

Merging insights from artificial and biological neural networks

A competitive advantage for neuromorphic edge intelligence?

Charlotte Frenkel (<u>c.frenkel@tudelft.nl</u>)

Assistant Professor Dept. of Microelectronics, Delft University of Technology

> ETH Zurich March 20th, 2024

Outline

① From neuroscience to AI and back again...

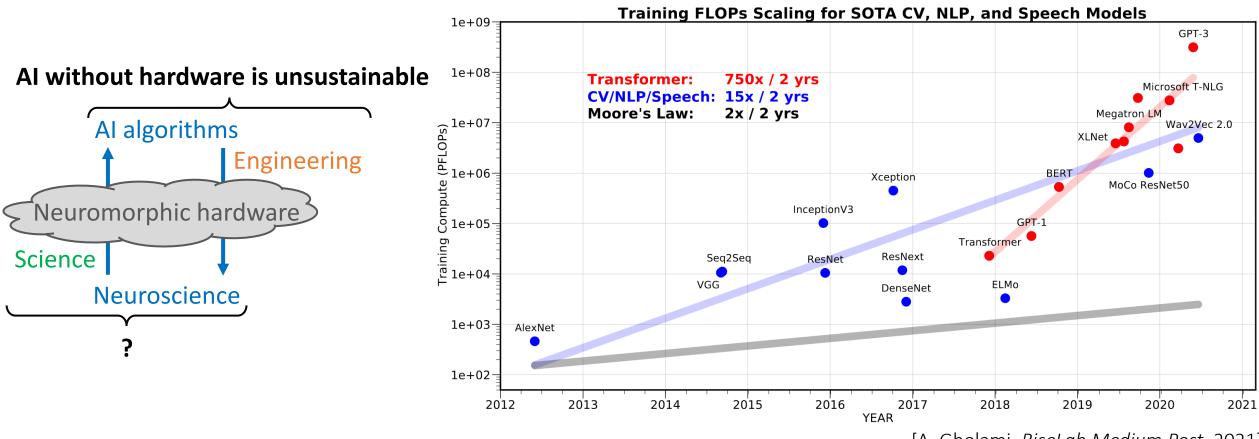
...which perspective? ...which starting point?

2 Why should we bother with neuroscience?

3 How can we morph these questions into interesting engineering solutions?

From neuroscience to AI and back again

Which starting point? Which perspective?



[[]A. Gholami, RiseLab Medium Post, 2021]

Outline

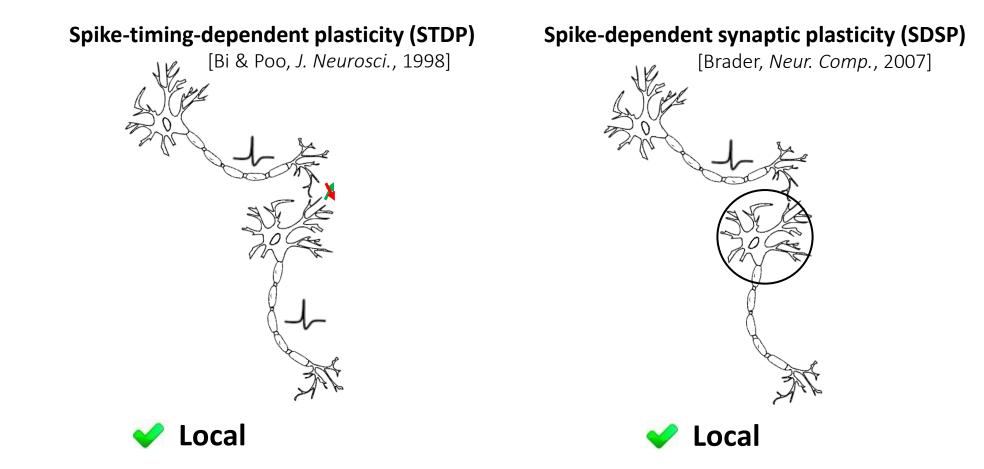
...which perspective?
...which starting point?

