OSPI/Hyper/…)
[>8MB]

L2 Memory SRAM 
[1.5 MB]

FC
Core

I2S

GPIO

SPI

HyperBus

…

UART

I/Os

SFU
LUT 

Decom
p

L1 TCDM Memory 
[128kB]

Core
5

Core
6

Core
7

Core
8

Cluster Ctrl 
(Core 9)

Core
1

Core
2

Core
3

Core
4

Periph 
uDMA

GAP does not have a data CACHE:
• Silicon Area
• Energy Efficiency
• NN/DSP algo have predictable data 

traffic
Generate C code for all data 
movement at compile time

L3 
RAM

L1
Processing Unit

DMA

L2

uDMA

L3 
Flash1

L3 
Flash2
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Compute Cluster w/ CNN acceleratorFC Domain
Cluster 
DMA

NE16 CNN 
Engine

4 Shared FPUs

On-Chip L3 eMRAM Flash
[2MB]

Off-Chip L3 Flash/Ram (OSPI/Hyper/…)
[>8MB]

L2 Memory SRAM 
[1.5 MB]

FC
Core

I2S

GPIO

SPI

HyperBus

…

UART

I/Os

SFU LUT 
Decomp

L1 TCDM Memory 
[128kB]

Core
5

Core
6

Core
7

Core
8

Cluster Ctrl 
(Core 9)

Core
1

Core
2

Core
3

Core
4

Periph 
uDMA

Autotiler User Kernel: NN Node to the GAP architecture
Computation dataflow

Store data (parameters & input vector) in L2 (or L3)
Ahead of time

Partition and Load data (parameters & input tensors) to L1
At run time, for any computational node:

Convolution

weights

Run data-parallel/CNN Engine computation

Store data (output tensors) back in L2 (or L3)

Convolution
y

weights

x

� =   � ∙�

x y
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DMA
L2 buffer_0

L1 buffer_0

L1 buffer_1
CPU

L3 tensors

uDMA

L2 buffer_1

Conv_Layer0

Tile0

Tile0

Tile0

Tile1

Tile1

Tile1

Tile2

Tile2

Tile2

Tile3L3 -> L2

L2 -> L1

Exec

Mapping a NN Node to the GAP HW/SW architecture
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Autotiler Graph: Static allocation

S0_Inpu
t S0_Weights S0_Output

S0_OutputS1_Weights S1_Output

S0_OutputS2_Wei
ghts S1_OutputS2_Ou

tput

L2 Budget
Layer 

0

Layer 
1

Layer 
2

// layer 0
CNN_ConvolutionPoolAct_SQ8(

“Con_Layer_0”,……);

// layer 1
CNN_ConvolutionPoolAct_SQ8(

“Con_Layer_1”,……);

// layer 2
CNN_ConvolutionPoolAct_SQ8(

“Con_Layer_2”,……);

S0_Input

S2_Output

S1_Output

S0_Output

S0_Weights

S1_Weights

S2_Weights
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S0_Inpu
t S0_WeightsS0_Output

S0_Output S1_Weights S1_Output

S0_Output S2_Wei
ghts S1_OutputS2_Ou

tput

L2 Budget
Layer 

0

Layer 
1

Layer 
2

// layer 0
CNN_ConvolutionPoolAct_SQ8(

“Con_Layer_0”,……);

// layer 1
CNN_ConvolutionPoolAct_SQ8(

“Con_Layer_1”,……);

// layer 2
CNN_ConvolutionPoolAct_SQ8(

“Con_Layer_2”,……);

S0_Input

S2_Output

S1_Output

S0_Output

S0_Weights

S1_Weights

S2_Weights

Autotiler Graph: Static allocation
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S0_In S0_Out

S0_OutS1_Out

S0_OutS2_
Out

L2 Budget

S0_
W

S1_
W S2_W

L3 Budget

S0_
W

S1_
W S1_OutS2_W

S1_
W S2_W

S1_
W S2_W

Layer 
0

Layer 
1

Layer 
2

// layer 0
CNN_ConvolutionPoolAct_SQ8(

“Con_Layer_0”,……);

// layer 1
CNN_ConvolutionPoolAct_SQ8(

“Con_Layer_1”,……);

// layer 2
CNN_ConvolutionPoolAct_SQ8(

“Con_Layer_2”,……);

