

Open Platforms for the Embodied Al era

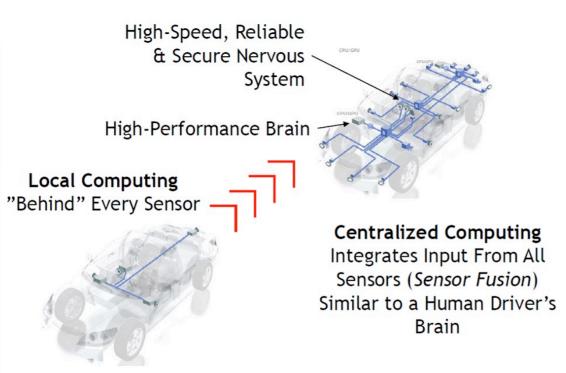
Luca Benini < luca. Benini@unibo.it, lbenini@ethz.ch>

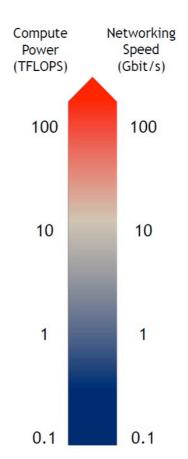
Embodied Al

[SCR'23] Level 4-5 **Self Driving** Level 2-3 **Decision Assistant** Level 1-2

Simple Aid

Path Towards Full Autonomy



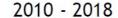


On-car Computing PMAX < 1.5KW

Energy Efficiency

 $\left(\frac{1}{\text{Power-Time}}\right)$

10x/12Y by scaling vs. model complexity 10x/2Y



2025...

Start Small: Open Platform for Autonomous Nano-Drones

Advanced autonomous drone

Nano-drone

[1] A. Bachrach, "Skydio autonomy engine: Enabling the next generation of autonomous flight," IEEE Hot Chips 33 Symposium (HCS), 2021

https://www.bitcraze.io/products/crazyflie-2-1

https://www.skydio.com/skydio-2-plus

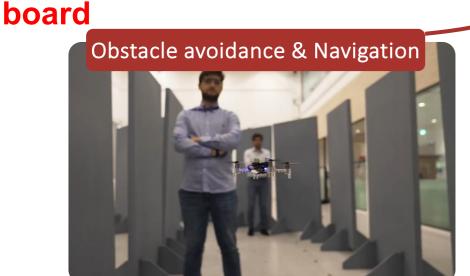
- 3D Mapping & Motion Planning
- Object recognition & Avoidance
- 0.06m2 & **800g of weight**
- Battery Capacity 5410mAh

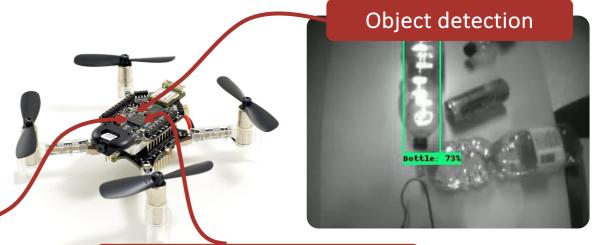
- Smaller form factor of 0.008m2
- Weight 27g (30X lighter) KG
- Battery capacity 250mAh (20X smaller)

Can we fit sufficient intelligence in a 30X smaller payload, 20X lower energy budget?

Achieving True Autonomy on Nano-UAVs

Multiple, complex, heterogeneous tasks at high speed and robustness fully on

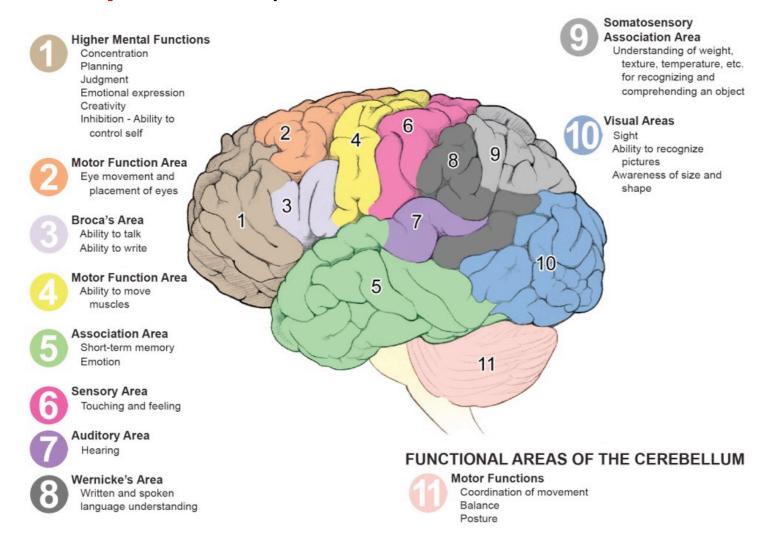




Multi-GOPS workload at extreme efficiency → P_{max} 100mW

Multiple Heterogeneous Accelerators

Brain-inspired: Multiple areas, different structure different function!

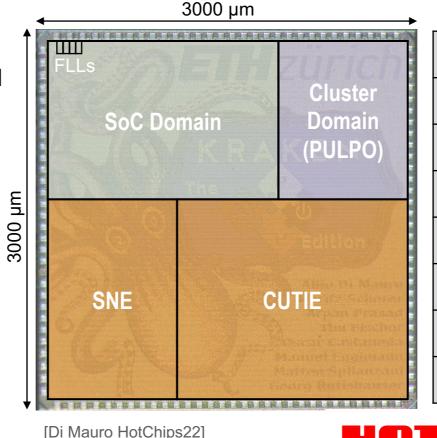


Multiple Heterogeneous Accelerators

The *Kraken*: an "Extreme Edge" Brain

22 pm FDCOI

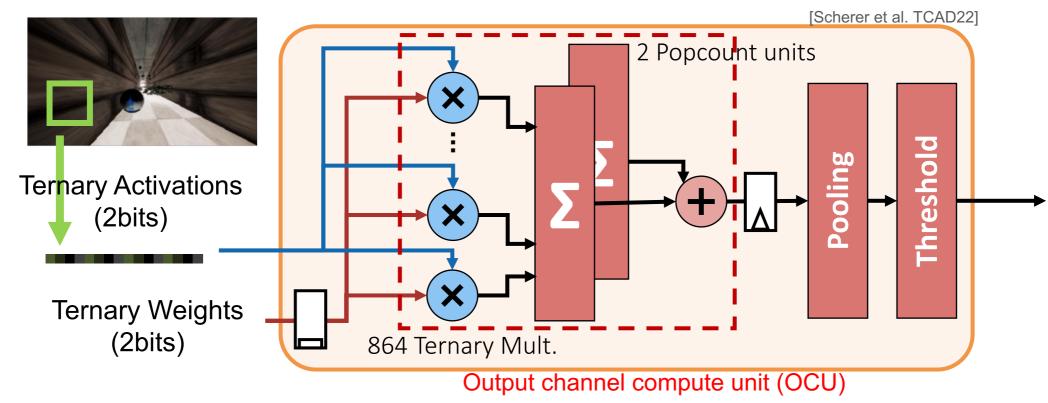
- RISC-V Cluster (8 Cores + 1)
- CUTIE dense ternary neural network accelerator
- SNE energy-proportional spiking neural network accelerator



HotChips22]	
-------------	--

recnnology	22 nm FDSOI
Chip Area	9 mm ²
SRAM SoC	1 MB
SRAM Cluster	128 KB
VDD range	0.55 V - 0.8 V
Cluster Freq	~370MHz
SNE Freq	~250MHz
CUTIE Freq	~140MHz

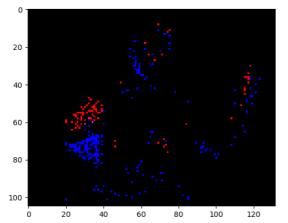
CUTIE: Minimize Switching Activity & Data Movement



- KxK window on all input channels unrolled, cycle-by-cycle sliding
- Completely unrolled inner products one output activation per cycle!
- Zeros in weights and activations, spatial smoothness of activations reduce switching activity
- 96 OCUs, 96 Input channels, 3x3 kernels: 96 * 96 * 3 * 3 = 82'944 TMAC/cycle (~1fJ/MAC)

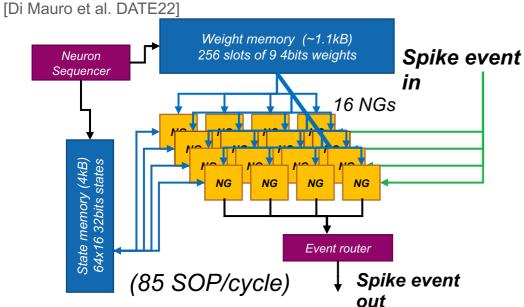
Different Sensor Type, different Acceleration Engine

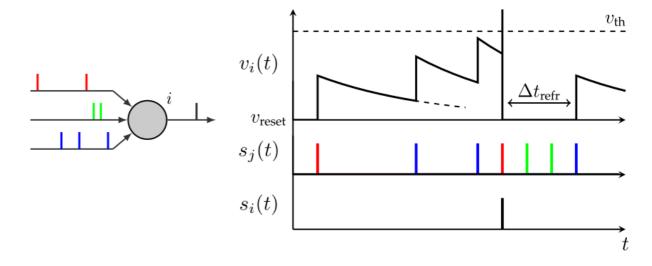
Event Sensors:
DVS
Ultra-low latency
Energyproportional
interface



Leaky Integrate & Fire (LIF) neurons

Spiking Neural Engine (SNE)





SNE works seamlessly with DVS (event-based) sensors

General Purpose PE: Domain-Specialized RV32 Core

₹ RISC-V° Instruction set: open and extensible *by construction* (great!)

