
Dr. Mohammad Sadrosadati
Prof. Onur Mutlu

omutlu@gmail.com
https://people.inf.ethz.ch/omutlu

11 December 2023
EFCL Mini-Conference

Memory-Centric Computing
for Data-Intensive Workloads

mailto:omutlu@gmail.com
https://people.inf.ethz.ch/omutlu

Brief Self Introduction
n Mohammad Sadrosadati

q Senior Researcher and Lecturer @ SAFARI Research Group, ETHZ
q PhD from Sharif University of Technology, 2014-2019
q mohammad.sadrosadati@safari.ethz.ch

n Research Areas
q Computer Architecture
q Memory & Storage Systems
q Near-Data Processing
q Heterogeneous System Architecture
q Bioinformatics
q Interconnection Networks

2

mailto:mohammad.sadrosadati@safari.ethz.ch

Computer architecture, HW/SW, systems, bioinformatics, security

Graphics and Vision Processing

Heterogeneous
Processors and

Accelerators

Hybrid Main Memory

Persistent Memory/Storage

Build fundamentally better architectures

Current Research Mission

Four Key Current Directions

n Fundamentally Secure/Reliable/Safe Architectures

n Fundamentally Energy-Efficient Architectures
q Memory-centric (Data-centric) Architectures

n Fundamentally Low-Latency and Predictable Architectures

n Architectures for AI/ML, Genomics, Medicine, Health, …

4

Fundamentally Better Architectures

Data-centric

Data-driven

Data-aware
5

40+ Researchers

https://safari.ethz.ch

Onur Mutlu’s SAFARI Research Group
Computer architecture, HW/SW, systems, bioinformatics, security, memory

https://safari.ethz.ch/safari-newsletter-june-2023/

6

http://www.safari.ethz.ch/
https://safari.ethz.ch/safari-newsletter-january-2021/

SAFARI Newsletter June 2023 Edition
n https://safari.ethz.ch/safari-newsletter-june-2023/

7

https://safari.ethz.ch/safari-newsletter-june-2023/

Referenced Papers, Talks, Artifacts

n All are available at

https://people.inf.ethz.ch/omutlu/projects.htm

https://www.youtube.com/onurmutlulectures

https://github.com/CMU-SAFARI/

8

https://people.inf.ethz.ch/omutlu/projects.htm
https://www.youtube.com/onurmutlulectures

Open-Source Artifacts

https://github.com/CMU-SAFARI

9

https://github.com/CMU-SAFARI

Open Source Tools: SAFARI GitHub

10https://github.com/CMU-SAFARI/

https://github.com/CMU-SAFARI/

SAFARI Overview at EFCL Huawei Day

n Onur Mutlu,
"SAFARI Research Group: Introduction & Research"
Invited Talk at the ETH Future Computing Laboratory
Huawei Day, Virtual, 19 October 2021.
[Slides (pptx) (pdf)]
[Talk Video (15 minutes)]

12

https://people.inf.ethz.ch/omutlu/pub/onur-HuaweiDay-SAFARIIntroductionAndResearch-October-19-2021.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-HuaweiDay-SAFARIIntroductionAndResearch-October-19-2021.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-HuaweiDay-SAFARIIntroductionAndResearch-October-19-2021.pdf
https://www.youtube.com/watch?v=mSr1QQmYuX0&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=67

SAFARI Overview at EFCL Huawei Day

https://youtu.be/mSr1QQmYuX0 13

https://youtu.be/mSr1QQmYuX0

Fundamentally Better Architectures

Data-centric

Data-driven

Data-aware
14

A Blueprint for Fundamentally Better Architectures

n Onur Mutlu,
"Intelligent Architectures for Intelligent Computing Systems"
Invited Paper in Proceedings of the Design, Automation, and Test in
Europe Conference (DATE), Virtual, February 2021.
[Slides (pptx) (pdf)]
[IEDM Tutorial Slides (pptx) (pdf)]
[Short DATE Talk Video (11 minutes)]
[Longer IEDM Tutorial Video (1 hr 51 minutes)]

15

https://people.inf.ethz.ch/omutlu/pub/intelligent-architectures-for-intelligent-computingsystems-invited_paper_DATE21.pdf
http://www.date-conference.com/
http://www.date-conference.com/
https://people.inf.ethz.ch/omutlu/pub/onur-DATE-InvitedTalk-IntelligentArchitecturesForIntelligentComputingSystems-January-22-2021.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-DATE-InvitedTalk-IntelligentArchitecturesForIntelligentComputingSystems-January-22-2021.pdf
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pdf
https://www.youtube.com/watch?v=eAZZGDlsDAY
https://www.youtube.com/watch?v=H3sEaINPBOE

The Problem

Computing
is Bottlenecked by Data

16

Data is Key for AI, ML, Genomics, …

n Important workloads are all data intensive

n They require rapid and efficient processing of large amounts
of data

n Data is increasing
q We can generate more than we can process
q We need to perform more sophisticated analyses on more data

17

Huge Demand for Performance & Efficiency

18https://www.youtube.com/watch?v=x2-qB0J7KHw

~4 orders of magnitude increase
in memory requirement in

just two years!

https://www.youtube.com/watch?v=x2-qB0J7KHw

Data is Key for Future Workloads

In-Memory Data Analytics
[Clapp+ (Intel), IISWC’15;
 Awan+, BDCloud’15]

Datacenter Workloads
[Kanev+ (Google), ISCA’15]

In-memory Databases
[Mao+, EuroSys’12;
Clapp+ (Intel), IISWC’15]

Graph/Tree Processing
[Xu+, IISWC’12; Umuroglu+, FPL’15]

Data Overwhelms Modern Machines

In-Memory Data Analytics
[Clapp+ (Intel), IISWC’15;
 Awan+, BDCloud’15]

Datacenter Workloads
[Kanev+ (Google), ISCA’15]

In-memory Databases
[Mao+, EuroSys’12;
Clapp+ (Intel), IISWC’15]

Graph/Tree Processing
[Xu+, IISWC’12; Umuroglu+, FPL’15]

Data → performance & energy bottleneck

Chrome
Google’s web browser

TensorFlow Mobile
Google’s machine learning

framework

Video Playback
Google’s video codec

Video Capture
Google’s video codec

Data is Key for Future Workloads

Chrome
Google’s web browser

TensorFlow Mobile
Google’s machine learning

framework

Video Playback
Google’s video codec

Video Capture
Google’s video codec

Data Overwhelms Modern Machines

Data → performance & energy bottleneck

Data is Key for Future Workloads

23

development of high-throughput
sequencing (HTS) technologies

http://www.economist.com/news/21631808-so-much-genetic-data-so-many-uses-genes-unzipped

Number of Genomes
Sequenced

http://www.economist.com/news/21631808-so-much-genetic-data-so-many-uses-genes-unzipped

Genome
Analysis

A C T T A G C A C T

0 1 2

A 1 0 1 2

C 2 1 0 1 2

T 2 1 0 1 2

A 2 1 2 1 2

G 2 2 2 1 2

A 3 2 2 2 2

A 3 3 3 2 3

C 4 3 3 2 3

T 4 4 3 2

T 5 4 3

Short Read

... ...
Reference Genome

Read
Alignment

 CC T AT AAT ACG
C
C
A
T
A
T
A
T
A
C
G

TATATATACGTACTAGTACGT

ACGACTTTAGTACGTACGT
TATATATACGTACTAGTACGT

ACGTACG CCCCTACGTA

ACGACTTTAGTACGTACGT
TATATATACGTACTAAAGTACGT

CCCCCCTATATATACGTACTAGTACGT

TATATATACGTACTAGTACGT

TATATATACGTACTAGTACGT
ACG TTTTTAAAACGTA

ACGACGGGGAGTACGTACGT

Billions of Short Reads

1 2Sequencing Read Mapping

3 4Variant Calling Scientific Discovery

Data → performance & energy bottleneck

Data Overwhelms Modern Machines …

n Storage/memory capability

n Communication capability

n Computation capability

n Greatly impacts robustness, energy, performance, cost

25

A Computing System

n Three key components
n Computation
n Communication
n Storage/memory

26

Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Image source: https://lbsitbytes2010.wordpress.com/2013/03/29/john-von-neumann-roll-no-15/

We Need A Paradigm Shift To …

n Enable computation with minimal data movement

n Compute where it makes sense (where data resides)

n Make computing architectures more data-centric

27

Goal: Processing Inside Memory

n Many questions … How do we design the:
q compute-capable memory & controllers?
q processors & communication units?
q software & hardware interfaces?
q system software, compilers, languages?
q algorithms & theoretical foundations?