2 Why should we bother with neuroscience?

3 How can we morph these questions into interesting engineering solutions?

Synaptic plasticity rules – Neuroscience as the starting point

Al algorithms



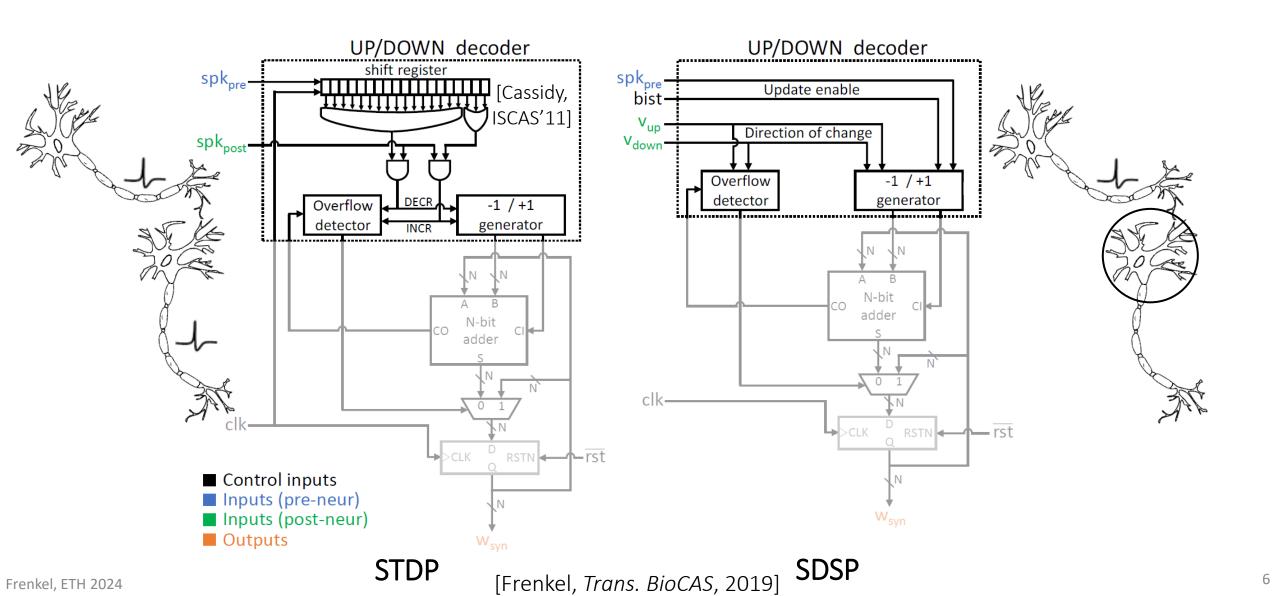
Frenkel, ETH 2024

Synaptic plasticity rules – Neuroscience as the starting point

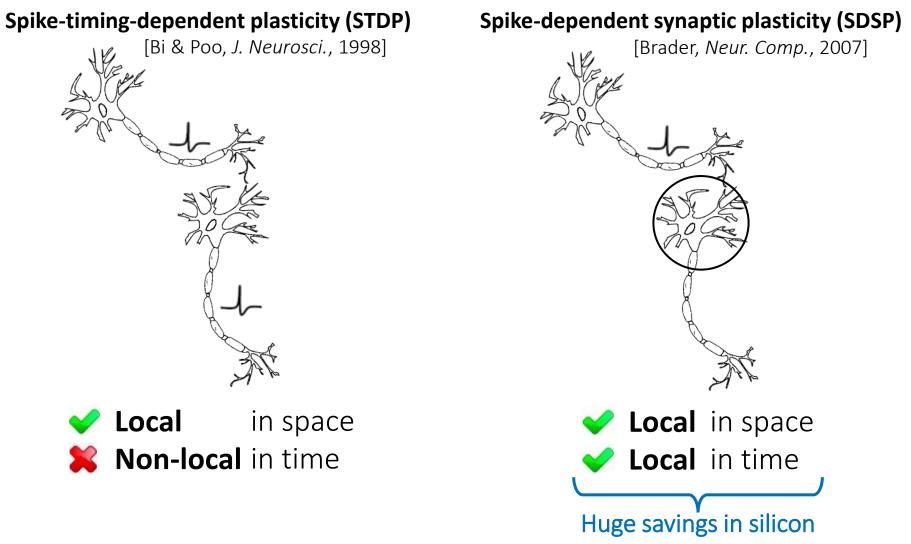
AI algorithms

Neuroscience

Digital synapse implementation



Synaptic plasticity rules – Neuroscience as the starting point The key perspective of data locality



[Clopath and Gerstner, Front. Syn. Neuro., 2010]

[Frenkel, TBioCAS, 2019]

AI algorithms

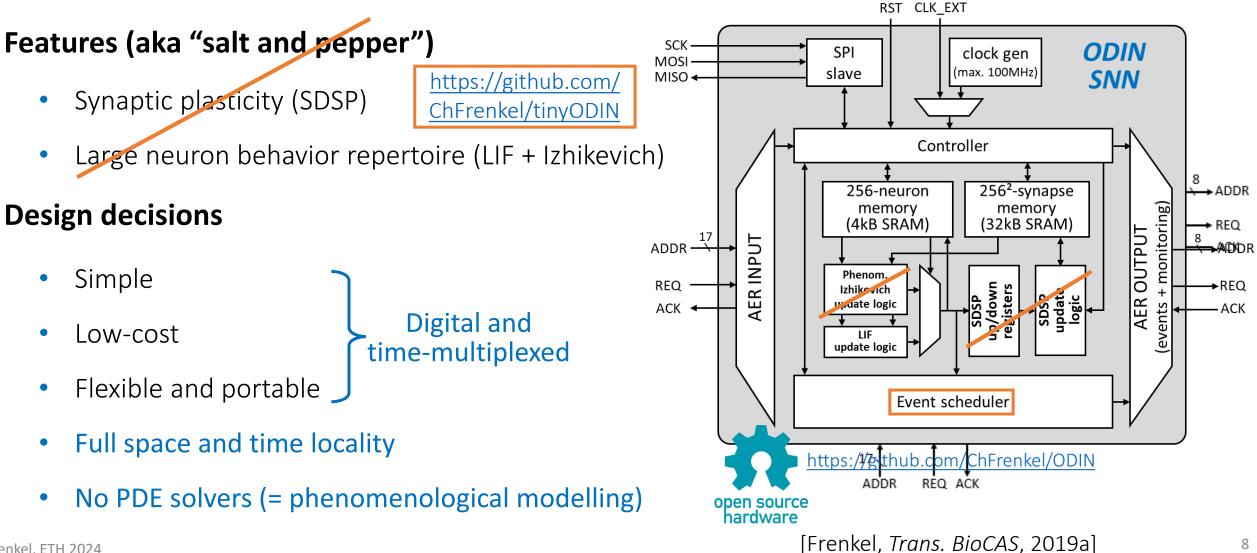
Synaptic plasticity rules – Neuroscience as the starting point

The ODIN neuromorphic chip – Architecture

Al algorithms

Neuroscience

ODIN is a 256x256 SNN crossbar!



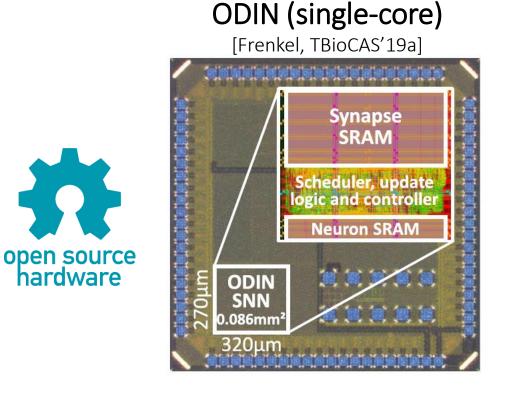
Frenkel, ETH 2024

Synaptic plasticity rules – Neuroscience as the starting point

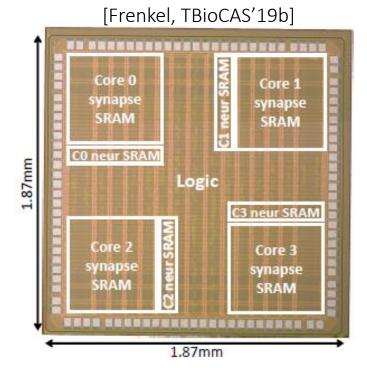
The ODIN and MorphIC neuromorphic chips – Silicon

Neuroscience

Al algorithms



MorphIC (quad-core)

