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Brief Self Introduction
n Mohammad Sadrosadati

q Senior Researcher and Lecturer @ SAFARI Research Group, ETHZ
q PhD from Sharif University of Technology, 2014-2019
q mohammad.sadrosadati@safari.ethz.ch

n Research Areas
q Computer Architecture
q Memory & Storage Systems
q Near-Data Processing
q Heterogeneous System Architecture
q Bioinformatics
q Interconnection Networks
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Computer architecture, HW/SW, systems, bioinformatics, security

Graphics and Vision Processing

Heterogeneous
Processors and 

Accelerators

Hybrid Main Memory

Persistent Memory/Storage

Build fundamentally better architectures

Current Research Mission



Four Key Current Directions

n Fundamentally Secure/Reliable/Safe Architectures

n Fundamentally Energy-Efficient Architectures
q Memory-centric (Data-centric) Architectures

n Fundamentally Low-Latency and Predictable Architectures

n Architectures for AI/ML, Genomics, Medicine, Health, …
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Fundamentally Better Architectures

Data-centric

Data-driven

Data-aware
5



40+ Researchers

https://safari.ethz.ch

Onur Mutlu’s SAFARI Research Group
Computer architecture, HW/SW, systems, bioinformatics, security, memory

https://safari.ethz.ch/safari-newsletter-june-2023/ 
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SAFARI Newsletter June 2023 Edition
n https://safari.ethz.ch/safari-newsletter-june-2023/
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Referenced Papers, Talks, Artifacts

n All are available at

https://people.inf.ethz.ch/omutlu/projects.htm

https://www.youtube.com/onurmutlulectures

https://github.com/CMU-SAFARI/ 
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Open-Source Artifacts

https://github.com/CMU-SAFARI
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Open Source Tools: SAFARI GitHub

10https://github.com/CMU-SAFARI/
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SAFARI Overview at EFCL Huawei Day

n Onur Mutlu,
"SAFARI Research Group: Introduction & Research"
Invited Talk at the ETH Future Computing Laboratory 
Huawei Day, Virtual, 19 October 2021.
[Slides (pptx) (pdf)]
[Talk Video (15 minutes)]
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SAFARI Overview at EFCL Huawei Day
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Fundamentally Better Architectures

Data-centric

Data-driven

Data-aware
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A Blueprint for Fundamentally Better Architectures

n Onur Mutlu,
"Intelligent Architectures for Intelligent Computing Systems"
Invited Paper in Proceedings of the Design, Automation, and Test in 
Europe Conference (DATE), Virtual, February 2021.
[Slides (pptx) (pdf)]
[IEDM Tutorial Slides (pptx) (pdf)]
[Short DATE Talk Video (11 minutes)]
[Longer IEDM Tutorial Video (1 hr 51 minutes)]
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The Problem

Computing
is Bottlenecked by Data
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Data is Key for AI, ML, Genomics, …

n Important workloads are all data intensive

n They require rapid and efficient processing of large amounts 
of data

n Data is increasing
q We can generate more than we can process
q We need to perform more sophisticated analyses on more data
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Huge Demand for Performance & Efficiency

18https://www.youtube.com/watch?v=x2-qB0J7KHw 

~4 orders of magnitude increase 
in memory requirement in 

just two years!

https://www.youtube.com/watch?v=x2-qB0J7KHw


Data is Key for Future Workloads

In-Memory Data Analytics 
[Clapp+ (Intel), IISWC’15;  
 Awan+, BDCloud’15]

Datacenter Workloads 
[Kanev+ (Google), ISCA’15]

In-memory Databases 
[Mao+, EuroSys’12; 
Clapp+ (Intel), IISWC’15]

Graph/Tree Processing 
[Xu+, IISWC’12; Umuroglu+, FPL’15]



Data Overwhelms Modern Machines 

In-Memory Data Analytics 
[Clapp+ (Intel), IISWC’15;  
 Awan+, BDCloud’15]

Datacenter Workloads 
[Kanev+ (Google), ISCA’15]

In-memory Databases 
[Mao+, EuroSys’12; 
Clapp+ (Intel), IISWC’15]

Graph/Tree Processing 
[Xu+, IISWC’12; Umuroglu+, FPL’15]

Data → performance & energy bottleneck



Chrome
Google’s web browser

TensorFlow Mobile
Google’s machine learning 

framework

Video Playback
Google’s video codec 

Video Capture
Google’s video codec 

Data is Key for Future Workloads



Chrome
Google’s web browser

TensorFlow Mobile
Google’s machine learning 

framework

Video Playback
Google’s video codec 

Video Capture
Google’s video codec 

Data Overwhelms Modern Machines 

Data → performance & energy bottleneck



Data is Key for Future Workloads

23

development of high-throughput 
sequencing (HTS) technologies

http://www.economist.com/news/21631808-so-much-genetic-data-so-many-uses-genes-unzipped 

Number of Genomes 
Sequenced

http://www.economist.com/news/21631808-so-much-genetic-data-so-many-uses-genes-unzipped


Genome 
Analysis
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Data Overwhelms Modern Machines …

n Storage/memory capability

n Communication capability

n Computation capability

n Greatly impacts robustness, energy, performance, cost
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A Computing System

n Three key components
n Computation 
n Communication
n Storage/memory
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Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Image source: https://lbsitbytes2010.wordpress.com/2013/03/29/john-von-neumann-roll-no-15/



We Need A Paradigm Shift To …

n Enable computation with minimal data movement

n Compute where it makes sense (where data resides)

n Make computing architectures more data-centric
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Goal: Processing Inside Memory

n Many questions … How do we design the:
q compute-capable memory & controllers?
q processors & communication units?
q software & hardware interfaces?
q system software, compilers, languages?
q algorithms & theoretical foundations?

Cache

Processor
Core

Interconnect

Memory Database

Graphs

Media 
Query

Results

Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons
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Outline 

System Support for PuM Architectures2

Programming a Real PIM Architecture1

Accelerating Key Applications with PIM3

Overview of  recently published works 

Overview of  recently published works 
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Outline 

System Support for PuM Architectures2

Programming a Real PIM Architecture1

Accelerating Key Applications with PIM3

Overview of  recently published works 

Overview of  recently published works 
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A State-of-the-Art PIM System

• In our work, we use the UPMEM PIM architecture
- General-purpose processing cores called DRAM Processing 

Units (DPUs)
• Up to 24 PIM threads, called tasklets
• 32-bit integer arithmetic, but multiplication/division are 

emulated*, as well as floating-point operations
- 64-MB DRAM bank (MRAM), 64-KB scratchpad (WRAM)
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2,560-DPU UPMEM PIM System
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• 20 UPMEM DIMMs of 16 
chips each (40 ranks)

• Dual x86 socket
• UPMEM DIMMs coexist 

with regular DDR4 DIMMs
- 2 memory controllers/socket 
- 2 conventional DDR4 DIMMs 

on one channel of one 
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* There are some faulty DPUs in the system that we use in our 
experiments. Thus, the maximum number of DPUs we can use is 2,524
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Jinfan Chen, Juan Gómez-Luna, Izzat El Hajj, YuXin Guo, and Onur 
Mutlu, "SimplePIM: A Software Framework for Productive and 
Efficient Processing in Memory," in PACT, 2023.

Harshita Gupta, Mayank Kabra, Juan Gómez-Luna, Konstantinos 
Kanellopoulos, and Onur Mutlu, "Evaluating Homomorphic 
Operations on a Real-World Processing-In-Memory System,” 
in IISWC, 2023. 

