

Research Introduction in Ceres Lab

Cerebral and Reliable NoC-based AI Accelerator Design and Applications for Anomaly Detection in Smart Motor Systems

Kun-Chih (Jimmy) Chen

Associate Professor/ Electric Junior Chair Professor, Dep. Electronics and Electrical Engineering/ Institute of Electronics, National Yang Ming Chiao Tung University (NYCU) Email: kcchen@nycu.edu.tw

URL: https://sites.google.com/site/cereslaben

CERES LAB

Institute of Electronics, NYCU

Kun-Chih (Jimmy) Chen,

Associate Professor/ Electric Junior Chair Professor Institute of Electronics, National Yang Ming Chiao Tung University Email: <u>kcchen@nycu.edu.tw</u> Website: https://sites.google.com/site/cereslaben/advisor

Specialty

- Multi-core System on Chip (MPSoC) design
- Neural network model and accelerator design
- Reliable system design
- VLSI CAD design
- Smart Manufacturing

Feature Honors

- Dr. Da-You Wu Memorial Award of NSTC
- IEEE TVLSI Best Paper Award
- IEEE CASS Continuing Education Featuring Selected Conference Tutorial
- Taiwan IC Design Society Outstanding Young Scholar Award

CERES LAB

Institute of Electronics, NYCU

Chip Gallery

PE4	RE2	-PE8-	E
			B
PE4	PES	PE6	B
PE7	PE8	- PE9-	
		PE4 PE5	PE4 PE5 PE5 PE4 PE5 PE6 PE7 PE6 PE6

All-digital temperature sensor

- Technology: TSMC 90nm
- Size: 0.0016 mm²
- Power: 798mW
- Clock frequency: 5MHz

Al-sonar for geological analysis

- Technology: TSMC 40nm
- Size: 1.56 mm²
- Power: 25.5mW
- Clock frequency: 100MHz

NoC-based reconfigurable DNN

- Technology: TSMC 40nm
- Size: 0.84 mm²
- Power: 10.37mW
- Clock frequency: 105MHz

About my school National Yang Ming Chiao Tung University (1/2)

- NCTU was established in Shanghai in 1896 originally and reestablished in Taiwan in 1958.
- Electrics Institute is the first institute when NCTU re-established in Taiwan in 1958, and the Taiwan's semiconductor and space industry were born from NCTU.
 - The first wafer in Taiwan (1964)
 - The first Bipolar Transistors in Taiwan (1965)
 - The first IBM computing system in Taiwan (1968)
 - The first hybrid rocket in Taiwan (2010)
 - The first sounding rocket in Taiwan (2014)

About my school National Yang Ming Chiao Tung University (2/2)

In 2021, NCTU merged with a prestigious medical university, National Yang Ming University, and rebranded as National Yang Ming Chiao Tung University (NYCU).

NYCU

NYCU at a Glance

21,703 Students

(1,300 Overseas Students)

8,612 Undergraduates

13,091 Graduates

2,454 Faculties (135 International Faculties)

1,154	Full-time faculties
958	Part-time faculties
89	Research Staff
253	Staff

P8

NYCU-EE is the largest EE department in Taiwan

The best EE department in Taiwan

- World ranking: 39; Taiwan ranking: 1
- IEEE Fellows: 20; IET Fellows: 2; NAE Academician: 3; NAI Fellows: 2

'universit	ty-rank	-rankings/electronics-and-electrical-engineering/tw						Gr	
Resear	ch.com			Upcoming Conferences 🗸	Best Conferences ~	Best Journa	als ∽ Best Uni	versities 🗸 🛛 Best	Scientists ~
Home / Best Un Best B 2023 The 9th editid data sources ranking is ba and citation Show more	on of Resear cincluding O ised on a sur values for an	ch.com ra penAlex a n of D-ind e examine	anking of the nd CrossRef. lexes (Discipli d discipline.	neering / Taiwan Electrical Engin best universities in the field of Elec The bibliometric data for evaluatin ine H-index) of all ranking research	tronics and Electrical E g the citation-based m er's affiliated with a giv	ivers ngineering etrics were ren instituti	was created us e acquired on 21 ion. D-index inc	Taiwan ing data derived f -12-2022. Positioi ludes exclusively f	from multiple n in the publications
	Search by	/ keyword	1	Q Electronics ar	nd Electrical Engine 🗸	Taiv	van (18)	~	
	World 1	National	<u>最小课程交通大学</u>	University Details National Yang Ming Chiao Tung University Taiwan	Schol 21	ars Σ	8,468	ΣD-Index 924	J
	50	2	8.1 <u>9.4</u> 9	National Taiwan University Taiwan	y 19		6,155	819	
	104	3	会 周立成化大学	National Cheng Kung University Taiwan	11		3,867	496	