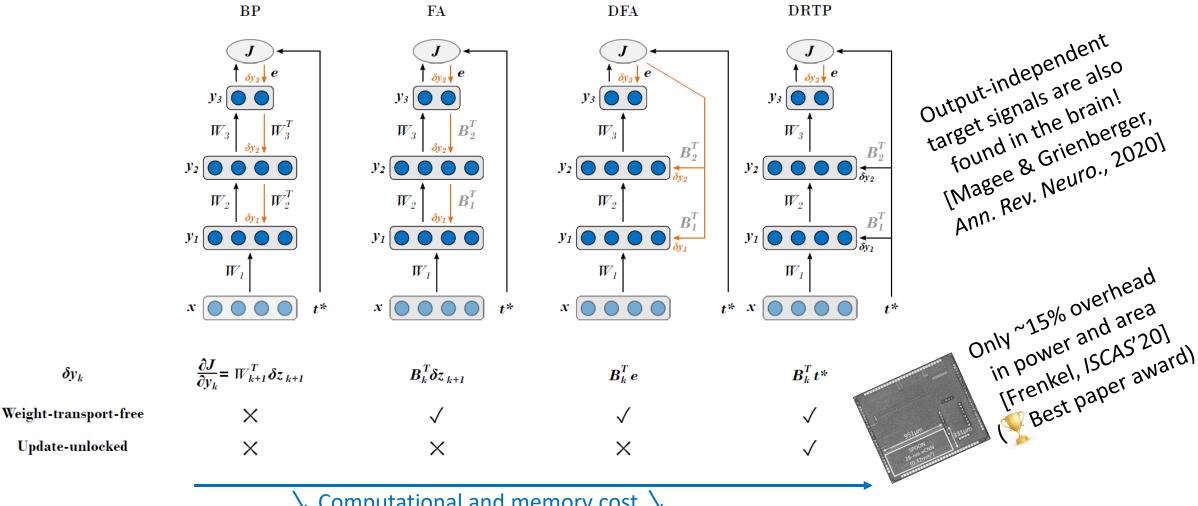


Record synaptic density

Energy efficiency competitive with mixed-signal designs

Large feature set (incl. 20 Izhikevich behaviors, synaptic plasticity) ...but quite painful to exploit!

Neural network training – Bio-plausibility as the end goal Synergy with hardware: latency, memory access patterns



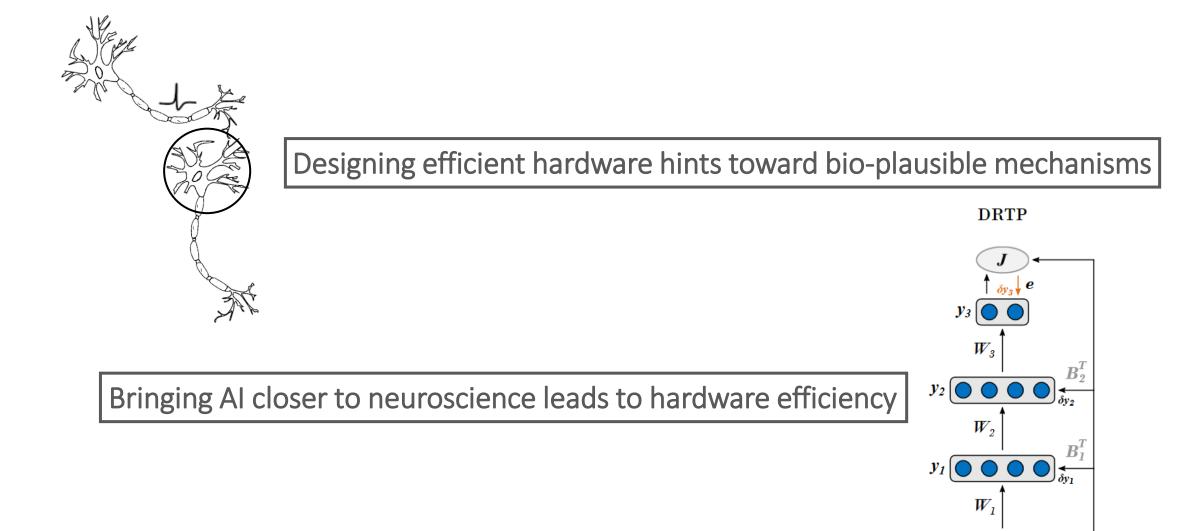
Computational and memory cost \searrow

Al algorithms

Neuroscience

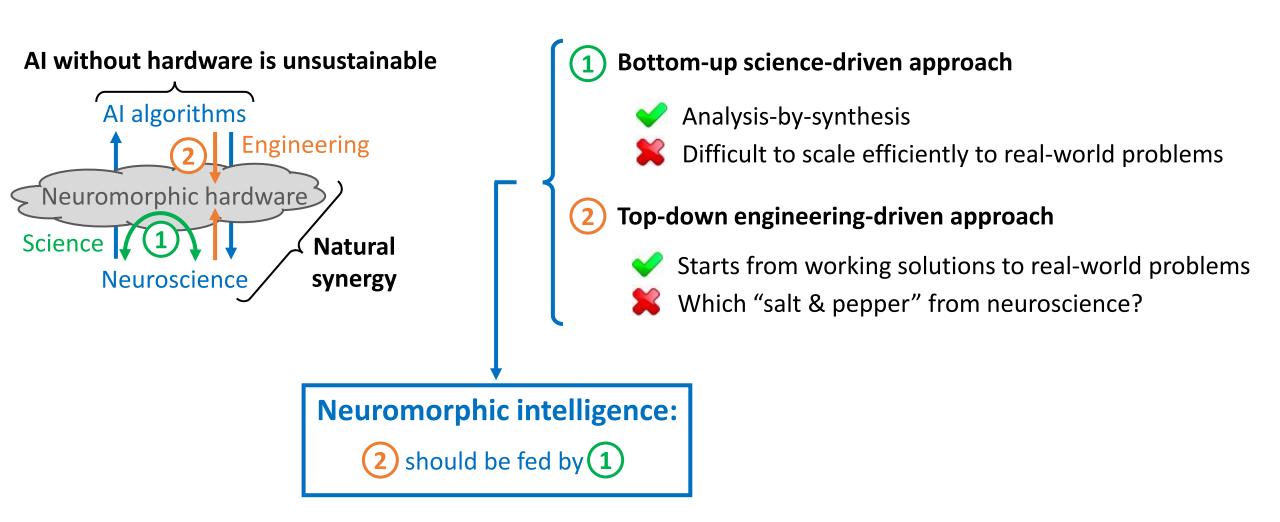
HW efficiency and bio-plausibility are often two sides of the same coin!

Many more examples: quantization, stochastic computing, event-driven computation,...



