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From neuroscience to AI and back again…  …which perspective?
             …which starting point?
             

Why should we bother with neuroscience?

How can we morph these questions into interesting engineering solutions?
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From neuroscience to AI and back again

Neuroscience

AI algorithms

Which starting point? Which perspective?

3

Neuromorphic hardware

Engineering

Science

AI without hardware is unsustainable

?

[A. Gholami, RiseLab Medium Post, 2021]
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Spike-timing-dependent plasticity (STDP)
[Bi & Poo, J. Neurosci., 1998]

Spike-dependent synaptic plasticity (SDSP)
[Brader, Neur. Comp., 2007]

Local Local

Neuroscience

AI algorithms

Synaptic plasticity rules – Neuroscience as the starting point
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STDP SDSP 6

[Cassidy,
ISCAS’11]

[Frenkel, Trans. BioCAS, 2019]

Digital synapse implementation Neuroscience

AI algorithms

Synaptic plasticity rules – Neuroscience as the starting point
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Local in space
Non-local in time

Local in space
Local in time

Spike-timing-dependent plasticity (STDP) Spike-dependent synaptic plasticity (SDSP)

The key perspective of data locality Neuroscience

AI algorithms

[Bi & Poo, J. Neurosci., 1998] [Brader, Neur. Comp., 2007]

Synaptic plasticity rules – Neuroscience as the starting point

[Clopath and Gerstner,
Front. Syn. Neuro., 2010]

Huge savings in silicon [Frenkel, TBioCAS, 2019]
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• Simple

• Full space and time locality

• No PDE solvers (= phenomenological modelling)

Design decisions

• Low-cost

• Flexible and portable

Digital and
time-multiplexed

Features (aka “salt and pepper”)

• Synaptic plasticity (SDSP)

• Large neuron behavior repertoire (LIF + Izhikevich)

[Frenkel, Trans. BioCAS, 2019a]

Synaptic plasticity rules – Neuroscience as the starting point
The ODIN neuromorphic chip – Architecture Neuroscience

AI algorithms

ODIN is a 256x256 SNN crossbar!

https://github.com/
ChFrenkel/tinyODIN 

https://github.com/ChFrenkel/tinyODIN
https://github.com/ChFrenkel/tinyODIN
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Synaptic plasticity rules – Neuroscience as the starting point

9

Neuroscience

AI algorithms

ODIN (single-core) MorphIC (quad-core)

Record synaptic density

Energy efficiency competitive with mixed-signal designs

Large feature set (incl. 20 Izhikevich behaviors, synaptic plasticity)
…but quite painful to exploit!

[Frenkel, TBioCAS’19a] [Frenkel, TBioCAS’19b]

The ODIN and MorphIC neuromorphic chips – Silicon 



Frenkel, ETH 2024

s

Computational and memory cost

[Lillicrap, Nat. Comms., 2016]   [Nokland, NeurIPS, 2016]   [Frenkel & Lefebvre, Front. Neur., 2020] 10

Neural network training – Bio-plausibility as the end goal
Synergy with hardware: latency, memory access patterns Neuroscience

AI algorithms
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Bringing AI closer to neuroscience leads to hardware efficiency

Designing efficient hardware hints toward bio-plausible mechanisms

HW efficiency and bio-plausibility are often two sides of the same coin!
Many more examples: quantization, stochastic computing, event-driven computation,…
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should be fed by 

From neuroscience to AI and back again

Neuroscience

AI algorithms

Which starting point? Which perspective?

12

Neuromorphic hardware

Science

AI without hardware is unsustainable

Natural
synergy

1

1

2

2

Bottom-up science-driven approach

Top-down engineering-driven approach

Analysis-by-synthesis

Difficult to scale efficiently to real-world problems

Starts from working solutions to real-world problems

Which “salt & pepper” from neuroscience?

Neuromorphic intelligence:

12

Engineering
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From neuroscience to AI and back again…  …which perspective?
             …which starting point?
             

Why should we bother with neuroscience?

