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Brief Self Introduction

= Mohammad Sadrosadati
o Senior Researcher and Lecturer @ SAFARI Research Group, ETHZ

o PhD from Sharif University of Technology, 2014-2019
o mohammad.sadrosadati@safari.ethz.ch

= Research Areas

o Computer Architecture
Memory & Storage Systems
Near-Data Processing
Heterogeneous System Architecture
Bioinformatics
Interconnection Networks
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Current Research Mission

Computer architecture, HW/SW, systems, bioinformatics, security

Heterogenus Persistent Memory/Storage

Processors and
Accelerators

Graphics and Vision Processing

Build fundamentally better architectures

SAFARI



Four Key Current Directions

Fundamentally Secure/Reliable/Safe Architectures

Fundamentally Energy-Efficient Architectures
o Memory-centric (Data-centric) Architectures

Fundamentally Low-Latency and Predictable Architectures

Architectures for AI/ML, Genomics, Medicine, Health, ...

SAFARI



Fundamentally Better Architectures

Data-centric

Data-driven

Data-aware

SAFARI



Onur Mutlu’s SAFARI Research Group

Computer architecture, HW/SW, systems, bioinformatics, security, memory
https://safari.ethz.ch/safari-newsletter-june-2023/

40+ Researchers

T

T&&m&f %l A&m m HIG

SAFARI https://safari.ethz.ch



http://www.safari.ethz.ch/
https://safari.ethz.ch/safari-newsletter-january-2021/

SAFARI Newsletter June 2023 Edition

= https://safari.ethz.ch/safari-newsletter-june-2023/
- " I



https://safari.ethz.ch/safari-newsletter-june-2023/

Referenced Papers, Talks, Artifacts

= All are available at

https://people.inf.ethz.ch/omutlu/projects.htm

https://www.youtube.com/onurmutlulectures

https://github.com/CMU-SAFARI1/
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Open-Source Artifacts

https://github.com/CMU-SAFARI
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Open Source Tools: SAFARI GitHub

SAFARI Research Group

SAFARI Research Group at ETH Zurich and Carnegie Mellon University

SAFARI

Site for source code and tools distribution from SAFARI Research Group at ETH Zurich and Carnegie Mellon University.

@ ETH Zurich and Carnegie Mellon U... & https://safari.ethz.ch/ [ omutlu@gmail.com

() Overview [ Repositories 62

Pinned

£] ramulator ( Public

A Fast and Extensible DRAM Simulator, with built-in support for modeling
many different DRAM technologies including DDRx, LPDDRx, GDDRX,
WI0x, HBMXx, and various academic proposals. Described in the...

@®c++ w304 %153

] DAMOV | public

DAMOQV is a benchmark suite and a methodical framework targeting the
study of data movement bottlenecks in modern applications. It is
intended to study new architectures, such as near-data processin...

®c++ W26 ¥3

£l MQSim ( Public

MQSim is a fast and accurate simulator modeling the performance of
modern multi-queue (MQ) SSDs as well as traditional SATA based SSDs.
MQSim faithfully models new high-bandwidth protocol implement...

@c++ w143 ¥ 90

f Projects @ Packages

A People 13

£l prim-benchmarks | Public

PrIM (Processing-In-Memory benchmarks) is the first benchmark suite for

a real-world processing-in-memory (PIM) architecture. PrIM is developed
to evaluate, analyze, and characterize the first publ...

@Cc W50 %21

] SneakySnake | Public

SneakySnake Z; is the first and the only pre-alignment filtering algorithm
that works efficiently and fast on modern CPU, FPGA, and GPU
architectures. It greatly (by more than two orders of magnitude...

OVHDL Y40 ¥ 8

] rowhammer | Public

Source code for testing the Row Hammer error mechanism in DRAM
devices. Described in the ISCA 2014 paper by Kim et al. at
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_iscal4.pdf.

®c Yriss ¥

https://github.com/CMU-SAFARI/
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SAFARI Overview at EFCL Huawet Day

Onur Mutlu,
"SAFARI Research Group: Introduction & Research"

Invited Talk at the ETH Future Computing Laboratory
Huawei Day, Virtual, 19 October 2021.

[Slides (pptx) (pdf)]

[Talk Video (15 minutes)]
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SAFARI Overview at EFCL Huawet Day

SAFARI Research Group

[ntroduction & Research

Onur Mutlu

nttps://people.inf.ethz.ch/omutiu
19 October 2021
EFCL Huawei Day

SAFARI ETH:zurich Carnegie Mellon

@/ >

4 P Pl ) 036/1432

SAFARI Research Group: Introduction & Research — ETH Future Computing Laboratory Talk - Onur Mutlu

1,939 views * Premiered Jan 15, 2022 5 29 GCPDISLIKE ,~ SHARE $¢ CLIP =+ SAVE

Y Onur Mutlu Lectures
= 249K subscribers

SUBSCRIBED N

SAFARI Research Group: Introduction & Research — ETH Future Computing

Laboratorv Event Talk - Onur Mutlu

https://youtu.be/mSr1QQmYuXO0 13
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Fundamentally Better Architectures

Data-centric

Data-driven

Data-aware

SAFARI
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A Blueprint for Fundamentally Better Architectures

= Onur Mutluy,

'Intelligent Architectures for Intelligent Computing Systems"
Invited Paper in Proceedings of the Design, Automation, and Test in
Europe Conference (DATE), Virtual, February 2021.

Slides (pptx) (pdf)]

[IEDM Tutorial Slides (pptx) (pdf)]

[Short DATE Talk Video (11 minutes)]

[Longer IEDM Tutorial Video (1 hr 51 minutes)]

Intelligent Architectures for Intelligent Computing Systems

Onur Mutlu
ETH Zurich

omutlu@gmail.com

SAFARI 15
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https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pdf
https://www.youtube.com/watch?v=eAZZGDlsDAY
https://www.youtube.com/watch?v=H3sEaINPBOE

The Problem

Computing
IS Bottlenecked by Data

SAFARI



Data 1s Key for Al, ML, Genomics, ...

Important workloads are all data intensive

They require rapid and efficient processing of large amounts
of data

Data is increasing
o We can generate more than we can process
o We need to perform more sophisticated analyses on more data

SAFARI 17



Huge Demand for Performance & Efficiency

Exponential Growth of Neural Networks aa

Memory and compute requirements 1800x more compute

2018 2019 2020+ i
o MSET-AT (1) In just 2 years

e MT-NLG (530B)
® GPT-3 (175B)

100,000

10,000

1,000

e T5(11B)

o I-NLG (17B) Tomorrow, multi-trillion

EEmE (':"ZQB";‘”O”'LM i3 parameter models
. b .

100

10 ~4 orders of magnitude increase

¢ BERT Large (340M)

Total training compute, PFLOP-days

" oBERT Base (110M) In me'_“o:x reqUIremlent in
ust two years!
| Model memory requirement, GE ]
—

P P ) 243/10875 ud @B & & O

SAFARI https://www.youtube.com/watch?v=x2-qB0J7KHw 18
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Data 1s Key for Future Workloads

In-memory Databases Graph/Tree Processing
[Mao+, EuroSys’12; [Xu+, ISWC’12; Umuroglu+, FPL’15]
Clapp+ (Intel), ISWC’ 5]

et N
Spark

In-Memory Data Analytics Datacenter Workloads
[Clapp+ (Intel), ISWC'I5; [Kanev+ (Google), ISCA’15]
Awan+, BDCloud’15]

SAFARI



Data Overwhelms Modern Machines

In-memory Databases Graph/Tree Processing

Data — performance & energy bottleneck

APACHE

Spark

In-Memory Data Analytics Datacenter Workloads
[Clappt (Intel), ISWC’I5; [Kanev+ (Google), ISCA’|5]
Awan+, BDCloud’ | 5]

SAFARI




Data is Key for Future Workloads

e T

Chrome TensorFlow Mobile
Google’s web browser Google’s machine learning
framework
VP9 VP9
@ O VouTube © O Voulube
Video Playback Video Capture
Google’s video codec Google’s video codec

SAFARI



Data Overwhelms Modern Machines

f

Chrome TensorFlow Mobile

Data — performance & energy bottleneck

@ O VouTube @ O YouTube
Video Playback Video Capture
Google’s video codec Google’s video codec

SAFARI



Data 1s Key for Future Workloads

development of high-throughput
sequencing (HTS) technologies

enome

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Number of Genomes '
1,62
Sequenced AN

2014 2015 2016 2017 Source: IHumina

SAFARI http://www.economist.com/news/21631808-so-much-genetic-data-so-many-uses-genes-unzipped ~ 23
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Billions of Short Reads
"ATATATACGTACTAGTACGT

TTTAGTACGTACGT
ATACGTACTAGTACGT

CGCCCCTACGTA

ACGTACTAGTACGT
" TTAGTACGTACGT
TACGTACTAAAGTACGT
ATACGTACTAGTACGT
' TTTAAAACGTA

CGTACTAGTACGT

GGGAGTACGTACGT

CCTATAATACG
0f1]2 ‘

OOP—AP—AP—AODO

\
Short Read Read

ll Sequencing

Genome
Analysis

o Reference Genome o
Read Mapping n

read5: CCATGACGC
readé6: TTCCATGAC

k) variant Calling

Scientific Discoveryn



Data Overwhelms Modern Machines ...

= Storage/memory capability

= Communication capability

= Computation capability

= Greatly impacts robustness, energy, performance, cost

SAFARI
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A Computing System

= Three key components
= Computation
= Communication

- Storage/ memory Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Computing System

A
Computing E 5 Communication E a Memory/Storage
Unit Unit Unit
- Jo
Memory System Storage System
SAFAR 26
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We Need A Paradigm Shift To ...

= Enable computation with minimal data movement

= Compute where it makes sense (where data resides)

= Make computing architectures more data-centric

SAFARI 27



Goal: Processing Inside Memory

Processor

t Database

Core

! Media

Results

Many questions ... How do we design the:

Q

o o O 0O

compute-capable memory & controllers?
processors & communication units?
software & hardware interfaces?

system software, compilers, languages?
algorithms & theoretical foundations?