8-bit Convolution

```
Vanilla
          addi a0,a0,1
                              RISC-V
          addi t1,t1,1
          addi t3,t3,1
                                core
         addi t4,t4,1
               a7,-1(a0)
N
               a6,-1(t4)
               a5,-1(t3)
               t5,-1(t1)
               s1,a7,a6
               a7,a7,a5
               s0,s0,s1
               a6,a6,t5
               t0,t0,a7
               a5,a5,t5
               t2,t2,a6
               t6,t6,a5
               s5,a0,1c000bc
```

Specialized for AI

```
N/4 Init NN-RF (outside of the loop)
Ip.setup
pv.nnsdotup.h s0,ax1,9
pv.nnsdotsp.b s1, aw2, 0
pv.nnsdotsp.b s2, aw4, 2
pv.nnsdotsp.b s3, aw3, 4
pv.nnsdotsp.b s4, ax1, 14
end
```

RISC-V core

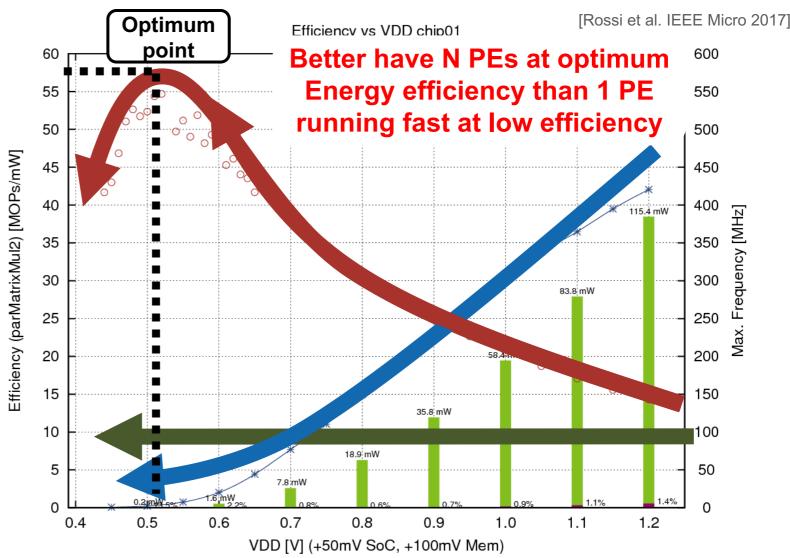
15x less instructions than Vanilla!

Specialization Cost: Power,Area: 1.5x↑ but Time 15x↓ → E = PT 10x ↓

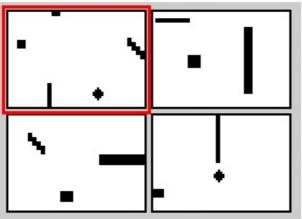
Parallel, Ultra-Low Power (PULP) PE Cluster

- As VDD decreases, operating speed decreases
- However efficiency increases → more work done per Joule
- Run parallel to get performance and efficiency!

Al is parallel and scales More paralle with NN size



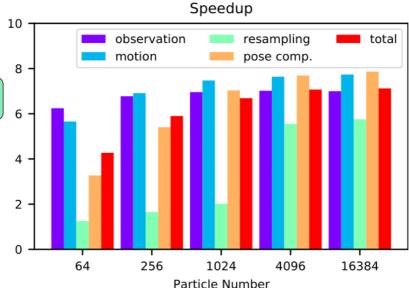
Not only Perception: SLAM, Planning



Particle filter-based

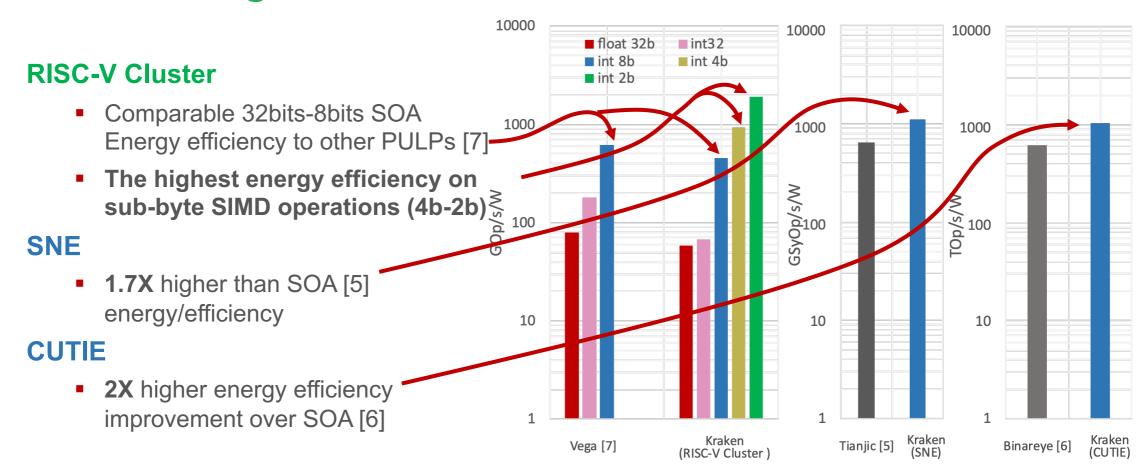
Odometry Resampling Observation Model Pose Computation

Convergence + Low ATE for Npart > 1024, 2ToF, FP16 acceptable



12MHz, 1Kpart. 13mW, 60msec 400MHz, 1Kpart 61mW, 1msec 400MHz 16Kpart 61mW, 30msec

Advancing the SOA on all tasks



CUTIE, SNE can work concurrently for SNN + TNN "fused" inference (never done so far)

^[6] B. Moons et al., "Binareye," CICC, 2018

^[7] D. Rossi et al., "Vega," JSSC 2022.

From Drones to Cars: Stepping up

Microcontroller class of devices

- Infineon AURIX Family MCUs
- Control tasks, low-power sensor acquisition & data processing Features: lockstepped 32-b HP TriCore CPU, HW I/O monitor, dedicated accelerators

Powerful real-time architectures

- ST Stellar G Series (based on ARM Cortex-R cores)
- Domain controllers and zone-oriented ECUs
- Features: HW-based virtualization, Multi-core Cortex-R52 (+NEON) cluster in split-lock, vast I/Os connectivity

Application class processors

- NXP i.MX 8 Family
- ADAS, Infotainment
- Features: Cortex-A53, Cortex-A72, HW Virtualization, GPUs

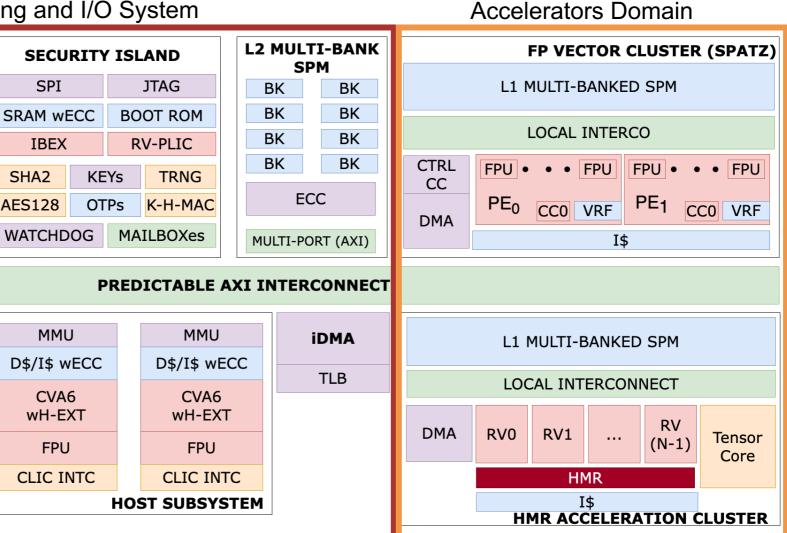
Carfield: Efficiency + Safety, Security, RT-Predictability

Main Computing and I/O System

SPI

SHA₂

AES128



SAFETY ISLAND

CV32E4

TRI-LOCKSTEP

DATA SPM

CV32E4

CLIC INTC

I/Os AND

PERIPHERALS

QSPI

CAN

ETH

I2C

TIMERS

UART

Serial

Link

GPIOs

WATCH

DOG

SPI

INSN SPM

CV32E4

Safe Hart

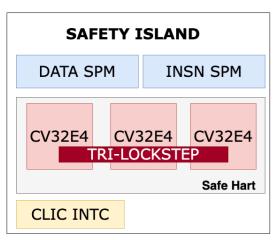
LAST LEVEL

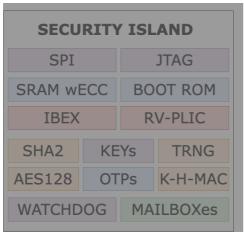
CACHE (LLC)

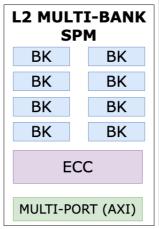
HYPERBUS

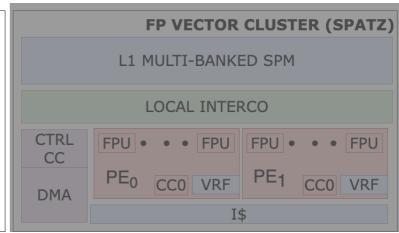
MEMORY CONTROLLER

How Do We Handle Safety-Critical and Real-Time Tasks?



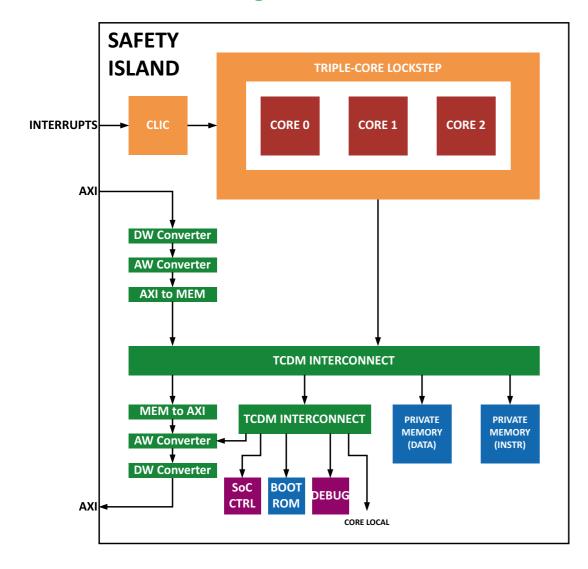






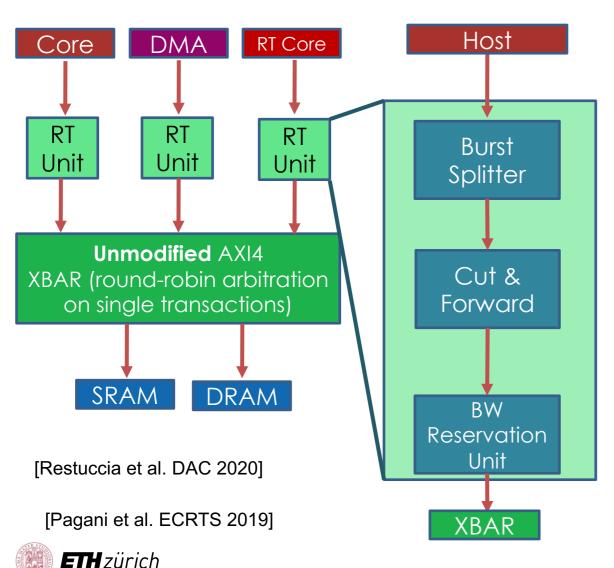
PREDICTABLE AXI INTERCONNECT

The Safety Island



- Safety-critical applications running on a RTOS
- Three CV32E40 cores physically isolated operating in lockstep (single HART) and fast HW/SW recovery from faults
- ECC protected scratchpad memories for instructions and data
- Fast and Flexible Interrupts Handling through RISC-V compliant CLIC controller
- AXI-4 port for in/out communication

