
Introduction to ABC: An Open-Source

Synthesis and Verification CAD Tool

for FPGAs and ASICs

Alan Mishchenko

University of California, Berkeley

22

Synthesis/Verification in a Design Flow

⚫ Stages of the design flow
⚫ System specification
⚫ Design architecture exploration

⚫ High-level synthesis
⚫ RTL elaboration

⚫ Word-level transformations
⚫ Bit-level logic synthesis/mapping

⚫ Physical synthesis
⚫ Mask generation

⚫ Fabrication
⚫ Packaging and testing

⚫ Verification is typically needed
⚫ Between high-level description

and a gate-level circuit
⚫ Between different stages of

synthesis and mapping

Illustration courtesy of Victor Kravets, reused with permission

RTL elaboration

Word-level network

mapping
Bit-blasting, synthesis,

Gate-level circuit

Register-transfer level

(RTL) Verilog / VHDL

Physical synthesis

33

Problem Size

Time1950-1970 1980 1990 2000

CNF

TT SOP
BDD

Academic Synthesis/Verification

Tools: Historical Perspective

AIG

16

50

100

100000

Espresso,

MIS, SIS

SIS, VIS,

MVSIS

ABC

2010

3

Outline

⚫ Basic level
⚫ Boolean calculator and visualizer

⚫ Standard commands and scripts

⚫ Advanced level
⚫ Key packages and data-structures

⚫ Ways to improve runtime and memory usage

⚫ Hits and misses

⚫ Future research directions

4

Outline

⚫ Basic level
⚫ Boolean calculator and visualizer

⚫ Standard commands and scripts

⚫ Advanced level
⚫ Key packages and data-structures

⚫ Ways to improve runtime and memory usage

⚫ Hits and misses

⚫ Future research directions

5

Boolean Calculator

⚫ Read/generate small functions/networks
⚫ Automatically extracted or manually specified

⚫ Compute basic functional properties
⚫ Symmetries, decomposability, unateness, etc

⚫ Transform them in various ways
⚫ Minimize SOP, reorder BDD, extract kernels, etc

⚫ Visualization
⚫ Use text output, dot / GSView, etc

6

Standard Commands/Scripts

⚫ Technology independent synthesis

⚫ Logic synthesis for PLAs

⚫ Technology mapping for standard cells

⚫ Technology mapping for LUTs

⚫ Sequential synthesis

⚫ Verification

7

AIG Rewriting

a b a c

Subgraph 1

b c

a

Subgraph 2

⚫ Pre-computing AIG subgraphs
⚫ Consider function f = abc

a c

b

Subgraph 3

Rewriting AIG subgraphs

Rewriting node A

Rewriting node B

a b a c

a b a c

A

Subgraph 1

b c

a

A

Subgraph 2

b c

a

B

Subgraph 2

a b a c

B

Subgraph 1

In both cases 1 node is saved

⚫ AIG rewriting has the goal of minimizing the number of AIG nodes

P. Bjesse and A. Boralv, "DAG-aware circuit

compression for formal verification", Proc. ICCAD ’04.
8

Technology Independent Synthesis

⚫ AIG rewriting for area
⚫ Scripts drwsat, compress2rs

⚫ AIG rewriting for delay
⚫ Scripts dc2, resyn2
⚫ Scripts &syn2, &synch2

⚫ High-effort delay optimization
⚫ Perform SOP balancing (st; if –g –K 6)
⚫ Follow up with area-recovery (resyn2) and technology

mapping (map, amap, if)
⚫ Iterate, if needed

9

Logic Synthesis for PLAs

⚫ Enter PLA (.type fd) into ABC using read
⚫ Perform logic sharing extraction using fx

⚫ If fx is complaining that individual covers are not prime and
irredundant, try bdd; sop; fx

⚫ After fx, convert shared logic into AIG and continue
AIG-based synthesis and mapping if needed

⚫ Consider using high-effort synthesis with don’t-cares
⚫ First map into 6-LUTs (if –K 6; ps), optimize (mfs2),

synthesize with choices (st; dch) and map into 6-LUTs (if –
K 6; ps)

⚫ Iterate until no improvement, then remap into target
technology

⚫ To find description of PLA format, google for
“Espresso PLA format”, for example:
⚫ http://www.ecs.umass.edu/ece/labs/vlsicad/ece667/links/es

presso.5.html

10

.i 2

.o 2

00 00

01 01

10 01

11 10

.e

LUT Mapping

Input: A Boolean network

(And-Inverter Graph)

