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❖ Specialty

❖ Multi-core System on Chip (MPSoC) design

❖ Neural network model and accelerator design

❖ Reliable system design

❖ VLSI CAD design

❖ Smart Manufacturing

❖ Feature Honors

❖ Dr. Da-You Wu Memorial Award of NSTC

❖ IEEE TVLSI Best Paper Award

❖ IEEE CASS Continuing Education Featuring 

Selected Conference Tutorial

❖ Taiwan IC Design Society Outstanding Young Scholar Award

Kun-Chih (Jimmy) Chen, 

Associate Professor/ Electric Junior Chair Professor

Institute of Electronics, National Yang Ming Chiao Tung University

Email: kcchen@nycu.edu.tw

Website: https://sites.google.com/site/cereslaben/advisor

mailto:kcchen@nycu.edu.tw
https://sites.google.com/site/cereslaben/advisor?authuser=0
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Topic 2: Smart Thermal 

Magagement on MPSoC

Topic 3: 

Reconfigurable 

Neural Network

Topic 1: Smart Manufactoring
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Chip Gallery 

All-digital temperature sensor

• Technology: TSMC 90nm

• Size: 0.0016 mm2

• Power: 798mW

• Clock frequency: 5MHz

AI-sonar for geological analysis

• Technology: TSMC 40nm

• Size: 1.56 mm2

• Power: 25.5mW

• Clock frequency: 100MHz

NoC-based reconfigurable DNN

• Technology: TSMC 40nm

• Size: 0.84 mm2

• Power: 10.37mW

• Clock frequency: 105MHz
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About my school

National Yang Ming Chiao Tung University (1/2)

❖ NCTU was established in Shanghai in 1896 originally and re-

established in Taiwan in 1958.

❖ Electrics Institute is the first institute when NCTU re-established in 

Taiwan in 1958, and the Taiwan’s semiconductor and space industry 

were born from NCTU.

❖ The first wafer in Taiwan (1964)

❖ The first Bipolar Transistors in Taiwan (1965)

❖ The first IBM computing system in Taiwan (1968)

❖ The first hybrid rocket in Taiwan (2010)

❖ The first sounding rocket in Taiwan (2014)
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About my school

National Yang Ming Chiao Tung University (2/2)

❖ In 2021, NCTU merged with a prestigious medical university, National 

Yang Ming University, and rebranded as National Yang Ming Chiao 

Tung University (NYCU). 

Engineering, Science, AdministrationMedical, Bio-technology
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NYCU-EE is the largest EE department in Taiwan

❖ The best EE department in Taiwan 

❖ World ranking: 39; Taiwan ranking: 1

❖ IEEE Fellows: 20; IET Fellows: 2; NAE Academician: 3; NAI Fellows: 2
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CS-based Low-cost Thermal Sensor Placement

❖ Features (IEEE TCAD 2022)

─ Adopting Compressive Sensing (CS) to achieve fast sensor placement

─ Proposing a novel temperature reconstruction method to build the temperature

distribution with low computing cost
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Adaptive ML Method for Proactive Thermal Management

❖ Features (IEEE TVLSI 2024 Best Paper; ISCAS 2020 Best Student Paper)

─ Adopting online learning to predict the on-chip temperature precisely

─ Adopting adaptive reinforcement learning to fine-grained control the system

temperature
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Adaptive Single Layer Perception (ASLP)-based 

Temperature Prediction

❖ Adopt an SLP to re-model the temperature prediction equation

❖ Adopt the LMS-based adaptive filter to update the parameters (wn) at 

runtime to fit the hyperplane of the temperature behavior
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Adaptive Reinforcement Learning-based 

Temperature Control Mechanism

❖ Adopt the Q-learning the select the proper action to throttle the 

thermal-emergency NoC nodes.

Action 

encoding
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Experimental Results
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Research Pillar 2:

Reconfigurable Neural Network design
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Lego-based DNNoC Design Paradigm

❖ Features (IEEE JETCAS 2021)

─ Adopting the Neu-Lego design to mitigate the analysis complexity

─ Adopting flexible Network on Chip (NoC)  interconnection to reduce

interconnection complexity and reduce time-to-market



CERES LAB Institute of Electronics, NYCU

P18

DNNoC Construction (1/2) : Model Analysis

❖ Obtains the required number of NeuLego PEs and model information 

from the given DNN model.

❖ Each NeuLego PE is used to process data from the same data 

dimension.

❖ Facilitates data exchange.