Predictable On-Chip Communication (AXI RT)

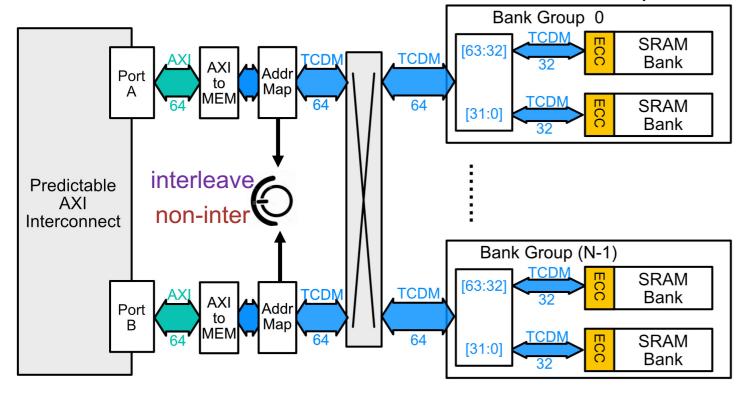


- AXI4 inherently unpredictable
- Minimally Intrusive Solution
 - No huge buffering, limited additional logic
 - Solution verified in systematic worst-case real-time analysis
- AXI Burst Splitter
 - Equalizes length of transactions to avoid unfair BW distribution in round-robin scheme
- AXI Cut & Forward
 - Configurable chunking unit to avoid long transaction delays influencing access time to the XBAR
- AXI Bandwidth Reservation Unit
 - Predictably enforces a given max nr of transactions per time period (to each master)
 - Per-address-range credit-based mechanism
 - Periodically refreshed (or by user)

Contention-Free Shared L2 Scratchpad Memory

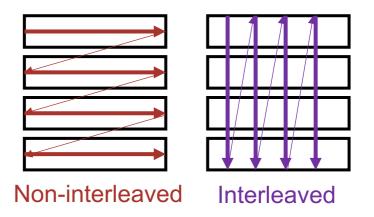
1. Dual-AXI-Port L2 Mem Subsystem

Multi-banked L2 SPM accessible from two different AXI ports

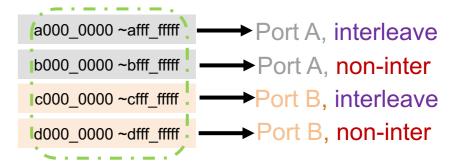


4. We determine in SW which port and which mode to use By using different address space!

2. Two Address Mapping Modes

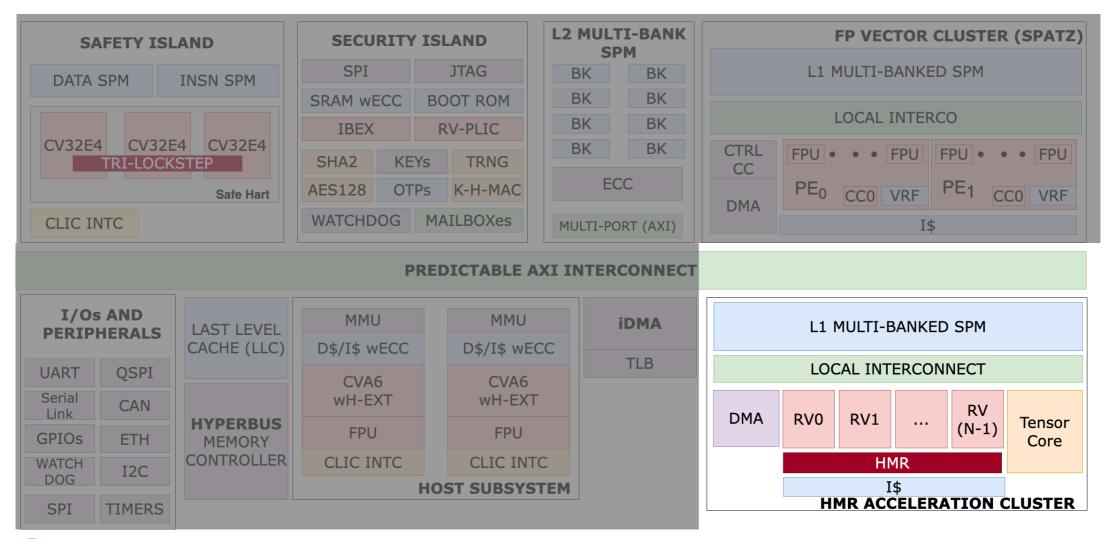


3. Dynamic Address Mapping by Address spaces, eg:

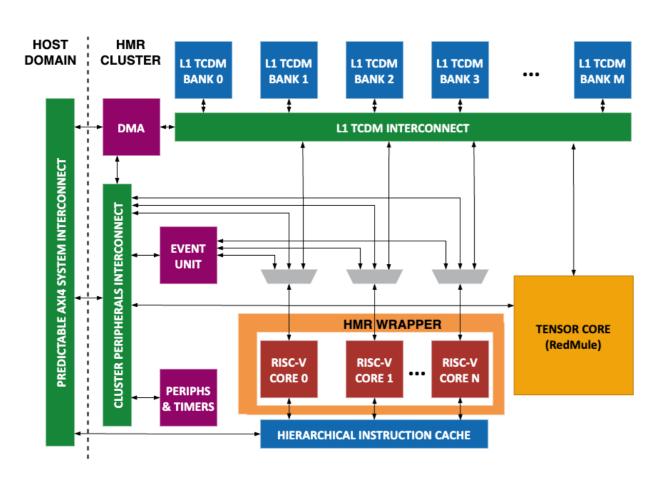


Point to the same L2 physical Mem space

The HMR Acceleration Cluster



The HMR Cluster for DNN-Oriented INT/FP Workloads



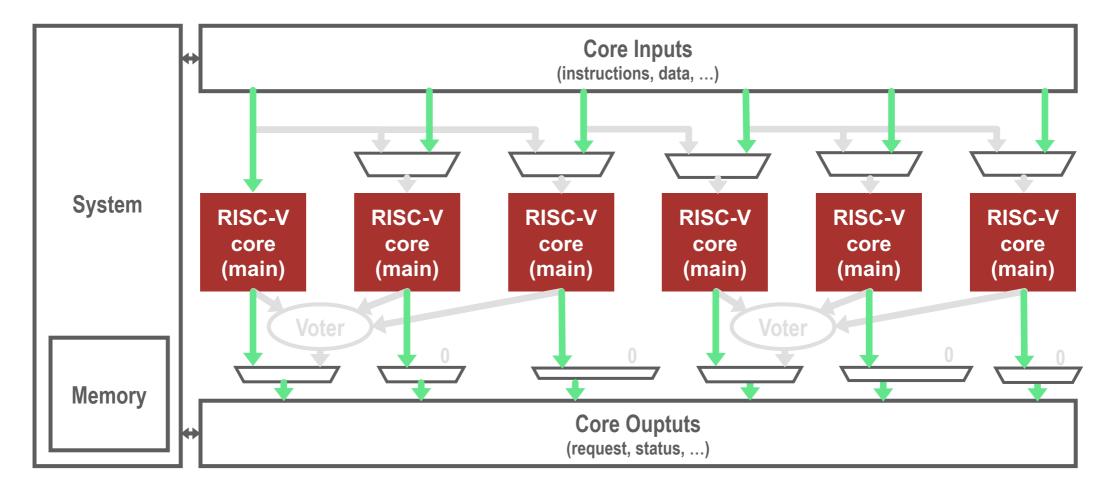
- 12x 32-bit RISC-V cores with support for DSP/QNN ISA Extensions
- Single-Cycle Multi-Banked Tightly-Coupled Data Memory (Scratchpad)
- Hardware Synchronizer
- DMA Controller for Explicit Memory Management
- L1-coupled **TensorCore** (RedMule)
- Runtime-configurable Dual/Triple core redundancy mode + hw/swbased quick recovery mechanism

[Rogenmoser et al., arXiv, 2023]

[Tortorella et al., arXiv, 2023]

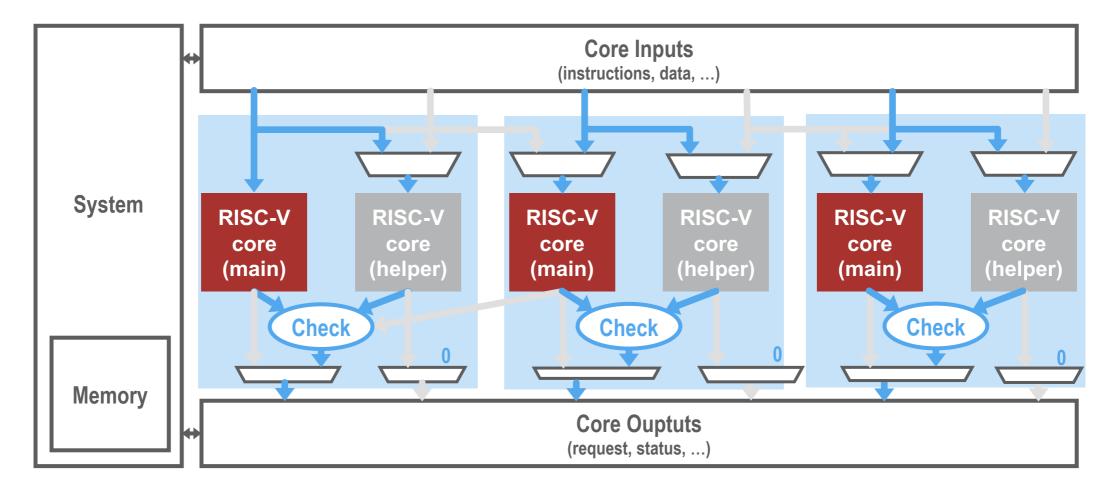
Hybrid Modular Redundancy (HMR): Reconfigurable

Independent Mode: high performance, no reliability



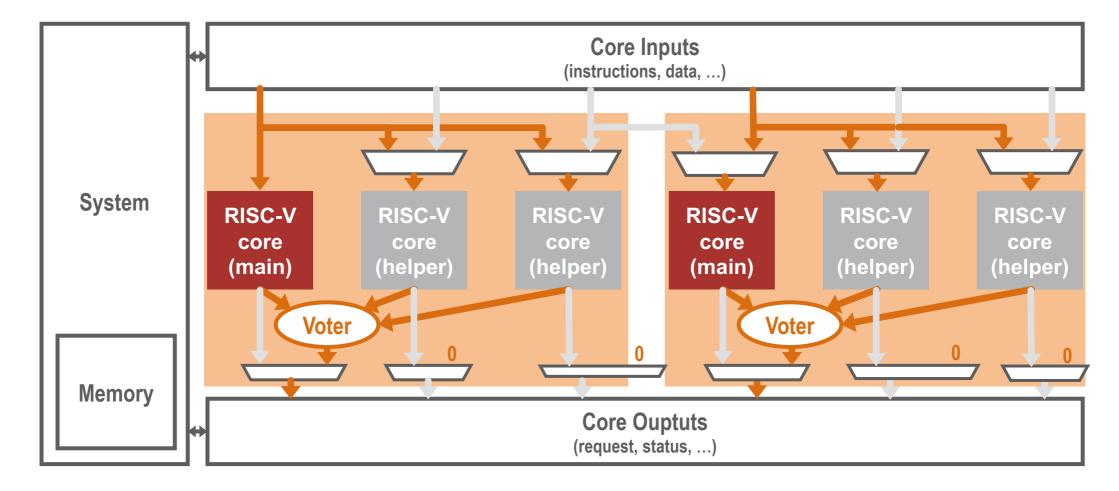
Hybrid Modular Redundancy (HMR): Reconfigurable