Output: A netlist of K-LUTs covering the

AIG and optimizing some cost function

The subject graph The mapped netlist

Technology

Mapping

a b c d

f

e a b c d e

f

A. Mishchenko, S. Cho, S. Chatterjee, and R. Brayton, "Combinational and sequential mapping with priority cuts",

Proc. ICCAD '07, https://people.eecs.berkeley.edu/~alanmi/publications/2007/iccad07_map.pdf

11

Technology Mapping for SCs

⚫ Read library using
⚫ read_genlib (for libraries in GENLIB format)
⚫ read_liberty (for libraries in Liberty format)

⚫ For standard-cells
⚫ map: Boolean matching, delay-oriented, cells up to 5 inputs
⚫ amap: structural mapping, area-oriented, cells up to 15 inputs

⚫ If Liberty library is used, run topo followed by
⚫ stime (accurate timing analysis)
⚫ buffer (buffering)
⚫ upsize; dnsize (gate sizing)

⚫ Structural choices are an important way of improving
mapping (both area and delay)
⚫ Run st; dch before calling map or amap

12

Technology Mapping for LUTs

⚫ It is suggested to use mapper if –K <num>
⚫ For area-oriented mapping, try if -a

⚫ For delay-oriented mapping, try delay-oriented AIG-

based synthesis with structural choices

⚫ Structural choices are an important way of

improving mapping (both area and delay)
⚫ Run st; dch before calling if

13

14

Synthesis With Structural Choices

⚫ Traditional synthesis produces one “optimized” network
⚫ Synthesis with choices produces several networks

⚫ These can be different snapshot of the same synthesis flow
⚫ These can be results of synthesizing the design with different options

⚫ For example, area-oriented and delay-oriented scripts

Synthesis

D2
D1

Synthesis with structural choices

D3

HAIG

D2D1 D3 D4

D4

14

Sequential Synthesis

⚫ Uses reachable state information to further
improve the quality of results
⚫ Reachable states are often approximated

⚫ Types of AIG-based sequential synthesis
⚫ Retiming (retime, dretime, etc)
⚫ Detecting and merging sequential equivalences

(lcorr, scorr, &scorr, etc)

⚫ Negative experiences
⚫ Sequential redundancy removal is often hard
⚫ Using sequential don’t-cares in combinational

synthesis typically gives a very small improvement

15

Formal Verification

⚫ Equivalence checking
⚫ Takes two designs and

makes a miter (AIG)

⚫ Model checking
⚫ Takes design and

property and makes a

miter (AIG)

 The goal is the same:

 to transform AIG until the

output is proved constant 0

D2D1

Equivalence checking

0

D1

Property checking

0

p

16

Verification Commands

⚫ Combinational verification
⚫ r <file1>; cec <file2> (small/medium circuits)
⚫ &r <file1.aig>; &cec <file2.aig> (large circuits)

⚫ Sequential verification
⚫ r <file1>; dsec <file2>

⚫ Running cec or dsec any time in a synthesis flow
compares the current network against its spec
⚫ The spec is the circuit obtained from the original file

⚫ Verification and synthesis are closely related and
should be co-developed

17

Outline

⚫ Basic level
⚫ Boolean calculator and visualizer

⚫ Standard commands and scripts

⚫ Advanced level
⚫ Key packages and data-structures

⚫ Ways to improve runtime and memory usage

⚫ Future research directions

18

Key Packages

⚫ AIG package

⚫ Technology-independent synthesis

⚫ Technology mappers

⚫ SAT solver

⚫ Combinational equivalence checking

⚫ Sequential synthesis

⚫ Sequential verification engine IC3/PDR

19

Key Packages

⚫ AIG package

⚫ Technology-independent synthesis

⚫ Technology mappers

⚫ SAT solver

⚫ Combinational equivalence checking

⚫ Sequential synthesis

⚫ Sequential verification engine IC3/PDR

20

And-Inverter Graph (AIG)

cd
ab 00 01 11 10

00 0 0 1 0

01 0 0 1 1

11 0 1 1 0

10 0 0 1 0

F(a,b,c,d) = ab + d(a!c+bc)

F(a,b,c,d) = a!c(b+d) + bc(a+d)cd
ab 00 01 11 10

00 0 0 1 0

01 0 0 1 1

11 0 1 1 0

10 0 0 1 0

6 nodes

4 levels

7 nodes

3 levels

b ca c

a b d

a c b d b c a d

AIG is a Boolean network composed of two-input ANDs and inverters

21

Components of Efficient AIG Package

⚫ Structural hashing
⚫ Leads to a compact representation
⚫ Is applied during AIG construction