Model analysis 
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DNNoC Construction (1/2) : Model Analysis

❖ Obtains the required number of NeuLego PEs and model information 

from the given DNN model.

❖ Each NeuLego PE is used to process data from the same data 

dimension.

❖ Facilitates data exchange.

Model analysis 

The required NeuLego PEs
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DNNoC Construction (2/2) :  DNNoC Construction 

Flow and Lego Placement

❖ We propose to share the computing resources and find the proper 

number of NeuLego PEs for a given DNN model.

❖ Improve hardware efficiency

The required NeuLego PEs

The NeuLego PE pool
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MP MP
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MA

MP
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MP MP

MA

The constructed DNNoC

Row-based PE alignment

Mesh-NoC size :

3
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DNNoC Construction (2/2) :  DNNoC Construction 
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DNNoC Execution

❖ Layer-wise dynamic mapping algorithm

❖ The available computing resources of the constructed DNNoC would be sufficient to fit 

the largest layer of the target DNN model.

❖ Maps a large-scale DNN model to the source-limited DNNoC platform.

MA

MP

MAMA

MP MP

MA MA MA

Time-1 Time-2Time-0
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DNNoC Execution

❖ Layer-wise dynamic mapping algorithm

❖ The available computing resources of the constructed DNNoC would be sufficient to fit 

the largest layer of the target DNN model.

❖ Maps a large-scale DNN model to the source-limited DNNoC platform.
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The first NoC-based Reconfigurable DNN Accelerator 

with AXI communication protocol in Taiwan

❖ Features (VLSI CAD Symposium Best Paper Award)

─ Support arbitrary kernel size and shape to compute the convolution operations

─ Adopting flexible Network on Chip (NoC)  interconnection to reduce

interconnection complexity and reduce time-to-market

─ Adopt AXI4-stream communication protocol
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Design Challenge of DNN Accelerator: 

Various kernel size

❖ The convolutional kernel sizes are usually not fixed in the DNN model.

❖ Worst-case design consideration

❖ The register size of processing element (PE) is usually based on the

largest kernel size in the target model.

❖ Low utilization of PE computational capability.

❖ Cannot process the operation.

DNN model Kernel size/shape

AlexNet 3x3, 5x5, 11x11

GoogLeNet 1x1, 3x3, 5x5, 7x7

DeepSpeech2 21x11, 41x11
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Channel-wise Convolution Operation

❖ The channel-wise convolution operation.

❖ PE is low applicable for arbitrary kernel size.

❖ PE generates channel partial sum (CPsum).
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Weight-wise NN Processing Mechanism (1/2)

❖ We can exploit the shape parameters to infer all Input Feature Map 

Data (IFD) that the weight will convolve with.

❖ PE will process one weight with corresponding inputs and accumulate 

operation partial sum (OPsum).
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Weight-wise NN Processing Mechanism (2/2)

❖ Computing data register (CD_REG).

❖ Scaling factor register (SF_REG).

❖ SF register size will not be restricted.

❖ Reduce memory access.

OPsum
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Hybrid Data Reuse Method by Using NoC

❖ After accessing the data from on-chip memory once, PE will share

duplicated data through packet transmission.

❖ Does not need to design complicated dataflow.

❖ Weight reuse

❖ Input reuse
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The Processing of Fully-connected Layer

❖ The proposed processing mechanism can also be applied in the fully-

connected layer.

❖ Store the input data to the CD_REG, and the corresponding weights to the 

SF_REG, respectively.

❖ Input reuse 𝑂1 = 𝐼1 ×𝑊1−1 + 𝐼2 ×𝑊2−1 + 𝐼3 ×𝑊3−1 + 𝐼4 ×𝑊4−1 + (𝐼5 ×𝑊5−1)

𝑂2 = 𝐼1 ×𝑊1−2 + 𝐼2 ×𝑊2−2 + 𝐼3 ×𝑊3−2 + 𝐼4 ×𝑊4−2 + (𝐼5 ×𝑊5−2)

𝑂3 = 𝐼1 ×𝑊1−3 + 𝐼2 ×𝑊2−3 + 𝐼3 ×𝑊3−3 + 𝐼4 ×𝑊4−3 + (𝐼5 ×𝑊5−3)

𝑂4 = 𝐼1 ×𝑊1−4 + 𝐼2 ×𝑊2−4 + 𝐼3 ×𝑊3−4 + 𝐼4 ×𝑊4−4 + (𝐼5 ×𝑊5−4)
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The Applicability of Max-Pooing Layer

❖ The proposed mechanism can be performed in the max-pooling layer.