DMR Mode: good performance, good reliability, slow recovery



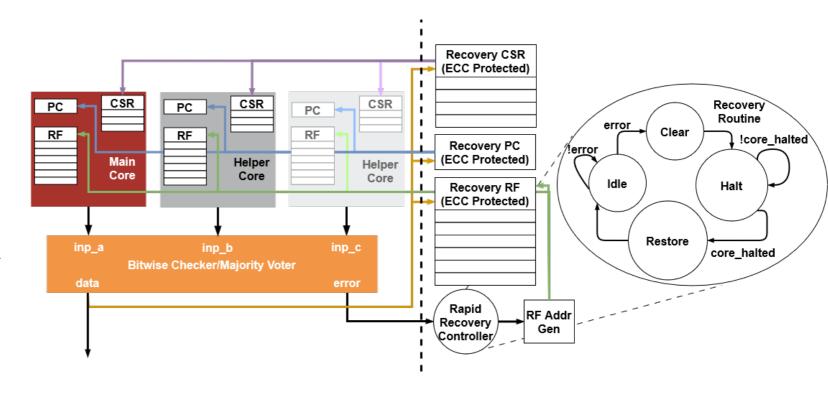
Hybrid Modular Redundancy (HMR): Reconfigurable

TMR Mode: low performance, high reliability, quick recovery



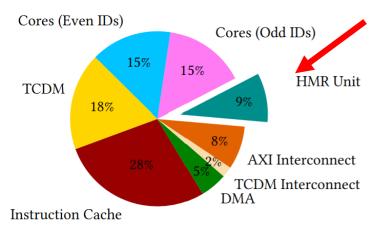
Rapid Recovery: shared hardware extension

- Cycle-by-cycle backup of the cores state in ECCprotected Status Registers
- Quick recovery procedure (24 cycles!)
- Shared logic between TMR and DMR modes

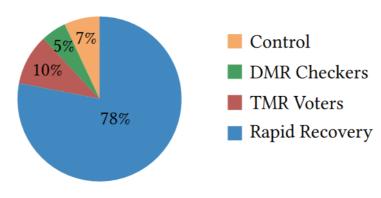


HMR, yes... but at which cost?

Cluster Area breakdown with HMR Unit



HMR Unit Area Breakdown



Area Overhead of HMR Configurations

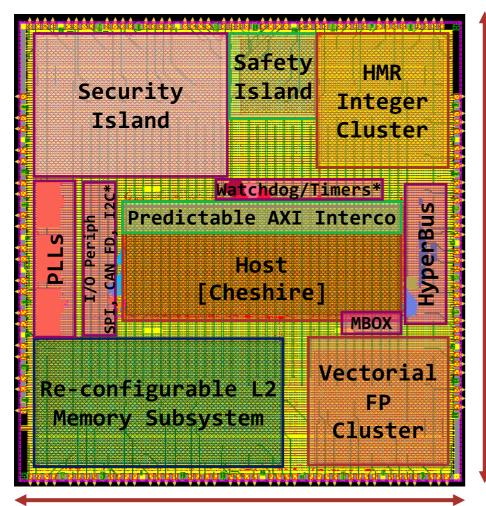
PULP Cluster	Area [mm ²]	Overhead
Baseline	0.604	_
DMR	0.605	0.3%
TMR	0.608	0.7%
HMR	0.612	1.3%
With	Rapid Recove	ery
DMR	0.654	8.4%
TMR	0.657	8.8%
HMR	0.660	9.4%

HMR Unit Recovery and Switching Mode Latency

	DMR	TMR	DMR Rapid Recovery	TMR Rapid Recovery
Recovery Latency [cycles]	Application dependant	363	24	24
Mode Switching [cycles]	703	598	603	515

[Rogenmoser et al., arXiv, 2023]

Carfield SoC Flooplan – Taped out 11/2023



4 mm²

Modules marked with (*) are not in scale

Host [Cheshire]

Dual-Core 64-bit RISC-V processor; 2.45 mm²; 600 MHz;

Security Island

Low-power secure monitor; 1.94 mm²; 100 MHz;

Safety Island

■ **0.42** mm²; 500 MHz

Re-configurable L2 Memory Subsystem

■ 1MB; **2.33 mm**²; 500 MHz

HMR Integer Cluster

• **1.17 mm**²; 500 MHz;

Vectorial FP Cluster

• **1.14 mm²**; 600 MHz;

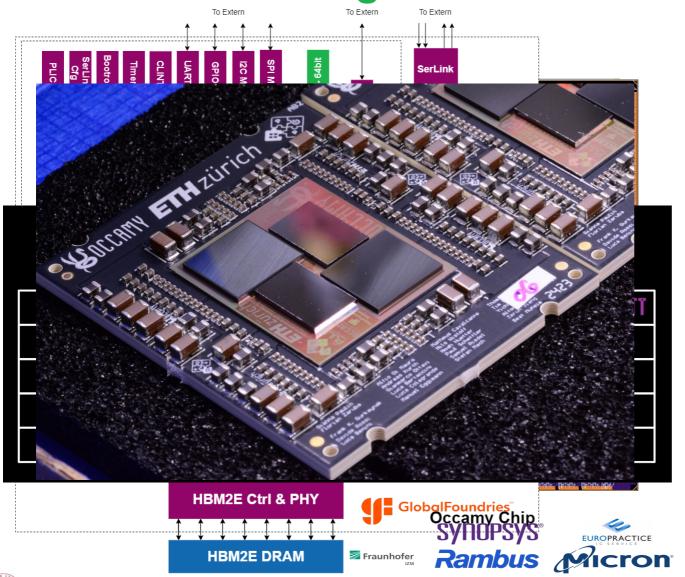
Frequency bound by RAMs (limited availability in Intel offering for Universities)

Hyperbus

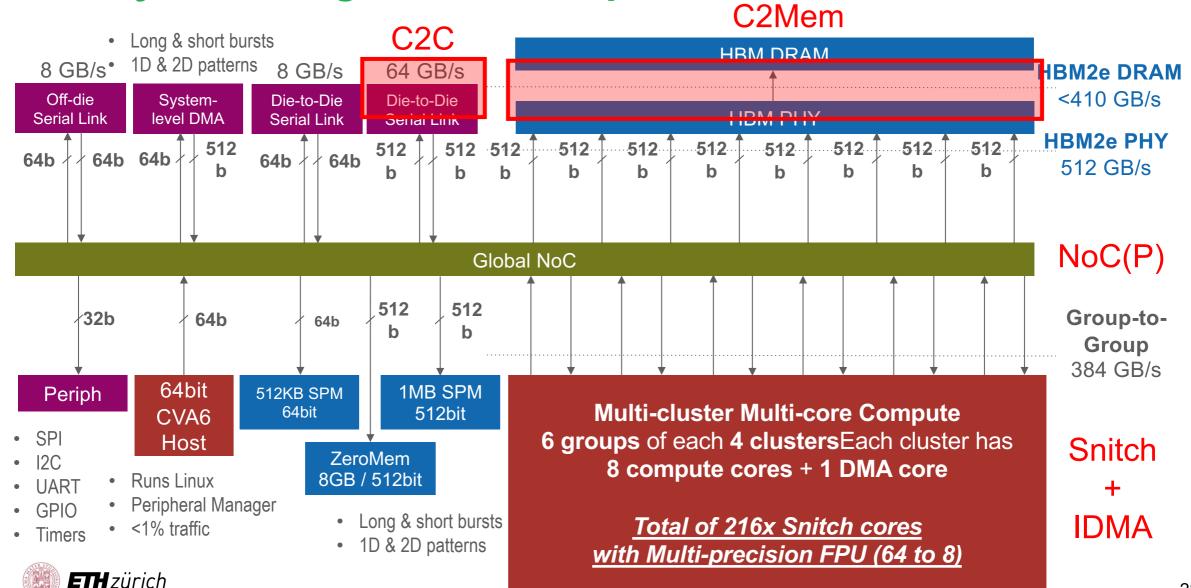
2 PHY, 2 Chips; 200 MHz; Max BW 400 MB/s

Toward Self-Driving Cars

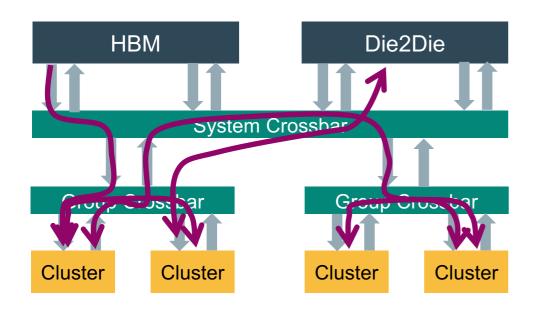
- GF12, target 1GHz (typ)
- 2 AXI NoCs (multi-hierarchy)
 - 64-bit
 - 512-bit with "interleaved" mode
- Peripherals
- Linux-capable manager core CVA6
- 6 Quadrants: 216 cores/chiplet
 - 4 cluster / quadrant:
 - 8 compute +1 DMA core / cluster
 - 1 multi-format FPU / core (FP64,x2 32, x4 16/alt, x8 8/alt)
- 8-channel HBM2e (8GB) 512GB/s
- D2D link (Wide, Narrow) 70+2GB/s
- System-level DMA
 - SPM (2MB wide, 512KB narrow)



Occamy: RISC-V goes HPC Chiplet!