SAFARI

Interconnect

Graphs

Problem

Program/Language

System Software

SW/HW Interface

Micro-architecture

Logic

Electrons




SAFARI

Outline
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Outline

1 Programming a Real PIM Architecture

Overview of recently published works

2 System Support for PuM Architectures

Overview of recently published works

3 Accelerating Key Applications with PIM

SAFARI 30



A State-of-the-Art PIM System

Standard Main Memory

s N
(Host CPU /7
/7 Memory Array
gl g 4 (Rank or Bank)
8 S /MP
Of & G y,
b o) ' (. L)
) .
(4] Instruction |Scratchpad/
-5 tLu \\\ —— Memory Memory Memory
gl S = - Array Array
) Rl ARl OO
) = PIM PE PIM PE
[ \lPIM Processing Elements

M_-

PIM-enabled Memory

 In our work, we use the UPMEM PIM architecture
- General-purpose processing cores called DRAM Processing
Units (DPUs
« Up to 24 PIM threads, called task/ets

 32-bit integer arithmetic, but multiplication/division are
emulated*, as well as floating-point operations

- 64-MB DRAM bank (MRAM), 64-KB scratchpad ( WRAM)

SA FARI * 8-bit integer multiplication is natively supported ol



Main Memory

2,560-DPU UPMEM PIM System

N
—_— g —

Chip || Chip || Chip || Chip || Chip || Chip || Chip || Chip
G oram) onamoran) oram oramoramoram

chip || chip || chip )| chip || chip || chip || chip || chip
Host

cpuo PI—— 2560 DPUs

PIM-enabled Memory

Main Memory

)

N
(,_,_,—,—,_w_,_,,_,\

Chip || chip || Chip |\ Chip )| chip )| Chip )| Chip |\ Chip
(oram\(Gram\(ram\(bram (Gram (Gram\(Eram (GramM
Chip || chip || chip || chip )| chip || chip || chip || chip ) /

x2

Host
CPU 1

\\
S

(PIM PIM PIM PIM PIM PIM PIM PIM
chip || chip || chip || chip || chi hip || chip || chip
PIM PIM PIM PIM PIM PIM PIM PIM
Chip || Chip || Chip || Chip || Chip || Chip || Chip || Chip
¥ x10

PIM-enablegyMemo
160 GB

« 20 UPMEM DIMMs of 16
chips each (40 ranks)

« Dual x86 socket

« UPMEM DIMMs coexist
with regular DDR4 DIMMs
- 2 memory controllers/socket

- 2 conventional DDR4 DIMMs
on one channel of one
controller

SA FA R’ * There are some faulty DPUs in the system that we use in our

experiments. Thus, the maximum number of DPUs we can use is 2,524




Programming a Real PIM Architecture:

Overview of recently published works

1 Jinfan Chen, Juan Gomez-Luna, Izzat El Hajj, YuXin Guo, and Onur

Mutlu, "SimplePIM: A Software Framework for Productive and
Efficient Processing in Memory," in PACT, 2023.

Harshita Gupta, Mayank Kabra, Juan Gomez-Luna, Konstantinos
Kanellopoulos, and Onur Mutlu, " Evaluating Homomorphic

2 Operations on a Real-World Processing-In-Memory System,”
in IISWC, 2023.

Juan Gomez Luna, Yuxin Guo, Sylvan Brocard, Julien Legriel, Remy
3 Cimadomo, Geraldo F. Oliveira, Gagandeep Singh, and Onur Mutlu,

" Evaluating Machine Learning Workloads on Memory-Centric

Computing Systems,’ in 1SPASS, 2023.

Mohammad Sadrosadati, and Onur Mutlu, " TransPimLib: Efficient
Transcendental Functions for Processing-in-Memory Systems,”
in ISPASS, 2023.

SAFARI 33
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Programming a Real PIM Architecture:

Overview of recently published works

Jinfan Chen, Juan Gomez-Luna, Izzat El Hajj, YuXin Guo, and Onur

Mutlu, "SimplePIM: A Software Framework for Productive and
Efficient Processing in Memory," in PACT, 2023.

4
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2023 International Conference on Parallel Architectures and Compilation Techniques

SimplePIM:

A Software Framework for Productive
and Efficient Processing-in-Memory

Jinfan Chen, Juan Gémez Luna, Izzat El Hajj, Yuxin Guo, Onur Mutlu

https://arxiv.org/pdf/2310.01893.pdf
https://github.com/CMU-SAFARI/SimplePIM
juang@ethz.ch

m Ziirich SA F A R ’

Monday, October 23, 2023
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Executive Summary

SAFARI

Processing-in-Memory (PIM) promises to alleviate the data movement
bottleneck

Real PIM hardware is now available, e.g., UPMEM PIM

However, programming real PIM hardware is challenging, e.g.:
- Distribute data across PIM memory banks,

- Manage data transfers between host cores and PIM cores, and between PIM
cores,

- Launch PIM kernels on the PIM cores, etc.

SimplePIM is a high-level programming framework for real PIM hardware
- lterators such as map, reduce, and zip
- Collective communication with broadcast, scatter,and gather

Implementation on UPMEM and evaluation with six different
workloads

- Reduction, vector add, histogram, linear/logistic regression, K-means

- 4.4x fewer lines of code compared to hand-optimized code

- Between 15% and 43% faster than hand-optimized code for three workloads

Source code: https://github.com/CMU-SAFARI/SimplePIM
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Programming a PIM System (1)

* Example: Hand-optimized histogram with UPMEM SDK

// Initialize global variables and functions for histogram
int main kernel () {
if (tasklet id == 0)
mem reset(); // Reset the heap
// Initialize variables and the histogram
T *input buff A = (T*)mem alloc(2048); // Allocate buffer in scratchpad memory

for (unsigned int byte index = base tasklet; byte index < input size; byte index += stride)
// Boundary checking

{

uint32 t 1 size bytes = (byte index + 2048 >= input size) ? (input size - byte index) : 2048;

// Load scratchpad with a DRAM block

mram read((const  mram ptr void*) (mram base addr A + byte index), input buff A, 1 size bytes);

// Histogram calculation
histogram(hist, bins, input buff A, 1 size bytes/sizeof (uint32 t));

barrier wait (&my barrier); // Barrier to synchronize PIM threads
// Merging histograms from different tasklets into one histo dpu
// Write result from scratchpad to DRAM
if (tasklet id == 0)
if (bins * sizeof(uint32 t) <= 2048)

mram write(histo dpu, ( mram ptr void*)mram base addr histo, bins * sizeof (uint32 t));
else
for (unsigned int offset = 0; offset < ((bins * sizeof(uint32 t)) >> 11); offset++) {
mram write(histo dpu + (offset << 9), (_ mram ptr void*) (mram base addr histo +

(offset << 11)), 2048);
}

return O;

SAFARI
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Programming a PIM System (lI)

* PIM programming is challenging
- Manage data movement between host DRAM and PIM DRAM
* Parallel, serial, broadcast, and gather/scatter transfers

- Manage data movement between PIM DRAM bank and
scratchpad

* 8-byte aligned and maximum of 2,048 bytes
- Multithreaded programming model

- Inter-thread synchronization
* Barriers, handshakes, mutexes, and semaphores

Our Goal
Design a high-level programming framework that abstracts these

hardware-specific complexities and provides a clean yet powerful
interface for ease of use and high program performance

SAFARI 38



The SimplePIM Programming Framework

* SimplePIM provides standard abstractions to build and
deploy applications on PIM systems

- Management interface
* Metadata for PIM-resident arrays

- Communication interface
* Abstractions for host-PIM and PIM-PIM communication

- Processing interface
* Iterators (map, reduce, zip) to implement workloads

SAFARI 39



Productivity Improvement (1)

* Example: Hand-optimized histogram with UPMEM SDK

// Initialize global variables and functions for histogram
int main kernel () {
if (tasklet id == 0)
mem reset(); // Reset the heap
// Initialize variables and the histogram
T *input buff A = (T*)mem alloc(2048); // Allocate buffer in scratchpad memory

for (unsigned int byte index = base tasklet; byte index < input size; byte index += stride)
// Boundary checking

{

uint32 t 1 size bytes = (byte index + 2048 >= input size) ? (input size - byte index) : 2048;

// Load scratchpad with a DRAM block

mram read((const  mram ptr void*) (mram base addr A + byte index), input buff A, 1 size bytes);

// Histogram calculation
histogram(hist, bins, input buff A, 1 size bytes/sizeof (uint32 t));

barrier wait (&my barrier); // Barrier to synchronize PIM threads
// Merging histograms from different tasklets into one histo dpu
// Write result from scratchpad to DRAM
if (tasklet id == 0)
if (bins * sizeof(uint32 t) <= 2048)

mram write(histo dpu, ( mram ptr void*)mram base addr histo, bins * sizeof (uint32 t));
else
for (unsigned int offset = 0; offset < ((bins * sizeof(uint32 t)) >> 11); offset++) {
mram write(histo dpu + (offset << 9), (_ mram ptr void*) (mram base addr histo +

(offset << 11)), 2048);
}

return O;

SAFARI

40



Productivity Improvement (lI)

* Example: SimplePIM histogram

// Programmer-defined functions in the file "histo filepath"
void init func (uint32 t size, void* ptr) ({

char* casted value ptr = (char*) ptr;
for (int 1 = 0; 1 < size; 1i++)
casted value ptr[i] = 0;

void acc_ func (void* dest, void* src) {
*(uint32 t*)dest += *(uint32 t*)src;
}

void map to val func (void* input, void* output, uint32 t* key) {
uint32 t d = *((uint32 t*)input);
*(uint32_ t*)output = 1;
*key = d * bins >> 12;

}

// Host side handle creation and iterator call
handle t* handle = simple pim create handle("histo filepath", REDUCE, NULL, O0);