Juan Gómez Luna, Yuxin Guo, Sylvan Brocard, Julien Legriel, Remy 
Cimadomo, Geraldo F. Oliveira, Gagandeep Singh, and Onur Mutlu, 
"Evaluating Machine Learning Workloads on Memory-Centric 
Computing Systems,” in ISPASS, 2023. 

Maurus Item, Juan Gómez Luna, Yuxin Guo, Geraldo F. Oliveira, 
Mohammad Sadrosadati, and Onur Mutlu, "TransPimLib: Efficient 
Transcendental Functions for Processing-in-Memory Systems,”
in ISPASS, 2023. 

Programming a Real PIM Architecture:
Overview of  recently published works

1

2

3

4



34

Jinfan Chen, Juan Gómez-Luna, Izzat El Hajj, YuXin Guo, and Onur 
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in  IISWC, 2023. 
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Maurus Item, Juan Gómez Luna, Yuxin Guo, Geraldo F. Oliveira, 
Mohammad Sadrosadati, and Onur Mutlu, "TransPimLib: Efficient 
Transcendental Functions for Processing-in-Memory Systems,”
in ISPASS, 2023. 

Programming a Real PIM Architecture:
Overview of  recently published works

1

2

3

4



Jinfan Chen, Juan Gómez Luna, Izzat El Hajj, Yuxin Guo, Onur Mutlu

SimplePIM:
A Software Framework for Productive 

and Efficient Processing-in-Memory

https://arxiv.org/pdf/2310.01893.pdf
https://github.com/CMU-SAFARI/SimplePIM

juang@ethz.ch

2023 International Conference on Parallel Architectures and Compilation Techniques

Monday, October 23, 2023

https://arxiv.org/pdf/2310.01893.pdf
https://github.com/CMU-SAFARI/SimplePIM
mailto:juang@ethz.ch
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Executive Summary
• Processing-in-Memory (PIM) promises to alleviate the data movement 

bottleneck
• Real PIM hardware is now available, e.g., UPMEM PIM
• However, programming real PIM hardware is challenging, e.g.:

- Distribute data across PIM memory banks,
- Manage data transfers between host cores and PIM cores, and between PIM 

cores,
- Launch PIM kernels on the PIM cores, etc.

• SimplePIM is a high-level programming framework for real PIM hardware
- Iterators such as map, reduce, and zip
- Collective communication with broadcast, scatter, and gather

• Implementation on UPMEM and evaluation with six different 
workloads
- Reduction, vector add, histogram, linear/logistic regression, K-means
- 4.4x fewer lines of code compared to hand-optimized code
- Between 15% and 43% faster than hand-optimized code for three workloads

• Source code: https://github.com/CMU-SAFARI/SimplePIM

https://github.com/CMU-SAFARI/SimplePIM
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Programming a PIM System (I)
• Example: Hand-optimized histogram with UPMEM SDK
... // Initialize global variables and functions for histogram 
int main_kernel() {
  if (tasklet_id == 0) 
    mem_reset(); // Reset the heap 
  ... // Initialize variables and the histogram 
  T *input_buff_A = (T*)mem_alloc(2048); // Allocate buffer in scratchpad memory 

  for (unsigned int byte_index = base_tasklet; byte_index < input_size; byte_index += stride) { 
    // Boundary checking 
    uint32_t l_size_bytes = (byte_index + 2048 >= input_size) ? (input_size - byte_index) : 2048; 
    // Load scratchpad with a DRAM block 
    mram_read((const __mram_ptr void*)(mram_base_addr_A + byte_index), input_buff_A, l_size_bytes); 
    // Histogram calculation 
    histogram(hist, bins, input_buff_A, l_size_bytes/sizeof(uint32_t)); 
  } 
  ... 
  barrier_wait(&my_barrier); // Barrier to synchronize PIM threads 
  ... // Merging histograms from different tasklets into one histo_dpu 
  // Write result from scratchpad to DRAM 
  if (tasklet_id == 0)
    if (bins * sizeof(uint32_t) <= 2048) 
      mram_write(histo_dpu, (__mram_ptr void*)mram_base_addr_histo, bins * sizeof(uint32_t)); 
    else 
      for (unsigned int offset = 0; offset < ((bins * sizeof(uint32_t)) >> 11); offset++) { 
        mram_write(histo_dpu + (offset << 9), (__mram_ptr void*)(mram_base_addr_histo + 
                  (offset << 11)), 2048); 
      } 
  return 0; 
} 
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Programming a PIM System (II)
• PIM programming is challenging

- Manage data movement between host DRAM and PIM DRAM
• Parallel, serial, broadcast, and gather/scatter transfers

- Manage data movement between PIM DRAM bank and 
scratchpad
• 8-byte aligned and maximum of 2,048 bytes

- Multithreaded programming model
- Inter-thread synchronization

• Barriers, handshakes, mutexes, and semaphores

Our Goal
Design a high-level programming framework that abstracts these 
hardware-specific complexities and provides a clean yet powerful 

interface for ease of use and high program performance
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The SimplePIM Programming Framework

• SimplePIM provides standard abstractions to build and 
deploy applications on PIM systems
- Management interface

• Metadata for PIM-resident arrays

- Communication interface
• Abstractions for host-PIM and PIM-PIM communication

- Processing interface
• Iterators (map, reduce, zip) to implement workloads
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Productivity Improvement (I)
• Example: Hand-optimized histogram with UPMEM SDK
... // Initialize global variables and functions for histogram 
int main_kernel() {
  if (tasklet_id == 0) 
    mem_reset(); // Reset the heap 
  ... // Initialize variables and the histogram 
  T *input_buff_A = (T*)mem_alloc(2048); // Allocate buffer in scratchpad memory 

  for (unsigned int byte_index = base_tasklet; byte_index < input_size; byte_index += stride) { 
    // Boundary checking 
    uint32_t l_size_bytes = (byte_index + 2048 >= input_size) ? (input_size - byte_index) : 2048; 
    // Load scratchpad with a DRAM block 
    mram_read((const __mram_ptr void*)(mram_base_addr_A + byte_index), input_buff_A, l_size_bytes); 
    // Histogram calculation 
    histogram(hist, bins, input_buff_A, l_size_bytes/sizeof(uint32_t)); 
  } 
  ... 
  barrier_wait(&my_barrier); // Barrier to synchronize PIM threads 
  ... // Merging histograms from different tasklets into one histo_dpu 
  // Write result from scratchpad to DRAM 
  if (tasklet_id == 0)
    if (bins * sizeof(uint32_t) <= 2048) 
      mram_write(histo_dpu, (__mram_ptr void*)mram_base_addr_histo, bins * sizeof(uint32_t)); 
    else 
      for (unsigned int offset = 0; offset < ((bins * sizeof(uint32_t)) >> 11); offset++) { 
        mram_write(histo_dpu + (offset << 9), (__mram_ptr void*)(mram_base_addr_histo + 
                  (offset << 11)), 2048); 
      } 
  return 0; 
} 
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Productivity Improvement (II)
• Example: SimplePIM histogram

// Programmer-defined functions in the file "histo_filepath"
void init_func (uint32_t size, void* ptr) { 
  char* casted_value_ptr = (char*) ptr;
  for (int i = 0; i < size; i++)
    casted_value_ptr[i] = 0;
}

void acc_func (void* dest, void* src) { 
  *(uint32_t*)dest += *(uint32_t*)src; 
}

void map_to_val_func (void* input, void* output, uint32_t* key) {
  uint32_t d = *((uint32_t*)input);
  *(uint32_t*)output = 1;
  *key = d * bins >> 12;
}