Cache

Processor
Core

Interconnect

Memory Database

Graphs

Media
Query

Results

Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons

29

Outline

System Support for PuM Architectures2

Programming a Real PIM Architecture1

Accelerating Key Applications with PIM3

Overview of recently published works

Overview of recently published works

30

Outline

System Support for PuM Architectures2

Programming a Real PIM Architecture1

Accelerating Key Applications with PIM3

Overview of recently published works

Overview of recently published works

31

A State-of-the-Art PIM System

• In our work, we use the UPMEM PIM architecture
- General-purpose processing cores called DRAM Processing

Units (DPUs)
• Up to 24 PIM threads, called tasklets
• 32-bit integer arithmetic, but multiplication/division are

emulated*, as well as floating-point operations
- 64-MB DRAM bank (MRAM), 64-KB scratchpad (WRAM)

Host CPU

S
h

ar
ed

 C
ac

h
e

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

Standard Main Memory

xN

xM

PIM-enabled Memory

PIM-Host

Host-PIM

C
ac

h
e

C
ac

h
e

C
or

e
C

or
e Memory

Array

PIM PE

Memory
Array

PIM PE

Memory
Array

PIM PE

Memory
Array

PIM PE

Memory Array
(Rank or Bank)

PIM Processing Elements

Instruction
Memory

Scratchpad/
Cache

* 8-bit integer multiplication is natively supported

32

2,560-DPU UPMEM PIM System

CPU 0

CPU 1

DRAM

DRAM

PIM-enabled
memory

PIM-enabled
memory

PIM-enabled
memory

PIM-enabled
memory

Host
CPU 0

x10

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

x2

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

Main Memory

PIM-enabled Memory

Host
CPU 1

x10

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

x2

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

Main Memory

PIM-enabled Memory

2560 DPUs*

160 GB

• 20 UPMEM DIMMs of 16
chips each (40 ranks)

• Dual x86 socket
• UPMEM DIMMs coexist

with regular DDR4 DIMMs
- 2 memory controllers/socket
- 2 conventional DDR4 DIMMs

on one channel of one
controller

* There are some faulty DPUs in the system that we use in our
experiments. Thus, the maximum number of DPUs we can use is 2,524

33

Jinfan Chen, Juan Gómez-Luna, Izzat El Hajj, YuXin Guo, and Onur
Mutlu, "SimplePIM: A Software Framework for Productive and
Efficient Processing in Memory," in PACT, 2023.

Harshita Gupta, Mayank Kabra, Juan Gómez-Luna, Konstantinos
Kanellopoulos, and Onur Mutlu, "Evaluating Homomorphic
Operations on a Real-World Processing-In-Memory System,”
in IISWC, 2023.

Juan Gómez Luna, Yuxin Guo, Sylvan Brocard, Julien Legriel, Remy
Cimadomo, Geraldo F. Oliveira, Gagandeep Singh, and Onur Mutlu,
"Evaluating Machine Learning Workloads on Memory-Centric
Computing Systems,” in ISPASS, 2023.

Maurus Item, Juan Gómez Luna, Yuxin Guo, Geraldo F. Oliveira,
Mohammad Sadrosadati, and Onur Mutlu, "TransPimLib: Efficient
Transcendental Functions for Processing-in-Memory Systems,”
in ISPASS, 2023.

Programming a Real PIM Architecture:
Overview of recently published works

1

2

3

4

34

Jinfan Chen, Juan Gómez-Luna, Izzat El Hajj, YuXin Guo, and Onur
Mutlu, "SimplePIM: A Software Framework for Productive and
Efficient Processing in Memory," in PACT, 2023.

Harshita Gupta, Mayank Kabra, Juan Gómez-Luna, Konstantinos
Kanellopoulos, and Onur Mutlu, "Evaluating Homomorphic
Operations on a Real-World Processing-In-Memory System,”
in IISWC, 2023.

Juan Gómez Luna, Yuxin Guo, Sylvan Brocard, Julien Legriel, Remy
Cimadomo, Geraldo F. Oliveira, Gagandeep Singh, and Onur Mutlu,
"Evaluating Machine Learning Workloads on Memory-Centric
Computing Systems,” in ISPASS, 2023.

Maurus Item, Juan Gómez Luna, Yuxin Guo, Geraldo F. Oliveira,
Mohammad Sadrosadati, and Onur Mutlu, "TransPimLib: Efficient
Transcendental Functions for Processing-in-Memory Systems,”
in ISPASS, 2023.

Programming a Real PIM Architecture:
Overview of recently published works

1

2

3

4

Jinfan Chen, Juan Gómez Luna, Izzat El Hajj, Yuxin Guo, Onur Mutlu

SimplePIM:
A Software Framework for Productive

and Efficient Processing-in-Memory

https://arxiv.org/pdf/2310.01893.pdf
https://github.com/CMU-SAFARI/SimplePIM

juang@ethz.ch

2023 International Conference on Parallel Architectures and Compilation Techniques

Monday, October 23, 2023

https://arxiv.org/pdf/2310.01893.pdf
https://github.com/CMU-SAFARI/SimplePIM
mailto:juang@ethz.ch

36

Executive Summary
• Processing-in-Memory (PIM) promises to alleviate the data movement

bottleneck
• Real PIM hardware is now available, e.g., UPMEM PIM
• However, programming real PIM hardware is challenging, e.g.:

- Distribute data across PIM memory banks,
- Manage data transfers between host cores and PIM cores, and between PIM

cores,
- Launch PIM kernels on the PIM cores, etc.

• SimplePIM is a high-level programming framework for real PIM hardware
- Iterators such as map, reduce, and zip
- Collective communication with broadcast, scatter, and gather

• Implementation on UPMEM and evaluation with six different
workloads
- Reduction, vector add, histogram, linear/logistic regression, K-means
- 4.4x fewer lines of code compared to hand-optimized code
- Between 15% and 43% faster than hand-optimized code for three workloads

• Source code: https://github.com/CMU-SAFARI/SimplePIM

https://github.com/CMU-SAFARI/SimplePIM

37

Programming a PIM System (I)
• Example: Hand-optimized histogram with UPMEM SDK
... // Initialize global variables and functions for histogram
int main_kernel() {
 if (tasklet_id == 0)
 mem_reset(); // Reset the heap
 ... // Initialize variables and the histogram
 T *input_buff_A = (T*)mem_alloc(2048); // Allocate buffer in scratchpad memory

 for (unsigned int byte_index = base_tasklet; byte_index < input_size; byte_index += stride) {
 // Boundary checking
 uint32_t l_size_bytes = (byte_index + 2048 >= input_size) ? (input_size - byte_index) : 2048;
 // Load scratchpad with a DRAM block
 mram_read((const __mram_ptr void*)(mram_base_addr_A + byte_index), input_buff_A, l_size_bytes);
 // Histogram calculation
 histogram(hist, bins, input_buff_A, l_size_bytes/sizeof(uint32_t));
 }
 ...
 barrier_wait(&my_barrier); // Barrier to synchronize PIM threads
 ... // Merging histograms from different tasklets into one histo_dpu
 // Write result from scratchpad to DRAM
 if (tasklet_id == 0)
 if (bins * sizeof(uint32_t) <= 2048)
 mram_write(histo_dpu, (__mram_ptr void*)mram_base_addr_histo, bins * sizeof(uint32_t));
 else
 for (unsigned int offset = 0; offset < ((bins * sizeof(uint32_t)) >> 11); offset++) {
 mram_write(histo_dpu + (offset << 9), (__mram_ptr void*)(mram_base_addr_histo +
 (offset << 11)), 2048);
 }
 return 0;
}

38

Programming a PIM System (II)
• PIM programming is challenging

- Manage data movement between host DRAM and PIM DRAM
• Parallel, serial, broadcast, and gather/scatter transfers

- Manage data movement between PIM DRAM bank and
scratchpad
• 8-byte aligned and maximum of 2,048 bytes

- Multithreaded programming model
- Inter-thread synchronization

• Barriers, handshakes, mutexes, and semaphores

Our Goal
Design a high-level programming framework that abstracts these
hardware-specific complexities and provides a clean yet powerful

interface for ease of use and high program performance

39

The SimplePIM Programming Framework

• SimplePIM provides standard abstractions to build and
deploy applications on PIM systems
- Management interface

• Metadata for PIM-resident arrays

- Communication interface
• Abstractions for host-PIM and PIM-PIM communication

- Processing interface
• Iterators (map, reduce, zip) to implement workloads

40

Productivity Improvement (I)
• Example: Hand-optimized histogram with UPMEM SDK
... // Initialize global variables and functions for histogram
int main_kernel() {
 if (tasklet_id == 0)
 mem_reset(); // Reset the heap
 ... // Initialize variables and the histogram
 T *input_buff_A = (T*)mem_alloc(2048); // Allocate buffer in scratchpad memory

 for (unsigned int byte_index = base_tasklet; byte_index < input_size; byte_index += stride) {
 // Boundary checking
 uint32_t l_size_bytes = (byte_index + 2048 >= input_size) ? (input_size - byte_index) : 2048;
 // Load scratchpad with a DRAM block
 mram_read((const __mram_ptr void*)(mram_base_addr_A + byte_index), input_buff_A, l_size_bytes);
 // Histogram calculation
 histogram(hist, bins, input_buff_A, l_size_bytes/sizeof(uint32_t));
 }
 ...
 barrier_wait(&my_barrier); // Barrier to synchronize PIM threads
 ... // Merging histograms from different tasklets into one histo_dpu
 // Write result from scratchpad to DRAM
 if (tasklet_id == 0)
 if (bins * sizeof(uint32_t) <= 2048)
 mram_write(histo_dpu, (__mram_ptr void*)mram_base_addr_histo, bins * sizeof(uint32_t));
 else
 for (unsigned int offset = 0; offset < ((bins * sizeof(uint32_t)) >> 11); offset++) {
 mram_write(histo_dpu + (offset << 9), (__mram_ptr void*)(mram_base_addr_histo +
 (offset << 11)), 2048);
 }
 return 0;
}