NoC(P): Efficient and Flexible Data Movement



Problem: HBM Accesses are critical in terms of

- Access energy
- Congestion
- High latency

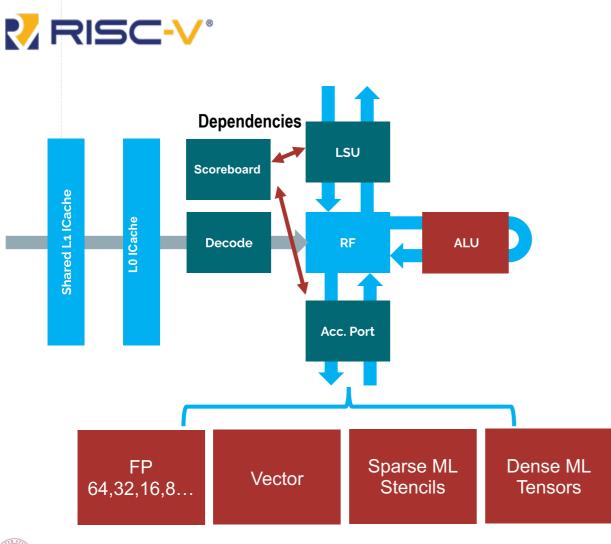
Instead reuse data on lower levels of the memory hierarchy

- Between clusters
- Across groups
- Across chiplets

Smartly distribute workload

- Clusters: Tiling, Depth-First
- Chiplets: E.g. Layer pipelining

Snitch – Latency-Tolerant, Efficient, Extensible



Snitch core: around 20KGE

- Speed via simplicity (1GHZ+)
- L0 lcache/buffer for low energy fetch
- Parametric # of LD/ST ports in LSU (1-4)

■ Extensible → "Accelerator" port

- Minimal baseline ISA (RISC-V)
- Extensibility: Performance through ISA extensions (via accelerator port)

■ Latency-tolerant → Scoreboard

- Tracks instruction dependencies
- Much simpler than OOO support!

Mem Req:	a[0] b[0]	a[1] b[1]	a[2] b[2]	a[3] b[3]			
Mem Resp:			a[0] b[0]	a[1] b[1]	a[2] b[2]	a[3] b[3]	
FPU:				FMA [0]	FMA [1]	FMA [2]	FMA [3]
Cycles							-

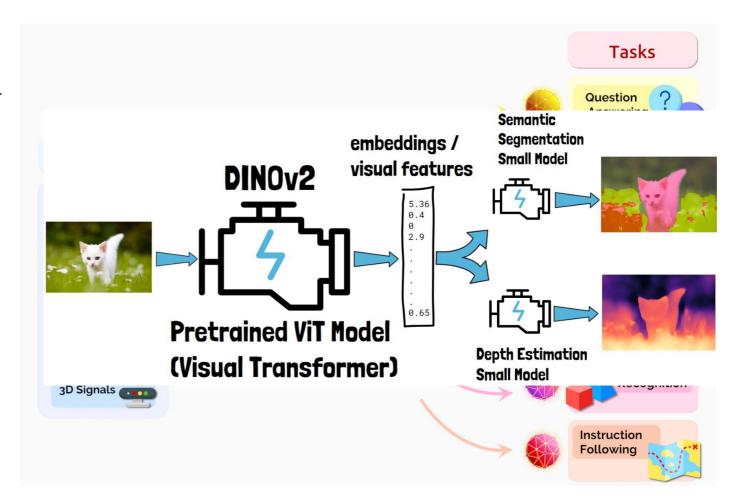
IDMA: Efficient Explicit Global Data Mover

- 512-bit AXI DMA double-buffered transfers
- Tightly coupled with Snitch (<10 cycles configuration)
- Operates on wide 512-bit data-bus
- Hardware support to copy 2-4-dim shapes
- Higher-dimensionality handled by SW
- Intrinsics/library for easy programming
- Sparse data support


```
// setup and start a 1D transfer, return transfer ID uint32_t __builtin_sdma_start_oned(
    uint64_t src, uint64_t dst, uint32_t size, uint32_t cfg);
// setup and start a 2D transfer, return transfer ID uint32_t __builtin_sdma_start_twod(
    uint64_t src, uint64_t dst, uint32_t size,
    uint32_t sstrd, uint32_t dstrd, uint32_t nreps, uint32_t cfg);
// return status of transfer ID tid
uint32_t __builtin_sdma_stat(uint32_t tid);
// wait for DMA to be idle (no transfers ongoing)
void __builtin_sdma_wait_for_idle(void);
```

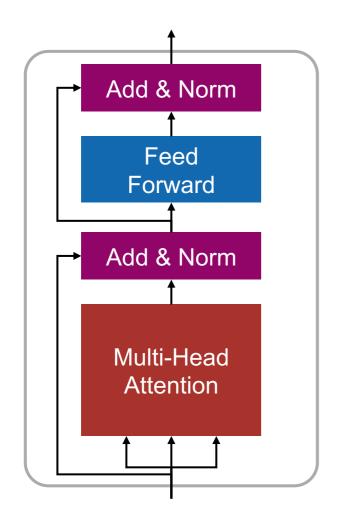
What's Next? The era of Foundation Models

- Versatility and Multi-modality
 - Natural language processing, computer vision, robotics, biology, ...
- Homogenization of models
 - Transformers as foundation models
- Self-supervision, Fine-tuning
 - Self-supervised training on large-scale unlabeled dataset
 - Fine-tune (few layers) on specific tasks with smaller labeled datasets.
- Zero-shot specialization
 - Prompt engineering for new tasks

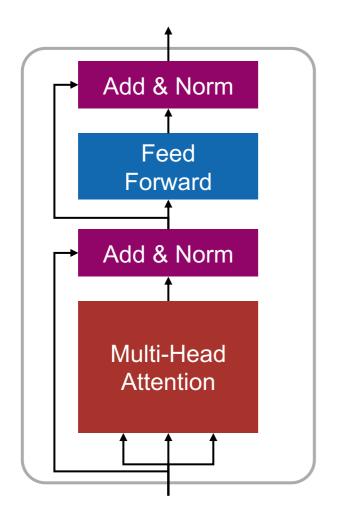


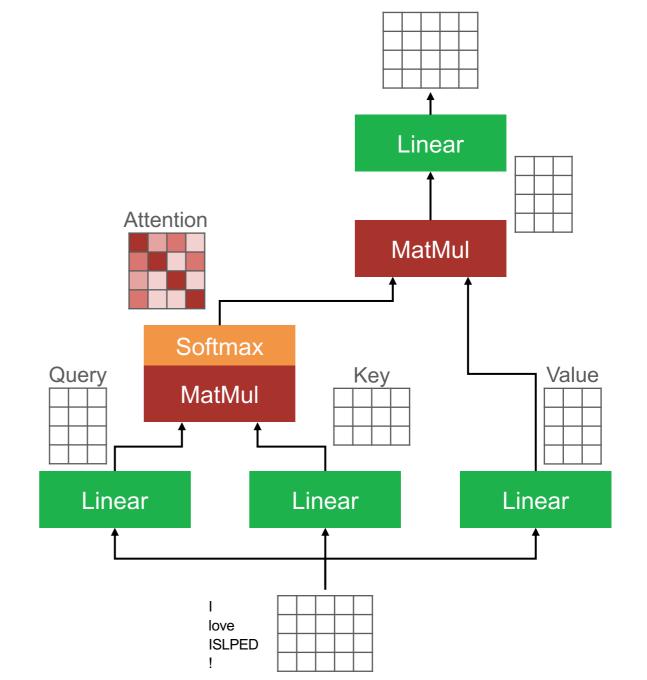
Bommasani, Rishi, et al. "On the Opportunities and Risks of Foundation Models." Center for Research on Foundation Models (CRFM), Stanford Institute for Human-Centered Artificial Intelligence (HAI).

Attention is all you need!



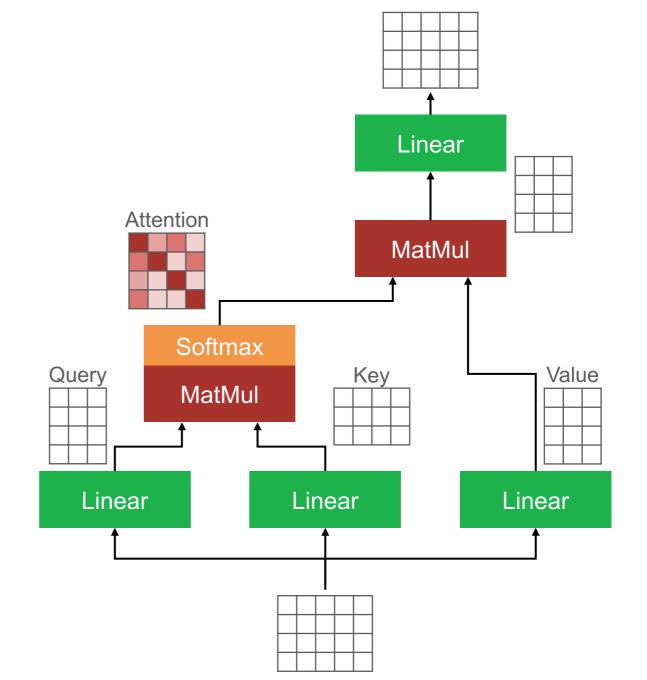
Attention but how?





Challenges in Attention

- Attention matrix is a square matrix of order input length.
 - Computational complexity
 - Memory requirements
- MatMul & Softmax dominate



Matmul Benefits from Large(r) Shared-L1 clusters

Why?

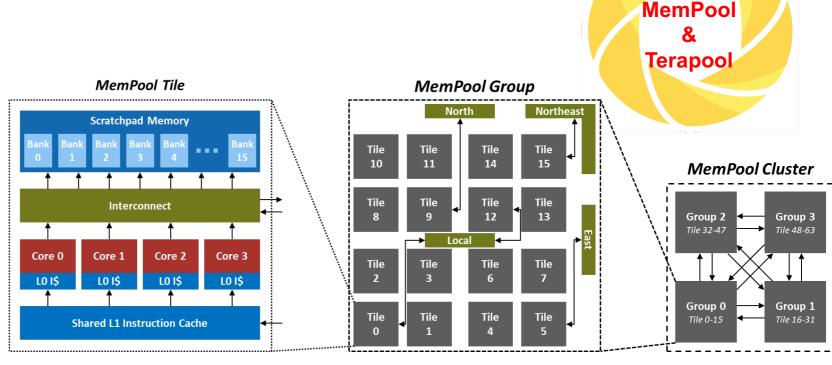
- Better global latency tolerance if L1_{size} > 2*L2_{latency}*L2_{bandwidth} (Little's law + double buffer)
- Smaller data partitioning overhead
- Larger Compute/Boundary bandwidth ratio: N³/N² for MMUL grows linearly with N!