S0_Input

S2_Output

S1_Output

S0_Output

S0_Weights

S1_Weights

S2_Weights

Autotiler Graph: Static allocation (tensor promotion)
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Layer 0 Layer 1 Layer 2

Layer 
0

Layer 
1

Layer 
2

S0_Input

S2_Output

S1_Output

S0_Output

S0_Weights

S1_Weights

S2_Weights

No Promotion:

Static Promotion of constants

0
5

10
15
20
25
30
35
40
45

Construct Layer 0 Layer 1 Layer 2 Layer 0 Layer 1 Layer 2

run 1 run 2

0
10
20
30
40
50
60
70
80

Construct Layer 0 Layer 1 Layer 2

...

...

2. Graph mode: Mem allocation inter-layer Energy Weights L3->L2
Energy L2->L1
Energy Execution
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MobilenetV1 L2 RAM Graph Memory allocation Strategy

L2 Budget 

L2Buff_Dyn:
allocated in the 
constructor for L2 
in/out

L2Buff:
allocated in the 
constructor for L2 
promoted 
constants
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L2 Budget 

L2Buff_Dyn:
allocated in the 
constructor for L2 
in/out

L2Buff:
allocated in the 
constructor for L2 
promoted 
constants

MobilenetV1 L2 RAM Graph Memory allocation Strategy
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L2Buff_Dyn:
allocated in the 
constructor for L2 
in/out

L2Buff:
allocated in the 
constructor for L2 
promoted 
constants

L2 Budget 

MobilenetV1 L2 RAM Graph Memory allocation Strategy
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Enabling complex NN on energy constrained devices

25 msec 
windows 
(hop length 
6.25 msec)

time

Fr
eq

ue
nc

y 
bi

ns

RNN-based SE
TinyDenoiser

[  0.01, 0.52, 0.92, 
0.00, …,0.00, 
0,01 ]

×

Denoised Speech Signal

Noisy Speech Signal

Output 
Spectral mask

DSP/NN Mixed-Precision – Denoiser

Multi NN – Licence Plate Smart glasses - object detection

Nano drones autonomous navigation

https://arxiv.org/pdf/2407.12675

https://arxiv.org/pdf/2210.07692

https://ieeexplore.ieee.org/abstract/document/9401730
https://arxiv.org/ftp/arxiv/papers/2311/2311.01057.pdf
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Latency:
• 7-18x faster than second best submitted result 

(Synthiant)
• Up to 3x faster than industry leader yet to be 

available (Synthara)
• Up to 15x faster than latest research chips 

(DIANA)
• 2-4x faster than other publicly available SW 

libraries/tools with same HW (GAP9)

Energy:
• 2-5x lower energy than second best submitted 

result
• Up to 4x better than not yet available HW
• *DIANA and GAP9 Unibo data not available for 

energy

TinyML: best performance HW and SW

Latency normalized to GAP9 GAPflow

Energy normalized to GAP9 GAPflow



Workshop
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1. Create graph in nntool to compute a matrix multiplication (C = A*B) using int8 
quantization and profile it in different scenarios:
a) A (32x64) and B (64x128) variable
b) A (32x64) variable and B (64x128) constant - is it better than a)? Why? Can you improve it 

more?

2. Add a resize node in front of the mobilenet v2 we deployed (DO NOT use the PATCH 
trick)
a) Force the input to be stored in L3 RAM

3. Deploy a yolox model like we did for the mobilenet v2. Can all the optimizations we did 
be applied straight-forward? (maybe you have to change something :) )

Exercise:



Convolution HW acceleration: 
NE16
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• Two main families:
• Convolvers:

• Filter specific (difficult to generalize)
• Maximal data reusage
• Work well in Depth-wise convolutions
• Examples: NE16

• MatMul Accelerators:
• Adapts well to any type of filter sizes
• Does not work in Depth-wise
• Requires Im2Col
• Most commonly used approach
• Examples: Google TPU, NVDLA

• More Options available:
• Combining ideas of the 2 families
• Exploit serialization: e.g. bit-serial 

multipliers
• Exploit sparsity

Implement the spatial 
filter as an adder tree
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• Two main families:
• Convolvers:

• Filter specific (difficult to generalize)
• Maximal data reusage
• Work well in Depth-wise convolutions
• Examples: NE16