41

Productivity Improvement (II)
• Example: SimplePIM histogram

// Programmer-defined functions in the file "histo_filepath"
void init_func (uint32_t size, void* ptr) {
 char* casted_value_ptr = (char*) ptr;
 for (int i = 0; i < size; i++)
 casted_value_ptr[i] = 0;
}

void acc_func (void* dest, void* src) {
 (uint32_t)dest += *(uint32_t*)src;
}

void map_to_val_func (void* input, void* output, uint32_t* key) {
 uint32_t d = *((uint32_t*)input);
 (uint32_t)output = 1;
 *key = d * bins >> 12;
}

// Host side handle creation and iterator call
handle_t* handle = simple_pim_create_handle("histo_filepath", REDUCE, NULL, 0);

// Transfer (scatter) data to PIM, register as "t1"
simple_pim_array_scatter("t1", src, bins, sizeof(T), management);

// Run histogram on "t1" and produce "t2"
simple_pim_array_red("t1", "t2", sizeof(T), bins, handle, management);

42

Productivity Improvement (III)
• Lines of code (LoC) reduction

SimplePIM Hand-optimized LoC Reduction

Reduction 14 83 5.93×

Vector Addition 14 82 5.86×

Histogram 21 114 5.43×

Linear Regression 48 157 3.27×

Logistic Regression 59 176 2.98×

K-Means 68 206 3.03×

SimplePIM reduces the number of lines of effective code
by a factor of 2.98× to 5.93×

43

Performance Evaluation (I)
• Weak scaling analysis

SimplePIM achieves comparable performance for
reduction, histogram, and linear regression

SimplePIM outperforms hand-optimized implementations for
vector addition, logistic regression,

and k-means by 10%-37%

44

Performance Evaluation (II)
• Strong scaling analysis

SimplePIM scales better than hand-optimized implementations
for reduction, histogram, and linear regression

SimplePIM outperforms hand-optimized implementations for
vector addition, logistic regression,

and k-means by 15%-43%

45

Discussion
• SimplePIM is devised for PIM architectures with

- A host processor with access to standard main memory and
PIM-enabled memory

- PIM processing elements (PEs) that communicate via the
host processor

- The number of PIM PEs scales with memory capacity
• SimplePIM emulates the communication between PIM

cores via the host processor
• Other parallel patterns can be incorporated in future

work
- Prefix sum and filter can be easily added
- Stencil and convolution would require fine-grained scatter-

gather for halo cells
- Random access patterns would be hard to support

46

SimplePIM: arXiv Version

https://arxiv.org/pdf/2310.01893.pdf

https://arxiv.org/pdf/2310.01893.pdf

47

• https://github.com/
CMU-
SAFARI/SimplePIM

Source Code

https://github.com/CMU-SAFARI/SimplePIM
https://github.com/CMU-SAFARI/SimplePIM
https://github.com/CMU-SAFARI/SimplePIM

48

Jinfan Chen, Juan Gómez-Luna, Izzat El Hajj, YuXin Guo, and Onur
Mutlu, "SimplePIM: A Software Framework for Productive and
Efficient Processing in Memory," in PACT, 2023.

Harshita Gupta, Mayank Kabra, Juan Gómez-Luna, Konstantinos
Kanellopoulos, and Onur Mutlu, "Evaluating Homomorphic
Operations on a Real-World Processing-In-Memory System,”
in IISWC, 2023.

Juan Gómez Luna, Yuxin Guo, Sylvan Brocard, Julien Legriel, Remy
Cimadomo, Geraldo F. Oliveira, Gagandeep Singh, and Onur Mutlu,
"Evaluating Machine Learning Workloads on Memory-Centric
Computing Systems,” in ISPASS, 2023.

Maurus Item, Juan Gómez Luna, Yuxin Guo, Geraldo F. Oliveira,
Mohammad Sadrosadati, and Onur Mutlu, "TransPimLib: Efficient
Transcendental Functions for Processing-in-Memory Systems,”
in ISPASS, 2023.

Programming a Real PIM Architecture:
Overview of recently published works

1

2

3

4

Juan Gómez Luna, Yuxin Guo, Sylvan Brocard,
Julien Legriel, Remy Cimadomo, Geraldo F. Oliveira,

Gagandeep Singh, Onur Mutlu

Evaluating
Machine Learning Workloads

on Memory-Centric Computing Systems

https://arxiv.org/pdf/2207.07886.pdf
https://github.com/CMU-SAFARI/pim-ml

juang@ethz.ch

2023 IEEE International Symposium on Performance Analysis of Systems and Software

Monday, April 24, 2023

https://arxiv.org/pdf/2207.07886.pdf
https://github.com/CMU-SAFARI/pim-ml
mailto:juang@ethz.ch

50

Executive Summary
Problem: Training machine learning (ML) algorithms is a computationally
expensive process, frequently memory-bound
• Memory-centric computing systems can alleviate data movement bottlenecks
• Real-world PIM systems have only been manufactured and commercialized
• UPMEM has designed and fabricated the first publicly-available PIM architecture

Our main contributions:
• PIM implementation of several classic machine learning algorithms: linear regression,

logistic regression, decision tree, K-means clustering
• Workload characterization in terms of quality, performance, and scaling
• Comparison to their counterpart implementations on processor-centric systems (CPU and

GPU)

Goal: Understand the potential of modern general-purpose PIM
architectures to accelerate machine learning training

Key Results:
• PIM version of DTR is 27x / 1.34x faster than the CPU / GPU version, respectively
• PIM version of KME is 2.8x / 3.2x faster than the CPU / GPU version, respectively

51

Machine Learning Workloads
• Machine learning training

with large amounts of
data is a computationally
expensive process, which
requires many iterations
to update an ML model’s
parameters

Machine learning

Supervised
learning

Unsupervised
learning

Reinforcement
learning

Regression Classification
Neural

Networks
Clustering

Dimensionality
reduction

Linear regression
Decision trees
Ridge regression
Ordinary least
squares regression
Stepwise regression

Logistic regression
Decision trees
K-nearest neighbor
Support vector
machine
Naive Bayes

K-means
K-median
Hierarchical
clustering
Mean shift

• Frequent data movement between memory and processing
elements to access training data
• The amount of computation is not enough to amortize the

cost of moving training data to the processing elements
- Low arithmetic intensity
- Low temporal locality
- Irregular memory accesses

52

Machine Learning Workloads:
Our Goal

• Our goal is to study and analyze how real-world general-
purpose PIM can accelerate ML training
• Four representative ML algorithms: linear regression,

logistic regression, decision tree, K-means
• Roofline model to quantify memory boundedness of

CPU versions

DRAM

L3

Peak compute performance

KME

DTR

LIN

LOG

0.3

1

3

10

30

0.01 0.1 1 10
Arithmetic Intensity (OP/B)

Pe
rfo

rm
an

ce
 (G

O
PS

)

All workloads fall in the memory-bound area of the Roofline

53

Machine learning

Supervised
learning

Unsupervised
learning

Reinforcement
learning

Regression Classification
Neural

Networks
Clustering

Dimensionality
reduction

Linear regression
Decision trees
Ridge regression
Ordinary least
squares regression
Stepwise regression

Logistic regression
Decision trees
K-nearest neighbor
Support vector
machine
Naive Bayes

K-means
K-median
Hierarchical
clustering
Mean shift

ML Training Workloads
• Four widely-used machine learning

workloads:
- Linear regression (LIN)
- Logistic regression (LOG)
- Decision tree (DTR)
- K-means clustering (KME)

• Diversity of our ML training workloads:
- Memory access patterns
- Operations and datatypes
- Communication/synchronization

Host CPU

S
h

ar
ed

 C
ac

h
e

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

Standard Main Memory

xN

xM

PIM-enabled Memory

PIM-Host

Host-PIM

C
ac

h
e

C
ac

h
e

C
o

re
C

o
re Memory

Array

PIM PE

Memory
Array

PIM PE

Memory
Array

PIM PE

Memory
Array

PIM PE

Memory Array
(Rank or Bank)

PIM Processing Elements

Instruction
Memory

Scratchpad/
Cache

Figure 3: High-level view of a state-of-the-art processing-in-memory system. The host CPU has access to" standard memory
modules and # PIM-enabled memory modules.

Table 1: Machine learning workloads.

Learning Application Algorithm Short name Memory access pattern Computation pattern Communication/synchronization
approach Sequential Strided Random Operations Datatype Intra PIM Core Inter PIM Core

Supervised
Regression Linear Regression LIN Yes No No mul, add �oat, int32_t barrier Yes

Classi�cation Logistic Regression LOG Yes No No mul, add, exp, div �oat, int32_t barrier Yes
Decision Tree DTR Yes No No compare, add �oat barrier, mutex Yes

Unsupervised Clustering K-Means KME Yes No No mul, compare, add int16_t, int64_t barrier, mutex Yes

and PUs in AiM [163] have 16-bit �oating point arithmetic
units. Second, ML models and hardware with adaptive preci-
sion are becoming widely-used [163, 180].