Research Pillar 1:

Smart Thermal Management on MPSoC

CS-based Low-cost Thermal Sensor Placement

- Features (IEEE TCAD 2022) **
 - Adopting Compressive Sensing (CS) to achieve fast sensor placement
 - Proposing a novel temperature reconstruction method to build the temperature distribution with low computing cost

CERES LAB

Adaptive ML Method for Proactive Thermal Management

- Features (IEEE TVLSI 2024 Best Paper; ISCAS 2020 Best Student Paper)
 - Adopting online learning to predict the on-chip temperature precisely
 - Adopting adaptive reinforcement learning to fine-grained control the system temperature

Adaptive Single Layer Perception (ASLP)-based Temperature Prediction

Adopt an SLP to re-model the temperature prediction equation

Adopt the LMS-based adaptive filter to update the parameters (w_n) at runtime to fit the hyperplane of the temperature behavior

Adaptive Reinforcement Learning-based Temperature Control Mechanism

 Adopt the Q-learning the select the proper action to throttle the thermal-emergency NoC nodes.

Research Pillar 2:

Reconfigurable Neural Network design

Lego-based DNNoC Design Paradigm

✤ <u>Features</u> (IEEE JETCAS 2021)

- Adopting the Neu-Lego design to mitigate the analysis complexity
- Adopting flexible Network on Chip (NoC) interconnection to reduce interconnection complexity and reduce time-to-market

DNNoC Construction (1/2) : Model Analysis

- Obtains the required number of NeuLego PEs and model information from the given DNN model.
- Each NeuLego PE is used to process data from the same data dimension.

DNNoC Construction (1/2) : Model Analysis

- Obtains the required number of NeuLego PEs and model information from the given DNN model.
- Each NeuLego PE is used to process data from the same data dimension.

DNNoC Construction (2/2) : **DNNoC** Construction Flow and Lego Placement

- We propose to share the computing resources and find the proper number of *NeuLego* PEs for a given DNN model.
 - Improve hardware efficiency

DNNoC Construction (2/2) : **DNNoC** Construction Flow and Lego Placement

- We propose to share the computing resources and find the proper number of *NeuLego* PEs for a given DNN model.
 - Improve hardware efficiency

DNNoC Construction (2/2) : **DNNoC** Construction Flow and Lego Placement

- We propose to share the computing resources and find the proper number of *NeuLego* PEs for a given DNN model.
 - Improve hardware efficiency

DNNoC Execution

Layer-wise dynamic mapping algorithm

- The available computing resources of the constructed DNNoC would be sufficient to fit the largest layer of the target DNN model.
- ✤ Maps a large-scale DNN model to the source-limited DNNoC platform.

DNNoC Execution

Layer-wise dynamic mapping algorithm

- The available computing resources of the constructed DNNoC would be sufficient to fit the largest layer of the target DNN model.
- ✤ Maps a large-scale DNN model to the source-limited DNNoC platform.

The first NoC-based Reconfigurable DNN Accelerator with AXI communication protocol in Taiwan

- Features (VLSI CAD Symposium Best Paper Award)
 - Support arbitrary kernel size and shape to compute the convolution operations
 - Adopting flexible Network on Chip (NoC) interconnection to reduce interconnection complexity and reduce time-to-market
 - Adopt AXI4-stream communication protocol

Techi	nology	TSMC 40nm		
	Chip	1.4 x 1.4		
Area (mm²)	2) Core 0.84 >	0.84 x 0.84		
	Gate count	6,871k		
IO/Core	VDD (v)	2.5/0.9		
Clock fr	eq (MHz)	105		
Powe	r (mW)	10.3672		
Throughp	out (GOPS)	143.5		

Design Challenge of DNN Accelerator: Various kernel size

- The convolutional kernel sizes are usually not fixed in the DNN model.
 Worst-case design consideration
- The register size of processing element (PE) is usually based on the largest kernel size in the target model.
 - Low utilization of PE computational capability.
 - Cannot process the operation.