From neuroscience to AI and back again

Which starting point? Which perspective?



Outline

1 From neuroscience to AI and back again...

...which perspective? ...which starting point?

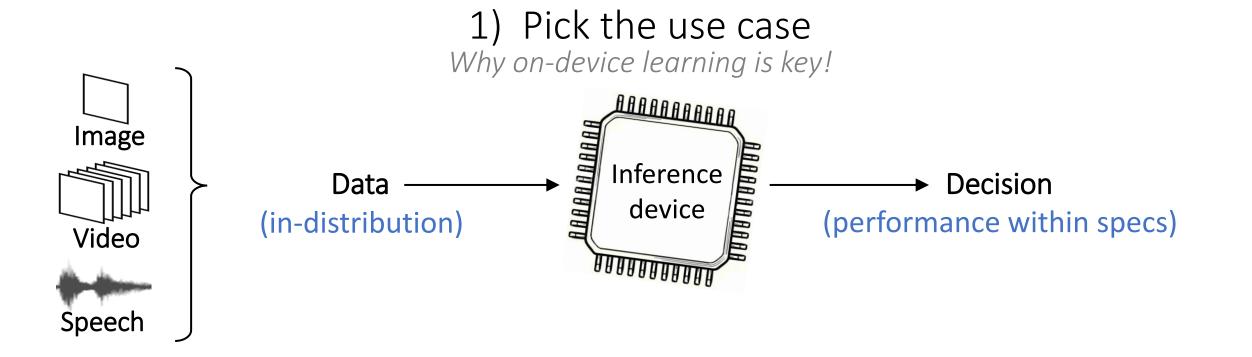
2 Why should we bother with neuroscience?

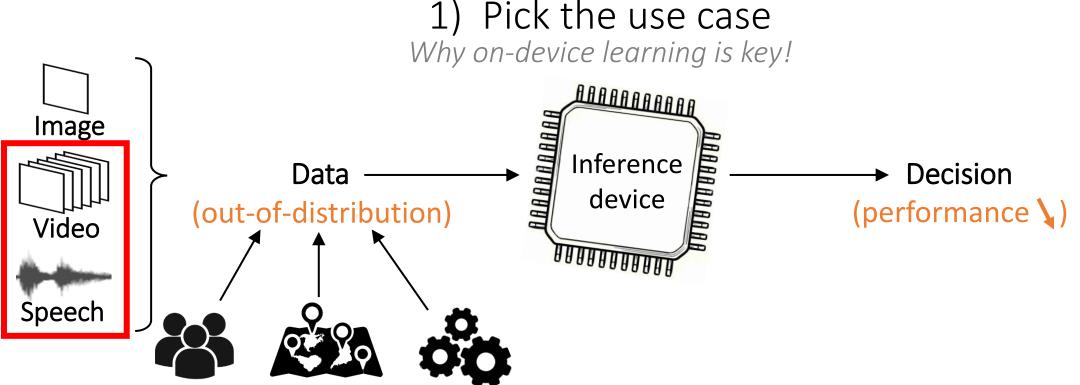
3 How can we morph these questions into interesting engineering solution?

Let's use a 4-step recipe!

Neuromorphic intelligence:

(2) should be fed by (1)





Different users, environments, task requirements

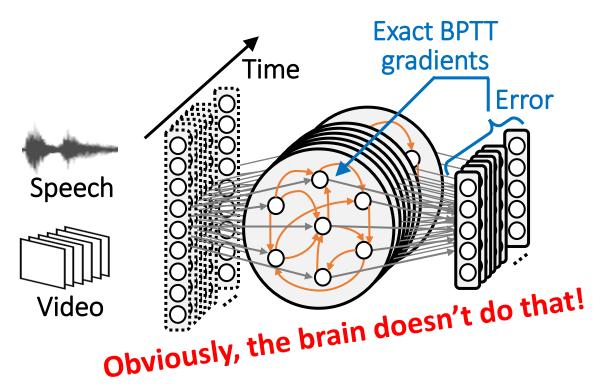
More training data before deployment?

Issues: cost, robustness, flexibility

Data exchange with the cloud?

Issues: power budget, privacy

Why is on-chip learning over second-long timescales difficult? Let's solve a yet unsolved engineering challenge!

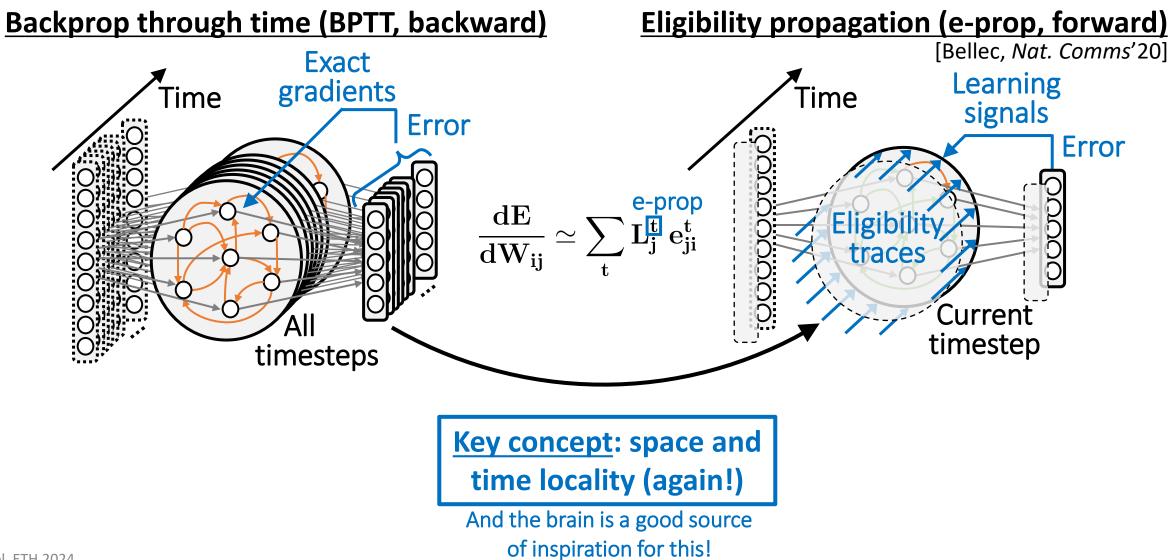


- Unrolling in time: very deep network (current learning ICs for static stimuli: ≤3 layers)
- Intractable memory/latency requirements
- No end-to-end on-chip solution to date