• LIN-BUI replaces compiler-generated 16-bit and 32-bit mul-
tiplications with a custom multiplication based on 8-bit built-
in multiplication functions (this optimization is speci�c to
the UPMEM PIM architecture). Listing 1 shows the default
integer multiplication code (C-based (a) and compiled code
(b)) and our custom integer multiplication code (C-based (c)
and compiled code (d)).

In Section 4, we evaluate all LIN versions in terms of accuracy
(Section 4.2), performance for di�erent numbers of threads per
PIM core (Section 4.3), and performance scaling characteristics
(Section 4.4).

3.2 Logistic Regression
Logistic regression [165, 167] is a supervised learning algorithm
used for classi�cation, which outputs probability values for each
input observation variable or vector. This probability values repre-
sent the likelihood of belonging to a certain class or event. Logistic
regression is used in various �elds (e.g., medical, marketing, engi-
neering, economics, etc.) [167].

Logistic regression uses the sigmoid function to map predicted
values (output vector ~ obtained from an input matrix - and a
weights vectorF) to probabilities. Our implementation of logistic
regression uses gradient descent, same as our linear regression
implementation (Section 3.1). In the beginning of each training

iteration, we obtain the dot product of row vectors G8 and weights
F . Then, we apply the sigmoid function to the dot product results.
Next, we calculate the gradient to evaluate the error of the pre-
dicted probability. Finally, we update the weightsF according to
the gradients.

Our PIM implementation of logistic regression follows the same
workload distribution pattern as our linear regression implemen-
tation. First, row vectors G8 are distributed across PIM cores and
threads in each PIM core. Second, each thread computes the dot
product of a row vector and the weights (G8 ·F), and applies the
sigmoid function to the dot product result. Third, the thread com-
putes partial gradient values. Fourth, partial gradient values from
di�erent threads are reduced, and the results return to the host.
Finally, the host computes the �nal reductions, and updates the
weights before redistributing them to the PIM cores.

We implement six di�erent versions of logistic regression with
di�erent input datatypes and optimizations: (1) 32-bit �oating
point (LOG-FP32), (2) 32-bit �xed point (LOG-INT32), (3) 32-bit
�xed point with LUT-based sigmoid calculation and LUT in DRAM
(LOG-INT32-LUT (MRAM)), (4) 32-bit �xed point with LUT-based sig-
moid calculation and LUT in scratchpad (LOG-INT32-LUT (WRAM)),
(5) �xed point with hybrid precision and LUT-based sigmoid calcula-
tion (LOG-HYB-LUT), and (6) �xed point with hybrid precision, LUT-
based sigmoid calculation, and built-in functions (LOG-BUI-LUT).

5

54

Evaluation:
Analysis of PIM Kernels (I)

• Linear regression
4550

0
10000
20000
30000
40000
50000
60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

PI
M

 K
er

ne
l T

im
e (

m
s)

Number of PIM Threads (per PIM Core)

(a) LIN-FP32
LIN-FP32

0

1000

2000

3000

4000

5000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
PI

M
 K

er
ne

l T
im

e (
m

s)
Number of PIM Threads (per PIM Core)

(b) LIN INT Versions

LIN-INT32
LIN-HYB
LIN-BUI

457

324

259
0

200

400

600

800

1 3 5 7 9 11 13 15 17 19 21 23

Fixed-point representation
accelerates the kernel by an

order of magnitude
over FP32

Key Takeaway 1. Workloads
with arithmetic operations or
datatypes not natively
supported by PIM cores run at
low performance due to
instruction emulation (e.g., FP in
UPMEM PIM).

Recommendation 1. Use fixed-
point representation, without
much accuracy loss, if PIM cores do
not support FP.

55

Evaluation:
Analysis of PIM Kernels (II)

• Linear regression
4550

0
10000
20000
30000
40000
50000
60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

PI
M

 K
er

ne
l T

im
e (

m
s)

Number of PIM Threads (per PIM Core)

(a) LIN-FP32
LIN-FP32

0

1000

2000

3000

4000

5000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
PI

M
 K

er
ne

l T
im

e (
m

s)
Number of PIM Threads (per PIM Core)

(b) LIN INT Versions

LIN-INT32
LIN-HYB
LIN-BUI

457

324

259
0

200

400

600

800

1 3 5 7 9 11 13 15 17 19 21 23

Recommendation 2.

Quantization can take
advantage of native
hardware support. Hybrid
precision can significantly
improve performance.

LIN-HYB is 41% faster than
LIN-INT32

LIN-BUI provides an
additional 25% speedup

Recommendation 3.
Programmers/better compilers can optimize code
by leveraging native instructions (e.g., 8-bit
integer multiplication in UPMEM) .

56

40316
24460

0
100000
200000
300000
400000
500000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

PI
M

 K
er

ne
l T

im
e (

m
s)

Number of PIM Threads (per PIM Core)

(a) LOG 32-bit Versions LOG-FP32

LOG-INT32

0

1000

2000

3000

4000

5000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
PI

M
 K

er
ne

l T
im

e (
m

s)
Number of PIM Threads (per PIM Core)

(b) LOG LUT Versions
LOG-INT32-LUT (MRAM)
LOG-INT32-LUT (WRAM)
LOG-HYB-LUT (WRAM)
LOG-BUI-LUT (WRAM)

463
449

352 246
0

200

400

600

800

1 3 5 7 9 11 13 15 17 19 21 23

Evaluation:
Analysis of PIM Kernels (III)

• Logistic regression

Very high kernel time of LOG-
FP32 and LOG-INT32 due to

Sigmoid approximation

LOG-INT32-LUT(MRAM) is 53x
faster than LOG-INT32

LOG-HYB-LUT is 28% faster than
LOG-INT32-LUT

LOG-BUI-LUT provides an
additional 43% speedup

Recommendation 4.
Convert computation to memory
accesses by keeping pre-calculated
operation results (e.g., LUTs,
memoization) in memory.

57

Evaluation: Performance Scaling (I)
• Strong scaling: 256 to 2,048 PIM cores

0
1
2
3
4
5
6
7
8
9

0

50000

100000

150000

200000

250000

300000

256 512 1024 2048

LIN-FP32

Ex
ec

ut
io

n
Ti

m
e (

m
s)

PIM-CPU
Inter PIM Core
CPU-PIM
PIM Kernel
Speedup

0

1

2

3

4

5

6

7

8

0

5000

10000

15000

20000

25000

30000

256 512 1024 2048

LIN-INT32

Sp
ee

du
p

0

1

2

3

4

5

6

7

8

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

256 512 1024 2048

LIN-HYB

Ex
ec

ut
io

n
Ti

m
e (

m
s)

0

1

2

3

4

5

6

7

0

2000

4000

6000

8000

10000

12000

14000

16000

256 512 1024 2048

LIN-BUI

Sp
ee

du
p

0

1

2

3

4

5

6

7

8

0

500000

1000000

1500000

2000000

2500000

256 512 1024 2048

LOG-FP32
Ex

ec
ut

io
n

Ti
m

e (
m

s)

PIM-CPU
Inter PIM Core
CPU-PIM
PIM Kernel
Speedup

0

1

2

3

4

5

6

7

0
100000
200000
300000
400000
500000
600000
700000
800000
900000

256 512 1024 2048

LOG-INT32

Sp
ee

du
p

0

1

2

3

4

5

6

7

8

0

5000

10000

15000

20000

25000

30000

256 512 1024 2048

LOG-INT32-LUT (MRAM)

Ex
ec

ut
io

n
Ti

m
e (

m
s)

0

1

2

3

4

5

6

7

8

0

5000

10000

15000

20000

25000

30000

256 512 1024 2048

LOG-INT32-LUT (WRAM)

Sp
ee

du
p

0

1

2

3

4

5

6

7

8

0

5000

10000

15000

20000

25000

256 512 1024 2048

LOG-HYB-LUT (WRAM)

Ex
ec

ut
io

n
Ti

m
e (

m
s)

0

1

2

3

4

5

6

7

0

2000

4000

6000

8000

10000

12000

14000

256 512 1024 2048

LOG-BUI-LUT (WRAM)

Sp
ee

du
p

0
1
2
3
4
5
6
7
8
9

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

256 512 1024 2048

KME

Sp
ee

du
p

0

1

2

3

4

5

6

7

0

5000

10000

15000

20000

25000

30000

256 512 1024 2048

DTR

Ex
ec

ut
io

n
Ti

m
e (

m
s)

PIM-CPU
Inter PIM Core
CPU-PIM
PIM Kernel
Speedup

PIM kernel time scales
linearly with the

number of PIM cores

Little overhead from
inter PIM core

communication and
communication

between host and PIM
cores

60

Conclusion
Problem: Training machine learning (ML) algorithms is a computationally
expensive process, frequently memory-bound
• Memory-centric computing systems can alleviate data movement bottlenecks
• Real-world PIM systems have only been manufactured and commercialized
• UPMEM has designed and fabricated the first publicly-available PIM architecture

Our main contributions:
• PIM implementation of several classic machine learning algorithms: linear regression,

logistic regression, decision tree, K-means clustering
• Workload characterization in terms of quality, performance, and scaling
• Comparison to their counterpart implementations on processor-centric systems (CPU and