How can we morph these questions into interesting engineering solution?
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Let’s use a 4-step recipe!

should be fed by 

Neuromorphic intelligence:

12
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(in-distribution) (performance within specs)

Inference 
device

Data Decision

14

Image

Video

Speech

1)  Pick the use case
Why on-device learning is key!
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(out-of-distribution) (performance    )

Inference 
device

Data Decision

Different users, environments, task requirements

More training data before deployment?
Issues:  cost, robustness, flexibility

Data exchange with the cloud?
Issues:  power budget, privacy

On-chip training
(end-to-end)

15

Image

Video

Speech

1)  Pick the use case
Why on-device learning is key!
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Key challenge: On-chip learning over long timescales
while keeping a fine-grained temporal resolution

Time
Error

Exact BPTT 
gradients

Video

Speech

• Unrolling in time: very deep network

• Intractable memory/latency requirements

• No end-to-end on-chip solution to date

(current learning ICs for static stimuli: ≤3 layers)

Why is on-chip learning over second-long timescales difficult?
Let’s solve a yet unsolved engineering challenge!

16
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Time
Error

Exact 
gradients Time

Error

Learning 
signals

Eligibility 
traces

Current 
timestep

All  
timesteps

Backprop through time (BPTT, backward) Eligibility propagation (e-prop, forward)
[Bellec, Nat. Comms’20]

e-prop

17

Key concept: space and 
time locality (again!)
And the brain is a good source 

of inspiration for this!

2)  Select the (ML-informed) starting point
From BPTT to biologically plausible training
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Neuroscience

AI algorithms

Neuromorphic hardware

Engineering

Science

shoud be fed by 

Neuromorphic intelligence:

12

18

BPTT

Eligibility 
traces

e-prop

Simplified 
e-prop

Config. LIF

Threshold 
adaptation

HW tractability?
Bio plausibility?

Long timescales?

Space & time 
locality

e-prop – LIF (t=20ms)

e-prop – ALIF (t=20ms,200ms)

e-prop – Cfg LIF (t=20ms-2s)

Navigation task

Time [s]0.0 1.0 2.0

Input

State

Output

3) Use-case-driven feature set selection
Neuron model selection… driven by the application requirements!

1) Pick the use case

On-chip 
learning of 

temporal data 2) Select the 
  (ML-informed)
  starting point

3) Use-case-driven 
     feature set

4)
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Time

Error

Learning 
signals

Eligibility 
traces

winp wout

wrec

Eligibility traces (ET)Learning signals (LS)

4) Enforce space and time locality
Key steps to minimize memory requirements
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Error
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Time

Error

Learning 
signals

Eligibility 
traces

winp wout

wrec

Eligibility traces (ET)Learning signals (LS)

4) Enforce space and time locality
Key steps to minimize memory requirements
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Requires a dedicated gradient memory Per-timestep updates

1

1

21

Time

Error

Learning 
signals

Eligibility 
traces

winp wout

wrec

Eligibility traces (ET)Learning signals (LS)

4) Enforce space and time locality
Key steps to minimize memory requirements
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Time

Error

Learning 
signals

Eligibility 
traces

winp wout

wrec

Eligibility traces (ET)Learning signals (LS)

4) Enforce space and time locality
Key steps to minimize memory requirements
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Post-synaptic 
straight-through 
estimator (STE)

Temporal coupling of pre- and post-synaptic terms Can be neglected

Pre-synaptic 
activity LPF

2

2

23

Time

Error

Learning 
signals

Eligibility 
traces

winp wout

wrec

Eligibility traces (ET)Learning signals (LS)

4) Enforce space and time locality
Key steps to minimize memory requirements
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Time

Error

Learning 
signals

Eligibility 
traces

winp wout

wrec

24

Local decoupling of space and time:

Stochastic weight updates allow reducing weight resolution to 8 bits

Memory overhead scales 
with #synapses in O(N²)

- Pre-synaptic term: activity low-pass filtering 

- Post-synaptic term: surrogate derivative of the 
                                       spiking activation function

Scales with 
#neurons in O(N)

4) Enforce space and time locality
Key steps to minimize memory requirements
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.

Neuromorphic 
spiking sensor
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Decision
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Wout
8kB SRAM
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EN
2

Neuron

2kB SRAM

EN

Wrec
64kB SRAM

Winp
64kB SRAM 

Controller (FSM)

EN

ReckOn

256

LI output 

neuron
update logic

max()

SPI Param 
bank

Inference
Training

Weight update module (modified stochastic e-prop)

y*

y

Current-step
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sparsity map (z)
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events (AEs)
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LIF neuron

and trace
update logic

The ReckOn neuromorphic chip – Architecture
Same recipe as for ODIN: time multiplexing, no PDE solver, space and time locality

[Frenkel, ISSCC, 2022]
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9
3

3
µ

m

933µm

Wrec SRAM (64kB)

Neur SRAM (2kB)Wout SRAM (8kB)

Winp SRAM (64kB)

Controller FSM,
SPI and AE interfaces,
neuron update logic,
weight update logic

6
7

1
µ

m

671µm

28nm FDSOI CMOS
0.67 x 0.67 mm²
0.93 x 0.93 mm²

138kB
Spiking RNN

Max. 32k steps

Technology
Core size
Die size
SRAM

Network
Training timespan

0.45mm²

26

+ 0kB ext. DRAM!