// Transfer (scatter) data to PIM, register as "tl1"
simple pim array scatter("tl", src, bins, sizeof (T), management);

// Run histogram on "tl" and produce "t2"
simple pim array red("tl", "t2", sizeof(T), bins, handle, management);

SAFARI



Productivity Improvement (lil)

* Lines of code (LoC) reduction

Reduction 14 83 5.93x
Vector Addition 14 82 5.86x
Histogram 21 114 5.43x
Linear Regression 48 157 3.27x
Logistic Regression 59 176 2.98x
K-Means 68 206 3.03x

4 )

SimplePIM reduces the number of lines of effective code
! by a factor of 2.98x t0 5.93x )

SAFARI



Performance Evaluation (1)

* Weak scaling analysis
Vector Addition Reduction Histogram
30 ——
—_ 2 50
g 20 0
- 10 25
p 10
£ og oLl | \ 0 |
- 1216 2432 608 1216 2432 608 1216 2432
g K-Means Linear Regression Logistic Regression
£ 150 50 100
(%)
100
3 25 50
w 50
0 0 0~ ‘ ;
1216 2432 608 1216 2432 608 1216 2432
Number of PIM Cores
B SimplePIM (CPU Time) B Hand-optimized Impl. (CPU Time)

1 SimplePIM (PIM Kernel Time) Hand-optimized Impl. (PIM Kernel Time)

SimplePIM achieves comparable performance for
reduction,histogram,and linear regression

SimplePIM outperforms hand-optimized implementations for
vector addition, logistic regression,
L and k-means by 10%-37%

SAFARI
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Performance Evaluation (II)

* Strong scaling analysis

Vector Addition Reduction Histogram
30 1.0 1.01.0 :01.0
_ 1.0 20 50
w 20 Lo 1717 1.8.1:6
é 10 2.0 Lo 10 2.6.2:3 25 3.02:5
g N
E %608 1216 2432 0_608 1216 2432 0 608 1216 2432
c K-Means Linear Regression Logistic Regression
1.0 1.0 1.0
g 150 50/ 59 100 10
: .
g 100 e 1.8 25 1.9 2.0 a3 50 102:0
x - 3.0 3.0 3.3
0 i N
0~ ‘ ‘ 0~/ ‘ 0~ ‘ ‘
608 1216 2432 608 1216 2432 608 1216 2432

Number of PIM Cores
BN Hand-optimized Impl. (CPU Time)
Hand-optimized Impl. (PIM Kernel Time)

B SimplePIM (CPU Time)
1 SimplePIM (PIM Kernel Time)

rSimpIePlM scales better than hand-optimized implementations1
for reduction,histogram,and l1inear regression

SimplePIM outperforms hand-optimized implementations for
vector addition, logistic regression,

L and k-means by 15%-43%

SAFARI
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Discussion

* SimplePIM is devised for PIM architectures with

- A host processor with access to standard main memory and
PIM-enabled memory

- PIM processing elements (PEs) that communicate via the
host processor

- The number of PIM PEs scales with memory capacity

* SimplePIM emulates the communication between PIM
cores via the host processor

* Other parallel patterns can be incorporated in future
work
- Prefix sum and filter can be easily added

- Stencil and convolution would require fine-grained scatter-
gather for halo cells

- Random access patterns would be hard to support

SAFARI



SimplePIM: arXiv Version

SimplePIM: A Software Framework for
Productive and Efficient Processing-in-Memory

Jinfan Chen! Juan Gémez-Luna! Izzat E1Hajj? Yuxin Guo!  Onur Mutlu?
1ETH Ziirich  ?American University of Beirut

https://arxiv.org/pdf/2310.01893.pdf

SAFARI
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Source Code

SimpIePIM Private <7 EditPins ~ ® Unwatch 3

¢ ttps:l l glthUbtcom/ ¥ main ~ ¥ 1branch © 0 tags Go to file Add file ~

( IVI U ol Wangsitu98 interface cleanups, added allreduce and allgather 3421614 2 days ago O 7 commits
S g F n R I /S ° I P I IVI B benchmarks interface cleanups, added allreduce and allgather 2 days ago
— = I l I l p—e W lib interface cleanups, added allreduce and allgather 2 days ago
% .gitignore some cleanups 3 weeks ago
[ README.md pushed SimplePIM last month
‘= README.md V4

SimplePIM ¢~

This project implements SimplePIM, a software framework for easy and efficient in-memory-hardware
programming. The code is implemented on UPMEM, an actual, commercially available PIM hardware that
combines traditional DRAM memory with general-purpose in-order cores inside the same chip. SimplePIM
processes arrays of arbitrary elements on a PIM device by calling iterator functions from the host and
provides primitives for communication among PIM cores and between PIM and the host system.

We implement six applications with SimplePIM on UPMEM:

Vector Addtition
Reduction

K-Means Clustering
Histogram

Linear Regression

Logistic Regression

Previous manual UPMEM implementations of the same applications can be found in PrIM benchmark
(https://github.com/CMU-SAFARI/prim-benchmarks), dpu_kmeans (https://github.com/upmem/dpu_kmeans)
and prim-ml (https://github.com/CMU-SAFARI/pim-ml). These previous implementations can serve as
baseline for measuring SimplePIM's performance as well as productivity improvements.

v
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Programming a Real PIM Architecture:

Overview of recently published works

2

Juan Gomez Luna, Yuxin Guo, Sylvan Brocard, Julien Legriel, Remy
3 Cimadomo, Geraldo F. Oliveira, Gagandeep Singh, and Onur Mutlu,

" Evaluating Machine Learning Workloads on Memory-Centric

Computing Systems,’ in 1SPASS, 2023.

4
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Executive Summary

Problem: Training machine learning (ML) algorithms is a computationally

expensive process, frequently memory-bound

« Memory-centric computing systems can alleviate data movement bottlenecks

« Real-world PIM systems have only been manufactured and commercialized

« UPMEM has designed and fabricated the first publicly-available PIM architecture

\

Goal: Understand the potential of modern general-purpose PIM
architectures to accelerate machine learning training

7

Our main contributions:

« PIM implementation of several classic machine learning algorithms: linear regression,
logistic regression, decision tree, K-means clustering

« Workload characterization in terms of quality, performance, and scaling

« Comparison to their counterpart implementations on processor-centric systems (CPU and
GPU)

Key Results:
« PIM version of DTR is 27x / 1.34x faster than the CPU / GPU version, respectively
« PIM version of KME is 2.8x / 3.2x faster than the CPU / GPU version, respectively

SAFARI
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Machine Learning Workloads

» Machine learning training
with large amounts of

data is a computationally
expensive process, which
requires many iterations

=10 Networks
/ Linear regression  Logistic regression K-means
O u p a e a n I I l O e S Decision trees Decision trees K-median
Ridge regression K-nearest neighbor Hierarchical
Ordinary least Support vector clustering
a ra m ete rS squares regression  machine Mean shift
Stepwise regression Naive Bayes

* Frequent data movement between memory and processing
elements to access training data

* The amount of computation is not enough to amortize the
cost of moving training data to the processing elements

- Low arithmetic intensity
- Low temporal locality
- Irregular memory accesses

SAFARI 51



Machine Learning Workloads:
Our Goal

« Our goal is to study and analyze how real-world general-
ourpose PIM can accelerate ML training

* Four representative ML algorithms: linear regression,
ogistic regression, decision tree, K-means

« Roofline model to quantify memory boundedness of
CPU versions

— 30'

; Peak compute performance

—_
o

Performance (GOPS
- w

0.01 0.1 1 10
Arithmetic Intensity (OP/B)

[ All workloads fall in the memory-bound area of the Roofline ]
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ML Training Workloads

Machine learning
Unsupervised
learning

 Four widely-used machine learning
workloads:

Linear regression (LIN)

Logistic regression (1.OG)

Reinforcement
learning

Decision tree (DTR) S SR R
K-means clustering (KME)

« Diversity of our ML training workloads:
- Memory access patterns
- Operations and datatypes
- Communication/synchronization

Learning Avplication | Alsorithm Short name Memory access pattern Computation pattern Communication/synchronization
approach PP & Sequential | Strided | Random Operations | Datatype Intra PIM Core | Inter PIM Core
Regression Linear Regression LIN Yes No No mul, add float, int32_t barrier Yes
Supervised Classification Logistic Regression LOG Yes No No mul, add, exp, div | float, int32_t barrier Yes
Decision Tree DTR Yes No No compare, add float barrier, mutex Yes
Unsupervised | Clustering K-Means KME Yes No No ul, compare, add | int16_t, int64_t| barrier, mutex Yes
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Evaluation:
Analysis of PIM Kernels (I)

60000 |

° L g . 2 - ;
INEAr regression B 50000 1<, (a) LINFP32 — e
£ 20000 -
- 1 10000 -

o]
é 0 T T T T T T T T T T T T T T T T T T T T T T T
FiXEd-point representation s 1234567 89101112131415161718192021222324
accelerates the kel‘nel by an & Number of PIM Threads (per PIM Core)
order of magnitude 5000 e

— (b) LIN INT Versions | oo asz

over FP32 £ 4000
@ ——LIN-INT32 400 A 4

- /£ 3000 o~ LIN-HYB 200 -
|—
T 5000 LIN-BUI . 259
g / 135 7 911131517 19 21 23
1000
% e y

Key Takeaway 1. Workloads
with arithmetic operations or
datatypes not natively

123456 7 8 9101112131415161718192021222324
Number of PIM Threads (per PIM Core)

Recommendation 1. Use fixed-
point representation, without

supported by PIM cores run at
low performance due to
instruction emulation (e.g., FP in
UPMEM PIM).

SAFARI

much accuracy loss, if PIM cores do
not support FP.




Evaluation:
Analysis of PIM Kernels (II)

* Linear regression
4 )
LIN-HYB is 419% faster than
LIN-INT32
\, J
4 N
LIN-BUI provides an
X additional 25% speedup

SAFARI

Recommendation 2.

