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Embodied AI
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On-car Computing 
PMAX < 1.5KW

Energy Efficiency 
( 𝟏
𝐏𝐨𝐰𝐞𝐫'𝐓𝐢𝐦𝐞

)

10x/12Y by scaling
vs. model complexity

10x/2Y

Safe Real-time Secure

Efficient

[SCR’23]



Start Small: Open Platform for Autonomous Nano-Drones
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Can we fit sufficient intelligence in a 30X smaller payload, 20X lower energy budget?

27cm

23cm

[1] A. Bachrach, “Skydio autonomy engine: Enabling the next generation 
of autonomous flight,” IEEE Hot Chips 33 Symposium (HCS), 2021

§ 3D Mapping & Motion Planning 
§ Object recognition & Avoidance
§ 0.06m2 & 800g of weight
§ Battery Capacity 5410mAh

Advanced autonomous drone

https://www.skydio.com/skydio-2-plus

https://www.bitcraze.io/products/crazyflie-2-1

§ Smaller form factor of 0.008m2
§ Weight 27g (30X lighter)
§ Battery capacity 250mAh (20X smaller)

Nano-drone

9.2cm
9.2cm



Achieving True Autonomy on Nano-UAVs 
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Multiple, complex, 
heterogeneous tasks at high 
speed and robustness fully on 
board

Obstacle avoidance & Navigation
Environment exploration

Object detection

Multi-GOPS  workload at extreme efficiency  à Pmax 100mW



Multiple Heterogeneous Accelerators
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Brain-inspired: Multiple areas, different structure different function!
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§ RISC-V Cluster (8 Cores + 1) 
§ CUTIE – dense ternary neural 

network accelerator
§ SNE – energy-proportional 

spiking neural network 
accelerator

Technology 22 nm FDSOI

Chip Area 9 mm2

SRAM SoC 1 MB

SRAM Cluster 128 KB

VDD range 0.55 V - 0.8 V

Cluster Freq ~370MHz

SNE Freq ~250MHz

CUTIE Freq ~140MHz

SoC Domain
Cluster 
Domain
(PULPO)

SNE CUTIE

FLLs

3000 µm

30
00

 µ
m

The Kraken: an “Extreme Edge”  Brain

[Di Mauro HotChips22]

Multiple Heterogeneous Accelerators



§ KxK window on all input channels unrolled, cycle-by-cycle sliding
§ Completely unrolled inner products one output activation per cycle!
§ Zeros in weights and activations, spatial smoothness of activations reduce switching activity
§ 96 OCUs, 96 Input channels, 3x3 kernels:  96 * 96 * 3 * 3  = 82'944 TMAC/cycle (~1fJ/MAC)

Output channel compute unit (OCU)

ΣΣ

Po
ol
in
g

Th
re
sh
ol
d

Ternary Weights
(2bits) 864 Ternary Mult.

2 Popcount units

Ternary Activations
(2bits)
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CUTIE: Minimize Switching Activity & Data Movement
[Scherer et al. TCAD22]

Aggressive quantization and full specialization



Different Sensor Type, different Acceleration Engine 
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Leaky Integrate & Fire (LIF) neurons

(85 SOP/cycle)

Weight memory  (~1.1kB) 
256 slots of 9 4bits weightsNeuron 

Sequencer

NG NG NG NG
NG NG NG NG
NG NG NG NG
NG NG NG NG

Event router

16 NGs

S
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)

64
x1

6 
32
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s

Spike event 
in

Spike event 
out

SNE works seamlessly with DVS (event-based) sensors

[Di Mauro et al. DATE22]

Event Sensors:
DVS
Ultra-low latency
Energy- 
proportional 
interface

Spiking Neural Engine (SNE)



General Purpose PE: Domain-Specialized RV32 Core 

addi a0,a0,1
addi t1,t1,1
addi t3,t3,1
addi t4,t4,1
lbu a7,-1(a0)
lbu a6,-1(t4)
lbu a5,-1(t3)
lbu t5,-1(t1)
mul s1,a7,a6
mul a7,a7,a5
add s0,s0,s1
mul a6,a6,t5
add t0,t0,a7
mul a5,a5,t5
add t2,t2,a6
add t6,t6,a5
bne s5,a0,1c000bc

8-bit Convolution
Vanilla Specialized for AI

N

15x less instructions than 
Vanilla!