❖ The SF_REG size will be designed as a multiple of the filter size.

❖ The comparator can be reused by ReLU.

CO1 CO2

CO5 CO6
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Mini-factory in Ceres Lab

https://www.youtubeeducation.com/watch?v=_9scuX6REvQ

https://www.youtubeeducation.com/watch?v=_9scuX6REvQ
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Overview of Problem Formulation

NN with 1 Hidden Layer

NN with 2 Hidden Layer

1. Sensor Selection 

Sensor 𝑆1

Sensor 𝑆2

Sensor 𝑆3

Sensor 𝑆4
Sensor 𝑆5

Sensor 𝑆6

𝑆1

𝑆2

𝑆3

𝑆4

𝑆5

𝑆6

2. Feature Extraction 3. Model Selection

4. Model Adaptation

Change in working 

condition

Transfer weights

Determining the number 

of layers for computing

Reduce the computation 

complexity

1

2
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Sensor selection and neural architecture 

search(NAS) methods for RUL estimation

❖ Features (IEEE JETCAS 2023; Highlighted IEEE JETCAS paper)

─ Adopting LASSO method to select the valuable sensors along with model

training and estimate RUL precisely

─ A lightweight NAS method is proposed to find a fit neural network model

during the model training phase
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Feature Dynamic Adaptive Thresholding Normalization 

(D-FATN) to Mitigate the Negative Transfer Learning

❖ Features (accepted by IEEE TIM 2024)

─ Adopting Dynamic Feature Adaptive Thresholded Normalization (D-FATN)

to enhances important features while suppressing redundant ones by

utilizing mini-batch statistics for normalization
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Proposed Dynamic Feature Adaptive Thresholding 

Normalization (D-FATN) to Mitigate NTL

❖ Comparison of input feature distribution across various regularization 

techniques for different models

Input feature distribution transfer scenario during Fine-Tuning, a) 

Standard BN, b) Stochastic Normalization, c) Proposed Feature 

Adaptive Thresholded Normalization (FATN).

Batch Normalization Stochastic Normalization

Normalized weights Normalized weights  +  Moving Statistics weights

FATN Threshold Below threshold FATN 

weights 

Above threshold FATN 

weights 

(a)

(c)

(b)
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Overview of the Proposed Work using Transfer 

Learning Model

Overview of the proposed 1D CNN model for bearing fault 
diagnosis adopting fine-tuned-based TL.

Conv

D-FATN

Pooling

Conv

D-FATN

Pooling

Conv

D-FATN

Pooling

FC Layer

Classifier
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Dataset Description

CWRU Dataset description

Paderborn Dataset description

CWRU Datasets Health conditions Number of samples Operation conditions

A N/IRF/ORF/RF 10 x 400 0 HP (1797 rpm)

B N/IRF/ORF/RF 10 x 400 1 HP (1772 rpm)

C N/IRF/ORF/RF 10 x 400 2 HP (1750 rpm)

D N/IRF/ORF/RF 10 x 400 3 HP (1730 rpm)

Paderborn Dataset Health conditions Number of samples Operation conditions

PD N/IRF/ORF 1200/2200/2400 1500 rpm

NYCU Dataset description

Paderborn Dataset Health conditions Number of samples Operation conditions

NYCU N/BF/CF/IRF/ORF 4,096 1000 rpm
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Experimental Results of the Proposed D-FATN in 

mitigating NTL

Same environment condition Different environment condition

Different environment condition
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Conclusion

❖ Three research pillars in Ceres Lab.

❖ Smart Thermal Management on MPSoC

➢ Thermal sensor placement and temperature distribution reconstruction

➢ Temperature prediction and management

➢ Novel neural computing methods (not covered today)

➢ SNN, stochastic computing, semi-quantum computing

❖ Reconfigurable Neural Network design

➢ Lego-based DNN accelerator design flow

➢ NoC-based reconfigurable DNN accelerator

➢ Fast protocol translation for NoC-based TLM computing (not covered today) 

❖ Smart Manufacturing

➢ LASSO-based NAS design and sensor selection

➢ Negative Transfer Learning (NTL) problem mitigation

➢ Dynamic Feature Adaptive Thresholded Normalization in CONV layer

➢ Source Free Unsupervised Domain Adaption (not covered today)
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Thank you for listening!!!
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