[Frenkel, ISSCC, 2022]

The ReckOn neuromorphic chip – Microphotograph and summary
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▪ Event-driven / sparsity-aware computation

▪ Sensor-agnostic raw-data processing

▪ Task-agnostic processing and learning

9
3

3
µ

m

933µm

Wrec SRAM (64kB)

Neur SRAM (2kB)Wout SRAM (8kB)

Winp SRAM (64kB)

Controller FSM,
SPI and AE interfaces,
neuron update logic,
weight update logic

6
7

1
µ

m

671µm

.

Address
events (AEs)

Neuromorphic 
spiking sensor

ReckOn

[Frenkel, ISSCC, 2022]

The ReckOn neuromorphic chip – Key advantage of using spikes
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NavigationVision Audition.

Time

T
im

e

Time

Accuracy: 87.3%  (28µW @0.5V) Accuracy: 90.7%  (46µW @0.5V) Accuracy: 96.4%  (14µW @0.5V)
28

Delayed-supervision
cue accumulation

Gesture recognition
(DVS Gestures dataset)

Keyword spotting
(Spiking Heidelberg Digits dataset)

The ReckOn neuromorphic chip – Benchmarking
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What you should remember
Key elements for a competitive advantage with neuromorphic edge intelligence

achieve end-to-end on-chip learning over second-long timescales while 
keeping a milli-second temporal resolution, a yet unsolved challenge,

provide a low-cost solution: 0.45-mm² core area, 

                                                   <50µW for real-time training @0.5V, 

demonstrate task-agnostic learning with a spike-based encoding toward 
user customization and chip repurposing at the edge.

Merging AI, neuroscience and hardware is key to

This outlines an exciting future for neuromorphic edge intelligence!
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…But wait, it’s not over!
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The Cognitive Sensor Nodes and Systems (CogSys) Team

YOU?

We bridge the bottom-up (bio-inspired) and top-down (engineering-driven) 
design approaches toward neuromorphic intelligence.
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@C_Frenkel

cfrenkel

Charlotte-Frenkel

Main references:
 
 - ODIN:

 - MorphIC:

 - DRTP: 

 - SPOON:

 - Review:

 - ReckOn: 

Open-sourced!
github.com/ChFrenkel/ODIN

Open-sourced!
github.com/ChFrenkel/Direct

RandomTargetProjection

Open-sourced!
github.com/ChFrenkel/ReckOn 

ChFrenkel

[C. Frenkel et al., “A 0.086-mm² 12.7-pJ/SOP 64k-synapse 256-neuron online-
learning digital spiking neuromorphic processor in 28nm CMOS,” IEEE
Trans. BioCAS, 2019]
[C. Frenkel et al. “MorphIC: A 65-nm 738k-synapse/mm² quad-core binary-weight 
digital neuromorphic processor with stochastic spike-driven online learning,” IEEE 
Trans. BioCAS, 2019]
[C. Frenkel, M. Lefebvre et al., “Learning without feedback: Fixed random 
learning signals allow for feedforward training of deep neural networks,” 
Frontiers in Neuroscience, 2021]
[C. Frenkel et al., “A 28-nm convolutional neuromorphic processor enabling 
online learning with spike-based retinas,” IEEE ISCAS, 2020]
[C. Frenkel, D. Bol and G. Indiveri, “Bottom-up and top-down approaches for the
design of neuromorphic processing systems: Tradeoffs and synergies between
natural and artificial intelligence,” Proceedings of the IEEE, 2023]
[C. Frenkel and G. Indiveri, “ReckOn: A 28-nm Sub-mm² Task-Agnostic Spiking 
Recurrent Neural Network Processor Enabling On-Chip Learning over Second-
Long Timescales,” IEEE International Solid-State Circuits Conference (ISSCC), 2022]

32

c.frenkel@tudelft.nl

chfrenkel.github.io

Questions?

https://github.com/ChFrenkel/ODIN/
https://github.com/ChFrenkel/DirectRandomTargetProjection
https://github.com/ChFrenkel/ReckOn
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