Init NN-RF (outside of the loop)
lp.setup
pv.nnsdotup.h s0,ax1,9
pv.nnsdotsp.b s1, aw2, 0
pv.nnsdotsp.b s2, aw4, 2
pv.nnsdotsp.b s3, aw3, 4
pv.nnsdotsp.b s4, ax1, 14
end

N/4
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Specialization Cost: Power,Area: 1.5x↑ but Time 15x↓ à  E = PT 10x ↓ 

Instruction set: open and extensible by construction (great!)

RISC-V
core RISC-V

core



Parallel, Ultra-Low Power (PULP) PE Cluster
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§ As VDD decreases, 
operating speed decreases

§ However efficiency 
increasesà more work done 
per Joule

§ Run parallel to get 
performance and efficiency!

Optimum
point Better have N PEs at optimum 

Energy efficiency than 1 PE  
running fast at low efficiency

AI is parallel and scales 
More paralle with NN 
size

[Rossi et al. IEEE Micro 2017]



Not only Perception: SLAM, Planning
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Particle filter-based

12MHz, 1Kpart. 13mW, 60msec
400MHz, 1Kpart 61mW, 1msec
400MHz 16Kpart 61mW, 30msec

Convergence + Low ATE for Npart > 1024, 2ToF, FP16 acceptable 



Advancing the SOA on all tasks
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RISC-V Cluster 
§ Comparable 32bits-8bits SOA 

Energy efficiency to other PULPs [7] 
§ The highest energy efficiency on 

sub-byte SIMD operations (4b-2b)
SNE

§ 1.7X higher than SOA [5] 
energy/efficiency 

CUTIE
§ 2X higher energy efficiency 

improvement over SOA [6] 

[5] L. Deng et al., “Tianjic,” JSSC 2020
[6] B. Moons et al., “Binareye,” CICC, 2018
[7] D. Rossi et al., “Vega,” JSSC 2022. 

CUTIE, SNE can work concurrently for  SNN + TNN  “fused” inference  (never done so far)



From Drones to Cars: Stepping up
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§ Microcontroller class of devices
§ Infineon AURIX Family MCUs
§ Control tasks, low-power sensor acquisition & data 

processing Features: lockstepped 32-b HP TriCore CPU , 
HW I/O monitor, dedicated accelerators

§ Powerful real-time architectures
§ ST Stellar G Series (based on ARM Cortex-R cores)
§ Domain controllers and zone-oriented ECUs
§ Features: HW-based virtualization, Multi-core Cortex-R52

(+NEON) cluster in split-lock, vast I/Os connectivity

§ Application class processors
§ NXP i.MX 8 Family
§ ADAS, Infotainment
§ Features: Cortex-A53, Cortex-A72,HW Virtualization, GPUs

Safe

Real-time

Secure



Carfield: Efficiency + Safety, Security, RT-Predictability
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Main Computing and I/O System Accelerators Domain



How Do We Handle Safety-Critical and Real-Time Tasks?

§ Protection against transient faults (safety)
§ Predictable On-Chip Communication (RT)
§ Reduced contentions to access critical shared memory resources (RT)

15



The Safety Island
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§ Safety-critical applications running on a RTOS

§ Three CV32E40 cores physically isolated 
operating  in lockstep (single HART) and fast 
HW/SW recovery from faults

§ ECC protected scratchpad memories for 
instructions and data

§ Fast and Flexible Interrupts Handling 
through RISC-V compliant CLIC controller

§ AXI-4 port for in/out communication

SAFETY 
ISLAND TRIPLE-CORE LOCKSTEP

CORE 0 CORE 2CORE 1

PRIVATE
MEMORY 

(INSTR)

PRIVATE
MEMORY 

(DATA)

TCDM INTERCONNECT

CLICINTERRUPTS

AXI

AXI

DW Converter

AW Converter

AXI to MEM

MEM to AXI

AW Converter

DW Converter

TCDM INTERCONNECT

BOOT
ROM

SoC
CTRL

DEBUG

CORE LOCAL



Predictable On-Chip Communication (AXI RT)
§ AXI4 inherently unpredictable

§ Minimally Intrusive Solution
§ No huge buffering, limited additional logic
§ Solution verified in systematic worst-case 

real-time analysis

§ AXI Burst Splitter
§ Equalizes length of transactions to avoid unfair BW 

distribution in round-robin scheme

§ AXI Cut & Forward
§ Configurable chunking unit to avoid long transaction 

delays influencing access time to the XBAR

§ AXI Bandwidth Reservation Unit
§ Predictably enforces a given max nr of transactions 

per time period (to each master)
§ Per-address-range credit-based mechanism 
§ Periodically refreshed (or by user)
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RT
Unit