// Host side handle creation and iterator call
handle_t* handle = simple_pim_create_handle("histo_filepath", REDUCE, NULL, 0);

// Transfer (scatter) data to PIM, register as "t1"
simple_pim_array_scatter("t1", src, bins, sizeof(T), management);

// Run histogram on "t1" and produce "t2"
simple_pim_array_red("t1", "t2", sizeof(T), bins, handle, management);
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Productivity Improvement (III)
• Lines of code (LoC) reduction

SimplePIM Hand-optimized LoC Reduction

Reduction 14 83 5.93×

Vector Addition 14 82 5.86×

Histogram 21 114 5.43×

Linear Regression 48 157 3.27×

Logistic Regression 59 176 2.98×

K-Means 68 206 3.03×

SimplePIM reduces the number of lines of effective code 
by a factor of 2.98× to 5.93×
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Performance Evaluation (I)
• Weak scaling analysis

SimplePIM achieves comparable performance for 
reduction, histogram, and linear regression

SimplePIM outperforms hand-optimized implementations for 
vector addition, logistic regression, 

and k-means by 10%-37%
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Performance Evaluation (II)
• Strong scaling analysis

SimplePIM scales better than hand-optimized implementations 
for reduction, histogram, and linear regression

SimplePIM outperforms hand-optimized implementations for 
vector addition, logistic regression, 

and k-means by 15%-43%
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Discussion
• SimplePIM is devised for PIM architectures with

- A host processor with access to standard main memory and 
PIM-enabled memory

- PIM processing elements (PEs) that communicate via the 
host processor

- The number of PIM PEs scales with memory capacity
• SimplePIM emulates the communication between PIM 

cores via the host processor
• Other parallel patterns can be incorporated in future 

work
- Prefix sum and filter can be easily added
- Stencil and convolution would require fine-grained scatter-

gather for halo cells
- Random access patterns would be hard to support
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SimplePIM: arXiv Version

https://arxiv.org/pdf/2310.01893.pdf

https://arxiv.org/pdf/2310.01893.pdf
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• https://github.com/
CMU-
SAFARI/SimplePIM

Source Code

https://github.com/CMU-SAFARI/SimplePIM
https://github.com/CMU-SAFARI/SimplePIM
https://github.com/CMU-SAFARI/SimplePIM
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Juan Gómez Luna, Yuxin Guo, Sylvan Brocard,
Julien Legriel, Remy Cimadomo, Geraldo F. Oliveira, 

Gagandeep Singh, Onur Mutlu

Evaluating
Machine Learning Workloads

on Memory-Centric Computing Systems

https://arxiv.org/pdf/2207.07886.pdf
https://github.com/CMU-SAFARI/pim-ml

juang@ethz.ch

2023 IEEE International Symposium on Performance Analysis of Systems and Software

Monday, April 24, 2023

https://arxiv.org/pdf/2207.07886.pdf
https://github.com/CMU-SAFARI/pim-ml
mailto:juang@ethz.ch
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Executive Summary
Problem: Training machine learning (ML) algorithms is a computationally 
expensive process, frequently memory-bound 
• Memory-centric computing systems can alleviate data movement bottlenecks
• Real-world PIM systems have only been manufactured and commercialized 
• UPMEM has designed and fabricated the first publicly-available PIM architecture 

Our main contributions:
• PIM implementation of several classic machine learning algorithms: linear regression, 

logistic regression, decision tree, K-means clustering 
• Workload characterization in terms of quality, performance, and scaling 
• Comparison to their counterpart implementations on processor-centric systems (CPU and 

GPU)

Goal: Understand the potential of modern general-purpose PIM 
architectures to accelerate machine learning training

Key Results:
• PIM version of DTR is 27x / 1.34x faster than the CPU / GPU version, respectively 
• PIM version of KME is 2.8x / 3.2x faster than the CPU / GPU version, respectively
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Machine Learning Workloads
• Machine learning training 

with large amounts of 
data is a computationally 
expensive process, which 
requires many iterations 
to update an ML model’s 
parameters

Machine learning

Supervised 
learning

Unsupervised 
learning

Reinforcement 
learning

Regression Classification
Neural 

Networks
Clustering

Dimensionality 
reduction

Linear regression
Decision trees
Ridge regression
Ordinary least 
squares regression
Stepwise regression

Logistic regression
Decision trees
K-nearest neighbor
Support vector 
machine
Naive Bayes

K-means
K-median
Hierarchical 
clustering
Mean shift

• Frequent data movement between memory and processing 
elements to access training data
• The amount of computation is not enough to amortize the 

cost of moving training data to the processing elements
- Low arithmetic intensity
- Low temporal locality
- Irregular memory accesses
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Machine Learning Workloads: 
Our Goal

• Our goal is to study and analyze how real-world general-
purpose PIM can accelerate ML training
• Four representative ML algorithms: linear regression, 

logistic regression, decision tree, K-means
• Roofline model to quantify memory boundedness of 

CPU versions

DRAM

L3

Peak compute performance

KME

DTR

LIN

LOG

0.3

1

3

10

30

0.01 0.1 1 10
Arithmetic Intensity (OP/B)

Pe
rfo

rm
an

ce
 (G

O
PS

)

All workloads fall in the memory-bound area of the Roofline
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ML Training Workloads
• Four widely-used machine learning 

workloads:
- Linear regression (LIN)
- Logistic regression (LOG)
- Decision tree (DTR)
- K-means clustering (KME)

• Diversity of our ML training workloads:
- Memory access patterns
- Operations and datatypes
- Communication/synchronization
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Figure 3: High-level view of a state-of-the-art processing-in-memory system. The host CPU has access to" standard memory
modules and # PIM-enabled memory modules.

Table 1: Machine learning workloads.

Learning Application Algorithm Short name Memory access pattern Computation pattern Communication/synchronization
approach Sequential Strided Random Operations Datatype Intra PIM Core Inter PIM Core

Supervised
Regression Linear Regression LIN Yes No No mul, add �oat, int32_t barrier Yes

Classi�cation Logistic Regression LOG Yes No No mul, add, exp, div �oat, int32_t barrier Yes
Decision Tree DTR Yes No No compare, add �oat barrier, mutex Yes

Unsupervised Clustering K-Means KME Yes No No mul, compare, add int16_t, int64_t barrier, mutex Yes

and PUs in AiM [163] have 16-bit �oating point arithmetic
units. Second, ML models and hardware with adaptive preci-
sion are becoming widely-used [163, 180].

• LIN-BUI replaces compiler-generated 16-bit and 32-bit mul-
tiplications with a custom multiplication based on 8-bit built-
in multiplication functions (this optimization is speci�c to
the UPMEM PIM architecture). Listing 1 shows the default
integer multiplication code (C-based (a) and compiled code
(b)) and our custom integer multiplication code (C-based (c)
and compiled code (d)).

In Section 4, we evaluate all LIN versions in terms of accuracy
(Section 4.2), performance for di�erent numbers of threads per
PIM core (Section 4.3), and performance scaling characteristics
(Section 4.4).