DNN model	Kernel size/shape
AlexNet	3x3, 5x5, 11x11
GoogLeNet	1x1, 3x3, 5x5, 7x7
DeepSpeech2	21x11, 41x11

Channel-wise Convolution Operation

- The channel-wise convolution operation.
 - PE is low applicable for arbitrary kernel size.
 - ✤ PE generates channel partial sum (*CPsum*).

$$CPsum_{(i,j,c)} = \sum_{m=1}^{h} \sum_{n=1}^{h} \left(I_{(i+m-1,j+n-1,c)} \times W_{(m,n,c)} \right)$$
$$OFmap_{(i,j)} = \sum_{c=1}^{d} \left(CPsum_{(i,j,c)} \right)$$

Weight-wise NN Processing Mechanism (1/2)

- We can exploit the shape parameters to infer all Input Feature Map Data (IFD) that the weight will convolve with.
- PE will process one weight with corresponding inputs and accumulate operation partial sum (OPsum).

$$OPsum_{(i,j,m,n,c)} = I_{(i+m-1,j+n-1,c)} \times W_{(m,n,c)}$$

$$OFmap_{(i,j)} = \sum_{c=1}^{d} \sum_{m=1}^{h} \sum_{n=1}^{h} \left(OPsum_{(i,j,m,n,c)} \right)$$

Weight-wise NN Processing Mechanism (2/2)

- Computing data register (CD_REG).
- Scaling factor register (SF_REG).
 SF register size will not be restricted.
- Reduce memory access.

Hybrid Data Reuse Method by Using NoC

- After accessing the data from on-chip memory once, PE will share duplicated data through packet transmission.
 - Does not need to design complicated dataflow.
 - Weight reuse
 - Input reuse

11

4

17

The Processing of Fully-connected Layer

- The proposed processing mechanism can also be applied in the fullyconnected layer.
 - Store the input data to the CD_REG, and the corresponding weights to the SF_REG, respectively.
 - Input reuse

The Applicability of Max-Pooing Layer

- The proposed mechanism can be performed in the max-pooling layer.
- The SF_REG size will be designed as a multiple of the filter size.
- The comparator can be reused by ReLU.

Research Pillar 3:

Smart Manufacturing

Mini-factory in Ceres Lab

https://www.youtubeeducation.com/watch?v=_9scuX6REvQ

EEE Journal on Emerging and Selected Topic...

TIME SERIES-BASED SENSOR SELECTION AND LIGHTWEIGHT NEURAL ARCHITECTURE SEARCH FOR RUL ESTIMATION IN FUTURE INDUSTRY 4.0

P36

Read the latest abstract titled "Time Series-Based Sensor Selection and Lightweight Neural Architecture Search for RUL Estimation in Future Industry 4.0" written by Pavan Kumar Mp

https://loom.lv/bWrAZ 0 IEEE #IEEE #IEEECASSOCIETY

957 followers 19h • 😡

CIRCUITS #SPECIALISSUE

Zi-Jie Gao; Kun-Chih Chen. Learn more at

Sensor selection and neural architecture search(NAS) methods for RUL estimation

Features (IEEE JETCAS 2023; Highlighted IEEE JETCAS paper)

- Adopting LASSO method to select the valuable sensors along with model training and estimate RUL precisely
- A lightweight NAS method is proposed to find a fit neural network model during the model training phase

Feature Dynamic Adaptive Thresholding Normalization (D-FATN) to Mitigate the Negative Transfer Learning

- Features (accepted by IEEE TIM 2024)
 - Adopting Dynamic Feature Adaptive Thresholded Normalization (D-FATN) to enhances important features while suppressing redundant ones by utilizing mini-batch statistics for normalization

Proposed Dynamic Feature Adaptive Thresholding Normalization (D-FATN) to Mitigate NTL

Comparison of input feature distribution across various regularization techniques for different models

Input feature distribution transfer scenario during Fine-Tuning, a) Standard BN, b) Stochastic Normalization, c) Proposed Feature Adaptive Thresholded Normalization (FATN).

Overview of the Proposed Work using Transfer Learning Model

Overview of the proposed 1D CNN model for bearing fault diagnosis adopting fine-tuned-based TL.

Dataset Description

CWRU Dataset description

CERES LAB

CWRU Datasets	Health conditions	Number of samples	Operation conditions
A	N/IRF/ORF/RF	10 x 400	0 HP (1797 rpm)
В	N/IRF/ORF/RF	10 x 400	1 HP (1772 rpm)
С	N/IRF/ORF/RF	10 x 400	2 HP (1750 rpm)
D	N/IRF/ORF/RF	10 x 400	3 HP (1730 rpm)

Paderborn Dataset	Health conditions	Number of samples	Operation conditions
PD	N/IRF/ORF	1200/2200/2400	1500 rpm

NYCU Dataset description

Paderborn Dataset	Health conditions	Number of samples	Operation conditions
NYCU	N/BF/CF/IRF/ORF	4,096	1000 rpm