Unmodified AXI4
XBAR (round-robin arbitration 

on single transactions)

Burst 
Splitter

Cut & 
Forward

BW 
Reservation 

Unit

Host

RT
Unit

RT
Unit

Core DMA RT Core

XBAR

SRAM DRAM

[Restuccia et al. DAC 2020] 

[Pagani et al. ECRTS 2019] 



Contention-Free Shared L2 Scratchpad Memory
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1. Dual-AXI-Port L2 Mem Subsystem
Multi-banked L2 SPM accessible from two different AXI ports

interleave
non-inter

2. Two Address Mapping Modes

Non-interleaved Interleaved

3. Dynamic Address Mapping by 
Address spaces, eg:

Point to the same L2 physical Mem space

a000_0000 ~afff_fffff

b000_0000 ~bfff_fffff

c000_0000 ~cfff_fffff

d000_0000 ~dfff_fffff

Port A, interleave

Port B, interleave
Port A, non-inter

Port B, non-inter
4. We determine in SW which port and which mode to use

By using different address space!



The HMR Acceleration Cluster

19



The HMR Cluster for DNN-Oriented INT/FP Workloads
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§ 12x 32-bit RISC-V cores with support 
for DSP/QNN ISA Extensions

§ Single-Cycle Multi-Banked Tightly-
Coupled Data Memory (Scratchpad)

§ Hardware Synchronizer

§ DMA Controller for Explicit Memory 
Management

§ L1-coupled TensorCore (RedMule) 

§ Runtime-configurable Dual/Triple 
core redundancy mode + hw/sw-
based quick recovery mechanism

[Tortorella et al., arXiv, 2023][Rogenmoser  et al., arXiv, 2023] 



Hybrid Modular Redundancy (HMR): Reconfigurable
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RISC-V
core

(main)

RISC-V
core

(main)

RISC-V
core

(main)

RISC-V
core

(main)

RISC-V
core

(main)

RISC-V
core

(main)

Core Ouptuts
(request, status, …)

System

Memory

Core Inputs
(instructions, data, …)

0 0 0
Voter Voter

0

Independent Mode: high performance, no reliability



RISC-V
core

(main)

RISC-V
core

(helper)

RISC-V
core

(main)

RISC-V
core

(helper)

RISC-V
core

(main)

RISC-V
core

(helper)

Core Ouptuts
(request, status, …)

System

Memory

Core Inputs
(instructions, data, …)

Check
0 0

Check Check
0
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DMR Mode: good performance, good reliability, slow recovery

Hybrid Modular Redundancy (HMR): Reconfigurable
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TMR Mode: low performance, high reliability, quick recovery

Hybrid Modular Redundancy (HMR): Reconfigurable



Rapid Recovery: shared hardware extension

§ Cycle-by-cycle backup of 
the cores state in ECC-
protected Status Registers

§ Quick recovery procedure 
(24 cycles!)

§ Shared logic between TMR 
and DMR modes

24



HMR, yes… but at which cost?
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DMR TMR DMR Rapid 
Recovery

TMR Rapid 
Recovery

Recovery Latency
[cycles]

Application 
dependant 363 24 24

Mode Switching 
[cycles] 703 598 603 515

Cluster Area breakdown with HMR Unit HMR Unit Area Breakdown Area Overhead of HMR Configurations

HMR Unit Recovery and Switching Mode Latency

[Rogenmoser  et al., arXiv, 2023] 



Carfield SoC Flooplan – Taped out 11/2023
§ Host [Cheshire]

§ Dual-Core 64-bit RISC-V processor; 2.45 mm2; 600 MHz; 

§ Security Island
§ Low-power secure monitor; 1.94 mm2 ; 100 MHz; 

§ Safety Island
§ 0.42 mm2; 500 MHz

§ Re-configurable L2 Memory Subsystem
§ 1MB; 2.33 mm2; 500 MHz 

§ HMR Integer Cluster
§ 1.17 mm2; 500 MHz;

§ Vectorial FP Cluster
§ 1.14 mm2; 600 MHz;