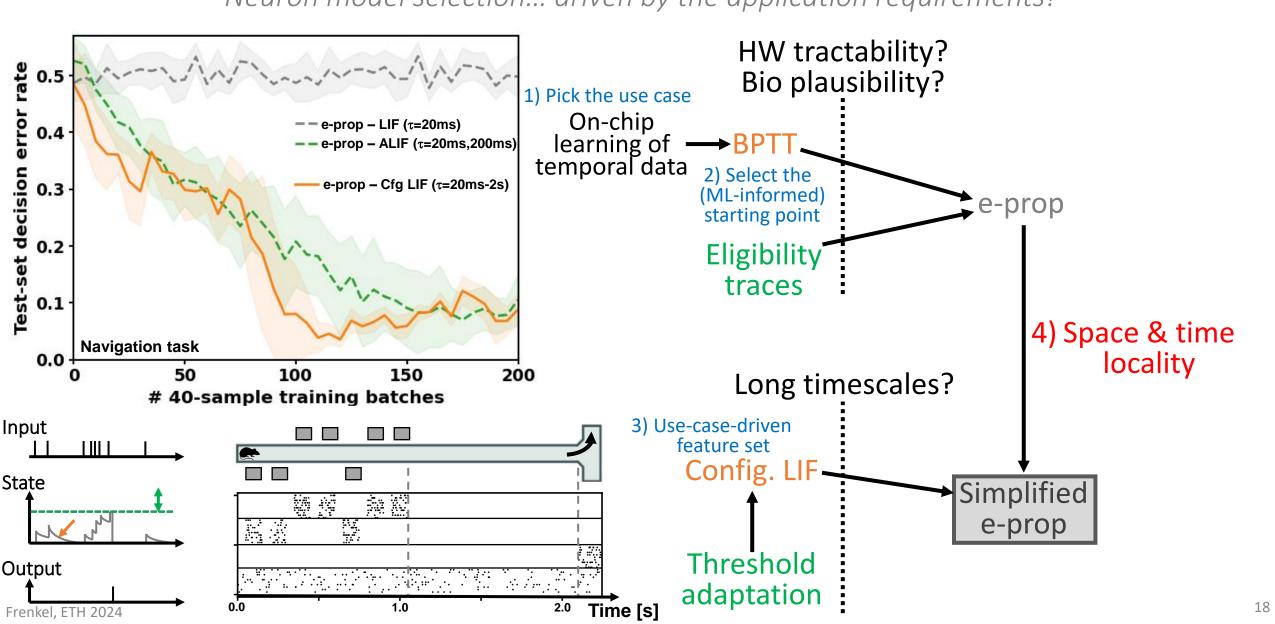
<u>Key challenge</u>: On-chip learning over long timescales while keeping a fine-grained temporal resolution

2) Select the (ML-informed) starting point

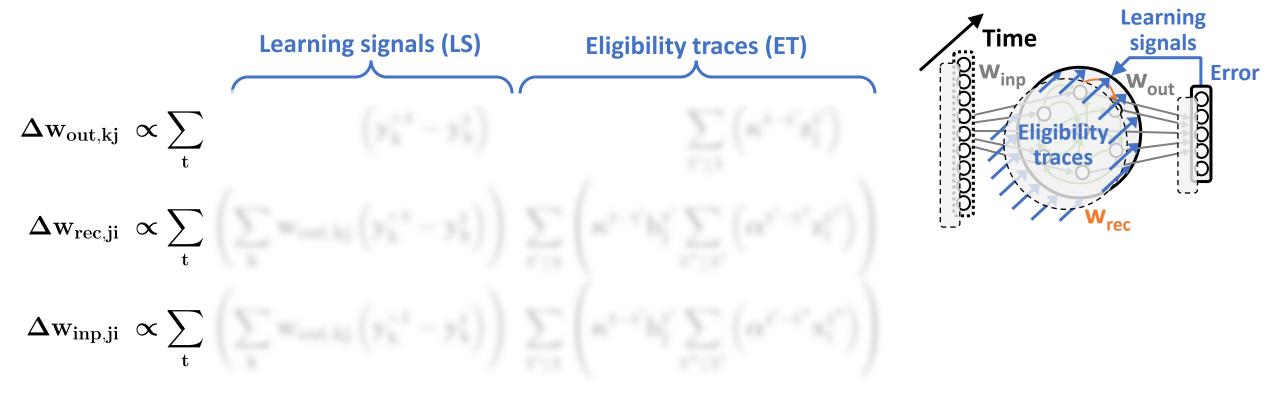
From BPTT to biologically plausible training



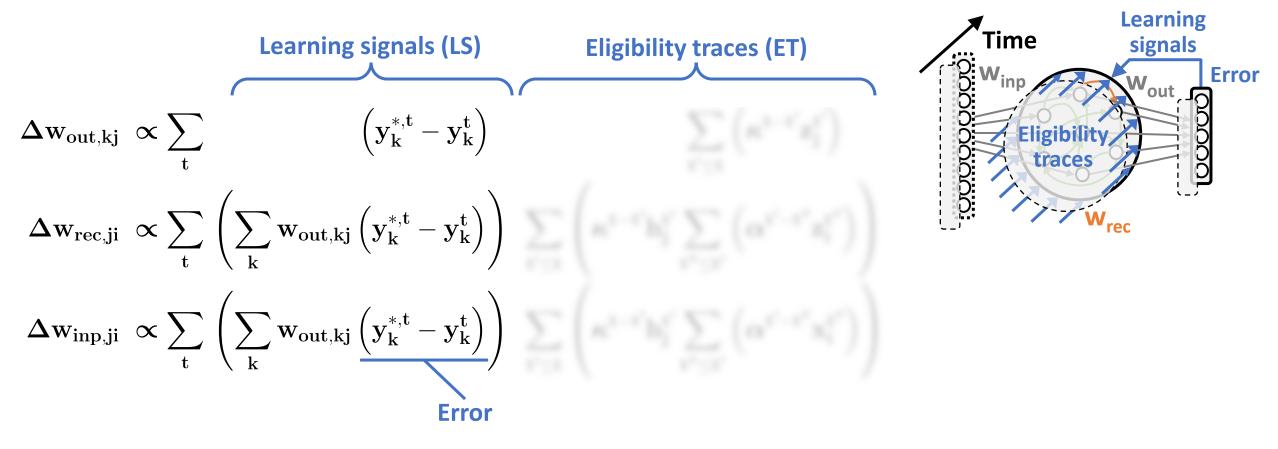
3) Use-case-driven feature set selection Neuron model selection... driven by the application requirements!