GPU)

Goal: Understand the potential of modern general-purpose PIM
architectures to accelerate machine learning training

Key Results:
• PIM version of DTR is 27x / 1.34x faster than the CPU / GPU version, respectively
• PIM version of KME is 2.8x / 3.2x faster than the CPU / GPU version, respectively

61

Next Steps for Real PIM Systems
• Frameworks to ease PIM programmability

- Goal: A framework that can automatically distribute input and gather
output data, handle memory management, and parallelize work across
PIM cores

• Benchmark and analyze other real PIM architectures
- Samsung’s HBM-PIM
- SK Hynix’s AiM

• Design Other Applications on PIM Systems
- Database primitives
- Genomics
- DNN training
- Homomorphic encryption

62

Real PIM Tutorial (ISCA 2023)

https://events.safari.ethz.ch/isca-pim-tutorial/doku.php?id=start

• June 18th: Lectures + Hands-on labs + Invited lectures

https://events.safari.ethz.ch/isca-pim-tutorial/doku.php?id=start

63

Real PIM Tutorial (MICRO 2023)

https://events.safari.ethz.ch/micro-pim-tutorial/doku.php?id=start

• Oct. 28th: Lectures + Hands-on labs + Invited lectures

64

Outline

System Support for PuM Architectures2

Programming a Real PIM Architecture1

Accelerating Key Applications with PIM3

Overview of recently published works

Overview of recently published works

65

Inside a DRAM Chip

Access
Transistor

Storage
Capacitor

Bitline

Wordline

Wordline

Bi
tli

ne

Subarray
(2D Array

of DRAM Cells)

Sense Amplifiers

DRAM Module

DRAM Chips

DRAM Bank

DRAM Cells

Row Buffer

DRAM MAT

66

DRAM Cell Operation

wordline

bitline

sense
amplifier

enable

storage
capacitor

access
transistor

½ VDD

1. ACTIVATE (ACT)

2. READ/WRITE

3. PRECHARGE (PRE)

67

1. ACTIVATE (ACT)

2. READ/WRITE

3. PRECHARGE (PRE)

DRAM Cell Operation (1/3)

wordline

bitline

sense
amplifier

enable

storage
capacitor

access
transistor

½ VDD1. raise wordline

2. capacitor loses charge to bitline

4. amplify deviation
in the bitline

+ δ

3. enable
sense amplifier

VDD

5. capacitor charge is restored

68

1. ACTIVATE (ACT)

2. READ/WRITE

3. PRECHARGE (PRE)

DRAM Cell Operation (2/3)

wordline

bitline

sense
amplifier

enable

storage
capacitor

access
transistor

VDD

read/write charge
latched in sense amplifier

69

1. ACTIVATE (ACT)

2. READ/WRITE

3. PRECHARGE (PRE)

DRAM Cell Operation (3/3)

wordline

bitline

sense
amplifier

enable

storage
capacitor

access
transistor

VDD½ VDD 2. precharge bitline for next access
1. lower
wordline

3. disable
sense amplifier

70

RowClone: In-DRAM Row Copy (1/2)

sense
amplifier

enable

½ VDD
source A

destination B
1. ACTIVATE (ACT)

2. ACTIVATE (ACT)

3. PRECHARGE (PRE)

Row copy
command sequence:

71

RowClone: In-DRAM Row Copy (2/2)

bitline

sense
amplifier

enable

½
VDD

source A

destination B

1. ACTIVATE source row A

2. bitline will be pulled
to charge level of row A

VDD

3. ACTIVATE destination row B

4. charge level of source row A
will be copied to destination row

B

5. PRECHARGE bitline
for next access

½ VDD

1. ACTIVATE (ACT)

2. ACTIVATE (ACT)

3. PRECHARGE (PRE)

Row copy
command sequence:

72

Triple-Row Activation: Majority Function

bitline

sense
amplifier

enable

½ VDD
A

B

C

1. ACTIVATE (ACT)

2. PRECHARGE (PRE)

Majority function
command sequence:

73

Triple-Row Activation: Majority Function

bitline

sense
amplifier

enable

½
VDD

A

B

C

1. ACTIVATE three rows
simultaneously

→ triple-row activation

2. bitline will be pulled
to the majority of
cells A, B, and C

VDD

3. values in cells A, B, C
will be overwritten

with the majority output

1. ACTIVATE (ACT)

2. PRECHARGE (PRE)

Majority function
command sequence:

4. PRECHARGE bitline
for next access

½ VDD

MAJ(A, B, C) =
MAJ(Vdd, Vdd, 0) = Vdd

74

Ambit: In-DRAM Bulk Bitwise AND/OR

bitline

sense
amplifier

enable

A

B

C

½ VDD

MAJ (A, B, 0) = AND (A, B)

MAJ (A, B, 1) = OR (A, B)

75

Outline

System Support for PuM Architectures2

Programming a Real PIM Architecture1

Accelerating Key Applications with PIM3

Overview of recently published works

Overview of recently published works

76

Geraldo F. Oliveira, Ataberk Olgun, Giray Yaglikci, Nisa Bostanci, Juan
Gómez-Luna, Saugata Ghose, and Onur Mutlu, “MIMDRAM: An End-
to-End Processing-using-DRAM System for Energy-Efficient
and Programmer-Transparent MIMD Computing,” in HPCA,
2024.

Geraldo F. Oliveira, Alain Kohli, David Novo, Juan Gómez-Luna, Onur
Mutlu, “DaPPA: A Data-Parallel Framework for Processing-in-
Memory Architectures,” in PACT SRC, 2023.

Geraldo F. Oliveira, Emanuele G. Esposito, Juan Gómez-Luna, and Onur
Mutlu, “PUMA: Efficient and Low-Cost Memory Allocation and
Alignment Support for Processing-Using-Memory
Architectures,” in MICRO SRC, 2023.

System Support for PuM Architectures:
Overview of recently published works

1

2

3

https://arxiv.org/abs/2310.10168
https://arxiv.org/abs/2310.10168

77

Geraldo F. Oliveira, Ataberk Olgun, Giray Yaglikci, Nisa Bostanci, Juan
Gómez-Luna, Saugata Ghose, and Onur Mutlu, “MIMDRAM: An End-
to-End Processing-using-DRAM System for Energy-Efficient
and Programmer-Transparent MIMD Computing,” in HPCA,
2024.

Geraldo F. Oliveira, Alain Kohli, David Novo, Juan Gómez-Luna, Onur
Mutlu, “DaPPA: A Data-Parallel Framework for Processing-in-
Memory Architectures,” in PACT SRC, 2023.

Geraldo F. Oliveira, Emanuele G. Esposito, Juan Gómez-Luna, and Onur
Mutlu, “PUMA: Efficient and Low-Cost Memory Allocation and
Alignment Support for Processing-Using-Memory
Architectures,” in MICRO SRC, 2023.

System Support for PuM Architectures:
Overview of recently published works

1

2

3

https://arxiv.org/abs/2310.10168
https://arxiv.org/abs/2310.10168

78

Geraldo F. Oliveira, Ataberk Olgun, Giray Yaglikci, Nisa Bostanci, Juan
Gómez-Luna, Saugata Ghose, and Onur Mutlu, “MIMDRAM: An End-to-End
Processing-using-DRAM System for Energy-Efficient and Programmer-Transparent
MIMD Computing,” in HPCA, 2024.

79

Executive Summary
Problem: Processing-using-DRAM (PuD) suffers from three main issues
caused by DRAM’s large and rigid access granularity
• Under-utilization due to varying degrees of SIMD parallelism in an application
• Limited computation pattern due to a lack of interconnecting networks
• Challenging programming model due to a lack of compilers

Key Mechanism: MIMDRAM, a hardware/software co-designed PuD
• Key idea: leverage fine-grained DRAM (i.e., the ability to access portions of a DRAM row)
• Hardware side: (i) latches and isolation transistors to enable concurrent execution of PuD

operations in a DRAM row; (ii) interconnect networks to enable PuD reduction
• Software side: compiler passes to (i) identify and generate the PuD operations with the

appropriate granularity; (ii) schedule the concurrent execution of PuD operations

Goal: Design a flexible PuD system that overcomes the three limitations
caused by the large and rigid granularity of PuD

Key Results: MIMDRAM achieves
• 18.6x the utilization, 152x the energy efficiency, 1.7x the throughput, and 1.3x the fairness

of a state-of-the-art PuD framework;
• 130x the energy efficiency of a high-end CPU

80

Maximum Vectorization Factor:
how many operands can be executed in parallel

LO
CA

L
RO

W
 D

EC
O

DE
R

LO
CA

L
RO

W
 D

EC
O

DE
R

LO
CA

L
RO

W
 D

EC
O

DE
R

LO
CA

L
RO

W
 D

EC
O

DE
R

G
lo

ba
l R

ow
 D

ec
od

er

Ideal maximum vectorization factor = # bitlines (e.g.,
65’536)

Problem & Goal:
Application Analysis

Application analysis: quantify the amount of SIMD parallelism
real-world applications inherently display

81

Problem & Goal:
Application Analysis

The maximum vectorization factor varies
within a single application and across different applications

Ta
ke

aw
ay

Application analysis: quantify the amount of SIMD parallelism
real-world applications inherently display

82

Problem & Goal:
Application Analysis

A small amount of vectorized loops have
a large enough maximum vectorization factor to

fully exploit the SIMD parallelism of PuDTa
ke

aw
ay

Application analysis: quantify the amount of SIMD parallelism
real-world applications inherently display

83

Problem & Goal

The rigid granularity of PuD architectures limits
their applicability and efficiency for many applications.