Quantization can take

advantage of native
hardware support. Hybrid
precision can significantly
improve performance.

60000
2 50000
= 40000

PIM Kernel Time (m
o

(a) LIN-FP32
. —0—LIN-FP32
i N 4550

123456 7 8 9101112131415161718192021222324
Number of PIM Threads (per PIM Core)

PIM Kernel Time (ms)

(b) LIN INT Versions

——LIN-INT32
—o—LIN-HYB
LIN-BUI

800

600 -

400 A

-

123456 7 8 9101112131415161718192021222324
Number of PIM Threads (per PIM Core)

Recommendation 3.
Programmers/better compilers can optimize code

by leveraging native instructions (e.g., 8-bit
integer multiplication in UPMEM) .




Evaluation:
Analysis of PIM Kernels (I1II)

1 1 1 __ 500000
* LOQlSth regression  s00000 { (2 LOG 32 Version —
4 N\ E 200000 20 40316 0~ LOG-INT32
i . T 100000 { o
Very high kernel time of LOG- 5 o
FP32 and LOG_INT32 due tO % 1234567 8 9101112131415161718192021222324
. _d . . Number of PIM Threads (per PIM Core)
Sigmoid approximation o — :
\_ J o (b) LOG LUT Versions |60 | & \'\4/63
g 4000 - —o— LOG-INT32-LUT (MRAM) Q “e‘ ~-N\%<?<>-<><><><><><><><>
( \ < o LOG-INT32-LUT (WRAM)| 400 - o 8000065666565
£ 3000 \i Loeauriur (wiawy_|| 200 1 5y JQO00000000000
LOG-INT32-LUT(MRAM) is 53x € 2000 C\K\\ 0 e A
g DY 1 35 7 911131517 192123
faster than LOG-INT32 S 1000 4O, |
k ) 0l| E— llll'll 00 lllllllllll
123456 7 8 9101112131415161718192021222324
Number of PIM Threads (per PIM Core)
Recommendation 4. 4 i A
Convert computation to memor LOG-HYB-LUT is 28% faster than
S / LOG-INT32-LUT
accesses by keeping pre-calculated \ y
N\

operation results (e.g., LUTs, 4 i
LOG-BUI-LUT provides an

additional 43% speedup

memoization) in memory.
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Evaluation: Performance Scaling (I)

» Strong scaling

=55 PIM-CPU
300000 1 (D | nter PIM Core
7 == CPU-PIM
250000 PIMKerneI
@ % ~O—Speedup
£ 500000 {
2 %
= 150000 g
£ .
2 100000 { 1)
2 %
50000 - é
o L
1024 | 2048
LIN-FP32
20000
18000 | =
16000 { P
£ 14000 - ?
- %
2 12000 - g
£ 10000 Z A
2 8000 é ?
g 6000 é é
2 000 { A7 2
2000 { £ Z . 7
S/ NN
256 | 512 | 1024 | 2048
LIN-HYB

30000 D Inter PIM Core
=3cpu-PIM ]

25000 - PIM Kernel

’g ~O—Speedup

~ 20000 A

o

£

"~ 15000

2

3 10000 -

o

&

5000 { |4

512 | 1024 | 2048

DTR

SAFARI

O R N WA U O N O

o RPN W S U O N ®

30000

25000

20000

15000

10000

5000

16000
14000
12000
10000
8000
6000
4000
2000

10000
9000
8000
7000
6000
5000
4000
3000
2000
1000

)

12
Z
17
g
. 4
v B
17 7

7
idR
/R
256 | 512 (1024 | 2048

LIN-INT32

O

7
1
10
. 4
T1W
w
4 ¥ A
T ¢
/A N
256 | 512 (1024 | 2048

LIN-BUI

Y o |
NN
=

KME

O B N W A U N ®

O R N WA GO O N 0O

Speedup

Speedup

Speedup

256 to 2,048 PIM cores

ion Time (ms)

Execut

ms)

Execution Time (

Execution Time (ms)

2500000

2000000

1500000

1000000

500000

30000

25000

20000

15000

10000

5000

25000

20000

15000

10000

5000

| nter PIM Core,
-CPU—PIM
PIM Kemel
/ ~O—Speedup

256 | 512 (1024|2048

LOG-FP32
O

7%

é

1

/

/

17

é O

1 P

2%

9‘%?;

A 1 0 U

256 | 512 | 1024 | 2048

LOG-INT32-LUT (MRAM)

o ..

SRR e R
NS

512 | 1024 | 2048

256

LOG-HYB-LUT (WRAM)

O B N W A OO N ® O B N W A U N ®

O B N W A U O N

900000 -
800000 { ]
ﬁ
700000 4 1
600000 z
500000 z 4
400000 Z 7
300000 {
1 A
200000 g 7 0
100000 ;‘g g 7
A 9 O ¥
256 | 512 |1024 | 2048
LOG-INT32
30000
O
25000 1 o
7
20000 1 2
Z
15000 1 % .
10000 é 7
4 2 é
sooo { A7V P
‘4N
dn
LOG-INT32-LUT (WRAM)
14000
? O
12000 1
/
10000 1 é
8000 2 y
7 _—
6000 { 7] P
a0 1 H
197 B
2000 ? é ? E"'
1 0 U U
ol Y Y Y

256 | 512 | 1024 | 2048

LOG-BUI-LUT (WRAM)

Speedup

Speedup

Speedup

-

\_

PIM kernel time scales
linearly with the
number of PIM cores

~

J

Little overhead from
inter PIM core
communication and

communication
between host and PIM
cores

57



Conclusion

Problem: Training machine learning (ML) algorithms is a computationally

expensive process, frequently memory-bound

« Memory-centric computing systems can alleviate data movement bottlenecks

« Real-world PIM systems have only been manufactured and commercialized

« UPMEM has designed and fabricated the first publicly-available PIM architecture

\

Goal: Understand the potential of modern general-purpose PIM
architectures to accelerate machine learning training

7

Our main contributions:

« PIM implementation of several classic machine learning algorithms: linear regression,
logistic regression, decision tree, K-means clustering

« Workload characterization in terms of quality, performance, and scaling

« Comparison to their counterpart implementations on processor-centric systems (CPU and
GPU)

Key Results:
« PIM version of DTR is 27x / 1.34x faster than the CPU / GPU version, respectively
« PIM version of KME is 2.8x / 3.2x faster than the CPU / GPU version, respectively

SAFARI
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Next Steps for Real PIM Systems

 Frameworks to ease PIM programmability

- Goal: A framework that can automatically distribute input and gather
output data, handle memory management, and parallelize work across
PIM cores

- Benchmark and analyze other real PIM architectures
- Samsung’s HBM-PIM
- SK Hynix’s AiM

- Design Other Applications on PIM Systems
- Database primitives
- Genomics
- DNN training
- Homomorphic encryption
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Real PIM Tutorial (ISCA 2023)

e June 18t": Lectures + Hands-on labs + Invited lectures

ISCA 2023 Real-World PIM Tutorial o

Recent Changes Media Manager Sitemap

Trace: « start

start

Table of Contents

Real-world Processing-in-Memory Systems for Modern Workloads Real-world Processing-in-Memory
Systems for Modern Workloads
Tutorial Description Tutorial Description
Organizers
Processing-in-Memory (PIM) is a computing paradigm that aims at overcoming the data movement Agenda (June 18, 2023)

Lectures (tentative)
Hands-on Labs (tentative)
Learning Materials

bottleneck (i.e., the waste of execution cycles and energy resulting from the back-and-forth data movement
between memory units and compute units) by making memory compute-capable.

Explored over several decades since the 1960s, PIM systems are becoming a reality with the advent of the
first commercial products and prototypes.

A number of startups (e.g., UPMEM, Neuroblade) are already commercializing real PIM hardware, each with its own design approach and
target applications. Several major vendors (e.g., Samsung, SK Hynix, Alibaba) have presented real PIM chip prototypes in the last two
years. Most of these architectures have in common that they place compute units near the memory arrays. This type of PIM is called
processing near memory (PNM).

PIM can provide large improvements in both performance and energy
consumption for many modern applications, thereby enabling a
commercially viable way of dealing with huge amounts of data that is
bottlenecking our computing systems. Yet, it is critical to (1) study and
understand the characteristics that make a workload suitable for a PIM
architecture, (2) propose optimization strategies for PIM kernels, and (3)
develop programming frameworks and tools that can lower the learning
curve and ease the adoption of PIM.

This tutorial focuses on the latest advances in PIM technology, workload
characterization for PIM, and programming and optimizing PIM kernels. We
will (1) provide an introduction to PIM and taxonomy of PIM systems, (2)
give an overview and a rigorous analysis of existing real-world PIM
hardware, (3) conduct hand-on labs about important workloads (machine
learning, sparse linear algebra, bioinformatics, etc.) using real PIM systems,
and (4) shed light on how to improve future PIM systems for such workloads.

ps:/ /arxiv.org/pdf/2105.03814.pdf
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Real PIM Tutorial (MICRO 2023)

e Oct. 28th: Lectures + Hands-on labs + Invited lectures

Table of Contents

Real-world Processing-in-Memory Systems for Modern Workloads Real-world Processing-in-Memory
| b Systems for Modern Workloads
Tutorial Description Tutorial Description

Livestream
Processing-in-Memory (PIM) is a computing paradigm that aims at overcoming the data movement bottleneck

Organizers
(i.e., the waste of execution cycles and energy resulting from the back-and-forth data movement between Agenda (October 29, 2023)
memory units and compute units) by making memory compute-capable. Lectures (tentative schedule,
time zone: EDT GMT-4)
Explored over several decades since the 1960s, PIM systems are becoming a reality with the advent of the first Tutorial Materials

commercial products and prototypes. Learning Materials

A number of startups (e.g., UPMEM, Neuroblade) are already commercializing real PIM hardware, each with its own design approach and target
applications. Several major vendors (e.g., Samsung, SK Hynix, Alibaba) have presented real PIM chip prototypes in the last two years. Most of
these architectures have in common that they place compute units near the memory arrays. This type of PIM is called processing near memory
(PNM).