3.2 Logistic Regression
Logistic regression [165, 167] is a supervised learning algorithm
used for classi�cation, which outputs probability values for each
input observation variable or vector. This probability values repre-
sent the likelihood of belonging to a certain class or event. Logistic
regression is used in various �elds (e.g., medical, marketing, engi-
neering, economics, etc.) [167].

Logistic regression uses the sigmoid function to map predicted
values (output vector ~ obtained from an input matrix - and a
weights vectorF ) to probabilities. Our implementation of logistic
regression uses gradient descent, same as our linear regression
implementation (Section 3.1). In the beginning of each training

iteration, we obtain the dot product of row vectors G8 and weights
F . Then, we apply the sigmoid function to the dot product results.
Next, we calculate the gradient to evaluate the error of the pre-
dicted probability. Finally, we update the weightsF according to
the gradients.

Our PIM implementation of logistic regression follows the same
workload distribution pattern as our linear regression implemen-
tation. First, row vectors G8 are distributed across PIM cores and
threads in each PIM core. Second, each thread computes the dot
product of a row vector and the weights (G8 ·F ), and applies the
sigmoid function to the dot product result. Third, the thread com-
putes partial gradient values. Fourth, partial gradient values from
di�erent threads are reduced, and the results return to the host.
Finally, the host computes the �nal reductions, and updates the
weights before redistributing them to the PIM cores.

We implement six di�erent versions of logistic regression with
di�erent input datatypes and optimizations: (1) 32-bit �oating
point (LOG-FP32), (2) 32-bit �xed point (LOG-INT32), (3) 32-bit
�xed point with LUT-based sigmoid calculation and LUT in DRAM
(LOG-INT32-LUT (MRAM)), (4) 32-bit �xed point with LUT-based sig-
moid calculation and LUT in scratchpad (LOG-INT32-LUT (WRAM)),
(5) �xed point with hybrid precision and LUT-based sigmoid calcula-
tion (LOG-HYB-LUT), and (6) �xed point with hybrid precision, LUT-
based sigmoid calculation, and built-in functions (LOG-BUI-LUT).

5
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Evaluation: 
Analysis of  PIM Kernels (I)

• Linear regression
4550
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accelerates the kernel by an 

order of magnitude 
over FP32

Key Takeaway 1. Workloads 
with arithmetic operations or 
datatypes not natively 
supported by PIM cores run at 
low performance due to 
instruction emulation (e.g., FP in 
UPMEM PIM).

Recommendation 1. Use fixed-
point representation, without 
much accuracy loss, if PIM cores do 
not support FP. 
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Evaluation: 
Analysis of  PIM Kernels (II)

• Linear regression
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Recommendation 2.

Quantization can take 
advantage of native 
hardware support. Hybrid 
precision can significantly 
improve performance.

LIN-HYB is 41% faster than 
LIN-INT32

LIN-BUI provides an 
additional 25% speedup

Recommendation 3. 
Programmers/better compilers can optimize code 
by leveraging native instructions (e.g., 8-bit 
integer multiplication in UPMEM) .
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Evaluation: 
Analysis of  PIM Kernels (III)

• Logistic regression

Very high kernel time of LOG-
FP32 and LOG-INT32 due to 

Sigmoid approximation

LOG-INT32-LUT(MRAM) is 53x 
faster than LOG-INT32

LOG-HYB-LUT is 28% faster than 
LOG-INT32-LUT

LOG-BUI-LUT provides an 
additional 43% speedup

Recommendation 4. 
Convert computation to memory 
accesses by keeping pre-calculated 
operation results (e.g., LUTs, 
memoization) in memory.
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Evaluation: Performance Scaling (I)
• Strong scaling: 256 to 2,048 PIM cores
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Conclusion
Problem: Training machine learning (ML) algorithms is a computationally 
expensive process, frequently memory-bound 
• Memory-centric computing systems can alleviate data movement bottlenecks
• Real-world PIM systems have only been manufactured and commercialized 
• UPMEM has designed and fabricated the first publicly-available PIM architecture 

Our main contributions:
• PIM implementation of several classic machine learning algorithms: linear regression, 

logistic regression, decision tree, K-means clustering 
• Workload characterization in terms of quality, performance, and scaling 
• Comparison to their counterpart implementations on processor-centric systems (CPU and 

GPU)

Goal: Understand the potential of modern general-purpose PIM 
architectures to accelerate machine learning training

Key Results:
• PIM version of DTR is 27x / 1.34x faster than the CPU / GPU version, respectively 
• PIM version of KME is 2.8x / 3.2x faster than the CPU / GPU version, respectively
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Next Steps for Real PIM Systems 
• Frameworks to ease PIM programmability 

- Goal: A framework that can automatically distribute input and gather 
output data, handle memory management, and parallelize work across 
PIM cores 

• Benchmark and analyze other real PIM architectures
- Samsung’s HBM-PIM 
- SK Hynix’s AiM

• Design Other Applications on PIM Systems 
- Database primitives
- Genomics 
- DNN training 
- Homomorphic encryption 
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Real PIM Tutorial (ISCA 2023)

https://events.safari.ethz.ch/isca-pim-tutorial/doku.php?id=start

• June 18th: Lectures + Hands-on labs + Invited lectures

https://events.safari.ethz.ch/isca-pim-tutorial/doku.php?id=start
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Real PIM Tutorial (MICRO 2023)

https://events.safari.ethz.ch/micro-pim-tutorial/doku.php?id=start

• Oct. 28th: Lectures + Hands-on labs + Invited lectures
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Outline 

System Support for PuM Architectures2

Programming a Real PIM Architecture1

Accelerating Key Applications with PIM3

Overview of recently published works 

Overview of recently published works 
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DRAM Cell Operation

wordline

bitline

sense 
amplifier

enable

storage
capacitor

access 
transistor

½ VDD

1. ACTIVATE (ACT)

2. READ/WRITE 

3. PRECHARGE (PRE)
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1. ACTIVATE (ACT)

2. READ/WRITE

3. PRECHARGE (PRE)

DRAM Cell Operation (1/3)

wordline

bitline

sense 
amplifier

enable

storage
capacitor

access 
transistor

½ VDD1. raise wordline

2. capacitor loses charge to bitline 

4. amplify deviation 
in the bitline

+ δ

3. enable 
sense amplifier

VDD

5. capacitor charge is restored
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1. ACTIVATE (ACT)

2. READ/WRITE

3. PRECHARGE (PRE)

DRAM Cell Operation (2/3)

wordline

bitline

sense 
amplifier

enable

storage
capacitor

access 
transistor

VDD

read/write charge 
latched in sense amplifier



69

1. ACTIVATE (ACT)

2. READ/WRITE

3. PRECHARGE (PRE)

DRAM Cell Operation (3/3)

wordline

bitline

sense 
amplifier

enable

storage
capacitor

access 
transistor

VDD½ VDD 2. precharge bitline for next access
1. lower 
wordline

3. disable
sense amplifier
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RowClone: In-DRAM Row Copy (1/2)

sense 
amplifier

enable

½ VDD
source A

destination B
1. ACTIVATE (ACT)

2. ACTIVATE (ACT)

3. PRECHARGE (PRE)

Row copy
command sequence:
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RowClone: In-DRAM Row Copy (2/2)

bitline

sense 
amplifier

enable

½ 
VDD

source A

destination B

1. ACTIVATE source row A

2. bitline will be pulled 
to charge level of row A

VDD

3. ACTIVATE destination row B

4. charge level of source row A 
will be copied to destination row 

B

5. PRECHARGE bitline 
for next access

½ VDD

1. ACTIVATE (ACT)

2. ACTIVATE (ACT)

3. PRECHARGE (PRE)

Row copy
command sequence:
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Triple-Row Activation: Majority Function 
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½ VDD
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B