A large "MemPool"

- 256+ cores
- 1+ MiB of shared L1 data memory
- ≤ 10 cycle latency (Snitch can handle it)

Physical-aware design

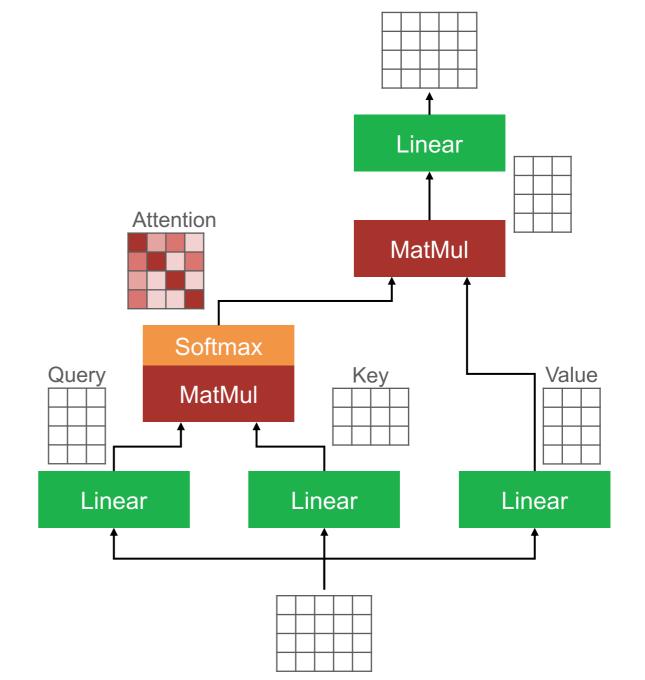
- WC Frequency > 700+Mhz
- Targeting iso-frequency with small cluster



Butterfly Multi-stage Interconnect 0.3req/core/cycle, 5 cycles

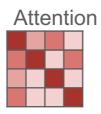
Challenges in Attention

- Attention matrix is a square matrix of order input length.
 - Computational complexity
 - Memory requirements
- Every attention layer applies
 Softmax to attention matrix!



Challenges in Attention

- Attention matrix is a square matrix of order input length.
 - Computational complexity
 - Memory requirements
- Every attention layer applies Softmax to attention matrix!
 - 3 passes over a row.
 - Quantization is problematic.



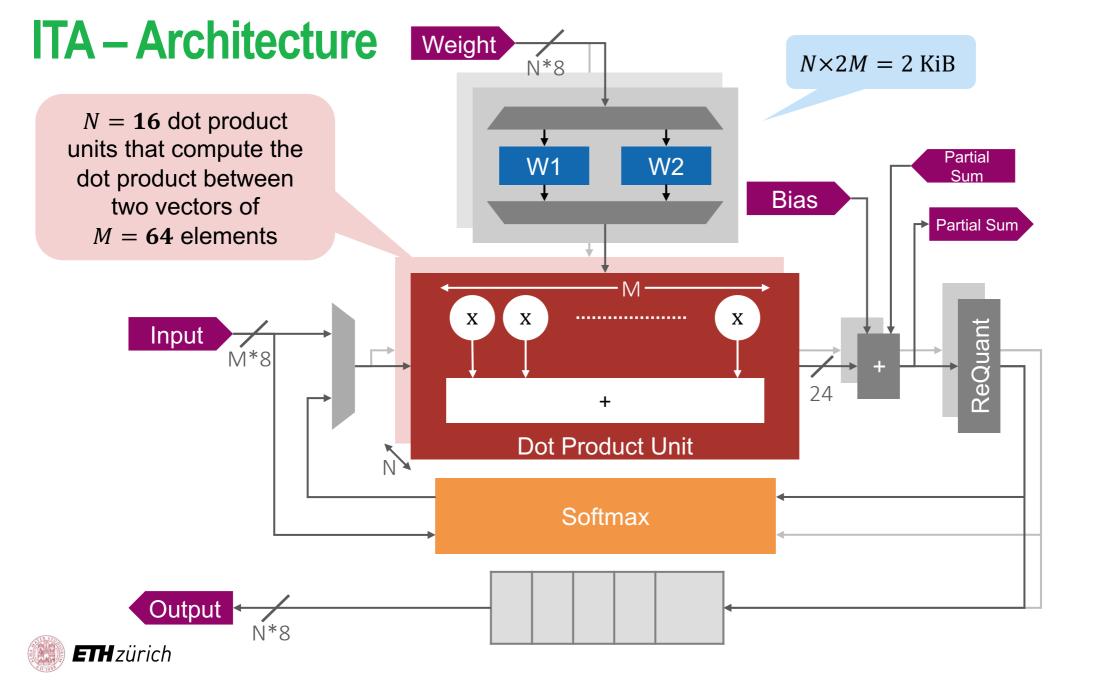
Softmax

Softmax(
$$\mathbf{x}$$
)_i =
$$\frac{e^{x_i - \max(\mathbf{x})}}{\sum_{j=1}^{n} e^{x_j - \max(\mathbf{x})}}$$

ITA: Integer Transformer Accelerator

- Attention accelerator for transformers!
- INT8 quantized networks
- Output stationary Local weight stationary
 - Spatial input reuse
 - Spatial output partial sum reuse
- Fused Q.K^T and A.V computation
- Special Softmax unit!

[Islamoglu et al. ISLPED23]



Softmax(
$$\mathbf{x}$$
)_i = $\frac{e^{x_i - \max(\mathbf{x})}}{\sum_{j=1}^{n} e^{x_j - \max(\mathbf{x})}}$

Softmax

Softmax(
$$\mathbf{x}$$
)_i =
$$\frac{e^{x_i - \max(\mathbf{x})}}{\sum_{j=1}^{n} e^{x_j - \max(\mathbf{x})}}$$

Softmax(
$$\mathbf{x}$$
)_i = $\frac{1}{\sum_{j=0}^{n} 2^{(x_{qj} - \max(\mathbf{x}_{q})) \gg 5}} 2^{(x_{qi} - \max(\mathbf{x}_{q})) \gg 5}$

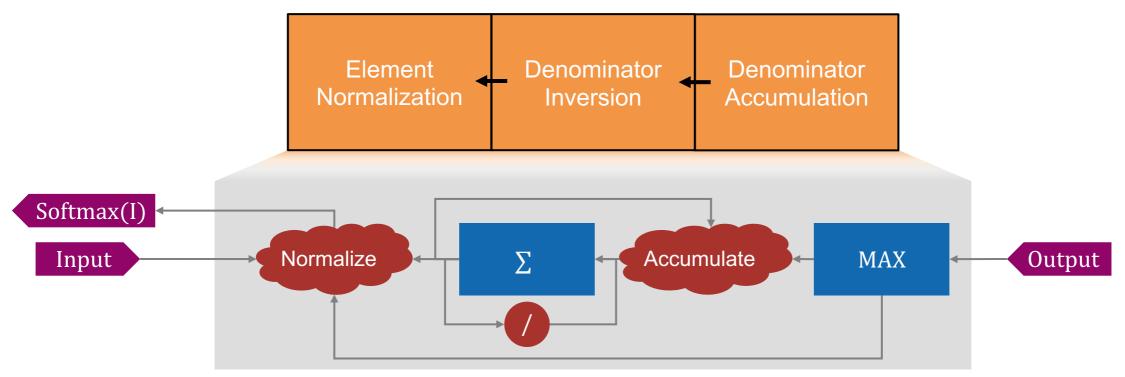
Softmax

Directly operates on quantized values.

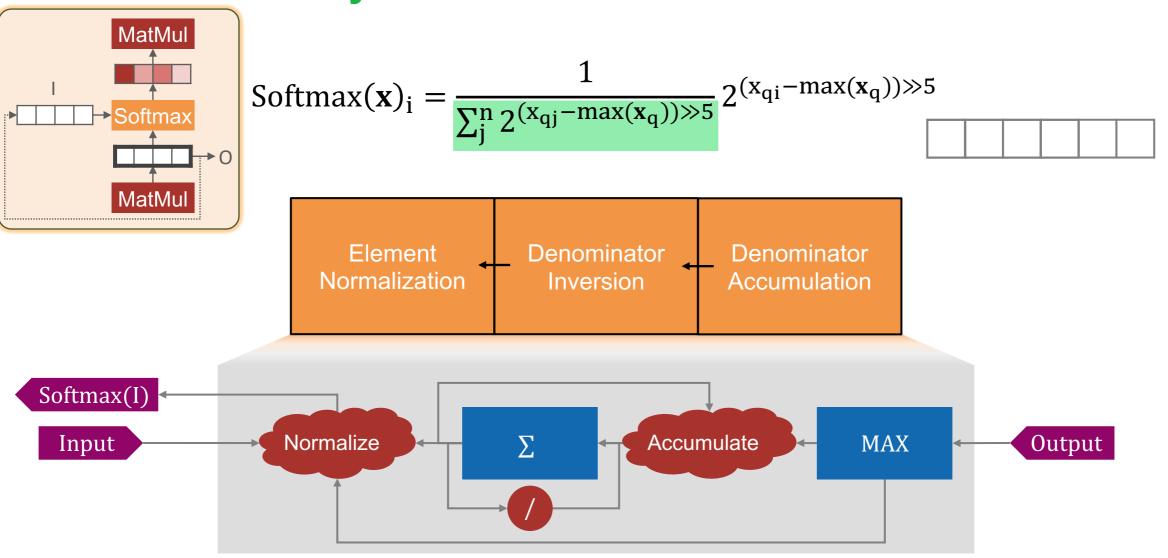
No exponentiation modules and multipliers.

Computes softmax on streaming data.

Softmax(
$$\mathbf{x}$$
)_i = $\frac{1}{\sum_{j=1}^{n} 2^{(x_{qj} - \max(\mathbf{x}_{q})) \gg 5}} 2^{(x_{qi} - \max(\mathbf{x}_{q})) \gg 5}$