: PIM can provide large improvements in both performance and energy

xﬁogg%vxﬂg PIM Tutorial Pl el sl consumption for many modern applications, thereby enabling a commercially
viable way of dealing with huge amounts of data that is bottlenecking our

computing systems. Yet, it is critical to (1) study and understand the
characteristics that make a workload suitable for a PIM architecture, (2) propose
optimization strategies for PIM kernels, and (3) develop programming
frameworks and tools that can lower the learning curve and ease the adoption of
PIM.

Organizers: Juan Gémez Luna, Onur Mutiu, Ataberk Olgun
Program: https://s
Livestream: https..

This tutorial focuses on the latest advances in PIM technology, workload

i e 210583814 00 characterization for PIM, and programming and optimizing PIM kernels. We will
(1) provide an introduction to PIM and taxonomy of PIM systems, (2) give an

overview and a rigorous analysis of existing real-world PIM hardware, (3) conduct hand-on labs about important workloads (machine learning,

sparse linear algebra, bioinformatics, etc.) using real PIM systems, and (4) shed light on how to improve future PIM systems for such workloads.
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Outline
1  Programming a Real PIM Architecture

Overview of recently published works

)  System Support for PuM Architectures

Overview of recently published works

3 Accelerating Key Applications with PIM
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Inside a DRAM Chip

Subarray
(2D Array
of DRAM Cells)

Sense Amplifiers

Row Buffer

DRAM Chips

SAFARI

DRAM MAT

/— Wordline
OO0 000 Louuca
OOOOO0O0 | wwme
1020,0502020; |
OO O OO0 |
.............................................................. k /
- Storage
DRAM Bank Capacitor

DRAM Module

Access
Transistor
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DRAM Cell Operation

wordline
—— 1/2 VDD
bitline
storage [ A8
capacitor
enable
sense
amplifier
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DRAM Cell Operation (1/3)

1. raise wordline 1 ANt O

1. ACTIVATE (ACT)

5. capaditor Idsesgehsrgestorbitline

4. amplify deviation
in the bitline

3. enable
sense amplifier
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DRAM Cell Operation (2/3)

2. READ/WRITE

. &= read/write charge

latched in sense amplifier
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DRAM Cell Operation (3/3)

1. lower
wordline BNp, 2- Precharge bitline for next access

3. PRECHARGE (PRE)

3. disable .

sense amplifier
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RowClone: In-DRAM Row Copy (1/2)

source A

—_—r 1/2 VDD

Row copy
command sequence:

destination B

enable
sense

SAFARI amplifier 70



RowClone: In-DRAM Row Copy (2/2)

1. ACTIVATE source row A Voo

Row copy
command sequence:

3. BRGIWHEeied
to cfergekt\ataassow A

3. ACTIVATE destination row B

Emmnm
...........
Ny
n
n
~
*

4. charge level of source row A
will be copied to destination row
B

enable
sense

SAFARI amplifier 71



Triple-Row Activation: Majority Function

SAFARI

A

—_— 1/2 VDD

bitline

Majority function

command sequence:

enable

sense
amplifier 72



Triple-Row Activation: Majority Function

1
1. ACTIVATE three rows —— \72“”
simultaneously DO it
— triple-row activation SR II_ '_”f __________ 1

Majority function
command sequence:

MAJ(A,B,C) =
MAJ(Vadar Vaar 0) = Vyd

3. values in cells A, B, C —
will be overwritten
with the majority output N e

4. PRECHARGE bitline el ~'
for next access enable

sense
SAFARI amplifier 73



Ambit: In-DRAM Bulk Bitwise AND/OR

—_— 1/2 VDD

bitline

MAJ (A, B, 0) = AND (A, B)

MAJ (A, B, 1) = OR (A, B)

enable
sense

SAFARI amplifier 74



Outline
1  Programming a Real PIM Architecture

Overview of recently published works

)  System Support for PuM Architectures

Overview of recently published works

3 Accelerating Key Applications with PIM
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System Support for PuM Architectures:

Overview of recently published works

1 Geraldo F. Oliveira, Ataberk Olgun, Giray Yaglikci, Nisa Bostanci, Juan
Gomez-Luna, Saugata Ghose, and Onur Mutlu, " MIMDRAM: An End-

to-End Processing-using-DRAM System for Enerqgy-Efficient

and Programmer-Transparent MIMD Computing,’ in HPCA,
2024.

2 Geraldo F. Oliveira, Alain Kohli, David Novo, Juan Gomez-Luna, Onur

Mutlu, “ DaPPA: A Data-Parallel Framework for Processing-in-
Memory Architectures,’ in PACT SRC, 2023.

3 Geraldo F. Oliveira, Emanuele G. Esposito, Juan Gdmez-Luna, and Onur
Mutlu, " PUMA: Efficient and Low-Cost Memory Allocation and

Alignment Support for Processing-Using-Memory
s AFaArchitectures,” in MICRO SRC, 2023. 76
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System Support for PuM Architectures:

Overview of recently published works

1 Geraldo F. Oliveira, Ataberk Olgun, Giray Yaglikci, Nisa Bostanci, Juan
Gomez-Luna, Saugata Ghose, and Onur Mutlu, " MIMDRAM: An End-

to-End Processing-using-DRAM System for Enerqgy-Efficient

and Programmer-Transparent MIMD Computing,” in HPCA,
2024.
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2024 IEEE International Symposium on High-Performance Computer Architecture (HPCA)

MIMDRAM: An End-to-End Processing-using-DRAM System
for Energy-Efficient and Programmer-Transparent MIMD Computing

Geraldo F. Oliveirat Ataberk Olgunf A. Giray Yaglikcif Nisa Bostancif
Juan Gémez-Lunaf Saugata Ghose: Onur Mutlut

+ ETH Ziirich ¥ University of Illinois at Urbana-Champaign

Geraldo F. Oliveira, Ataberk Olgun, Giray Yaglikci, Nisa Bostanci, Juan
Gomez-Luna, Saugata Ghose, and Onur Mutlu, "MIMDRAM: An End-to-End

Processing-using-DRAM System for Enerqy-Efficient and Programmer-Transparent
MIMD Computing,” in HPCA, 2024.
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Executive Summary

Problem: Processing-using-DRAM (PuD) suffers from three main issues

caused by DRAM’s |large and rigid access granularity

« Under-utilization due to varying degrees of SIMD parallelism in an application
« Limited computation pattern due to a lack of interconnecting networks

« Challenging programming model due to a lack of compilers

\

Goal: Design a flexible PuD system that overcomes the three limitations
caused by the large and rigid granularity of PuD

Key Mechanism: MIMDRAM, a hardware/software co-designed PuD
Key idea: leverage fine-grained DRAM (i.e., the ability to access portions of a DRAM row)

« Hardware side: (/) latches and isolation tranS/stors to enable concurrent execution of PuD
operations in a DRAM row; (/) interconnect networks to enable PuD reduction

« Software side. compiler passes to (/) identify and generate the PuD operations with the
appropriate granularity; (/) schedule the concurrent execution of PuD operations

Key Results: MIMDRAM achieves

« 18.6x the utilization, 152x the energy efficiency, 1.7x the throughput, and 1.3x the fairness
of a state-of-the-art PuD framework;

« 130x the energy efficiency of a high-end CPU
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Problem & Goal:
Application Analysis

Application analysis. quantify the amount of SIMD parallelism
real-world applications inherently display

Maximum Vectorization Factor:
how many operands can be executed in parallel

&

| L 1 I | I - | I = | { ul I 1 . | L h 1
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Problem & Goal:
Application Analysis

# Operands:

: quantify the amount of
real-world applications inherently display
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Problem & Goal

( )
The rigid granularity of PuD architectures limits
their applicability and efficiency for many applications.
The underlying PuD architecture often suffers from
SIMD underutilization and
consequentially energy and throughput waste
. J
( )
Design a Processing-using-DRAM architecture that:
1. adapts to the SIMD parallelism an application displays
2. maximizes the utilization of the PuD engine
. J
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MIMDRAM:

Overview

is a hardware/software co-designed PuD system that
enables at low cost and low programming
effort

Main components in MIMDRAM

1 Hardware-side
- subarray modification to enable MIMD-like fine-grained DRAM computation
- inter- and intra-mat network to enable PuD vector reduction

Software-side
- new compiler support to
- system support to to
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MIMDRAM:

Overview

is a hardware/software co-designed PuD system that
enables at low cost and low programming
effort

Main components in MIMDRAM

1 Hardware-side
- subarray modification to enable MIMD-like fine-grained DRAM computation
- inter- and intra-mat network to enable PuD vector reduction

Software-side
- new compiler support to
- system support to to
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global wordline

MIMDRAM:
DRAM Hardware Overview
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wordline

MIMDRAM:
DRAM Hardware Overview
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MIMDRAM:
DRAM Hardware Overview
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global wordline

MIMDRAM:
DRAM Hardware Overview
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MIMDRAM:

Control Unit

Goal: schedule and orchestrate the execution of

multiple PuD instructions transparently

(to memory controller)
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MIMDRAM:

Overview

MIMDRAM is a hardware/software co-designed PuD system that
enables fine-grained PuD computation at low cost and low programming
effort

Main components in MIMDRAM

1 Hardware-side
- subarray modification to enable MIMD-like fine-grained DRAM computation
- inter- and intra-mat network to enable PuD vector reduction

Software-side
- new compiler support to transparently generate PuD instructions
- system support to to enable the orchestration of PuD instructions
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MIMDRAM:

Software Overview

-
Transparently:
(1) extract SIMD parallelism from an application,
(2) schedule PuD operations while maximizing MAT utilization
G