C

1. ACTIVATE (ACT)

2. PRECHARGE (PRE)

Majority function
command sequence:
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Triple-Row Activation: Majority Function

bitline
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amplifier

enable

½ 
VDD

A

B

C

1. ACTIVATE three rows 
simultaneously 

→ triple-row activation 

2. bitline will be pulled 
to the majority of 
cells A, B, and C

VDD

3. values in cells A, B, C 
will be overwritten 

with the majority output

1. ACTIVATE (ACT)

2. PRECHARGE (PRE)

Majority function
command sequence:

4. PRECHARGE bitline 
for next access

½ VDD

MAJ(A, B, C ) =
MAJ(Vdd, Vdd, 0) = Vdd
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Ambit: In-DRAM Bulk Bitwise AND/OR 
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½ VDD

MAJ (A, B, 0)  =  AND (A, B)

MAJ (A, B, 1)  =  OR (A, B)
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System Support for PuM Architectures2

Programming a Real PIM Architecture1

Accelerating Key Applications with PIM3

Overview of recently published works 

Overview of recently published works 
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Executive Summary
Problem: Processing-using-DRAM (PuD) suffers from three main issues 
caused by DRAM’s large and rigid access granularity
• Under-utilization due to varying degrees of SIMD parallelism in an application
• Limited computation pattern due to a lack of interconnecting networks
• Challenging programming model due to a lack of compilers 

Key Mechanism: MIMDRAM, a hardware/software co-designed PuD
• Key idea: leverage fine-grained DRAM (i.e., the ability to access portions of a DRAM row)
• Hardware side: (i) latches and isolation transistors to enable concurrent execution of PuD 

operations in a DRAM row; (ii) interconnect networks to enable PuD reduction
• Software side: compiler passes to (i) identify and generate the PuD operations with the 

appropriate granularity; (ii) schedule the concurrent execution of PuD operations

Goal: Design a flexible PuD system that overcomes the three limitations 
caused by the large and rigid granularity of PuD

Key Results: MIMDRAM achieves
• 18.6x the utilization, 152x the energy efficiency, 1.7x the throughput, and 1.3x the fairness 

of a state-of-the-art PuD framework; 
• 130x the energy efficiency of a high-end CPU
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Maximum Vectorization Factor: 
how many operands can be executed in parallel
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Ideal maximum vectorization factor = # bitlines (e.g., 
65’536)

Problem & Goal: 
Application Analysis

Application analysis: quantify the amount of SIMD parallelism 
real-world applications inherently display
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Problem & Goal: 
Application Analysis

The maximum vectorization factor varies 
within a single application and across different applications

Ta
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Application analysis: quantify the amount of SIMD parallelism 
real-world applications inherently display
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Problem & Goal: 
Application Analysis

A small amount of vectorized loops have 
a large enough maximum vectorization factor to 

fully exploit the SIMD parallelism of PuDTa
ke

aw
ay

Application analysis: quantify the amount of SIMD parallelism 
real-world applications inherently display
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Problem & Goal

The rigid granularity of PuD architectures limits 
their applicability and efficiency for many applications.

 
The underlying PuD architecture often suffers from

 SIMD underutilization and
 consequentially energy and throughput waste 

Pr
ob

le
m

Design a Processing-using-DRAM architecture that:

1. adapts to the SIMD parallelism an application displays
2. maximizes the utilization of the PuD engine

Go
al
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MIMDRAM is a hardware/software co-designed PuD system that 
enables fine-grained PuD computation at low cost and low programming 

effort

Main components in MIMDRAM

1 Hardware-side 
- subarray modification to enable MIMD-like fine-grained DRAM computation
- inter- and intra-mat network to enable PuD vector reduction 

2 Software-side
- new compiler support to transparently generate PuD instructions
- system support to to enable the orchestration of PuD instructions 

MIMDRAM: 
Overview
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MIMDRAM is a hardware/software co-designed PuD system that 
enables fine-grained PuD computation at low cost and low programming 

effort

Main components in MIMDRAM

1 Hardware-side 
- subarray modification to enable MIMD-like fine-grained DRAM computation
- inter- and intra-mat network to enable PuD vector reduction 

2 Software-side
- new compiler support to transparently generate PuD instructions
- system support to to enable the orchestration of PuD instructions 

MIMDRAM: 
Overview
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MIMDRAM: 
DRAM Hardware Overview 
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MIMDRAM: 
DRAM Hardware Overview 
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MIMDRAM: 
DRAM Hardware Overview 
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MIMDRAM: 
DRAM Hardware Overview 
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MIMDRAM: 
Control Unit

Goal: schedule and orchestrate the execution of 
multiple PuD instructions transparently 
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MIMDRAM is a hardware/software co-designed PuD system that 
enables fine-grained PuD computation at low cost and low programming 

effort

Main components in MIMDRAM

1 Hardware-side 
- subarray modification to enable MIMD-like fine-grained DRAM computation
- inter- and intra-mat network to enable PuD vector reduction 

2 Software-side
- new compiler support to transparently generate PuD instructions
- system support to to enable the orchestration of PuD instructions 

MIMDRAM: 
Overview
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source code

for(cond)
{

… 
}

DFG data scheduling
mat 0

tim
e

mat 1

for(cond){}

loop auto-vectorization final binary

code identification code scheduling code generation

%3=add<8192 x i32> %1,%2

bbop_add(%3,%1,8192,32) 

bbop_add | 
bbop_sub

bbop_div | 
bbop_mul

vpadd

Transparently: 
(1) extract SIMD parallelism from an application, 

(2) schedule PuD operations while maximizing MAT utilization Go
al

Three new LLVM-based passes targeting PuD execution

MIMDRAM: 
Software Overview



93

Identify SIMD parallelism and generate appropriate
PuD instructions with best vectorization factor Go

al

• Selection of the best-performing vectorization factor for a given loop →  
always select as vectorization factor the maximum vectorization factor

• Code generation routine for a given vectorized loop → 
identify and remove memory instructions related to an arithmetic SIMD 
operation

Changes to LLVM’s auto-vectorization pass:

source code

fo r(c o n d )

{

… 
}

DFG data scheduling
mat 0

tim
e

mat 1

fo r(c o n d ){}

loop auto-vectorization final binary

code identification code scheduling code generation

%3=add<8192 x i32> %1,%2

bbop_add(%3,%1,8192,32) 

bbop_add | 
bbop_sub

bbop_div | 
bbop_mul

vpadd

MIMDRAM: 
Software Overview
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source code

for(cond)
{

… 
}

DFG data scheduling
mat 0

tim
e

mat 1

for(cond){}

loop auto-vectorization final binary

code identification code scheduling code generation

%3=add<8192 x i32> %1,%2

bbop_add(%3,%1,8192,32) 

bbop_add | 
bbop_sub

bbop_div | 
bbop_mul

vpadd

MIMDRAM: 
Software Overview

Provide load balance across MATs and 
minimal inter-MAT data movementGo

al

Key Idea: use a new malloc operation that informs the 
OS about MAT allocation requirement 