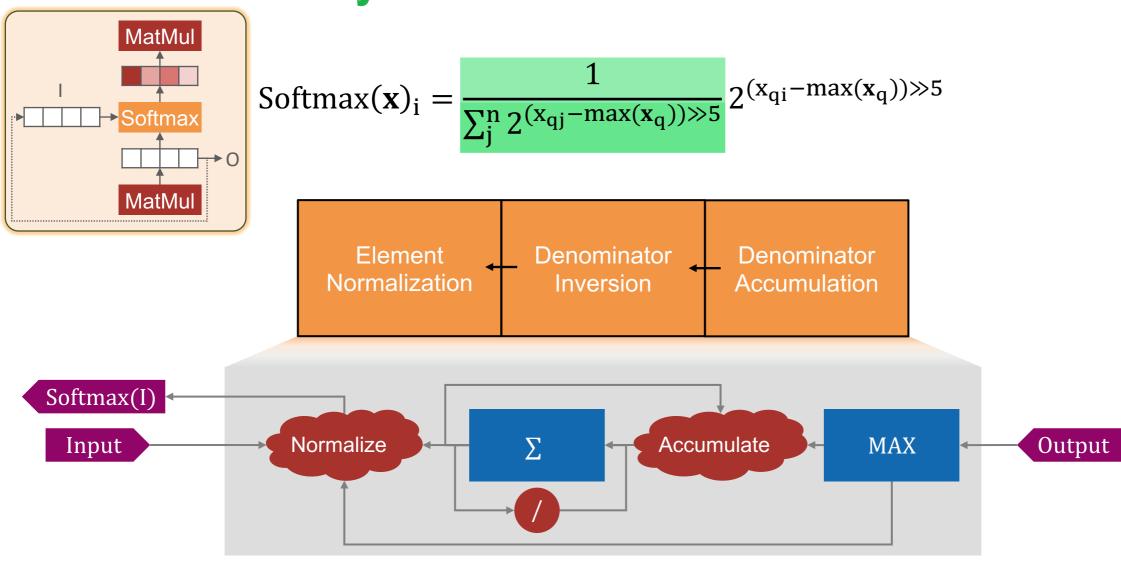


ETH zürich

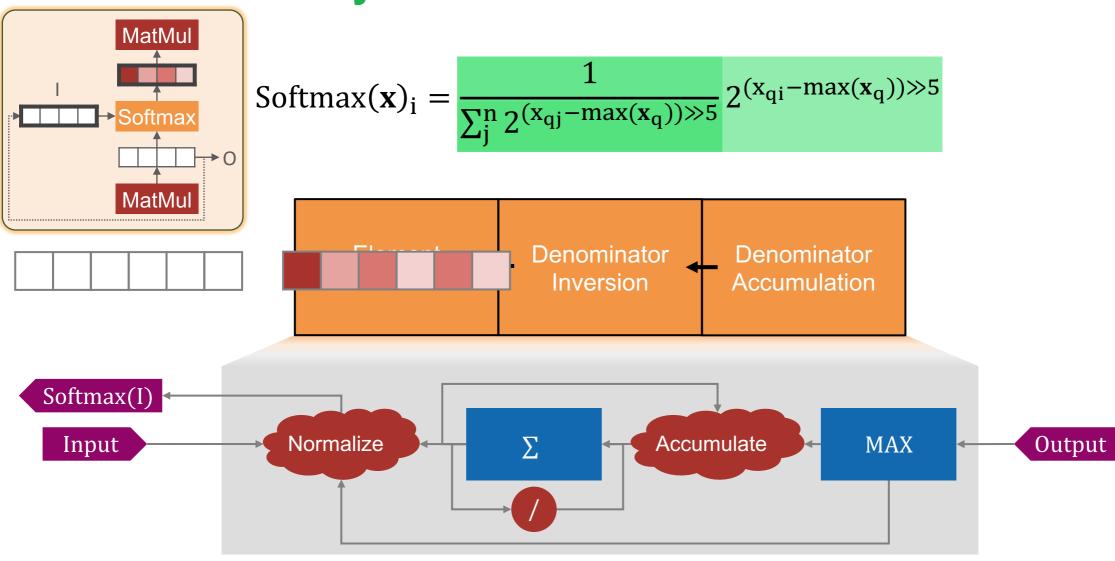


44

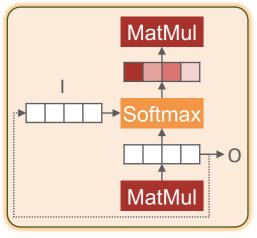
ETH zürich



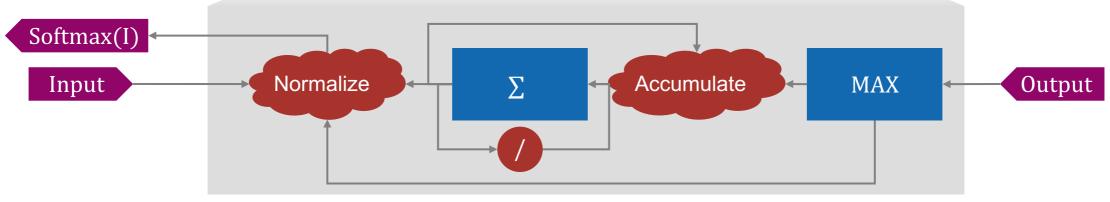
ETH zürich

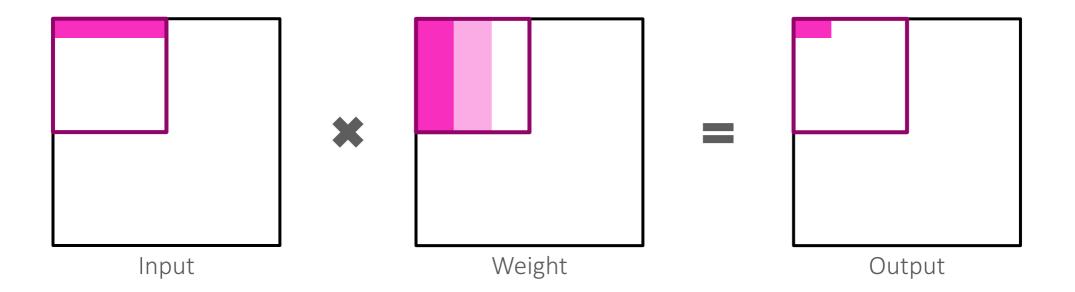


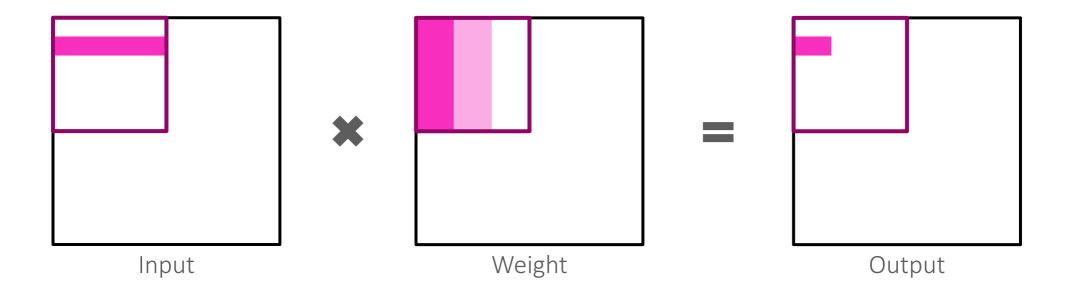
MAE = 0.46%

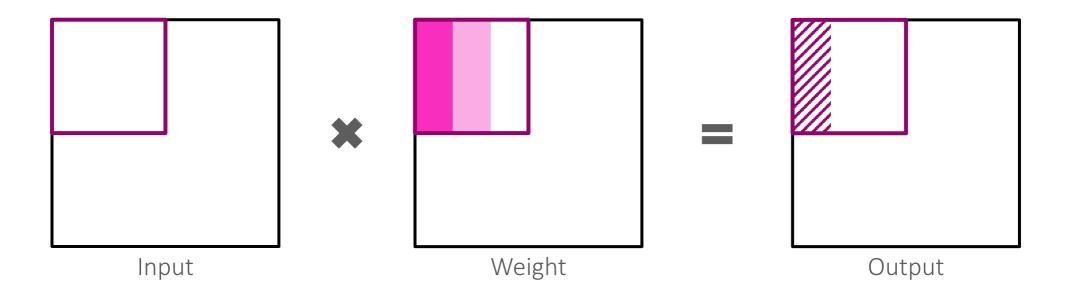


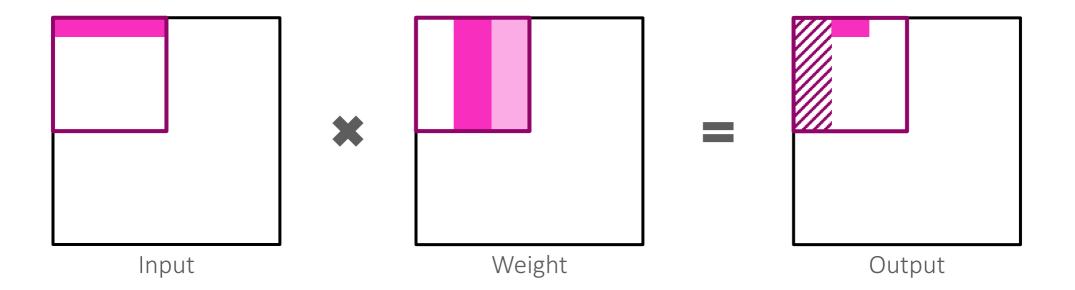
Softmax(
$$\mathbf{x}$$
)_i = $\frac{1}{\sum_{j=1}^{n} 2^{(x_{qj} - \max(\mathbf{x}_{q})) \gg 5}} 2^{(x_{qi} - \max(\mathbf{x}_{q})) \gg 5}$