The underlying PuD architecture often suffers from

 SIMD underutilization and
 consequentially energy and throughput waste

Pr
ob

le
m

Design a Processing-using-DRAM architecture that:

1. adapts to the SIMD parallelism an application displays
2. maximizes the utilization of the PuD engine

Go
al

84

MIMDRAM is a hardware/software co-designed PuD system that
enables fine-grained PuD computation at low cost and low programming

effort

Main components in MIMDRAM

1 Hardware-side
- subarray modification to enable MIMD-like fine-grained DRAM computation
- inter- and intra-mat network to enable PuD vector reduction

2 Software-side
- new compiler support to transparently generate PuD instructions
- system support to to enable the orchestration of PuD instructions

MIMDRAM:
Overview

85

MIMDRAM is a hardware/software co-designed PuD system that
enables fine-grained PuD computation at low cost and low programming

effort

Main components in MIMDRAM

1 Hardware-side
- subarray modification to enable MIMD-like fine-grained DRAM computation
- inter- and intra-mat network to enable PuD vector reduction

2 Software-side
- new compiler support to transparently generate PuD instructions
- system support to to enable the orchestration of PuD instructions

MIMDRAM:
Overview

86

MIMDRAM:
DRAM Hardware Overview

87

MIMDRAM:
DRAM Hardware Overview

88

MIMDRAM:
DRAM Hardware Overview

89

MIMDRAM:
DRAM Hardware Overview

90

MIMDRAM:
Control Unit

Goal: schedule and orchestrate the execution of
multiple PuD instructions transparently

91

MIMDRAM is a hardware/software co-designed PuD system that
enables fine-grained PuD computation at low cost and low programming

effort

Main components in MIMDRAM

1 Hardware-side
- subarray modification to enable MIMD-like fine-grained DRAM computation
- inter- and intra-mat network to enable PuD vector reduction

2 Software-side
- new compiler support to transparently generate PuD instructions
- system support to to enable the orchestration of PuD instructions

MIMDRAM:
Overview

92

source code

for(cond)
{

…
}

DFG data scheduling
mat 0

tim
e

mat 1

for(cond){}

loop auto-vectorization final binary

code identification code scheduling code generation

%3=add<8192 x i32> %1,%2

bbop_add(%3,%1,8192,32)

bbop_add |
bbop_sub

bbop_div |
bbop_mul

vpadd

Transparently:
(1) extract SIMD parallelism from an application,

(2) schedule PuD operations while maximizing MAT utilization Go
al

Three new LLVM-based passes targeting PuD execution

MIMDRAM:
Software Overview

93

Identify SIMD parallelism and generate appropriate
PuD instructions with best vectorization factor Go

al

• Selection of the best-performing vectorization factor for a given loop →
always select as vectorization factor the maximum vectorization factor

• Code generation routine for a given vectorized loop →
identify and remove memory instructions related to an arithmetic SIMD
operation

Changes to LLVM’s auto-vectorization pass:

source code

fo r(c o n d)

{

…
}

DFG data scheduling
mat 0

tim
e

mat 1

fo r(c o n d){}

loop auto-vectorization final binary

code identification code scheduling code generation

%3=add<8192 x i32> %1,%2

bbop_add(%3,%1,8192,32)

bbop_add |
bbop_sub

bbop_div |
bbop_mul

vpadd

MIMDRAM:
Software Overview

94

source code

for(cond)
{

…
}

DFG data scheduling
mat 0

tim
e

mat 1

for(cond){}

loop auto-vectorization final binary

code identification code scheduling code generation

%3=add<8192 x i32> %1,%2

bbop_add(%3,%1,8192,32)

bbop_add |
bbop_sub

bbop_div |
bbop_mul

vpadd

MIMDRAM:
Software Overview

Provide load balance across MATs and
minimal inter-MAT data movementGo

al

Key Idea: use a new malloc operation that informs the
OS about MAT allocation requirement

New code scheduling algorithm to
schedule computation across MATs

95

source code

for(cond)
{

…
}

DFG data scheduling
mat 0

tim
e

mat 1

for(cond){}

loop auto-vectorization final binary

code identification code scheduling code generation

%3=add<8192 x i32> %1,%2

bbop_add(%3,%1,8192,32)

bbop_add |
bbop_sub

bbop_div |
bbop_mul

vpadd

MIMDRAM:
Software Overview

Generate the appropriate code for data allocation
and PuD execution Go

al

96

• We implement MIMDRAM using the gem5 simulator

• Comparison points:
- real multicore CPU (Intel Skylake)
- state-of-the-art PuD framework (SIMDRAM)

• Workloads:
- 12 applications from various benchmark suites

Evaluation:
Methodology

97

Evaluation:
Single Application Analysis – SIMD Utilization

MIMDRAM significantly improves SIMD utilization
compared with SIMDRAM by 15.6x, on average

Ta
ke

aw
ay

98

Evaluation:
Single Application Analysis – Energy Efficiency

MIMDRAM significantly improves energy efficiency compared with
SIMDRAM (by 152x) and to the CPU (by 130x)

Ta
ke

aw
ay

99

Evaluation:
Multi Application Analysis

MIMDRAM significantly improves system throughput (1.68x),
job turnaround time (1.33x) , and

fairness (1.32x) compared with SIMDRAMTa
ke

aw
ay

100

Conclusion
Problem: Processing-using-DRAM (PuD) suffers from three main issues
caused by DRAM’s large and rigid access granularity
• Under-utilization due to varying degrees of SIMD parallelism in an application
• Limited computation pattern due to a lack of interconnecting networks
• Challenging programming model due to a lack of compilers

Key Mechanism: MIMDRAM, a hardware/software co-designed PuD
• Key idea: leverage fine-grained DRAM (i.e., the ability to access portions of a DRAM row)
• Hardware side: (i) latches and isolation transistors to enable concurrent execution of PuD

operations in a DRAM row; (ii) interconnect networks to enable PuD reduction
• Software side: compiler passes to (i) identify and generate the PuD operations with the

appropriate granularity; (ii) schedule the concurrent execution of PuD operations

Goal: Design a flexible PuD system that overcomes the three limitations
caused by the large and rigid granularity of PuD

Key Results: MIMDRAM achieves
• 18.6x the utilization, 152x the energy efficiency, 1.7x the throughput, and 1.3x the fairness

of a state-of-the-art PuD framework;
• 130x the energy efficiency of a high-end CPU

In-Flash Bulk Bitwise Execution
• Jisung Park, Roknoddin Azizi, Geraldo F. Oliveira, Mohammad Sadrosadati, Rakesh

Nadig, David Novo, Juan Gómez-Luna, Myungsuk Kim, and Onur Mutlu,
"Flash-Cosmos: In-Flash Bulk Bitwise Operations Using Inherent
Computation Capability of NAND Flash Memory"
Proceedings of the 55th International Symposium on Microarchitecture (MICRO),
Chicago, IL, USA, October 2022.
[Slides (pptx) (pdf)]
[Longer Lecture Slides (pptx) (pdf)]
[Lecture Video (44 minutes)]
[arXiv version]

101https://arxiv.org/pdf/2209.05566.pdf

https://arxiv.org/pdf/2209.05566.pdf
https://arxiv.org/pdf/2209.05566.pdf
http://www.microarch.org/micro55/
https://people.inf.ethz.ch/omutlu/pub/FlashCosmos_micro22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/FlashCosmos_micro22-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/FlashCosmos_SSD-lecture-slides.pptx
https://people.inf.ethz.ch/omutlu/pub/FlashCosmos_SSD-lecture-slides.pdf
https://www.youtube.com/watch?v=ioPERTy7bz4
https://arxiv.org/abs/2209.05566
https://arxiv.org/pdf/2209.05566.pdf

Summary: Flash-Cosmos

102

The first work that enables
in-flash multi-operand bulk bitwise operations

with a single sensing operation and high reliability

Improves performance
by 32x/25x/3.5x over OSP/ISP/ParaBit

Improves energy efficiency
by 95x/13.4x/3.3x over OSP/ISP/ParaBit

$ Low-cost & requires no changes to flash cell arrays

§ Flash-Cosmos enables
• Computation on multiple operands with a single sensing operation
• Accurate computation results by eliminating raw bit errors in stored data

Flash-Cosmos: Basic Ideas

NAND	Flash	Chip

Page	Buffer

Operand	O1
Operand	O2	

Operand	O3
…

Operand	O32
Bitlines	(BLs)
Operand	O32

…

Operand	O3

Operand	O2	

Operand	O1

O1	&	O2& O3	&	…	&	O32

Simultaneous	sensing

104

Next Steps for PuM
• Executing processing-using-DRAM operations in real,

off-the-shelf DRAM chips
- We experimentally demonstrate that off-the-shelf DRAM chips are

capable of performing
• 1) NOT, NAND, and NOR operations
• 2) AND and OR operations with more than 2 inputs