New code scheduling algorithm to 
schedule computation across MATs 
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source code

for(cond)
{

… 
}

DFG data scheduling
mat 0

tim
e

mat 1

for(cond){}

loop auto-vectorization final binary

code identification code scheduling code generation

%3=add<8192 x i32> %1,%2

bbop_add(%3,%1,8192,32) 

bbop_add | 
bbop_sub

bbop_div | 
bbop_mul

vpadd

MIMDRAM: 
Software Overview

Generate the appropriate code for data allocation
and PuD execution  Go

al
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• We implement MIMDRAM using the gem5 simulator

• Comparison points:
- real multicore CPU (Intel Skylake)
- state-of-the-art PuD framework (SIMDRAM)

• Workloads:
- 12 applications from various benchmark suites 

Evaluation: 
Methodology 
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Evaluation: 
Single Application Analysis – SIMD Utilization 

MIMDRAM significantly improves SIMD utilization 
compared with SIMDRAM by 15.6x, on average

Ta
ke

aw
ay
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Evaluation: 
Single Application Analysis – Energy Efficiency

MIMDRAM significantly improves energy efficiency compared with 
SIMDRAM (by 152x) and to the CPU (by 130x)

Ta
ke

aw
ay
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Evaluation: 
Multi Application Analysis

MIMDRAM significantly improves system throughput (1.68x), 
job turnaround time (1.33x) , and 

fairness (1.32x) compared with SIMDRAMTa
ke

aw
ay
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Conclusion
Problem: Processing-using-DRAM (PuD) suffers from three main issues 
caused by DRAM’s large and rigid access granularity
• Under-utilization due to varying degrees of SIMD parallelism in an application
• Limited computation pattern due to a lack of interconnecting networks
• Challenging programming model due to a lack of compilers 

Key Mechanism: MIMDRAM, a hardware/software co-designed PuD
• Key idea: leverage fine-grained DRAM (i.e., the ability to access portions of a DRAM row)
• Hardware side: (i) latches and isolation transistors to enable concurrent execution of PuD 

operations in a DRAM row; (ii) interconnect networks to enable PuD reduction
• Software side: compiler passes to (i) identify and generate the PuD operations with the 

appropriate granularity; (ii) schedule the concurrent execution of PuD operations

Goal: Design a flexible PuD system that overcomes the three limitations 
caused by the large and rigid granularity of PuD

Key Results: MIMDRAM achieves
• 18.6x the utilization, 152x the energy efficiency, 1.7x the throughput, and 1.3x the fairness 

of a state-of-the-art PuD framework; 
• 130x the energy efficiency of a high-end CPU



In-Flash Bulk Bitwise Execution
• Jisung Park, Roknoddin Azizi, Geraldo F. Oliveira, Mohammad Sadrosadati, Rakesh 

Nadig, David Novo, Juan Gómez-Luna, Myungsuk Kim, and Onur Mutlu,
"Flash-Cosmos: In-Flash Bulk Bitwise Operations Using Inherent 
Computation Capability of NAND Flash Memory"
Proceedings of the 55th International Symposium on Microarchitecture (MICRO), 
Chicago, IL, USA, October 2022.
[Slides (pptx) (pdf)]
[Longer Lecture Slides (pptx) (pdf)]
[Lecture Video (44 minutes)]
[arXiv version]

101https://arxiv.org/pdf/2209.05566.pdf 

https://arxiv.org/pdf/2209.05566.pdf
https://arxiv.org/pdf/2209.05566.pdf
http://www.microarch.org/micro55/
https://people.inf.ethz.ch/omutlu/pub/FlashCosmos_micro22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/FlashCosmos_micro22-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/FlashCosmos_SSD-lecture-slides.pptx
https://people.inf.ethz.ch/omutlu/pub/FlashCosmos_SSD-lecture-slides.pdf
https://www.youtube.com/watch?v=ioPERTy7bz4
https://arxiv.org/abs/2209.05566
https://arxiv.org/pdf/2209.05566.pdf


Summary: Flash-Cosmos
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The first work that enables 
in-flash multi-operand bulk bitwise operations 

with a single sensing operation and high reliability

Improves performance 
by 32x/25x/3.5x over OSP/ISP/ParaBit

Improves energy efficiency 
by 95x/13.4x/3.3x over OSP/ISP/ParaBit

$ Low-cost & requires no changes to flash cell arrays



§ Flash-Cosmos enables
• Computation on multiple operands with a single sensing operation
• Accurate computation results by eliminating raw bit errors in stored data

Flash-Cosmos: Basic Ideas

NAND	Flash	Chip

Page	Buffer

Operand	O1
Operand	O2	

Operand	O3
…

Operand	O32
Bitlines	(BLs)
Operand	O32

…

Operand	O3

Operand	O2	

Operand	O1

O1	&	O2& O3	&	…	&	O32

Simultaneous	sensing
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Next Steps for PuM 
• Executing processing-using-DRAM operations in real, 

off-the-shelf DRAM chips 
- We experimentally demonstrate that off-the-shelf DRAM chips are 

capable of performing 
• 1) NOT, NAND, and NOR operations 
• 2) AND and OR operations with more than 2 inputs

- We present an extensive characterization of new bulk bitwise 
operations in 224 off-the-shelf modern DDR4 DRAM chips

• System support for processing-using-DRAM 
- Compilers, frameworks, and programming models for PuD 

• Using processing-using-DRAM to accelerate key 
applications
- e.g., genomics, neural network inference
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Outline 

System Support for PuM Architectures2

Programming a Real PIM Architecture1

Accelerating Key Applications with PIM3

Overview of recently published works 

Overview of recently published works 



Casper, IEEE ACCESS 2023

106https://arxiv.org/pdf/2112.14216.pdf 

https://arxiv.org/pdf/2112.14216.pdf
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Accelerating Climate Modeling
• Gagandeep Singh, Dionysios Diamantopoulos, Christoph Hagleitner, Juan Gómez-

Luna, Sander Stuijk, Onur Mutlu, and Henk Corporaal,
"NERO: A Near High-Bandwidth Memory Stencil Accelerator for 
Weather Prediction Modeling"
Proceedings of the 30th International Conference on Field-Programmable Logic 
and Applications (FPL), Gothenburg, Sweden, September 2020.
[Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (23 minutes)]
Nominated for the Stamatis Vassiliadis Memorial Award.

https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20.pdf
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20.pdf
https://www.fpl2020.org/
https://www.fpl2020.org/
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-lightning-talk.pdf
https://www.youtube.com/watch?v=xMiuqUyjkk0
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Accelerating Approximate 
String Matching

• Damla Senol Cali, Gurpreet S. Kalsi, Zulal Bingol, Can Firtina, Lavanya Subramanian, Jeremie S. 
Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan Gomez-Luna, Amirali Boroumand, Anant 
Nori, Allison Scibisz, Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu,
"GenASM: A High-Performance, Low-Power Approximate String Matching 
Acceleration Framework for Genome Sequence Analysis"
Proceedings of the 53rd International Symposium on Microarchitecture (MICRO), Virtual, 
October 2020.
[Lighting Talk Video (1.5 minutes)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (18 minutes)]
[Slides (pptx) (pdf)]

https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20.pdf
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20.pdf
http://www.microarch.org/micro53/
https://www.youtube.com/watch?v=nJs3RRnvk_k
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-lightning-talk.pdf
https://www.youtube.com/watch?v=srQVqPJFqjo
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-talk.pdf
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Accelerating Time Series Analysis
• Ivan Fernandez, Ricardo Quislant, Christina Giannoula, Mohammed Alser, Juan 