§ Hyperbus
§ 2 PHY, 2 Chips; 200 MHz; Max BW 400 MB/s

26

Security
Island

Re-configurable L2 
Memory Subsystem

Safety
Island

HMR 
Integer
Cluster

Vectorial
FP

Cluster

Hy
pe
rB
us

PL
Ls Host

[Cheshire]

Predictable AXI Interco
Watchdog/Timers*

MBOX

I/
O 
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 F
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 I

2C
*

Modules marked with (*) are not in scale
4 mm2

4 
mm

2

Frequency bound by 
RAMs (limited 
availability in Intel 
offering for Universities)
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§ GF12, target 1GHz (typ)

§ 2 AXI NoCs (multi-hierarchy)
§ 64-bit
§ 512-bit with “interleaved” mode

§ Peripherals

§ Linux-capable manager core CVA6

§ 6 Quadrants: 216 cores/chiplet
§ 4 cluster / quadrant:

§ 8 compute +1 DMA core / cluster
§ 1 multi-format FPU / core (FP64,x2 32, x4 

16/alt, x8 8/alt)

§ 8-channel HBM2e (8GB) 512GB/s

§ D2D link (Wide, Narrow) 70+2GB/s

§ System-level DMA

§ SPM (2MB wide, 512KB narrow)
Peak 384 GDPflop/s per chiplet 

Multi-TOPS SoCs for 
Autonomous Drive!

Toward Self-Driving Cars 



Occamy: RISC-V goes HPC Chiplet!

HBM PHY

HBM2e DRAM
<410 GB/s

HBM DRAM

Global NoC

HBM2e PHY
512 GB/s

512
b

512
b

512
b

512
b

512
b

512
b

512
b

512
b

Die-to-Die
Serial Link

64 GB/s

512
b

512
b

1MB SPM
512bit

512
b

512KB SPM
64bit

64b64b

64bit
CVA6
Host

• Runs Linux
• Peripheral Manager
• <1% traffic

System-
level DMA

64b 512
b

• Long & short bursts
• 1D & 2D patterns

Die-to-Die
Serial Link

8 GB/s

64b64b

Off-die
Serial Link

8 GB/s

64b64b

Multi-cluster Multi-core Compute
6 groups of each 4 clustersEach cluster has 

8 compute cores + 1 DMA core

Total of 216x Snitch cores 
with Multi-precision FPU (64 to 8)

Group-to-
Group

384 GB/s

• Long & short bursts
• 1D & 2D patterns

Periph

32b

• SPI
• I2C
• UART
• GPIO
• Timers

ZeroMem
8GB / 512bit

512
b

C2C
C2Mem

28

Snitch
+

IDMA

NoC(P)
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NoC(P): Efficient and Flexible Data Movement  

Problem: HBM Accesses are 
critical in terms of

§ Access energy
§ Congestion
§ High latency

Instead reuse data on lower levels 
of the memory hierarchy

§ Between clusters
§ Across groups
§ Across chiplets

Smartly distribute workload
§ Clusters: Tiling, Depth-First 
§ Chiplets: E.g. Layer pipelining

Cluster

Group Crossbar

Cluster Cluster

Group Crossbar

Cluster

System Crossbar

HBM Die2Die

… …
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Snitch – Latency-Tolerant, Efficient, Extensible
§ Snitch core: around 20KGE

§ Speed via simplicity (1GHZ+)  
§ L0 Icache/buffer for low energy fetch
§ Parametric # of LD/ST ports in LSU (1-4)

§ Extensibleà “Accelerator” port
§ Minimal  baseline ISA (RISC-V)
§ Extensibility: Performance through ISA 

extensions (via accelerator port)

§ Latency-tolerant àScoreboard
§ Tracks instruction dependencies
§ Much simpler than OOO support!

L0
 IC

ac
he

Dependencies

Scoreboard

FP
64,32,16,8…

Sparse ML
Stencils

Dense ML
TensorsVector
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IDMA: Efficient Explicit Global Data Mover

§ 512-bit AXI DMA – double-buffered 
transfers 

§ Tightly coupled with Snitch (<10 cycles 
configuration)

§ Operates on wide 512-bit data-bus

§ Hardware support to copy 2-4-dim shapes

§ Higher-dimensionality handled by SW

§ Intrinsics/library for easy programming

§ Sparse data support

Snitch 
Core Front-End Mid-End

AXI initiator
(512b)Backend

L1 DCDM



What’s Next? The era  of Foundation Models
§ Versatility and Multi-modality

§ Natural language processing, computer 
vision, robotics, biology, …

§ Homogenization of models
§ Transformers as foundation models

§ Self-supervision, Fine-tuning
§ Self-supervised training on large-scale 

unlabeled dataset 
§ Fine-tune (few layers) on specific tasks 

with smaller labeled datasets.