- We present an extensive characterization of new bulk bitwise
operations in 224 off-the-shelf modern DDR4 DRAM chips

• System support for processing-using-DRAM
- Compilers, frameworks, and programming models for PuD

• Using processing-using-DRAM to accelerate key
applications
- e.g., genomics, neural network inference

105

Outline

System Support for PuM Architectures2

Programming a Real PIM Architecture1

Accelerating Key Applications with PIM3

Overview of recently published works

Overview of recently published works

Casper, IEEE ACCESS 2023

106https://arxiv.org/pdf/2112.14216.pdf

https://arxiv.org/pdf/2112.14216.pdf

108

Accelerating Climate Modeling
• Gagandeep Singh, Dionysios Diamantopoulos, Christoph Hagleitner, Juan Gómez-

Luna, Sander Stuijk, Onur Mutlu, and Henk Corporaal,
"NERO: A Near High-Bandwidth Memory Stencil Accelerator for
Weather Prediction Modeling"
Proceedings of the 30th International Conference on Field-Programmable Logic
and Applications (FPL), Gothenburg, Sweden, September 2020.
[Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (23 minutes)]
Nominated for the Stamatis Vassiliadis Memorial Award.

https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20.pdf
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20.pdf
https://www.fpl2020.org/
https://www.fpl2020.org/
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-lightning-talk.pdf
https://www.youtube.com/watch?v=xMiuqUyjkk0

109

Accelerating Approximate
String Matching

• Damla Senol Cali, Gurpreet S. Kalsi, Zulal Bingol, Can Firtina, Lavanya Subramanian, Jeremie S.
Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan Gomez-Luna, Amirali Boroumand, Anant
Nori, Allison Scibisz, Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu,
"GenASM: A High-Performance, Low-Power Approximate String Matching
Acceleration Framework for Genome Sequence Analysis"
Proceedings of the 53rd International Symposium on Microarchitecture (MICRO), Virtual,
October 2020.
[Lighting Talk Video (1.5 minutes)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (18 minutes)]
[Slides (pptx) (pdf)]

https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20.pdf
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20.pdf
http://www.microarch.org/micro53/
https://www.youtube.com/watch?v=nJs3RRnvk_k
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-lightning-talk.pdf
https://www.youtube.com/watch?v=srQVqPJFqjo
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-talk.pdf

110

Accelerating Time Series Analysis
• Ivan Fernandez, Ricardo Quislant, Christina Giannoula, Mohammed Alser, Juan

Gómez-Luna, Eladio Gutiérrez, Oscar Plata, and Onur Mutlu,
"NATSA: A Near-Data Processing Accelerator for Time Series Analysis"
Proceedings of the 38th IEEE International Conference on Computer
Design (ICCD), Virtual, October 2020.
[Slides (pptx) (pdf)]
[Talk Video (10 minutes)]
[Source Code]

https://people.inf.ethz.ch/omutlu/pub/NATSA_time-series-analysis-near-data_iccd20.pdf
http://www.iccd-conf.com/
http://www.iccd-conf.com/
https://people.inf.ethz.ch/omutlu/pub/NATSA_time-series-analysis-near-data_iccd20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/NATSA_time-series-analysis-near-data_iccd20-talk.pdf
https://www.youtube.com/watch?v=PwhtSAVa_W4
https://github.com/CMU-SAFARI/NATSA

111

Accelerating Graph Pattern Mining
• Maciej Besta, Raghavendra Kanakagiri, Grzegorz Kwasniewski, Rachata Ausavarungnirun, Jakub

Beránek, Konstantinos Kanellopoulos, Kacper Janda, Zur Vonarburg-Shmaria, Lukas Gianinazzi,
Ioana Stefan, Juan Gómez-Luna, Marcin Copik, Lukas Kapp-Schwoerer, Salvatore Di Girolamo,
Nils Blach, Marek Konieczny, Onur Mutlu, and Torsten Hoefler,
"SISA: Set-Centric Instruction Set Architecture for Graph Mining on Processing-in-
Memory Systems"
Proceedings of the 54th International Symposium on Microarchitecture (MICRO), Virtual,
October 2021.
[Slides (pdf)]
[Talk Video (22 minutes)]
[Lightning Talk Video (1.5 minutes)]
[Full arXiv version]

https://people.inf.ethz.ch/omutlu/pub/SISA-GraphMining-on-PIM_micro21.pdf
https://people.inf.ethz.ch/omutlu/pub/SISA-GraphMining-on-PIM_micro21.pdf
http://www.microarch.org/micro54/
https://people.inf.ethz.ch/omutlu/pub/SISA-GraphMining-on-PIM_micro21-talk.pdf
https://www.youtube.com/watch?v=VL5K1t2qTDU&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=9
https://www.youtube.com/watch?v=6k89Ph2qgRA&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=4
https://arxiv.org/abs/2104.07582

112

Accelerating HTAP Database Systems
• Amirali Boroumand, Saugata Ghose, Geraldo F. Oliveira, and Onur Mutlu,

"Polynesia: Enabling High-Performance and Energy-Efficient Hybrid
Transactional/Analytical Databases with Hardware/Software Co-Design"
Proceedings of the 38th International Conference on Data Engineering (ICDE),
Virtual, May 2022.
[arXiv version]
[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]

https://arxiv.org/pdf/2204.11275.pdf

https://people.inf.ethz.ch/omutlu/pub/Polynesia_icde22.pdf
https://people.inf.ethz.ch/omutlu/pub/Polynesia_icde22.pdf
https://icde2022.ieeecomputer.my/
https://arxiv.org/pdf/2204.11275.pdf
https://people.inf.ethz.ch/omutlu/pub/Polynesia_icde22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Polynesia_icde22-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Polynesia_icde22-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Polynesia_icde22-short-talk.pdf
https://arxiv.org/pdf/2204.11275.pdf

113

Accelerating Neural Network Inference

• Amirali Boroumand, Saugata Ghose, Berkin Akin, Ravi Narayanaswami, Geraldo
F. Oliveira, Xiaoyu Ma, Eric Shiu, and Onur Mutlu,
"Google Neural Network Models for Edge Devices: Analyzing and
Mitigating Machine Learning Inference Bottlenecks"
Proceedings of the 30th International Conference on Parallel Architectures and
Compilation Techniques (PACT), Virtual, September 2021.
[Slides (pptx) (pdf)]
[Talk Video (14 minutes)]

https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21.pdf
https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21.pdf
http://pactconf.org/
http://pactconf.org/
https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21-talk.pdf
https://www.youtube.com/watch?v=A5gxjDbLRAs&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=178

Samsung PNM Solutions for Generative AI (2023)

n Main target: transformer decoders used in ChatGPT, GPT-3
q Compute-bound step: Summarization
q Memory-bound step: Generation

n Most of the execution time is spent on the memory copy from the
host CPU memory to the CPU memory

n GEMV portion can be 60%-80% of total generation latency,
which is the target of PIM/PNM

115From: J. H. Kim, “Samsung AI-cluster system with HBM-PIM and CXL-based Processing-near-Memory for transformer-based LLMs,” HC, 2023.

In-Storage Genome Filtering [ASPLOS 2022]
n Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Olgun, Arvid

Gollwitzer, Damla Senol Cali, Can Firtina, Haiyu Mao, Nour Almadhoun Alserr, Rachata
Ausavarungnirun, Nandita Vijaykumar, Mohammed Alser, and Onur Mutlu,
"GenStore: A High-Performance and Energy-Efficient In-Storage Computing
System for Genome Sequence Analysis"
Proceedings of the 27th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), Virtual, February-March
2022.
[Talk Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Lightning Talk Video (90 seconds)]
[Talk Video (17 minutes)]

118

https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-arxiv.pdf
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-arxiv.pdf
https://asplos-conference.org/
https://asplos-conference.org/
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-lightning-talk.pdf
https://www.youtube.com/watch?v=Vi1af8KY0g8
https://www.youtube.com/watch?v=bv7hgXOOMjk

GenStore:
A High-Performance In-Storage Processing System

for Genome Sequence Analysis

Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Olgun,
Arvid Gollwitzer, Damla Senol Cali, Can Firtina, Haiyu Mao, Nour Almadhoun Alserr,
Rachata Ausavarungnirun, Nandita Vijaykumar, Mohammed Alser, and Onur Mutlu

120

Genome Sequence Analysis
• Genome sequence analysis is critical for many applications
- Personalized medicine
- Outbreak tracing
- Evolutionary studies

• Genome sequencing machines extract smaller fragments of the original
DNA sequence, known as reads

AAGCTTCCATGG
AAATGGGCTTTC

GCCCAAATGGTT
GCTTCCAGAATG

121

Genome Sequence Analysis
• Read mapping: first key step in genome sequence analysis

…GCCCATATGGTTAAGCTTCCATGGAAATGGGCTTTCGCTTCCACAATG…

- Aligns reads to potential matching locations in the reference genome

Reference Genome

Differences Differences

- For each matching location, the alignment step finds the degree of
similarity (alignment score)