Gómez-Luna, Eladio Gutiérrez, Oscar Plata, and Onur Mutlu,
"NATSA: A Near-Data Processing Accelerator for Time Series Analysis"
Proceedings of the 38th IEEE International Conference on Computer 
Design (ICCD), Virtual, October 2020.
[Slides (pptx) (pdf)]
[Talk Video (10 minutes)]
[Source Code]

https://people.inf.ethz.ch/omutlu/pub/NATSA_time-series-analysis-near-data_iccd20.pdf
http://www.iccd-conf.com/
http://www.iccd-conf.com/
https://people.inf.ethz.ch/omutlu/pub/NATSA_time-series-analysis-near-data_iccd20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/NATSA_time-series-analysis-near-data_iccd20-talk.pdf
https://www.youtube.com/watch?v=PwhtSAVa_W4
https://github.com/CMU-SAFARI/NATSA
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Accelerating Graph Pattern Mining
• Maciej Besta, Raghavendra Kanakagiri, Grzegorz Kwasniewski, Rachata Ausavarungnirun, Jakub 

Beránek, Konstantinos Kanellopoulos, Kacper Janda, Zur Vonarburg-Shmaria, Lukas Gianinazzi, 
Ioana Stefan, Juan Gómez-Luna, Marcin Copik, Lukas Kapp-Schwoerer, Salvatore Di Girolamo, 
Nils Blach, Marek Konieczny, Onur Mutlu, and Torsten Hoefler,
"SISA: Set-Centric Instruction Set Architecture for Graph Mining on Processing-in-
Memory Systems"
Proceedings of the 54th International Symposium on Microarchitecture (MICRO), Virtual, 
October 2021.
[Slides (pdf)]
[Talk Video (22 minutes)]
[Lightning Talk Video (1.5 minutes)]
[Full arXiv version]

https://people.inf.ethz.ch/omutlu/pub/SISA-GraphMining-on-PIM_micro21.pdf
https://people.inf.ethz.ch/omutlu/pub/SISA-GraphMining-on-PIM_micro21.pdf
http://www.microarch.org/micro54/
https://people.inf.ethz.ch/omutlu/pub/SISA-GraphMining-on-PIM_micro21-talk.pdf
https://www.youtube.com/watch?v=VL5K1t2qTDU&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=9
https://www.youtube.com/watch?v=6k89Ph2qgRA&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=4
https://arxiv.org/abs/2104.07582


112

Accelerating HTAP Database Systems
• Amirali Boroumand, Saugata Ghose, Geraldo F. Oliveira, and Onur Mutlu,

"Polynesia: Enabling High-Performance and Energy-Efficient Hybrid 
Transactional/Analytical Databases with Hardware/Software Co-Design"
Proceedings of the 38th International Conference on Data Engineering (ICDE), 
Virtual, May 2022.
[arXiv version]
[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]

https://arxiv.org/pdf/2204.11275.pdf 

https://people.inf.ethz.ch/omutlu/pub/Polynesia_icde22.pdf
https://people.inf.ethz.ch/omutlu/pub/Polynesia_icde22.pdf
https://icde2022.ieeecomputer.my/
https://arxiv.org/pdf/2204.11275.pdf
https://people.inf.ethz.ch/omutlu/pub/Polynesia_icde22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Polynesia_icde22-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Polynesia_icde22-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Polynesia_icde22-short-talk.pdf
https://arxiv.org/pdf/2204.11275.pdf
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Accelerating Neural Network Inference

• Amirali Boroumand, Saugata Ghose, Berkin Akin, Ravi Narayanaswami, Geraldo 
F. Oliveira, Xiaoyu Ma, Eric Shiu, and Onur Mutlu,
"Google Neural Network Models for Edge Devices: Analyzing and 
Mitigating Machine Learning Inference Bottlenecks"
Proceedings of the 30th International Conference on Parallel Architectures and 
Compilation Techniques (PACT), Virtual, September 2021.
[Slides (pptx) (pdf)]
[Talk Video (14 minutes)]

https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21.pdf
https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21.pdf
http://pactconf.org/
http://pactconf.org/
https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21-talk.pdf
https://www.youtube.com/watch?v=A5gxjDbLRAs&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=178


Samsung PNM Solutions for Generative AI (2023)

n Main target: transformer decoders used in ChatGPT, GPT-3
q Compute-bound step: Summarization 
q Memory-bound step: Generation

n Most of the execution time is spent on the memory copy from the 
host CPU memory to the CPU memory

n GEMV portion can be 60%-80% of total generation latency, 
which is the target of PIM/PNM

115From: J. H. Kim, “Samsung AI-cluster system with HBM-PIM and CXL-based Processing-near-Memory for transformer-based LLMs,” HC, 2023. 



In-Storage Genome Filtering [ASPLOS 2022]
n Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Olgun, Arvid

Gollwitzer, Damla Senol Cali, Can Firtina, Haiyu Mao, Nour Almadhoun Alserr, Rachata
Ausavarungnirun, Nandita Vijaykumar, Mohammed Alser, and Onur Mutlu,
"GenStore: A High-Performance and Energy-Efficient In-Storage Computing 
System for Genome Sequence Analysis"
Proceedings of the 27th International Conference on Architectural Support for 
Programming Languages and Operating Systems (ASPLOS), Virtual, February-March 
2022.
[Talk Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Lightning Talk Video (90 seconds)]
[Talk Video (17 minutes)]
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https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-arxiv.pdf
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-arxiv.pdf
https://asplos-conference.org/
https://asplos-conference.org/
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-lightning-talk.pdf
https://www.youtube.com/watch?v=Vi1af8KY0g8
https://www.youtube.com/watch?v=bv7hgXOOMjk


GenStore:
A High-Performance In-Storage Processing System

for Genome Sequence Analysis

Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Olgun, 
Arvid Gollwitzer, Damla Senol Cali, Can Firtina, Haiyu Mao, Nour Almadhoun Alserr, 
Rachata Ausavarungnirun, Nandita Vijaykumar, Mohammed Alser, and Onur Mutlu
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Genome Sequence Analysis
• Genome sequence analysis is critical for many applications
- Personalized medicine
- Outbreak tracing
- Evolutionary studies

•  Genome sequencing machines extract smaller fragments of the original 
DNA sequence, known as reads

AAGCTTCCATGG
AAATGGGCTTTC

GCCCAAATGGTT
GCTTCCAGAATG
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Genome Sequence Analysis
• Read mapping: first key step in genome sequence analysis

…GCCCATATGGTTAAGCTTCCATGGAAATGGGCTTTCGCTTCCACAATG…

- Aligns reads to potential matching locations in the reference genome

Reference Genome

Differences Differences

- For each matching location, the alignment step finds the degree of 
similarity (alignment score)

AAGCTTCCATGG
GCCCAAATGGTT

GCTTCCAGAATG

AAATGGGCTTTC
• Calculating the alignment score requires computationally-expensive 

approximate string matching (ASM) to account for differences between 
reads and the reference genome due to:

- Sequencing errors
- Genetic variation



122

Genome Sequence Analysis

Computation overhead
 

Data movement overhead 

Computation 
Unit

(CPU or 
Accelerator)

Cache
Main 

Memory

AAGCTTCCATGG

AAAATTCCATGG

TTTTTTCCAAAA
GCTTCCAGAATG

GGGCCAGAATG

GAATGGGGCCA
TCCCCGGGGCCA

CCTTTGGGTCCA

CGTTCCTTGGCA

Alignment

Data Movement from Storage

Storage
System
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Heuristics Accelerators Filters