§ Zero-shot specialization
§ Prompt engineering for new tasks

32

Bommasani, Rishi, et al. "On the Opportunities and Risks of Foundation Models." Center for Research 
on Foundation Models (CRFM), Stanford Institute for Human-Centered Artificial Intelligence (HAI).



Attention is all you need!
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Multi-Head 
Attention

Feed
Forward

Add & Norm

Add & Norm



MatMul

MatMul

Attention but how?
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Multi-Head 
Attention

Feed
Forward

Add & Norm

Add & Norm

Multi-Head 
Attention

Linear

Softmax

Linear Linear

Linear

Query Key Value

Attention

I
love
ISLPED
!



Challenges in Attention
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§ Attention matrix is a square 
matrix of order input length.
§ Computational complexity
§ Memory requirements

§ MatMul & Softmax dominate

MatMul

MatMul

Linear

Softmax

Linear Linear

Linear

Query Key Value

Attention
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Matmul Benefits from Large(r) Shared-L1 clusters
§ Why? 

§ Better global latency tolerance if L1size > 2*L2latency*L2bandwidth (Little’s law + double buffer)
§ Smaller data partitioning overhead
§ Larger Compute/Boundary bandwidth ratio:  N3/N2 for MMUL grows linearly with N!

MemPool
&

Terapool§ A large “MemPool”
§ 256+ cores
§ 1+ MiB of shared L1 data 

memory
§ ≤ 10 cycle latency (Snitch 

can handle it)

§ Physical-aware design
§ WC Frequency > 700+Mhz 
§ Targeting iso-frequency with 

small cluster Butterfly Multi-stage Interconnect 0.3req/core/cycle, 5 cycles



§ Every attention layer applies 
Softmax to attention matrix!

MatMul

Challenges in Attention

37

MatMul

Linear

Softmax

Linear Linear

Linear

Query Key Value

Attention

§ Attention matrix is a square 
matrix of order input length.
§  Computational complexity
§  Memory requirements
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§ Every attention layer applies 
Softmax to attention matrix!
§ 3 passes over a row.
§ Quantization is problematic.

§ Attention matrix is a square 
matrix of order input length.
§  Computational complexity
§  Memory requirements

Softmax

Attention

Softmax 𝐱 ! =
e"!#$%"(𝐱)

∑)* e
""#$%"(𝐱)

Challenges in Attention



ITA: Integer Transformer Accelerator
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§ Attention accelerator for 
transformers!

§ INT8 quantized networks
§ Output stationary - Local weight 

stationary
§ Spatial input reuse
§ Spatial output partial sum reuse

§ Fused Q.KT and A.V computation
§ Special Softmax unit!

[Islamoglu et al. ISLPED23]



Dot Product Unit

ITA – Architecture 
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x x x

+

Output

Partial 
Sum

𝑁 = 𝟏𝟔 dot product 
units that compute the 
dot product between 

two vectors of 
𝑀 = 𝟔𝟒 elements

𝑁×2𝑀 = 2	KiB

M*8

N*8

24

N*8

N

M

Weight

Bias
Partial Sum

Input

W2W1

Softmax

+

R
eQ

ua
nt



41

Softmax 𝐱 ! =
e"!#$%"(𝐱)

∑)* e
""#$%"(𝐱)

Softmax

Hardware-friendly Softmax
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Softmax 𝐱 ! =
1

∑)*2
("#"#$%"(𝐱#))≫8

2("#!#$%"(𝐱#))≫8

Directly operates on 
quantized values.

No exponentiation 
modules and multipliers.

Computes softmax on 
streaming data.