AAGCTTCCATGG
GCCCAAATGGTT

GCTTCCAGAATG

AAATGGGCTTTC
• Calculating the alignment score requires computationally-expensive

approximate string matching (ASM) to account for differences between
reads and the reference genome due to:

- Sequencing errors
- Genetic variation

122

Genome Sequence Analysis

Computation overhead

Data movement overhead

Computation
Unit

(CPU or
Accelerator)

Cache
Main

Memory

AAGCTTCCATGG

AAAATTCCATGG

TTTTTTCCAAAA
GCTTCCAGAATG

GGGCCAGAATG

GAATGGGGCCA
TCCCCGGGGCCA

CCTTTGGGTCCA

CGTTCCTTGGCA

Alignment

Data Movement from Storage

Storage
System

123

Heuristics Accelerators Filters

 Computation overhead

AAGCTTCCATGG

AAAATTCCATGG

TTTTTTCCAAAA
GCTTCCAGAATG

GGGCCAGAATG

GAATGGGGCCA
TCCCCGGGGCCA

CCTTTGGGTCCA

CGTTCCTTGGCA Computation
Unit

(CPU or
Accelerator)

Cache
Main

Memory
Storage
System

Data movement overhead

✓

Accelerating Genome Sequence Analysis

124

Storage
System

Key Idea

Non-matching reads
Do not have potential matching locations and can skip alignment

Filter reads that do not require alignment
inside the storage system

AAGCTTCCATGG

AAAATTCCATGG

TTTTTTCCAAAA
GCTTCCAGAATG

GGGCCAGAATG

GAATGGGGCCA
TCCCCGGGGCCA

CCTTTGGGTCCA

CGTTCCTTGGCA

Filtered Reads

Computation
Unit

(CPU or
Accelerator)

Cache
Main

Memory

Exactly-matching reads
Do not need expensive approximate string matching during alignment

125

Challenges

Read mapping workloads can exhibit different behavior

There are limited hardware resources
in the storage system

Filter reads that do not require alignment
inside the storage system

AAGCTTCCATGG

AAAATTCCATGG

TTTTTTCCAAAA
GCTTCCAGAATG

GGGCCAGAATG

GAATGGGGCCA
TCCCCGGGGCCA

CCTTTGGGTCCA

CGTTCCTTGGCA

Filtered Reads

Computation
Unit

(CPU or
Accelerator)

Cache
Main

Memory
Storage
System

126

GenStore

Computation overhead

Data movement overhead

GenStore provides significant speedup (1.4x - 33.6x) and
energy reduction (3.9x – 29.2x) at low cost

Filter reads that do not require alignment
inside the storage system

Computation
Unit

(CPU or
Accelerator)

Cache
Main

Memory

GenStore-Enabled
Storage
System

✓
✓

Concluding Remarks

Concluding Remarks
n We must design systems to be balanced, high-performance,

energy-efficient (all at the same time) à intelligent systems
q Data-centric, data-driven, data-aware

n Enable computation capability inside and close to
memory/storage

n This can
q Lead to orders-of-magnitude improvements
q Enable new applications & computing platforms
q Enable better understanding of nature
q …

n Future of truly data-centric computing is bright
q We need to do research & design across the computing stack

128

Fundamentally Better Architectures

Data-centric

Data-driven

Data-aware
129

Self-Optimizing Memory Prefetchers

130

n Rahul Bera, Konstantinos Kanellopoulos, Anant Nori, Taha Shahroodi, Sreenivas
Subramoney, and Onur Mutlu,
"Pythia: A Customizable Hardware Prefetching Framework Using Online
Reinforcement Learning"
Proceedings of the 54th International Symposium on Microarchitecture (MICRO), Virtual,
October 2021.
[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (20 minutes)]
[Lightning Talk Video (1.5 minutes)]
[Pythia Source Code (Officially Artifact Evaluated with All Badges)]
[arXiv version]

https://arxiv.org/pdf/2109.12021.pdf

https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21.pdf
http://www.microarch.org/micro54/
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pdf
https://www.youtube.com/watch?v=6UMFRW3VFPo&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=7
https://www.youtube.com/watch?v=kzL22FTz0vc&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=2
https://github.com/CMU-SAFARI/Pythia
https://arxiv.org/abs/2109.12021
https://arxiv.org/pdf/2109.12021.pdf

Perceptron-Based Off-Chip Load Prediction

131

n Rahul Bera, Konstantinos Kanellopoulos, Shankar Balachandran, David Novo, Ataberk
Olgun, Mohammad Sadrosadati, and Onur Mutlu,
"Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based Off-
Chip Load Prediction"
Proceedings of the 55th International Symposium on Microarchitecture (MICRO),
Chicago, IL, USA, October 2022.
[Slides (pptx) (pdf)]
[Longer Lecture Slides (pptx) (pdf)]
[Talk Video (12 minutes)]
[Lecture Video (25 minutes)]
[arXiv version]
[Source Code (Officially Artifact Evaluated with All Badges)]
Officially artifact evaluated as available, reusable and reproducible.
Best paper award at MICRO 2022.

https://arxiv.org/pdf/2209.00188.pdf

https://arxiv.org/pdf/2209.00188.pdf
https://arxiv.org/pdf/2209.00188.pdf
http://www.microarch.org/micro55/
https://people.inf.ethz.ch/omutlu/pub/Hermes_micro22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Hermes_micro22-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Hermes_comparch22-lecture-slides.pptx
https://people.inf.ethz.ch/omutlu/pub/Hermes_comparch22-lecture-slides.pdf
https://www.youtube.com/watch?v=afGc1pWr-_Y
https://www.youtube.com/watch?v=PWWBtrL60dQ&t=3609s
https://arxiv.org/abs/2209.00188
https://github.com/CMU-SAFARI/Hermes
https://arxiv.org/pdf/2209.00188.pdf

Self-Optimizing Hybrid Storage Systems
n Gagandeep Singh, Rakesh Nadig, Jisung Park, Rahul Bera, Nastaran Hajinazar,

David Novo, Juan Gomez-Luna, Sander Stuijk, Henk Corporaal, and Onur Mutlu,
"Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage
Systems Using Online Reinforcement Learning"
Proceedings of the 49th International Symposium on Computer
Architecture (ISCA), New York, June 2022.
[Slides (pptx) (pdf)]
[arXiv version]
[Sibyl Source Code]
[Talk Video (16 minutes)]

132

https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22.pdf
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22.pdf
http://iscaconf.org/isca2022/
http://iscaconf.org/isca2022/
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22-talk.pdf
https://arxiv.org/pdf/2205.07394.pdf
https://github.com/CMU-SAFARI/Sibyl
https://www.youtube.com/watch?v=5-WedkiB000

We Need to Revisit the Entire Stack

133

Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons

We can get there step by step

We Need to Exploit Good Principles

n Data-centric system design

n All components intelligent

n Better (cross-layer) communication, better interfaces

n Better-than-worst-case design

n Heterogeneity

n Flexibility, adaptability

134

Open minds

A Blueprint for Fundamentally Better Architectures

n Onur Mutlu,
"Intelligent Architectures for Intelligent Computing Systems"
Invited Paper in Proceedings of the Design, Automation, and Test in
Europe Conference (DATE), Virtual, February 2021.
[Slides (pptx) (pdf)]
[IEDM Tutorial Slides (pptx) (pdf)]
[Short DATE Talk Video (11 minutes)]
[Longer IEDM Tutorial Video (1 hr 51 minutes)]

135

https://people.inf.ethz.ch/omutlu/pub/intelligent-architectures-for-intelligent-computingsystems-invited_paper_DATE21.pdf
http://www.date-conference.com/
http://www.date-conference.com/
https://people.inf.ethz.ch/omutlu/pub/onur-DATE-InvitedTalk-IntelligentArchitecturesForIntelligentComputingSystems-January-22-2021.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-DATE-InvitedTalk-IntelligentArchitecturesForIntelligentComputingSystems-January-22-2021.pdf
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pdf
https://www.youtube.com/watch?v=eAZZGDlsDAY
https://www.youtube.com/watch?v=H3sEaINPBOE

Funding Acknowledgments
n Alibaba, AMD, ASML, Google, Facebook, Hi-Silicon, HP

Labs, Huawei, IBM, Intel, Microsoft, Nvidia, Oracle,
Qualcomm, Rambus, Samsung, Seagate, VMware, Xilinx

n NSF
n NIH
n GSRC
n SRC
n CyLab
n EFCL
n SNSF

136

Thank you!

Acknowledgments

https://safari.ethz.ch

http://www.safari.ethz.ch/

Referenced Papers, Talks, Artifacts

n All are available at

https://people.inf.ethz.ch/omutlu/projects.htm

https://www.youtube.com/onurmutlulectures

https://github.com/CMU-SAFARI/

138

https://people.inf.ethz.ch/omutlu/projects.htm
https://www.youtube.com/onurmutlulectures

Dr. Mohammad Sadrosadati
Prof. Onur Mutlu

omutlu@gmail.com
https://people.inf.ethz.ch/omutlu

11 December 2023
EFCL Mini-Conference

Memory-Centric Computing
for Data-Intensive Workloads

mailto:omutlu@gmail.com
https://people.inf.ethz.ch/omutlu