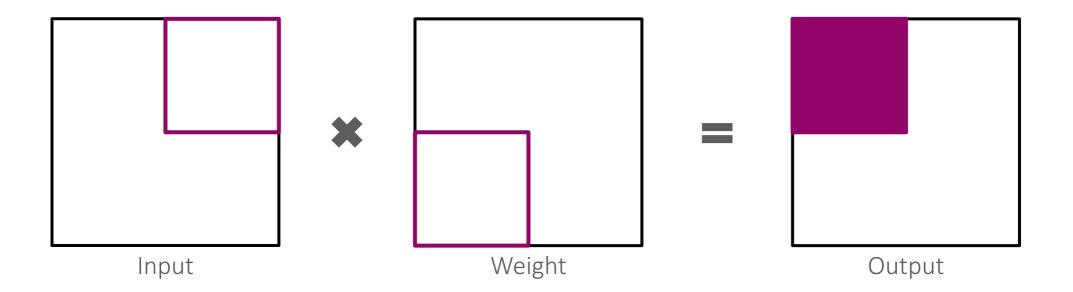


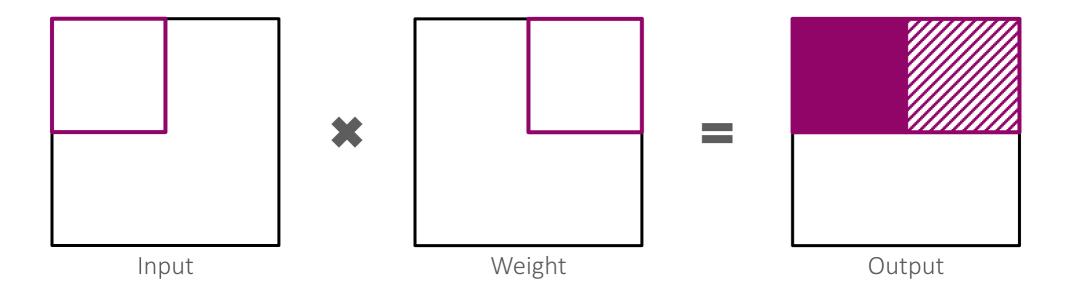


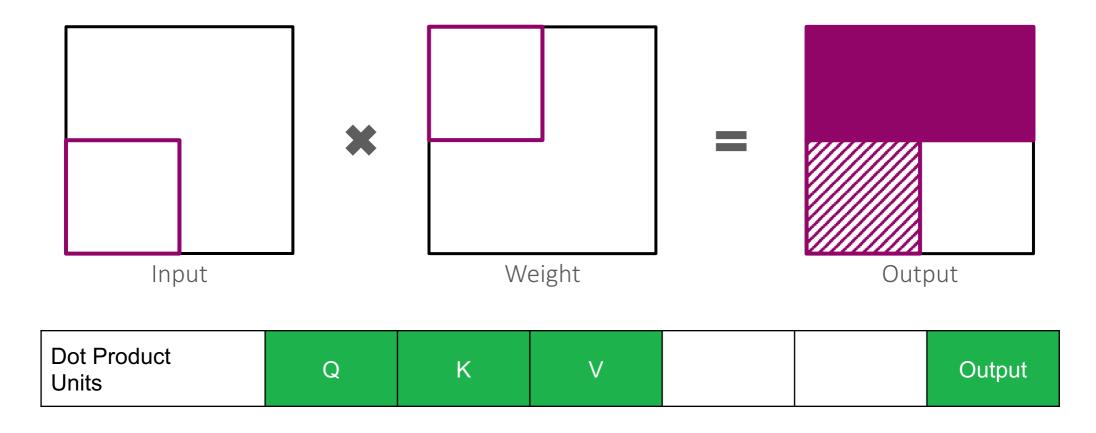




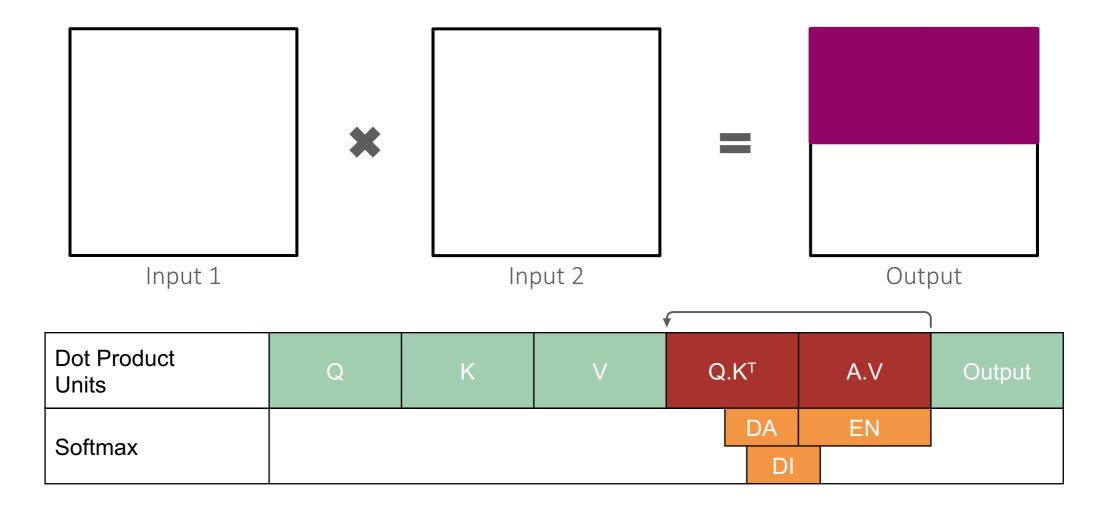




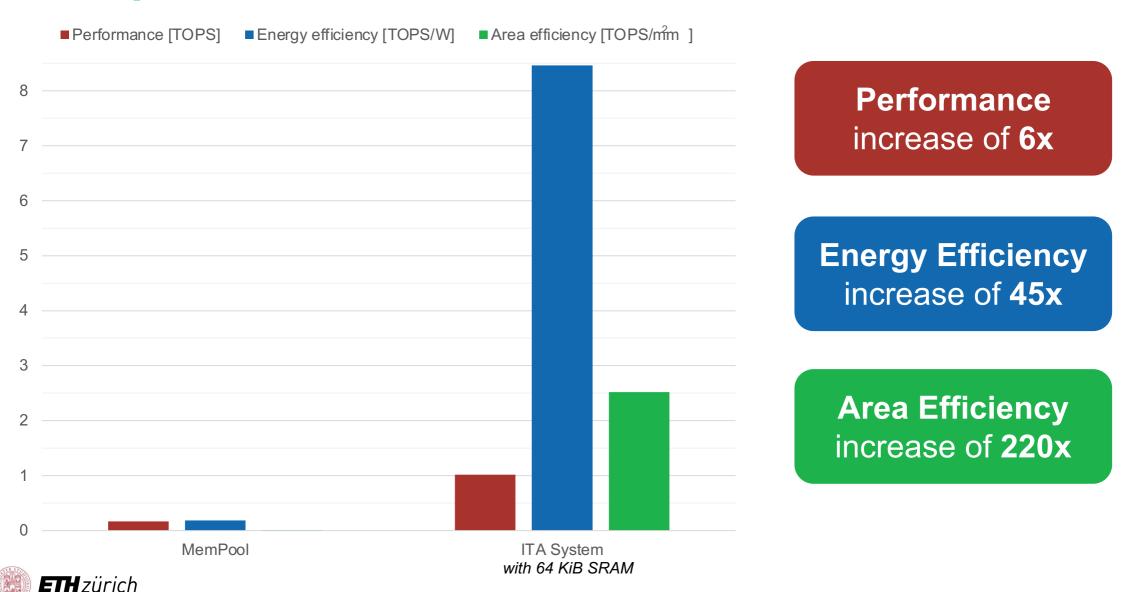




Fused Q.K^T and A.V computation

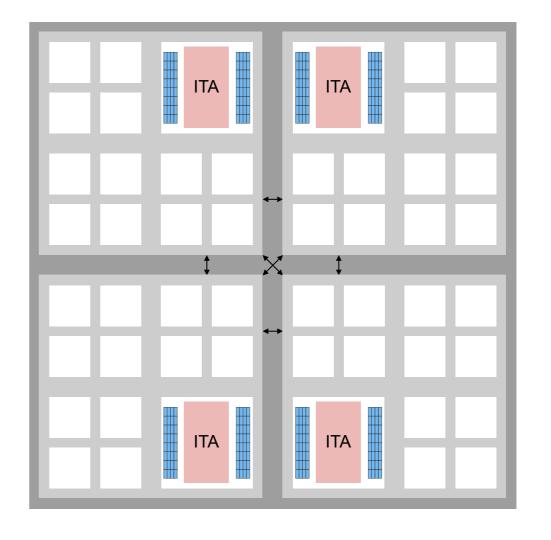


Comparison to a software baseline on MemPool



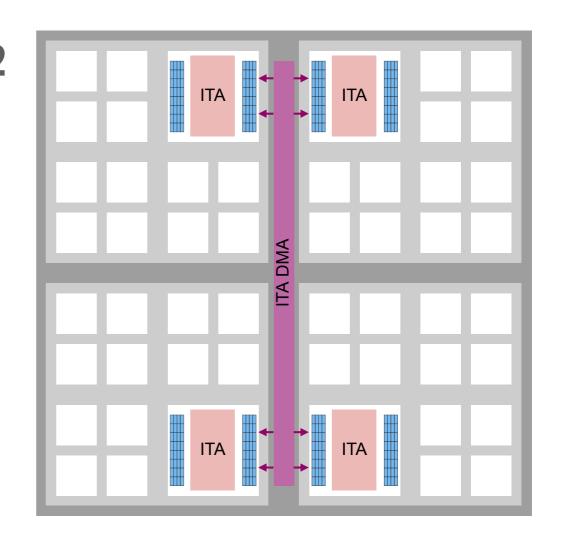
Integrating ITA into MemPool

- ✓ Where to put ITA?
- ✓ How to connect ITA to L1 memory?
- How to refill L1 from L2 memory for ITA?

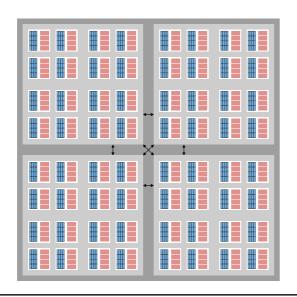


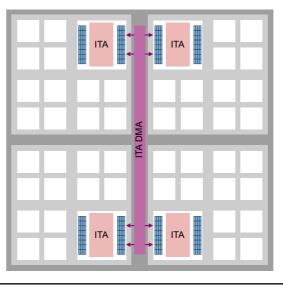
Adding a special DMA for ITA

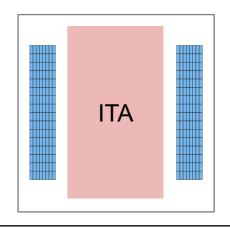
- Moves transformer data from L2 to L1 memory
- Inputs are broadcasted to all groups
- Two 16 bytes/cycle ports per group



Comparison to MemPool and ITA System







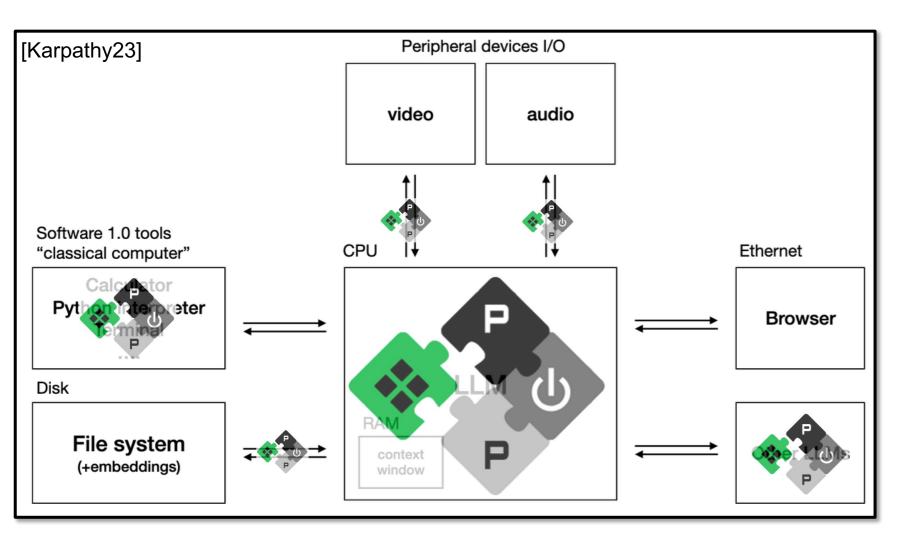
	MemPool	ITA & Banks	ITA only	ITA System
Throughput [TOPS]	0.135 <u>25x</u>	3.43	3.43	1.02
Energy efficiency [TOPS/W]	0.159 45x	7.09	12.3	8.46
Area efficiency [TOPS/mm ²]	0.0114	2.10	5.02	2x 2.52

Future of Mempool+ITA: Scaling up further

- 10B+ models (LLAMA2)
- Block-FP capability (<8b/w,act)</p>
- Sparsity handling
- Multi-chiplet terapool
- 3D memory

Accelerate LLMs
and reach 100
TFLOPS or higher
in a few W

Embodied Al vision: LLM everywhere?



Thank You!