Three new LLVM-based passes targeting PuD execution

code identification i code scheduling i code generation |
source code L . final binary
loop auto-vectorization DFG data scheduling
‘;°r(c°”d) é N [ Y ( mat1 mat0 ) bbop_add |
%3=adck8192x32>%1.9:2 bbop_sub

} g | | | bbop_div |

> > »|= | | | »1 bbop_mul
for(cond){} bop add%a3%1,8192,32) |:|:| vpadd

g J § y, - J
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MIMDRAM:

Software Overview

loop auto-vectorization

%3=add<8192 x i32> %1,%2

bbop_add (%3 ,%1,8192,32)

Identify SIMD parallelism and generate appropriate
PuD instructions with best vectorization factor

Changes to LLVM'’s auto-vectorization pass:

« Selection of the best-performing vectorization factor for a given loop —
always select as vectorization factor the maximum vectorization factor

« Code generation routine for a given vectorized loop —
identify and remove memory instructions related to an arithmetic SIMD

operation
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MIMDRAM:

Software Overview

____________________________________________

DFG data scheduling
( b (" mat1 mat0 )
N ——
gl | )
\ J o J

Key Idea: use a new malloc operation that informs the
OS about MAT allocation requirement

New code scheduling algorithm to

SAFARI schedule computation across MATs



MIMDRAM:

Software Overview

final binary

bbop_add |
bbop_sub

bbop_div |
bbop_mul

\ 4

vpadd

Generate the appropriate code for data allocation
and PuD execution
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Evaluation:
Methodology

« We implement MIMDRAM using the gem5 simulator

- real multicore CPU (Intel Skylake)
- state-of-the-art PuD framework (SIMDRAM)

- 12 applications from various benchmark suites
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Evaluation:
Single Application Analysis — SIMD Utilization

SAFARI

SIMDRAM ] MIMDRAM
—
X 100% —
= 1 I m o M
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Evaluation:
Single Application Analysis — Energy Efficiency

5 fﬂyﬂﬂﬂﬂﬂﬂﬂrﬂ

pca hw fdtp dg gmm km 2mm gs 3mm b'p cov x264GMEAN

Normalized
Perf/Watt - log
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Evaluation:
Multi Application Analysis

] SIMDRAM:1 ] SIMDRAM:2 [J] SIMDRAM:4 [0 SIMDRAM:8 0 MIMDRAM
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Conclusion

Problem: Processing-using-DRAM (PuD) suffers from three main issues

caused by DRAM’s |large and rigid access granularity

« Under-utilization due to varying degrees of SIMD parallelism in an application
« Limited computation pattern due to a lack of interconnecting networks

« Challenging programming model due to a lack of compilers

\

Goal: Design a flexible PuD system that overcomes the three limitations
caused by the large and rigid granularity of PuD

Key Mechanism: MIMDRAM, a hardware/software co-designed PuD
Key idea: leverage fine-grained DRAM (i.e., the ability to access portions of a DRAM row)

« Hardware side: (/) latches and isolation tranS/stors to enable concurrent execution of PuD
operations in a DRAM row; (/) interconnect networks to enable PuD reduction

« Software side. compiler passes to (/) identify and generate the PuD operations with the
appropriate granularity; (/) schedule the concurrent execution of PuD operations

Key Results: MIMDRAM achieves

« 18.6x the utilization, 152x the energy efficiency, 1.7x the throughput, and 1.3x the fairness
of a state-of-the-art PuD framework;

« 130x the energy efficiency of a high-end CPU
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In-Flash Bulk Bitwise Execution

Jisung Park, Roknoddin Azizi, Geraldo F. Oliveira, Mohammad Sadrosadati, Rakesh
Nadig, David Novo, Juan Gémez-Luna, Myungsuk Kim, and Onur Mutlu,
"Flash-Cosmos: In-Flash Bulk Bitwise Operations Using Inherent
Computation Capability of NAND Flash Memory"

Proceedings of the 55th International Symposium on Microarchitecture (MICRO),
Chicago, IL, USA, October 2022.

[Slides (pptx) (pdf)]

[Longer Lecture Slides (pptx) (pdf)]

[Lecture Video (44 minutes)]

[arXiv version]

Flash-Cosmos: In-Flash Bulk Bitwise Operations Using
Inherent Computation Capability of NAND Flash Memory

Jisung Park®V Roknoddin Azizi® Geraldo F. Oliveira® Mohammad Sadrosadati®
Rakesh Nadig® David Novo' Juan Gémez-Luna® Myungsuk Kim*¥ Onur Mutlu®

SETH Ziirich VPOSTECH  TLIRMM, Univ. Montpellier, CNRS  *Kyungpook National University
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https://arxiv.org/pdf/2209.05566.pdf
http://www.microarch.org/micro55/
https://people.inf.ethz.ch/omutlu/pub/FlashCosmos_micro22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/FlashCosmos_micro22-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/FlashCosmos_SSD-lecture-slides.pptx
https://people.inf.ethz.ch/omutlu/pub/FlashCosmos_SSD-lecture-slides.pdf
https://www.youtube.com/watch?v=ioPERTy7bz4
https://arxiv.org/abs/2209.05566
https://arxiv.org/pdf/2209.05566.pdf

Summary: Flash-Cosmos

4 )
The first work that enables
@ in-flash multi-operand bulk bitwise operations
with a single sensing operation and high reliability
\_ J
4 )
/il Improves performance
- \ by 32x/25x/3.5x over OSP/ISP/ParaBit )
4 )
@ Improves energy efficiency
by 95x/13.4x/3.3x over OSP/ISP/ParaBit
. J
4 )
® Low-cost & requires no changes to flash cell arrays
. J
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Flash-Cosmos: Basic Ideas

= Flash-Cosmos enables
« Computation on multiple operands with a single sensing operation
« Accurate computation results by eliminating raw bit errors in stored data

Operand 0,

Operand O,

Operand O3

Simultaneous sensing

Operand O3,
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Next Steps for PuM

- Executing processing-using-DRAM operations in real,
off-the-shelf DRAM chips

- We experimentally demonstrate that off-the-shelf DRAM chips are
capable of performing

« 1) NOT, NAND, and NOR operations
« 2) AND and OR operations with more than 2 inputs

- We present an extensive characterization of new bulk bitwise
operations in 224 off-the-shelf modern DDR4 DRAM chips

- System support for processing-using-DRAM

Functionally-Complete Boolean Logic in DRAM: An Experimental
Characterization and Analysis of Real DRAM Chips

[smail Emir Yuksel Yahya Can Tugrul Ataberk Olgun F. Nisa Bostanci A. Giray Yaglikci
« Geraldo F. Oliveira Haocong Luo Juan Gomez Luna Mohammad Sadrosadati  Onur Mutlu

ETH Zurich
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Outline
1  Programming a Real PIM Architecture

Overview of recently published works

2 System Support for PuM Architectures

Overview of recently published works

3  Accelerating Key Applications with PIM
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Casper, IEEE ACCESS 2023

=M RESEARCH ARTICLE

Casper: Accelerating Stencil Computations
Using Near-Cache Processing

ALAIN DENZLER -, GERALDO F. OLIVEIRA ', NASTARAN HAJINAZAR, RAHUL BERA,

GAGANDEEP SINGH, JUAN GOMEZ-LUNA -, (Member, IEEE),
AND ONUR MUTLU, (Fellow, IEEE)

Department of Information Technology and Electrical Engineering (D-ITET), ETH Ziirich, 8092 Ziirich, Switzerland
Corresponding author: Juan Gémez-Luna (juang @ethz.ch)

ABSTRACT Stencil computations are commonly used in a wide variety of scientific applications, ranging
from large-scale weather prediction to solving partial differential equations. Stencil computations are char-
acterized by three properties: 1) low arithmetic intensity, 2) limited temporal data reuse, and 3) regular and
predictable data access pattern. As a result, stencil computations are typically bandwidth-bound workloads,
which experience only limited benefits from the deep cache hierarchy of modern CPUs. In this work,
we propose Casper, a near-cache accelerator consisting of specialized stencil computation units connected
to the last-level cache (LLC) of a traditional CPU. Casper is based on two key ideas: 1) avoiding the
cost of moving rarely reused data throughout the cache hierarchy, and 2) exploiting the regularity of the
data accesses and the inherent parallelism of stencil computations to increase overall performance. With
small changes in LLC address decoding logic and data placement, Casper performs stencil computations
at the peak LLC bandwidth. We show that by tightly coupling lightweight stencil computation units near
LLC, Casper improves performance of stencil kernels by 1.65x on average (up to 4.16x) compared to a
commercial high-performance multi-core processor, while reducing system energy consumption by 35% on
average (up to 65%). Casper provides 37x (up to 190x) improvement in performance-per-area compared
to a state-of-the-art GPU.
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Accelerating Climate Modeling

« Gagandeep Singh, Dionysios Diamantopoulos, Christoph Hagleitner, Juan Gémez-
Luna, Sander Stuijk, Onur Mutlu, and Henk Corporaal,

"NERO: A Near High-Bandwidth Memory Stencil Accelerator for
Weather Prediction Modeling"”

Proceedings of the 30th International Conference on Field-Programmable Logic
and Applications (FPL), Gothenburg, Sweden, September 2020.

[Slides (pptx) (pdf)]

[Lightning Talk Slides (pptx) (pdf)]

[Talk Video (23 minutes)]

Nominated for the Stamatis Vassiliadis Memorial Award.

NERO: A Near High-Bandwidth Memory Stencil Accelerator
for Weather Prediction Modeling

Gagandeep Singh®?¢  Dionysios Diamantopoulos®  Christoph Hagleitner  Juan Gémez-Luna”
Sander Stuijk? Onur Mutlu? Henk Corporaal?
9Eindhoven University of Technology PETH Ziirich ‘IBM Research Europe, Zurich
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https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20.pdf
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20.pdf
https://www.fpl2020.org/
https://www.fpl2020.org/
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-lightning-talk.pdf
https://www.youtube.com/watch?v=xMiuqUyjkk0

Accelerating Approximate
String Matching

« Damla Senol Cali, Gurpreet S. Kalsi, Zulal Bingol, Can Firtina, Lavanya Subramanian, Jeremie S.
Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan Gomez-Luna, Amirali Boroumand, Anant
Nori, Allison Scibisz, Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu,
"GenASM: A High-Performance, Low-Power Approximate String Matchin
Acceleration Framework for Genome Sequence Analysis"

Proceedings of the 53rd International Symposium on Microarchitecture (MICRO), Virtual,
October 2020.