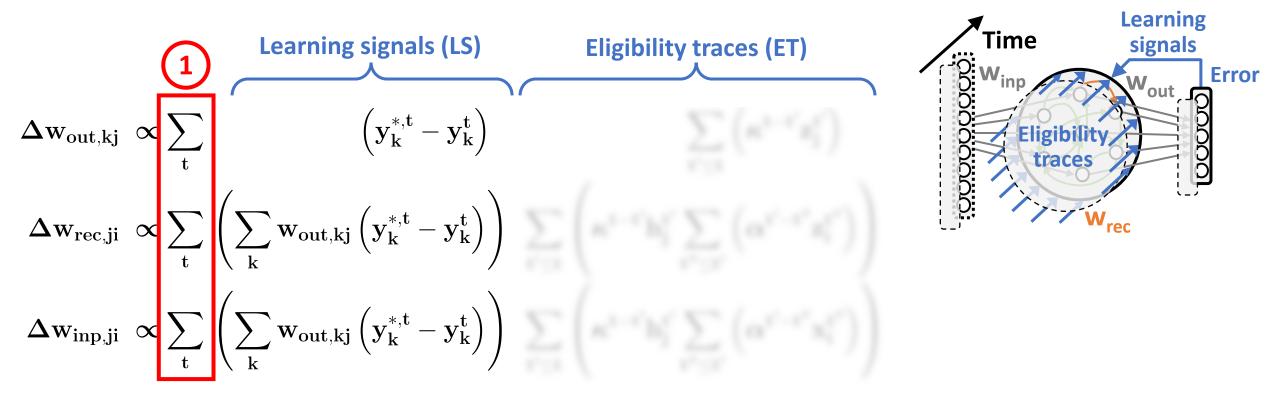
Key steps to minimize memory requirements