⚫ Propagates constants
⚫ Makes each node structurally unique

⚫ Complemented edges
⚫ Represents inverters as attributes on the edges

⚫ Leads to fast, uniform manipulation
⚫ Does not use memory for inverters
⚫ Increases logic sharing using DeMorgan’s rule

⚫ Memory allocation
⚫ Uses fixed amount of memory for each node

⚫ Can be done by a custom memory manager
⚫ Even dynamic fanout can be implemented this way

⚫ Allocates memory for nodes in a topological order
⚫ Optimized for traversal using this topological order
⚫ Small static memory footprint for many applications

⚫ Computes fanout information on demand

a b

c d

a b

c d

Without hashing

With hashing 22

“Minimalistic” AIG Package

⚫ Designed to minimize memory requirements
⚫ Baseline: 8 bytes/node for AIGs (works up to 2 billion nodes)
⚫ Structural hashing: +8 bytes/node
⚫ Logic level information: +4 bytes/node
⚫ Simulation information: +8 bytes/node for 64 patterns

⚫ Each node attribute is stored in a separate array
⚫ No “Aig_Node” struct
⚫ Attributes are allocated and deallocated on demand
⚫ Helps improve locality of computation
⚫ Very useful to large AIG (100M nodes and more)

⚫ Maintains minimum memory footprint for basic tasks, while allowing
the AIG package to have several optional built-in features
⚫ Structural hashing
⚫ Bit-parallel simulation
⚫ Circuit-based SAT solving

23

Outline

⚫ Basic level
⚫ Boolean calculator and visualizer

⚫ Standard commands and scripts

⚫ Advanced level
⚫ Key packages and data-structures

⚫ Ways to improve runtime and memory usage

⚫ Hits and misses

⚫ Future research directions

24

ABC Hits

⚫ It is based on cutting-edge research ideas
⚫ It offers a low-cost and often competitive

implementation of fundamental algorithms
⚫ AIG rewriting, tech-mapping, SAT sweeping,

retiming, equivalence checking, etc

⚫ It tends to be fast and low-memory
⚫ It is reliable (if we use it in a known way)
⚫ It is actively developed and supported

25

ABC Misses

⚫ Inadequate Verilog parser

⚫ Does not natively support much of the

“industrial stuff” (complex flops, multiple

clocks, memories, design constraints, etc)
⚫ requires elaborate workarounds to be useful

⚫ Poor documentation

⚫ A lot of redundant source code

26

Lessons: Front-End and Back-End

⚫ Having a variety of formats is useful, but…

⚫ Reading and writing Verilog is a must!
⚫ Yosys is used as an external front-end

⚫ Need well-documented APIs for

integrating with external tools
⚫ This has been addressed to some extent

27

Lessons: Optimization Flow

⚫ AIG is a good unifying data-structure
⚫ Do not hesitate to base computations on AIGs

⚫ Need parametrizable optimizers
⚫ Rather than having optimizations geared to a

specific representation (AIG/MIG/XMIG/etc)

⚫ Need one generic cut-based tech-mapper

for all technologies (gates, LUTs, etc)

⚫ Need to support the “industrial stuff”!

28

Lessons: Data Structures

⚫ Develop a clean minimalistic data-structure

for each package (conversions between

data-structures are easy and fast)

⚫ Reduce memory used for large data-

structures and runtime will be reduced
⚫ true about AIG, logic network, hierarchical netlist

⚫ Whenever possible, use 32-bit integers
⚫ a MiniSAT-like SAT solver is a good example

29

Lessons: Programming

⚫ Strive for maintainability
⚫ Minimize dependency between packages

⚫ Strive for reproducibility
⚫ Implement your own floating point number

⚫ Strive for thread-safety
⚫ Have no global and static variables

⚫ Spend time to build a set of handy tools

30

Outline

⚫ Basic level
⚫ Boolean calculator and visualizer

⚫ Standard commands and scripts

⚫ Advanced level
⚫ Key packages and data-structures

⚫ Ways to improve runtime and memory usage

⚫ Hits and misses

⚫ Future research directions

31

Research Directions

⚫ Ongoing
⚫ Deep integration of simulation and SAT

⚫ Word-level optimizations (e.g. memory abstraction)

⚫ Logic synthesis for machine learning
⚫ As opposed to machine learning for logic synthesis!