 Computation overhead
 

AAGCTTCCATGG

AAAATTCCATGG

TTTTTTCCAAAA
GCTTCCAGAATG

GGGCCAGAATG

GAATGGGGCCA
TCCCCGGGGCCA

CCTTTGGGTCCA

CGTTCCTTGGCA Computation 
Unit

(CPU or 
Accelerator)

Cache
Main 

Memory
Storage
System

Data movement overhead 

✓

Accelerating Genome Sequence Analysis
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Storage
System

Key Idea

Non-matching reads
Do not have potential matching locations and can skip alignment

Filter reads that do not require alignment
inside the storage system

AAGCTTCCATGG

AAAATTCCATGG

TTTTTTCCAAAA
GCTTCCAGAATG

GGGCCAGAATG

GAATGGGGCCA
TCCCCGGGGCCA

CCTTTGGGTCCA

CGTTCCTTGGCA

Filtered Reads

Computation 
Unit

(CPU or 
Accelerator)

Cache
Main 

Memory

Exactly-matching reads
Do not need expensive approximate string matching during alignment
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Challenges

Read mapping workloads can exhibit different behavior

There are limited hardware resources 
in the storage system

Filter reads that do not require alignment
inside the storage system

AAGCTTCCATGG

AAAATTCCATGG

TTTTTTCCAAAA
GCTTCCAGAATG

GGGCCAGAATG

GAATGGGGCCA
TCCCCGGGGCCA

CCTTTGGGTCCA

CGTTCCTTGGCA

Filtered Reads

Computation 
Unit

(CPU or 
Accelerator)

Cache
Main 

Memory
Storage
System
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GenStore

Computation overhead
 

Data movement overhead 

GenStore provides significant speedup (1.4x - 33.6x) and  
energy reduction (3.9x – 29.2x) at low cost

Filter reads that do not require alignment
inside the storage system

Computation 
Unit

(CPU or 
Accelerator)

Cache
Main 

Memory

GenStore-Enabled
Storage
System

✓
✓



Concluding Remarks



Concluding Remarks
n We must design systems to be balanced, high-performance, 

energy-efficient (all at the same time) à intelligent systems
q Data-centric, data-driven, data-aware

n Enable computation capability inside and close to 
memory/storage

n This can
q Lead to orders-of-magnitude improvements 
q Enable new applications & computing platforms
q Enable better understanding of nature
q …

n Future of truly data-centric computing is bright
q We need to do research & design across the computing stack
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Fundamentally Better Architectures

Data-centric

Data-driven

Data-aware
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Self-Optimizing Memory Prefetchers

130

n Rahul Bera, Konstantinos Kanellopoulos, Anant Nori, Taha Shahroodi, Sreenivas 
Subramoney, and Onur Mutlu,
"Pythia: A Customizable Hardware Prefetching Framework Using Online 
Reinforcement Learning"
Proceedings of the 54th International Symposium on Microarchitecture (MICRO), Virtual, 
October 2021.
[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (20 minutes)]
[Lightning Talk Video (1.5 minutes)]
[Pythia Source Code (Officially Artifact Evaluated with All Badges)]
[arXiv version]

https://arxiv.org/pdf/2109.12021.pdf 

https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21.pdf
http://www.microarch.org/micro54/
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pdf
https://www.youtube.com/watch?v=6UMFRW3VFPo&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=7
https://www.youtube.com/watch?v=kzL22FTz0vc&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=2
https://github.com/CMU-SAFARI/Pythia
https://arxiv.org/abs/2109.12021
https://arxiv.org/pdf/2109.12021.pdf


Perceptron-Based Off-Chip Load Prediction

131

n Rahul Bera, Konstantinos Kanellopoulos, Shankar Balachandran, David Novo, Ataberk
Olgun, Mohammad Sadrosadati, and Onur Mutlu,
"Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based Off-
Chip Load Prediction"
Proceedings of the 55th International Symposium on Microarchitecture (MICRO), 
Chicago, IL, USA, October 2022.
[Slides (pptx) (pdf)]
[Longer Lecture Slides (pptx) (pdf)]
[Talk Video (12 minutes)]
[Lecture Video (25 minutes)]
[arXiv version]
[Source Code (Officially Artifact Evaluated with All Badges)]
Officially artifact evaluated as available, reusable and reproducible.
Best paper award at MICRO 2022.

https://arxiv.org/pdf/2209.00188.pdf 

https://arxiv.org/pdf/2209.00188.pdf
https://arxiv.org/pdf/2209.00188.pdf
http://www.microarch.org/micro55/
https://people.inf.ethz.ch/omutlu/pub/Hermes_micro22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Hermes_micro22-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Hermes_comparch22-lecture-slides.pptx
https://people.inf.ethz.ch/omutlu/pub/Hermes_comparch22-lecture-slides.pdf
https://www.youtube.com/watch?v=afGc1pWr-_Y
https://www.youtube.com/watch?v=PWWBtrL60dQ&t=3609s
https://arxiv.org/abs/2209.00188
https://github.com/CMU-SAFARI/Hermes
https://arxiv.org/pdf/2209.00188.pdf


Self-Optimizing Hybrid Storage Systems
n Gagandeep Singh, Rakesh Nadig, Jisung Park, Rahul Bera, Nastaran Hajinazar, 

David Novo, Juan Gomez-Luna, Sander Stuijk, Henk Corporaal, and Onur Mutlu,
"Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage 
Systems Using Online Reinforcement Learning"
Proceedings of the 49th International Symposium on Computer 
Architecture (ISCA), New York, June 2022.
[Slides (pptx) (pdf)]
[arXiv version]
[Sibyl Source Code]
[Talk Video (16 minutes)]
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https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22.pdf
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22.pdf
http://iscaconf.org/isca2022/
http://iscaconf.org/isca2022/
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22-talk.pdf
https://arxiv.org/pdf/2205.07394.pdf
https://github.com/CMU-SAFARI/Sibyl
https://www.youtube.com/watch?v=5-WedkiB000


We Need to Revisit the Entire Stack
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Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons

We can get there step by step



We Need to Exploit Good Principles

n Data-centric system design 

n All components intelligent

n Better (cross-layer) communication, better interfaces

n Better-than-worst-case design

n Heterogeneity

n Flexibility, adaptability
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Open minds



A Blueprint for Fundamentally Better Architectures

n Onur Mutlu,
"Intelligent Architectures for Intelligent Computing Systems"
Invited Paper in Proceedings of the Design, Automation, and Test in 
Europe Conference (DATE), Virtual, February 2021.
[Slides (pptx) (pdf)]
[IEDM Tutorial Slides (pptx) (pdf)]
[Short DATE Talk Video (11 minutes)]
[Longer IEDM Tutorial Video (1 hr 51 minutes)]
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https://people.inf.ethz.ch/omutlu/pub/intelligent-architectures-for-intelligent-computingsystems-invited_paper_DATE21.pdf
http://www.date-conference.com/
http://www.date-conference.com/
https://people.inf.ethz.ch/omutlu/pub/onur-DATE-InvitedTalk-IntelligentArchitecturesForIntelligentComputingSystems-January-22-2021.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-DATE-InvitedTalk-IntelligentArchitecturesForIntelligentComputingSystems-January-22-2021.pdf
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pdf
https://www.youtube.com/watch?v=eAZZGDlsDAY
https://www.youtube.com/watch?v=H3sEaINPBOE
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Thank you!
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