[Lighting Talk Video (1.5 minutes)]

[Lightning Talk Slides (pptx) (pdf)]

[Talk Video (18 minutes)]

[Slides (pptx) (pdf)]

GenASM: A High-Performance, Low-Power
Approximate String Matching Acceleration Framework
for Genome Sequence Analysis

Damla Senol Cali ™ Gurpreet S. Kalsi®  Ziilal Bingol¥  Can Firtina® Lavanya Subramanian Jeremie S. Kim®?
Rachata Ausavarungnirun® Mohammed Alser® Juan Gomez-Luna® Amirali Boroumand' Anant Nori®
Allison Scibisz|  Sreenivas Subramoney™ Can AlkanV Saugata Ghose*T  Onur Mutlu®TV

TCarnegie Mellon University ™ Processor Architecture Research Lab, Intel Labs " Bilkent University =~ °ETH Ziirich
YFacebook  ©King Mongkut’s University of Technology North Bangkok — * University of lllinois at Urbana—Champaign
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https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20.pdf
http://www.microarch.org/micro53/
https://www.youtube.com/watch?v=nJs3RRnvk_k
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-lightning-talk.pdf
https://www.youtube.com/watch?v=srQVqPJFqjo
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-talk.pdf

Accelerating Time Series Analysis

« Ivan Fernandez, Ricardo Quislant, Christina Giannoula, Mohammed Alser, Juan
Gomez-Luna, Eladio Gutiérrez, Oscar Plata, and Onur Mutlu,
"NATSA: A Near-Data Processing Accelerator for Time Series Analysis"
Proceedings of the 38th IEEE International Conference on Computer
Design (ICCD), Virtual, October 2020.
[Slides (pptx) (pdf)]
[Talk Video (10 minutes)]
[Source Code]

NATSA: A Near-Data Processing Accelerator
for Time Series Analysis

Ivan Fernandez® Ricardo Quislant® Christina Giannoula' Mohammed Alser?
Juan Gémez-Luna? Eladio Gutiérrez® Oscar Plata’ Onur Mutlu?
SUniversity of Malaga f National Technical University of Athens YETH Ziirich
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http://www.iccd-conf.com/
http://www.iccd-conf.com/
https://people.inf.ethz.ch/omutlu/pub/NATSA_time-series-analysis-near-data_iccd20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/NATSA_time-series-analysis-near-data_iccd20-talk.pdf
https://www.youtube.com/watch?v=PwhtSAVa_W4
https://github.com/CMU-SAFARI/NATSA

Accelerating Graph Pattern Mining

» Maciej Besta, Raghavendra Kanakagiri, Grzegorz Kwasniewski, Rachata Ausavarungnirun, Jakub
Beranek, Konstantinos Kanellopoulos, Kacper Janda, Zur Vonarburg-Shmaria, Lukas Gianinazzi,
Ioana Stefan, Juan Gémez-Luna, Marcin Copik, Lukas Kapp-Schwoerer, Salvatore Di Girolamo,
Nils Blach, Marek Konieczny, Onur Mutlu, and Torsten Hoefler,

"SISA: Set-Centric Instruction Set Architecture for Graph Mining on Processing-in-
Memory Systems"

Proceedings of the 54th International Symposium on Microarchitecture (MICRO), Virtual,
October 2021.

[Slides (pdf)]

[Talk Video (22 minutes)]

[Lightning Talk Video (1.5 minutes)]

[Full arXiv version]

SISA: Set-Centric Instruction Set Architecture
for Graph Mining on Processing-in-Memory Systems

Maciej Besta!, Raghavendra Kanakagiri?, Grzegorz Kwasniewski!, Rachata Ausavarungnirun®,

Jakub Beranek*, Konstantinos Kanellopoulos?!, Kacper Janda®, Zur Vonarburg-Shmaria®, Lukas
Gianinazzil, Ioana Stefan!, Juan Gémez-Luna!, Marcin Copik!, Lukas Kapp-Schwoerer!, Salvatore
Di Girolamo!, Nils Blach!, Marek Konieczny”, Onur Mutlu', Torsten Hoefler!

'ETH Zurich, Switzerland 2IIT Tirupati, India 3King Mongkut’s University of Technology North Bangkok,
Thailand  *Technical University of Ostrava, Czech Republic =~ >AGH-UST, Poland
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https://people.inf.ethz.ch/omutlu/pub/SISA-GraphMining-on-PIM_micro21.pdf
http://www.microarch.org/micro54/
https://people.inf.ethz.ch/omutlu/pub/SISA-GraphMining-on-PIM_micro21-talk.pdf
https://www.youtube.com/watch?v=VL5K1t2qTDU&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=9
https://www.youtube.com/watch?v=6k89Ph2qgRA&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=4
https://arxiv.org/abs/2104.07582

Accelerating HTAP Database Systems

« Amirali Boroumand, Saugata Ghose, Geraldo F. Oliveira, and Onur Mutlu,
"Polynesia: Enabling High-Performance and Energy-Efficient Hybrid
Transactional/Analytical Databases with Hardware/Software Co-Design"”

Proceedings of the 38th International Conference on Data Engineering (ICDE),
Virtual, May 2022.

[arXiv version]
[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]

Polynesia: Enabling High-Performance and Energy-Efficient
Hybrid Transactional/Analytical Databases
with Hardware/Software Co-Design

Amirali Boroumand' Saugata Ghose® Geraldo F. Oliveira* Onur Mutlu?
TGoogle °Univ. of Illinois Urbana-Champaign *ETH Ziirich
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https://people.inf.ethz.ch/omutlu/pub/Polynesia_icde22.pdf
https://icde2022.ieeecomputer.my/
https://arxiv.org/pdf/2204.11275.pdf
https://people.inf.ethz.ch/omutlu/pub/Polynesia_icde22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Polynesia_icde22-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Polynesia_icde22-short-talk.pptx
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https://arxiv.org/pdf/2204.11275.pdf

Accelerating Neural Network Inference

« Amirali Boroumand, Saugata Ghose, Berkin Akin, Ravi Narayanaswami, Geraldo
F. Oliveira, Xiaoyu Ma, Eric Shiu, and Onur Mutlu,

"Google Neural Network Models for Edge Devices: Analyzing and
Mitigating Machine Learning Inference Bottlenecks"

Proceedings of the 30th International Conference on Parallel Architectures and
Compilation Technigues (PACT), Virtual, September 2021.

[Slides (pptx) (pdf)]

[Talk Video (14 minutes)]

Google Neural Network Models for Edge Devices:
Analyzing and Mitigating Machine Learning Inference Bottlenecks

Amirali Boroumand ' Saugata Ghose* Berkin Akin® Ravi Narayanaswami®
Geraldo F. Oliveira* Xiaoyu Ma® Eric Shiu® Onur Mutlu**

TCarnegie Mellon Uniy. °Stanford Unipv. *Univ. of Illinois Urbana-Champaign YGoogle *ETH Ziirich
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https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21.pdf
http://pactconf.org/
http://pactconf.org/
https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21-talk.pdf
https://www.youtube.com/watch?v=A5gxjDbLRAs&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=178

Samsung PNM Solutions for Generative Al (2023)

Main target: transformer decoders used in ChatGPT, GPT-3
o Compute-bound step: Summarization

o Memory-bound step: Generation

Most of the execution time is spent on the memory copy from the
host CPU memory to the CPU memory

GEMV portion can be 60%-80% of total generation latency,
which is the target of PIM/PNM

GEMMgyy [l GEMV..,, M VECTOR [l GELU [l SOFTMAX [ RESIDUAL [l ETC

Number of
Operations 1346 “’

Latency [2142 82.27 ] .1.82.21.46.5
+—>

0% 80% 85% 90% 95% 100%

From: J. H. Kim, “"Samsung Al-cluster system with HBM-PIM and CXL-based Processing-near-Memory for transformer-based LLMs,” HC, 2023. 115



In-Storage Genome Filtering [ASPLOS 2022]

Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Olgun, Arvid
Gollwitzer, Damla Senol Cali, Can Firtina, Haiyu Mao, Nour Almadhoun Alserr, Rachata
Ausavarungnirun, Nandita Vijaykumar, Mohammed Alser, and Onur Mutlu,
"GenStore: A High-Performance and Enerqy-Efficient In-Storage Computin
System for Genome Sequence Analysis"

Proceedings of the 27th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), Virtual, February-March
2022.

[Talk Slides (pptx) (pdf)]

[Lightning Talk Slides (pptx) (pdf)]

[Lightning Talk Video (90 seconds)]

[Talk Video (17 minutes)]

GenStore: A High-Performance In-Storage Processing System
for Genome Sequence Analysis

Nika Mansouri Ghiasi' Jisung Park! Harun Mustafa! Jeremie Kim' Ataberk Olgun!
Arvid Gollwitzer! Damla Senol Cali® Can Firtina! Haiyu Mao! Nour Almadhoun Alserr!
Rachata Ausavarungnirun® Nandita Vijaykumar* Mohammed Alser! Onur Mutlu!