32

Industrial Supporters (since 2005)

⚫ CAD tool companies
⚫ Synopsys, Mentor (Siemens), Cadence, Verific, Magma

(Synopsys), Atrenta (Synopsys), Jasper (Cadence), Oasys
(Mentor (Siemens))

⚫ FPGA companies
⚫ Xilinx (AMD), Altera (Intel), Synplicity (Synopsys), Actel

(Microsemi (Microchip)), Abound Logic (Lattice)

⚫ Design companies
⚫ IBM, Intel

⚫ Grants from federal and industrial funding agencies
⚫ NFS, NSA, SRC

33

Contributors to ABC

⚫ Fabio Somenzi (U Colorado, Boulder) - BDD package CUDD
⚫ Niklas Sorensson, Niklas Een (Chalmers U, Sweden) - MiniSAT v. 1.4 (2005)
⚫ Gilles Audemard, Laurent Simon (U Artois, U Paris Sud, France) - Glucose 3.0

⚫ Hadi Katebi, Igor Markov (U Michigan) - Boolean matching for CEC
⚫ Jake Nasikovsky - Fast truth table manipulation
⚫ Wenlong Yang (Fudan U, China) - Lazy man’s synthesis
⚫ Zyad Hassan (U Colorado, Boulder) - Improved generalization in IC3/PDR
⚫ Augusto Neutzling, Jody Matos, Andre Reis (UFRGS, Brazil) - Technology mapping into

threshold functions
⚫ Mayler Martins. Vinicius Callegaro, Andre Reis (UFRGS, Brazil) – Boolean

decomposition using read-polarity-once (RPO) function
⚫ Mathias Soeken, EPFL - Exact logic synthesis
⚫ Ana Petkovska, EPFL – Hierarchical NPN matching
⚫ Bruno Schmitt (UFRGS / EPFL) - Fast-extract with cube hashing
⚫ Xuegong Zhou, Lingli Wang (Fudan U, China) - NPN classification
⚫ Yukio Miyasaka, Masahiro Fujita (U Tokyo, Japan) - Custom BDD package for multiplier

verification
⚫ Siang-Yun Lee, Roland Jiang (NTU, Taiwan) - Dumping libraries of minimum circuits for

functions up to five input variables
⚫ He-Teng Zhang (NTU, Taiwan) – Circuit-based SAT solver, enhanced SAT sweeper

34

ABC Resources

⚫ Source code
⚫ https://github.com/berkeley-abc/abc

⚫ “Getting started with ABC”, a tutorial by Ana Petkovska
⚫ https://www.dropbox.com/s/qrl9svlf0ylxy8p/

ABC_GettingStarted.pdf

⚫ An overview paper: R. Brayton and A. Mishchenko,
"ABC: An academic industrial-strength verification tool",
Proc. CAV'10.
⚫ http://www.eecs.berkeley.edu/~alanmi/publications/

2010/cav10_abc.pdf

⚫ Windows binary
⚫ http://www.eecs.berkeley.edu/~alanmi/abc/abc.exe
⚫ http://www.eecs.berkeley.edu/~alanmi/abc/abc.rc

35

Conclusions

⚫ If you have patience and time to figure it out,
ABC can be useful

⚫ Do not hesitate to contact me if you have
questions or ideas

⚫ Consider contributing something that could be
helpful for others, for example
⚫ the code used in your paper
⚫ your course project
⚫ etc

36

	Slide 1: Introduction to ABC: An Open-Source Synthesis and Verification CAD Tool for FPGAs and ASICs
	Slide 2
	Slide 3
	Slide 4: Outline
	Slide 5: Outline
	Slide 6: Boolean Calculator
	Slide 7: Standard Commands/Scripts
	Slide 8: AIG Rewriting
	Slide 9: Technology Independent Synthesis
	Slide 10: Logic Synthesis for PLAs
	Slide 11: LUT Mapping
	Slide 12: Technology Mapping for SCs
	Slide 13: Technology Mapping for LUTs
	Slide 14: Synthesis With Structural Choices
	Slide 15: Sequential Synthesis
	Slide 16: Formal Verification
	Slide 17: Verification Commands
	Slide 18: Outline
	Slide 19: Key Packages
	Slide 20: Key Packages
	Slide 21: And-Inverter Graph (AIG)
	Slide 22: Components of Efficient AIG Package
	Slide 23: “Minimalistic” AIG Package
	Slide 24: Outline
	Slide 25: ABC Hits
	Slide 26: ABC Misses
	Slide 27: Lessons: Front-End and Back-End
	Slide 28: Lessons: Optimization Flow
	Slide 29: Lessons: Data Structures
	Slide 30: Lessons: Programming
	Slide 31: Outline
	Slide 32: Research Directions
	Slide 33: Industrial Supporters (since 2005)
	Slide 34: Contributors to ABC
	Slide 35: ABC Resources
	Slide 36: Conclusions