• MatMul Accelerators:
• Adapts well to any type of filter sizes
• Does not work in Depth-wise
• Requires Im2Col
• Most commonly used approach
• Examples: Google TPU, NVDLA

• More Options available:
• Combining ideas of the 2 families
• Exploit serialization: e.g. bit-serial 

multipliers
• Exploit sparsity

Implement the spatial 
filter as an adder tree

NE16
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0 1 0 1 1 1 0 1

1 1 0 0 1 0 0 0

1 1 0 0 1 0 0 01 1 0 0 1 0 0 0

One-step solution:
• more power efficient
• more area (more complex)
• not scalable (less bit, same power)

e.g. 4x8bits = 8x8bits

0 1 0 1 1 1 0 1

1 1 0 0 1 0 0 0

0 0 0 0 0 0 0 0

shift & add 0 1 0 1 1 1 0 1

0

0 1 0 1 1 1 0 1 0

0 0 0 0 0 0 0 00shift & add

...

Bit-Serial solution:
• Each cycle compute 1bit product
• less area (simpler)
• less bits, less cycles (energy)

e.g. 4x8bits ~ 1/2 time of 8x8bits

x8
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• Why 3x3? Widely adopted in many vision NN (SqueezeNet, VGG, ...)

• Design choices:
• 3x3 filter computed in parallel --> each adder tree has 9 filter elements
• 3x3 output pixels computed in parallel --> 9 adder trees
• 16 input channels computed in parallel --> each adder tree has 16 channels

3

3

input output
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• 5x5 input buffer
• 32 output channels before reiterating

• Why 3x3? Widely adopted in many vision NN (SqueezeNet, VGG, ...)

• Design choices:
• 3x3 filter computed in parallel --> each adder tree has 9 filter elements
• 3x3 output pixels computed in parallel --> 9 adder trees
• 16 input channels computed in parallel --> each adder tree has 16 channels

input output
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3

3

3

3

• How does it do 1x1 (aka MatMul)?
• 1x1 filter computed in parallel --> each adder tree has 1 filter elements
• Parallelize on the weight bits (no more bit serial here!!!) --> 2-8 bits in parallel
• 3x3 output pixels computed in parallel --> 9 adder trees
• 16 input channels computed in parallel --> each adder tree has 16 channels

input
output

• 5x5 input buffer
• 32 output channels before reiterating
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Theory

3x3

162 MAC/Cyc

1x1

144 MAC/Cyc

Reality
~130 MAC/Cyc

(~80%)
~60 MAC/Cyc

(<50%)



53 Company Proprietary

• In both modes before starting the accumulation we need to load the input buffer !!!!

Input buffer size Number of MACs for the 
input buffer MAC/Load ratio

3x3 5x5x16 32x3x3x16x3x3=41472 103.7
1x1 3x3x16 32x3x3x16=4608 32.0

1x1 mode has lower MAC/Load ratio --> it could go 
faster but it is bounded by the input buffer load
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NE16HW accelerator – heterogeneous performance

• Operating modes:
• 3x3 w/ pad (w/ stride 1x1 or 2x2)
• 1x1 (MatMul)
• Linear (MatVector multiply)
• DepthWise 3x3 w/ pad (w/ stride 1x1 or 2x2)

• NE SW Library:
• We can combine parallel SW (8 cores) 

and NE16 to achieve the best 
performance in many scenarios, e.g. 
Im2Col + NE16-1x1

0

20

40

60

80

100

120

140

3x3 1x1 Linear 3x3 DW

M
AC

/C
yc

NE16 Real Use Case Performance

8-RISCY Cores a8w8
NE16 a8w8
NE16 a16w8

8.9x

4.4x

2.7x 1.1x

No perf gain but allows to 
keep the HWC order
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Architecture design still matters

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Op/Cyc MOp Mcyc #Params

Standard vs DepthSeparable 3x3 
Convolution on NE16

NonSeparable DepthSeparable

[Depthwise Convolution is All You Need for Learning Multiple Visual Domains]

Even with dedicated HW, NN architecture can help AI on the edge, 
e.g.:

• 3x3 Non-Separable Convolution:
• NE16-friendly --> 120MAC/Cyc

• 3x3 DepthSeparable Convolution: 3x3 DW + 1x1 PW
• non NE16-friendly --> 6MAC/Cyc + 60MAC/Cyc ~ 

20MAC/Cyc



Hands-on