1ETH Ziirich 2Bionano Genomics 3KMUTNB *University of Toronto
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GenStore:

A High-Performance In-Storage Processing System
for Genome Sequence Analysis

Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Olgun,
Arvid Gollwitzer, Damla Senol Cali, Can Firtina, Haiyu Mao, Nour Almadhoun Alserr,
Rachata Ausavarungnirun, Nandita Vijaykumar, Mohammed Alser, and Onur Mutlu
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Genome Sequence Analysis

* Genome sequence analysis is critical for many applications
- Personalized medicine
- Outbreak tracing
- Evolutionary studies

* Genome sequencing machines extract smaller fragments of the original
DNA sequence, known as reads

/
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Genome Sequence Analysis

. first key step in genome sequence analysis

- Aligns reads to potential matching locations in the reference genome

- For each matching location, the alignment step finds the degree of
similarity (alignment score)

Reference Genome
...GCCCATATGGTTAAGCTTCCATGGAAATGGGCTTTCGCTTCCACAATG...

V

Differences Differences
[GCTTCCAGAATG

* Calculating the ahgn@ﬁ-‘@ﬁ%ﬁ%@—%quwes compu%nﬁ%%ﬁenswe
approximate string matclﬁ%%—% account for differences between
reads and the reference genome due to:

- Sequencing errors
- Genetic variation
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Genome Sequence Analysis

‘I Data Movement from Storage

Alignment
Computation
Storage Main Unit
System Memory Cache (CPU or
Accelerator)
x Computation overhead
x Data movement overhead
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Accelerating Genome Sequence Analysis

Heuristics Accelerators Filters
Computation
Storage Main Cache Unit

System Memory (CPU or
Accelerator)

\/ Computation overhead

x Data movement overhead
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Key Idea

Y Filter reads that do not require alignment
inside the storage system

MECGTTCCTTGGCAl Computation

[AAICCTTTGGGTCCA] Main Cache Unit
GAATGGGGCCA

188 e Memory (CPU or
[GCTTCCAGAATG| Accelerator)

Filtered Reads

Exactly-matching reads
Do not need expensive approximate string matching during alignment

Non-matching reads
Do not have potential matching locations and can skip alignment
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Challenges

Y Filter reads that do not require alignment
inside the storage system

Storage
System

Filtered Reads

Main
Memory

Cache

Computation
Unit
(CPU or
Accelerator)

Read mapping workloads can exhibit different behavior

There are limited hardware resources
in the storage system

SAFARI
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GenStore

Y Filter reads that do not require alignment
inside the storage system

Computation
GenStore-Enabled i Unit
Storage M Cache CPU
System emory ( or
Accelerator)
\/ Computation overhead
\/ Data movement overhead

GenStore provides significant speedup (1.4x - 33.6x) and

energy reduction (3.9x - 29.2x) at low cost
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Concluding Remarks

= We must design systems to be balanced, high-performance,
energy-efficient (all at the same time) - intelligent systems

o Data-centric, data-driven, data-aware

= Enable computation capability inside and close to
memory/storage

= This can
o Lead to orders-of-magnitude improvements
o Enable new applications & computing platforms
o Enable better understanding of nature

D EEN

= Future of truly data-centric computing is bright

o We need to do research & design across the computing stack
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Fundamentally Better Architectures

Data-centric

Data-driven

Data-aware
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Selt-Optimizing Memory Prefetchers

Rahul Bera, Konstantinos Kanellopoulos, Anant Nori, Taha Shahroodi, Sreenivas
Subramoney, and Onur Mutlu,

"Pythia: A Customizable Hardware Prefetching Framework Using Online

Reinforcement Learning"
Proceedings of the 54th International Symposium on Microarchitecture (MICRO), Virtual,

October 2021.

[Slides (pptx) (pdf)]

[Short Talk Slides (pptx) (pdf)]

[Lightning Talk Slides (pptx) (pdf)]

[Talk Video (20 minutes)]

[Lightning Talk Video (1.5 minutes)]

[Pythia Source Code (Officially Artifact Evaluated with All Badges)]
[arXiv version]

Pythia: A Customizable Hardware Prefetching Framework
Using Online Reinforcement Learning

Rahul Bera!  Konstantinos Kanellopoulos! ~ Anant V. Nori?  Taha Shahroodi’ !
Sreenivas Subramoney?  Onur Mutlu!
1ETH Ziirich  ?Processor Architecture Research Labs, Intel Labs  3TU Delft
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https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21.pdf
http://www.microarch.org/micro54/
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-short-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Pythia-customizable-hardware-prefetcher-using-reinforcement-learning_micro21-lightning-talk.pdf
https://www.youtube.com/watch?v=6UMFRW3VFPo&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=7
https://www.youtube.com/watch?v=kzL22FTz0vc&list=PL5Q2soXY2Zi--0LrXSQ9sST3N0k0bXp51&index=2
https://github.com/CMU-SAFARI/Pythia
https://arxiv.org/abs/2109.12021
https://arxiv.org/pdf/2109.12021.pdf

Perceptron-Based Off-Chip LLoad Prediction

= Rahul Bera, Konstantinos Kanellopoulos, Shankar Balachandran, David Novo, Ataberk
Olgun, Mohammad Sadrosadati, and Onur Mutlu,
"Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based Off-
Chip Load Prediction"”
Proceedings of the 55th International Symposium on Microarchitecture (MICRO),
Chicago, IL, USA, October 2022.
[Slides (pptx) (pdf)]
[Longer Lecture Slides (pptx) (pdf)]
[Talk Video (12 minutes)]
[Lecture Video (25 minutes)]
[arXiv version]
[Source Code (Officially Artifact Evaluated with All Badges)]

via Perceptron-Based Off-Chip Load Prediction

Rahul Bera!  Konstantinos Kanellopoulos’ ~ Shankar Balachandran®  David Novo?®
Ataberk Olgun’  Mohammad Sadrosadati’ ~ Onur Mutlu’

'ETH Zirich ZIntel Processor Architecture Research Lab “LIRMM, Univ. Montpellier, CNRS
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https://arxiv.org/pdf/2209.00188.pdf
https://arxiv.org/pdf/2209.00188.pdf
http://www.microarch.org/micro55/
https://people.inf.ethz.ch/omutlu/pub/Hermes_micro22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Hermes_micro22-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Hermes_comparch22-lecture-slides.pptx
https://people.inf.ethz.ch/omutlu/pub/Hermes_comparch22-lecture-slides.pdf
https://www.youtube.com/watch?v=afGc1pWr-_Y
https://www.youtube.com/watch?v=PWWBtrL60dQ&t=3609s
https://arxiv.org/abs/2209.00188
https://github.com/CMU-SAFARI/Hermes
https://arxiv.org/pdf/2209.00188.pdf

Self-Optimizing Hybrid Storage Systems

Gagandeep Singh, Rakesh Nadig, Jisung Park, Rahul Bera, Nastaran Hajinazar,
David Novo, Juan Gomez-Luna, Sander Stuijk, Henk Corporaal, and Onur Mutlu,
"Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage
Systems Using Online Reinforcement Learning”

Proceedings of the 49th International Symposium on Computer

Architecture (ISCA), New York, June 2022.

[Slides (pptx) (pdf)]

[arXiv version]

[Sibyl Source Code]

[Talk Video (16 minutes)]

Sibyl: Adaptive and Extensible Data Placement in
Hybrid Storage Systems Using Online Reinforcement Learning

Gagandeep Singh!  Rakesh Nadig!  Jisung Park! = Rahul Bera' = Nastaran Hajinazar!
David Novo®  Juan Gémez-Luna'  Sander Stuijk®  Henk Corporaal®  Onur Mutlu'

'ETH Ziirich 2Eindhoven University of Technology SLIRMM, Univ. Montpellier, CNRS
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https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22.pdf
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22.pdf
http://iscaconf.org/isca2022/
http://iscaconf.org/isca2022/
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Sibyl_RL-based-data-placement-in-hybrid-storage-systems_isca22-talk.pdf
https://arxiv.org/pdf/2205.07394.pdf
https://github.com/CMU-SAFARI/Sibyl
https://www.youtube.com/watch?v=5-WedkiB000

We Need to Revisit the Entire Stack

SW/HW Interface

We can get there step by step
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We Need to Exploit Good Principles

= Data-centric system design

= All components intelligent

= Better (cross-layer) communication, better interfaces
= Better-than-worst-case design

= Heterogeneity

« Flexibility, adaptability Open minds
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A Blueprint for Fundamentally Better Architectures

= Onur Mutluy,

'Intelligent Architectures for Intelligent Computing Systems"
Invited Paper in Proceedings of the Design, Automation, and Test in
Europe Conference (DATE), Virtual, February 2021.

Slides (pptx) (pdf)]

[IEDM Tutorial Slides (pptx) (pdf)]

[Short DATE Talk Video (11 minutes)]

[Longer IEDM Tutorial Video (1 hr 51 minutes)]

Intelligent Architectures for Intelligent Computing Systems

Onur Mutlu
ETH Zurich

omutlu@gmail.com
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https://people.inf.ethz.ch/omutlu/pub/intelligent-architectures-for-intelligent-computingsystems-invited_paper_DATE21.pdf
http://www.date-conference.com/
http://www.date-conference.com/
https://people.inf.ethz.ch/omutlu/pub/onur-DATE-InvitedTalk-IntelligentArchitecturesForIntelligentComputingSystems-January-22-2021.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-DATE-InvitedTalk-IntelligentArchitecturesForIntelligentComputingSystems-January-22-2021.pdf
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pdf
https://www.youtube.com/watch?v=eAZZGDlsDAY
https://www.youtube.com/watch?v=H3sEaINPBOE
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136



Acknowledgments

SAFARI

SAFARI Research Group

safari.ethz.ch

Thinle BIG, Alm HIGH!

https://safari.ethz.ch



http://www.safari.ethz.ch/

Referenced Papers, Talks, Artifacts

= All are available at

https://people.inf.ethz.ch/omutlu/projects.htm

https://www.youtube.com/onurmutlulectures

https://github.com/CMU-SAFARI/
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https://www.youtube.com/onurmutlulectures

Memory-Centric Computing
for Data-Intensive Workloads

Dr. Mohammad Sadrosadati
Prof. Onur Mutlu
omutlu@gmail.com
https://people.inf.ethz.ch/omutlu
11 December 2023
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