Experimental Results of the Proposed D-FATN in mitigating NTL

$Source \rightarrow$	L1	L2	L2-SP	DELTA	BN	SN	D-
Target	[26]	[27]	[22]	[23]	[24]	[25]	FATN
$A \rightarrow B$	85.1	96.4	94.4	95.4	94.0	95.0	95.2
$A \to C$	83.8	94.4	88.7	93.4	97.2	94.6	95.2
$\mathbf{A} \to \mathbf{D}$	80.8	95.9	91.0	93.3	87.5	94.5	96.8
$\mathrm{B} \to \mathrm{A}$	87.7	96.6	96.0	95.8	97.2	97.3	98.7
$B \to C$	89.0	96.5	96.1	94.0	96.4	95.6	98.2
$B \to D$	87.5	96.4	94.7	96.2	97.3	96.8	97.6
$\mathrm{C} ightarrow \mathrm{A}$	88.5	92.6	94.2	95.0	93.4	95.6	96.5
$C \to B$	89.0	96.0	95.0	94.7	94.0	95.2	96.9
$\mathrm{C} ightarrow \mathrm{D}$	89.8	95.8	94.0	93.2	95.5	96.4	98.5
$\mathrm{D}\to\mathrm{A}$	89.7	95.2	94.5	94.6	96.0	92.7	97.5
$\mathrm{D} \to \mathrm{B}$	89.1	96.0	94.8	94.5	94.1	95.7	97.3
$\mathrm{D}\to\mathrm{C}$	87.6	96.7	95.1	94.2	93.9	97.2	96.6
Average	87.3	95.7	94.0	94.5	94.7	95.5	97.1

$\stackrel{\text{Source}}{\rightarrow}$	L1	L2	L2-SP	DELTA	BN	SN	D-
Target	[26]	[27]	[22]	[23]	[24]	[25]	FATN
$\mathrm{A} \to \mathrm{PU}$	86.7	96.1	91.4	94.3	95.2	93.8	97.4
$B \to PU$	89.5	95.3	92.4	95.2	95.0	95.7	96.3
$C \to PU$	88.9	96.4	95.1	94.4	95.5	97.2	98.4
$\mathrm{D} \to \mathrm{PU}$	89.4	95.0	93.8	93.7	95.3	95.9	97.8
$\text{PU} \to \text{A}$	88.9	94.7	96.6	94.5	89.0	96.2	97.8
$\text{PU} \to \text{B}$	83.5	95.6	95.4	96.3	91.1	96.9	97.3
$\text{PU} \to \text{C}$	80.7	90.9	88.6	94.6	91.0	92.0	96.8
$\text{PU} \to \text{D}$	81.7	93.9	94.8	94.4	82.1	95.1	98.9
Average	86.1	94.7	93.5	94.6	91.7	95.3	97.5

Same environment condition

Different environment condition

Source	I 1	1.2	L2-	DEL-	DN	SN		-
\rightarrow			SP		DIN	SIN	D-	
Target	[26]	[27]	[22]	[23]	[24]	[25]	FATN	-
$A \rightarrow NYCU$	J 80.3	92.3	96.4	94.5	92.9	94.7	97.9	-
$B \rightarrow NYCU$	J 90.6	94.4	95.5	96.3	90.5	95.7	97.0	
$C \rightarrow NYCU$	J 87.3	95.3	94.8	95.8	96.5	97.4	98.2	
$D \rightarrow NYCU$	J 89.5	96.4	95.4	92.0	95.2	97.3	97.1	
$PU \rightarrow NYCU$	U 87.3	96.9	94.8	95.9	89.4	97.3	98.2	
$NYCU \rightarrow A$	86.1	94.3	95.0	95.4	93.3	94.4	98.0	
$NYCU \rightarrow B$	8 86.8	96.9	95.0	94.2	94.0	97.8	97.2	
$NYCU \rightarrow C$	87.3	95.0	94.5	94.1	93.8	96.4	98.2	
$NYCU \rightarrow D$	0 87.6	96.3	95.1	95.3	93.5	96.3	97.9	
$NYCU \rightarrow PU$	U 87.1	96.5	92.2	95.7	93.9	96.1	97.3	Different environment co
Average	86.9	95.4	94.8	94.9	93.3	96.2	97.8	-

Conclusion

- Three research pillars in Ceres Lab.
 - Smart Thermal Management on MPSoC
 - Thermal sensor placement and temperature distribution reconstruction
 - Temperature prediction and management
 - Novel neural computing methods (not covered today)
 - SNN, stochastic computing, semi-quantum computing
 - Reconfigurable Neural Network design
 - Lego-based DNN accelerator design flow
 - NoC-based reconfigurable DNN accelerator
 - Fast protocol translation for NoC-based TLM computing (not covered today)
 - Smart Manufacturing
 - LASSO-based NAS design and sensor selection
 - Negative Transfer Learning (NTL) problem mitigation
 - > Dynamic Feature Adaptive Thresholded Normalization in CONV layer
 - Source Free Unsupervised Domain Adaption (not covered today)