Key steps to minimize memory requirements

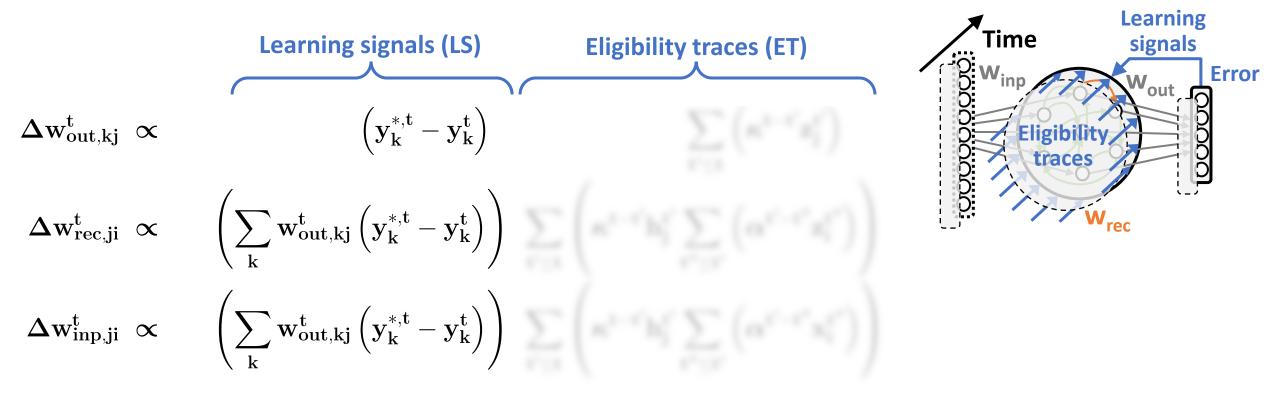


Key steps to minimize memory requirements

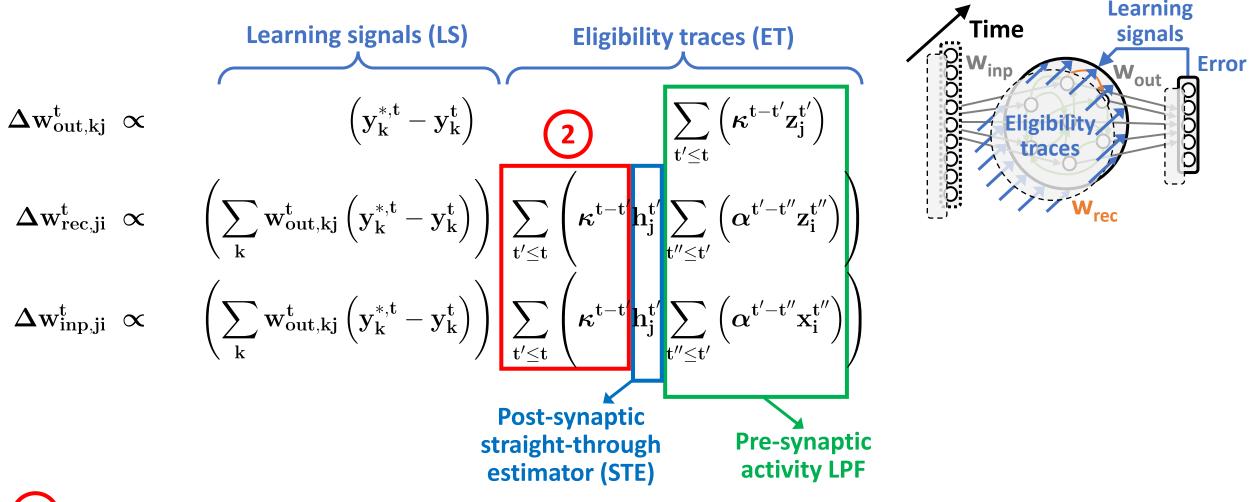


Requires a dedicated gradient memory —— Per-timestep updates

Key steps to minimize memory requirements

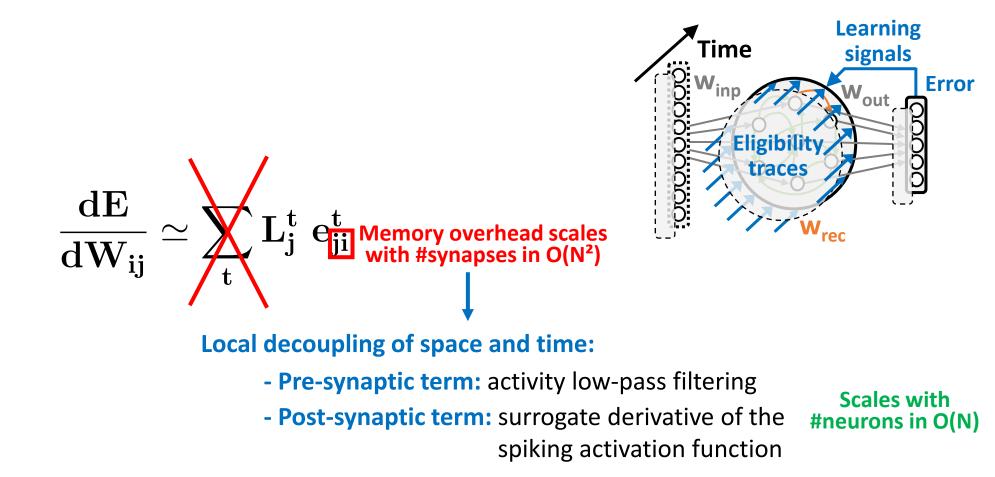


Key steps to minimize memory requirements



Temporal coupling of pre- and post-synaptic terms — Can be neglected

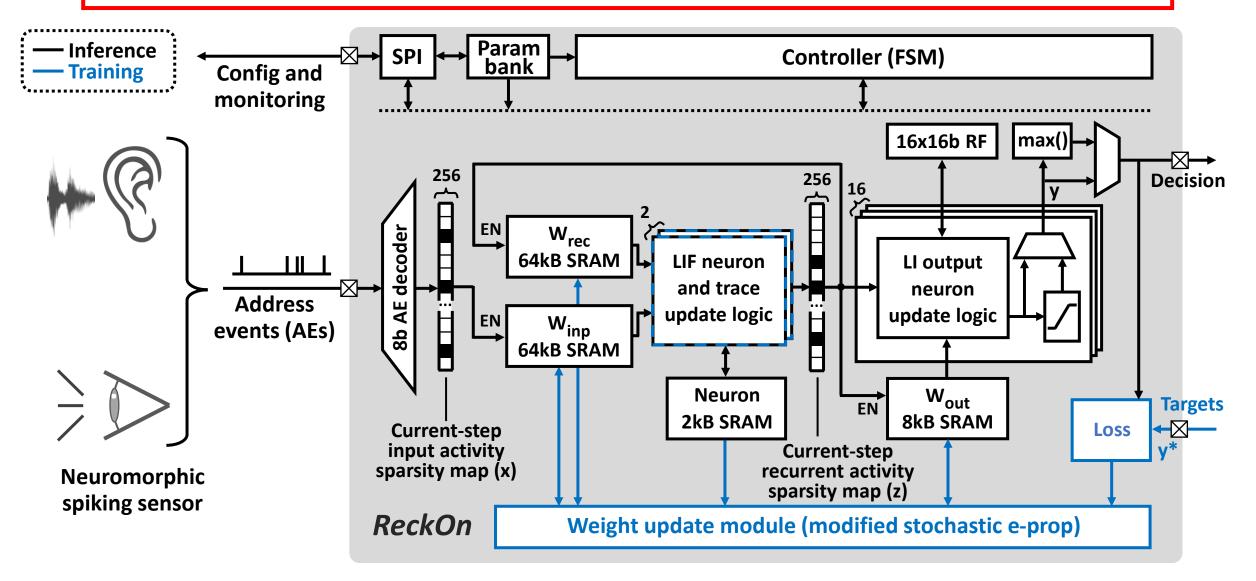
Key steps to minimize memory requirements



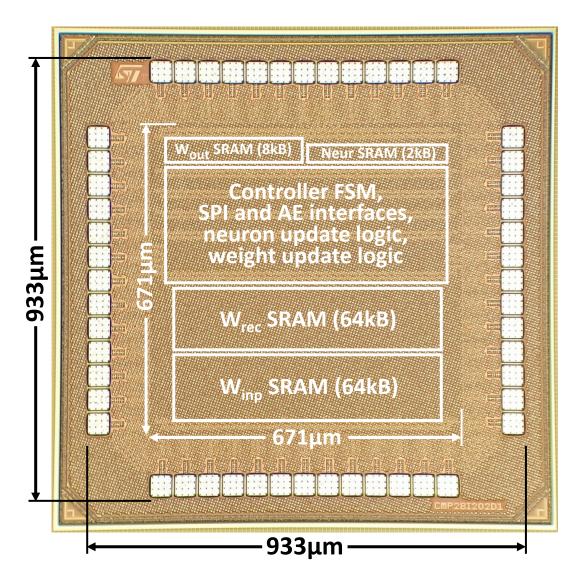
Stochastic weight updates allow reducing weight resolution to 8 bits

The ReckOn neuromorphic chip – Architecture

Same recipe as for ODIN: time multiplexing, no PDE solver, space and time locality



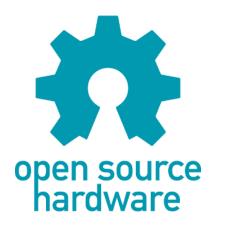
The ReckOn neuromorphic chip – Microphotograph and summary



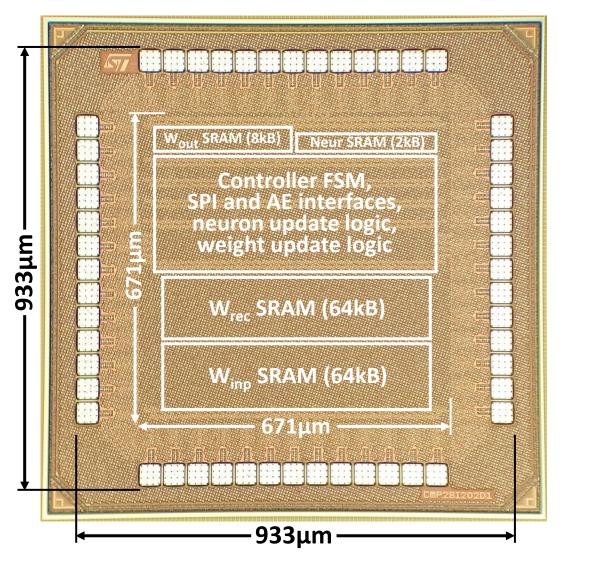
ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