Softmax

Softmax 𝐱 ! =
e"!#$%"(𝐱)

∑)* e
""#$%"(𝐱)

Hardware-friendly Softmax



Softmax

MAX∑ AccumulateNormalize

/

OutputInput

Softmax(I)

Denominator 
Inversion

Denominator 
Accumulation

Element 
Normalization
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Softmax 𝐱 ! =
1

∑)*2
("#"#$%"(𝐱#))≫8

2("#!#$%"(𝐱#))≫8

Hardware-friendly Softmax



Denominator 
Accumulation

Element 
Normalization
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Denominator 
Inversion

MAX∑ AccumulateNormalize

/

OutputInput

Softmax(I)

Softmax 𝐱 ! =
1

∑)*2
("#"#$%"(𝐱#))≫8

2("#!#$%"(𝐱#))≫8
MatMul

MatMul

Softmax

O

I

Hardware-friendly Softmax



Denominator 
Accumulation

Element 
Normalization
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Denominator 
Inversion

MAX∑ AccumulateNormalize

/

OutputInput

Softmax(I)

Softmax 𝐱 ! =
1

∑)*2
("#"#$%"(𝐱#))≫8

2("#!#$%"(𝐱#))≫8
MatMul

MatMul

Softmax

O

I

Hardware-friendly Softmax



Denominator 
Accumulation

Element 
Normalization
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Denominator 
Inversion

MAX∑ AccumulateNormalize

/

OutputInput

Softmax(I)

Softmax 𝐱 ! =
1

∑)*2
("#"#$%"(𝐱#))≫8

2("#!#$%"(𝐱#))≫8
MatMul

MatMul

Softmax

O

I

Hardware-friendly Softmax



Denominator 
Accumulation

Element 
Normalization
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Denominator 
Inversion

MAX∑ AccumulateNormalize

/

OutputInput

Softmax(I)

Softmax 𝐱 ! =
1

∑)*2
("#"#$%"(𝐱#))≫8

2("#!#$%"(𝐱#))≫8
MatMul

MatMul

Softmax

O

I

𝑀𝐴𝐸 = 𝟎. 𝟒𝟔%Hardware-friendly Softmax



Output stationary - Local weight stationary
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Input Weight Output
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Input Weight Output

Output stationary - Local weight stationary
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Input Weight Output

Output stationary - Local weight stationary
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Input Weight Output

Output stationary - Local weight stationary
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Input Weight Output

Output stationary - Local weight stationary
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Input Weight Output

Output stationary - Local weight stationary
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Input Weight Output

Output stationary - Local weight stationary
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Dot Product
Units Q K V Q.KT A.V Output

Input Weight Output

Output stationary - Local weight stationary



Fused Q.KT and A.V computation
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Dot Product
Units Q K V Q.KT A.V Output

Softmax
DA EN

DI

Input 1 Input 2 Output



Comparison to a software baseline on MemPool
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0

1

2

3

4

5

6

7

8

MemPool ITA System

Performance [TOPS] Energy efficiency [TOPS/W] Area efficiency [TOPS/mm  ]

Performance 
increase of 6x

Energy Efficiency 
increase of 45x

Area Efficiency 
increase of 220x

2

with 64 KiB SRAM



Integrating ITA into MemPool
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ü Where to put ITA?

ü How to connect ITA to L1 memory?

§ How to refill L1 from L2 memory 
for ITA?

ITA

ITAITA

ITA



Adding a special DMA for ITA
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§ Moves transformer data from L2 
to L1 memory

§ Inputs are broadcasted to all 
groups

§ Two 16 bytes/cycle ports per 
group

IT
A 

D
M

A

ITA

ITAITA

ITA
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IT

A 
D

M
A

ITA

ITAITA

ITA

ITA

MemPool ITA &
Banks

ITA
only ITA System

Throughput 
[TOPS] 0.135 3.43 3.43 1.02

Energy efficiency 
[TOPS/W] 0.159 7.09 12.3 8.46

Area efficiency 
[TOPS/mm2] 0.0114 2.10 5.02 2.52

25x

45x

2x

Comparison to MemPool and ITA System



Future of Mempool+ITA: Scaling up further
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§ 10B+ models (LLAMA2)
§ Block-FP capability (<8b/w,act)
§ Sparsity handling
§ Multi-chiplet terapool

§ 3D memory

ITA ITA

ITA ITA

ITA ITA ITA

ITA ITAITA ITA ITA

ITA ITAITA ITA ITA

ITA ITAITA ITA ITA

ITA ITA ITA

Accelerate LLMs 
and reach 100 

TFLOPS or higher 
in a few W



Embodied AI vision:  LLM everywhere?
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[Karpathy23]

Safe

Real-time

Secure

Efficient



§ Research on open-source energy-efficient computing architectures
§ Started in 2013, we are celebrating 10 years of our project this year

§ Led by Luca Benini
§ Involves ETH Zürich (Switzerland) and University of Bologna (Italy)
§ Large group of almost 100 people
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Thank You!