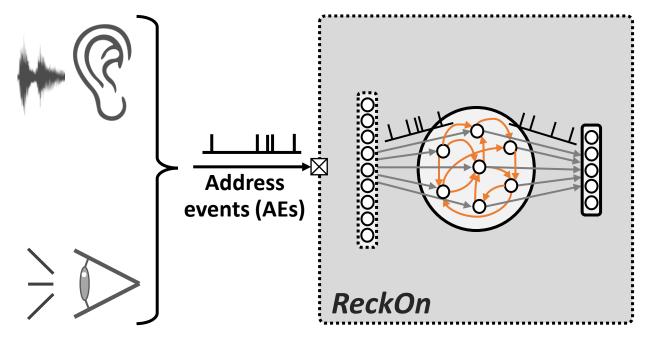
Technology	28nm FDSOI CMOS			
Core size	0.67 x (0.67 mm²	0.45mm ²	
Die size	0.93 x 0.93 mm ²			
SRAM	13	38kB 🕇 🖊	kB ext. D	RAM!
Network	Spikiı	ng RNN		
Training timespan	Max. 3	32k steps		



The ReckOn neuromorphic chip – Key advantage of using spikes



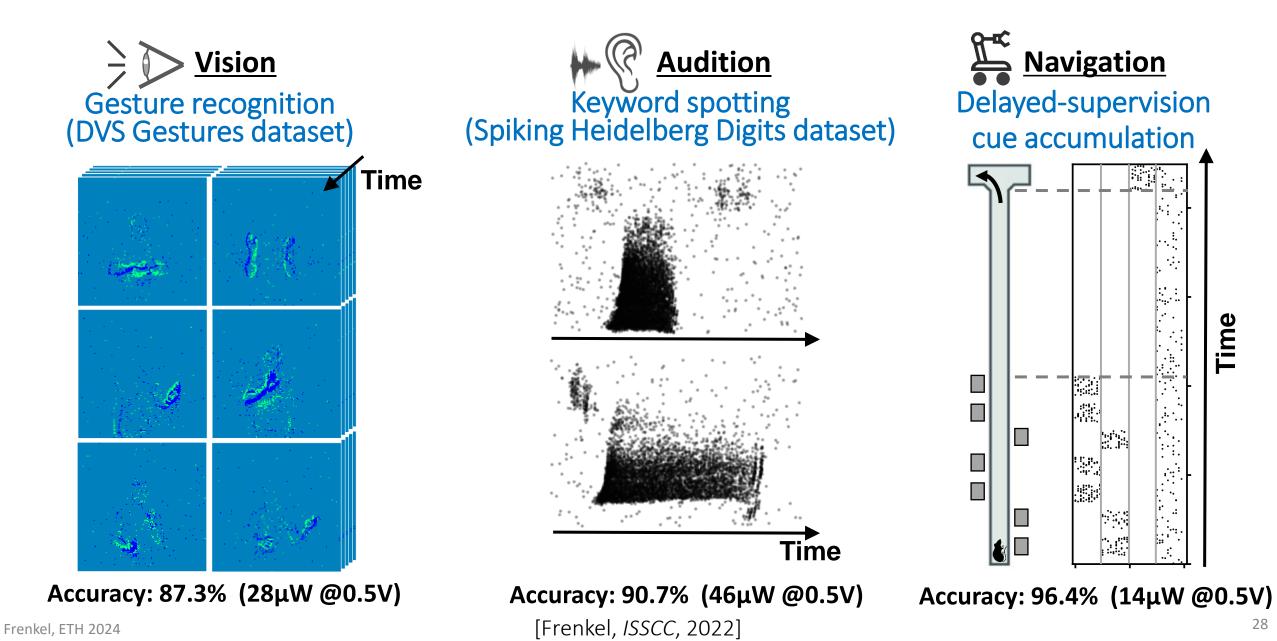
- Event-driven / sparsity-aware computation
- Sensor-agnostic raw-data processing
- Task-agnostic processing and learning



Neuromorphic spiking sensor

[Frenkel, *ISSCC*, 2022]

The ReckOn neuromorphic chip – Benchmarking



What you should remember

Key elements for a competitive advantage with neuromorphic edge intelligence

Merging AI, neuroscience and hardware is key to

achieve end-to-end on-chip learning over second-long timescales while keeping a milli-second temporal resolution, a yet unsolved challenge,

provide a low-cost solution: 0.45-mm² core area, <50µW for real-time training @0.5V,

demonstrate task-agnostic learning with a spike-based encoding toward user customization and chip repurposing at the edge.

This outlines an exciting future for neuromorphic edge intelligence!

...But wait, it's not over!

Time for yet-unpublished stuff!

The Cognitive Sensor Nodes and Systems (CogSys) Team

We bridge the bottom-up (bio-inspired) and top-down (engineering-driven) design approaches toward neuromorphic intelligence.

@C_Frenkel

cfrenkel ChFrenkel R⁶Charlotte-FrenkelCharlotte-Frenkelc.frenkel@tudelft.nlchfrenkel.github.io

Main references:

- ODIN: [C. Frenkel et al., "A 0.086-mm² 12.7-pJ/SOP 64k-synapse 256-neuron onlinelearning digital spiking neuromorphic processor in 28nm CMOS," *IEEE Trans. BioCAS*, 2019]

Questions?

- MorphIC: [C. Frenkel et al. "MorphIC: A 65-nm 738k-synapse/mm² quad-core binary-weight digital neuromorphic processor with stochastic spike-driven online learning," *IEEE Trans. BioCAS*, 2019]
- DRTP: [C. Frenkel, M. Lefebvre et al., "Learning without feedback: Fixed random learning signals allow for feedforward training of deep neural networks," *Frontiers in Neuroscience*, 2021]
- SPOON: [C. Frenkel et al., "A 28-nm convolutional neuromorphic processor enabling online learning with spike-based retinas," *IEEE ISCAS*, 2020]
- **Review:** [C. Frenkel, D. Bol and G. Indiveri, "Bottom-up and top-down approaches for the design of neuromorphic processing systems: Tradeoffs and synergies between natural and artificial intelligence," *Proceedings of the IEEE*, 2023]
- **ReckOn:** [C. Frenkel and G. Indiveri, "ReckOn: A 28-nm Sub-mm² Task-Agnostic Spiking Recurrent Neural Network Processor Enabling On-Chip Learning over Second-Long Timescales," *IEEE International Solid-State Circuits Conference (ISSCC)*, 2022]

Open-sourced! github.com/ChFrenkel/ODIN

Open-sourced! <u>github.com/ChFrenkel/Direct</u> <u>RandomTargetProjection</u>

Open-sourced! github.com/ChFrenkel/ReckOn