
The New Frontiers of Compilers in
the AI Era

Giuseppe Tagliavini

Department of Computer Science and Engineering (DISI)

2

Outline

o Introduction: A quick recap of the compiler architecture

o Compilers serving AI tasks: A new era for compilers

o AI tasks serving compilers: A look at the future

o Conclusion: Do we really trust these technologies?

3

Anatomy of a compiler

• High-level design of modern compilers (e.g., GCC and LLVM):

• Intermediate representation (IR) languages → programming languages (e.g., C or Python) are too high-level,
assembly is too low-level

– Language-independent

– Machine-independent (as long as possible!)

– Easy to optimize

Front-end Middle-end Back-end
Source
Code

IR1 IR2 Machine
Code

(assembly)

Intermediate representation languages

Machine-independent
optimization passes

Code analisys Machine-specific
optimization passes

4

LLVM compilation flow: From C to Assembly (1/4)

void mul_sum(int *a, int *b, int
*result, int n) {

 int sum = 0;

 for (int i = 0; i < n; i++) {

 sum += a[i] * b[i];

 }

 *result = sum;

}

define dso_local void @mul_sum(ptr noundef %a, ptr noundef %b, ptr noundef %result,
i32 noundef %n) #0 {

entry:

 %a.addr = alloca ptr, align 4

 %b.addr = alloca ptr, align 4

 %result.addr = alloca ptr, align 4

 %n.addr = alloca i32, align 4

 %sum = alloca i32, align 4

 %i = alloca i32, align 4

 store ptr %a, ptr %a.addr, align 4

 store ptr %b, ptr %b.addr, align 4

 store ptr %result, ptr %result.addr, align 4

 store i32 %n, ptr %n.addr, align 4

 store i32 0, ptr %sum, align 4

 store i32 0, ptr %i, align 4

 br label %for.cond

for.cond: ; preds = %for.inc, %entry

 %0 = load i32, ptr %i, align 4

 %1 = load i32, ptr %n.addr, align 4

 %cmp = icmp slt i32 %0, %1

 br i1 %cmp, label %for.body, label %for.end

...

}

C code (7 lines)

Initial LLVM IR (49 lines)

5

LLVM compilation flow: From C to Assembly (2/4)

define dso_local void @mul_sum(ptr nocapture noundef readonly %a, ptr nocapture noundef readonly %b, ptr nocapture noundef writeonly
%result, i32 noundef %n) local_unnamed_addr #0 {

entry:

 %cmp6 = icmp sgt i32 %n, 0

 br i1 %cmp6, label %for.body, label %for.cond.cleanup

for.cond.cleanup: ; preds = %for.body, %entry

 %sum.0.lcssa = phi i32 [0, %entry], [%add, %for.body]

 store i32 %sum.0.lcssa, ptr %result, align 4, !tbaa !4

 ret void

for.body: ; preds = %entry, %for.body

 %i.08 = phi i32 [%inc, %for.body], [0, %entry]

 %sum.07 = phi i32 [%add, %for.body], [0, %entry]

 %arrayidx = getelementptr inbounds i32, ptr %a, i32 %i.08

 %0 = load i32, ptr %arrayidx, align 4, !tbaa !4

 %arrayidx1 = getelementptr inbounds i32, ptr %b, i32 %i.08

 %1 = load i32, ptr %arrayidx1, align 4, !tbaa !4

 %mul = mul nsw i32 %1, %0

 %add = add nsw i32 %mul, %sum.07

 %inc = add nuw nsw i32 %i.08, 1

 %exitcond.not = icmp eq i32 %inc, %n

 br i1 %exitcond.not, label %for.cond.cleanup, label %for.body, !llvm.loop !8

}

Optimized LLVM IR (23 lines)

6

LLVM compilation flow: From C to Assembly (3/4)

name: mul_sum

body:

 bb.0.entry:

 %11:gpr = COPY $x13

 %10:gpr = COPY $x12

 %22:gpr = COPY $x11

 %21:gpr = COPY $x10

 BLT $x0, %11, %bb.2

 ...

 bb.3.for.cond.cleanup:

 SW %23, %10, 0 :: (store (s32) into %ir.result, !tbaa !4)

 PseudoRET

 bb.4.for.body:

 %17:gpr = LW %21, 0 :: (load (s32) from %ir.lsr.iv2, !tbaa !4)

 %18:gpr = LW %22, 0 :: (load (s32) from %ir.lsr.iv1, !tbaa !4)

 %19:gpr = nsw MUL %18, %17

 %23:gpr = nsw ADD %19, %23

 %22:gpr = ADDI %22, 4

 %21:gpr = ADDI %21, 4

 BEQ %22, %0, %bb.3

 PseudoBR %bb.4

MIR before regalloc (31 lines)

7

LLVM compilation flow: From C to Assembly (4/4)

mul_sum:

li a4, 0

blez a3, .LBB0_3

%bb.1: # %for.body.preheader

slli a3, a3, 2

add a6, a1, a3

.LBB0_2: # %for.body

lw a5, 0(a0)

lw a3, 0(a1)

mul a3, a3, a5

add a4, a4, a3

addi a1, a1, 4

addi a0, a0, 4

bne a1, a6, .LBB0_2

.LBB0_3: # %for.cond.cleanup

sw a4, 0(a2)

ret

RV32 assembly LLVM IR (17 lines)

8

Compiler Explorer: Democratizing Compiler Optimization Passes!

9

Anatomy of a compiler

• High-level design of modern compilers (e.g., GCC and LLVM):

Front-end Middle-end Back-end
Source
Code

IR1 IR2 Machine
Code

(assembly)
Machine-independent

optimization passes
Code analisys Machine-specific

optimization passes

What do we really mean for «optimization»?
From a compiler toolchain perspective, optimizing means transforming one program representation into another

10

Outline

o Introduction: A quick recap of the compiler architecture

o Compilers serving AI tasks: A new era for compilers

o AI tasks serving compilers: A look at the future

o Conclusion: Do we really trust these technologies?

11

Deep Learning Compilers

• Current DL frameworks (e.g., TensorFlow, MXNet, Caffe, and PyTorch) rely on graph-level
optimizations

– constant folding, common subexpressions elimination (CSE), redundant control edge
removal, algebraic simplifications, …

• Operator-level optimizations are critical for efficient support of diverse hardware targets

– Standard approach consists of adopting manually optimized operator libraries

• A DL compiler takes a high-level specification of a DL model and generates low-level
optimized code for different hardware targets

– TVM (Apache Foundation), XLA (Google), Glow (Facebook), …

12

TVM compilation flow

High-level functional
program representation
(computational graph)

High-level functional
program representation
(computational graph)

Low-level program
representation

Low-level program
representation

Source: https://tvm.apache.org/

13

Computational graph

• Computational graphs provide a global view of operators without providing implementation details

• Difference w.r.t. “traditional” IRs → intermediate data items are multi-dimensional tensors and nodes are
high-level operators

• Optimization pass → transforming a computational graph into a different computational graph that is
functionally equivalent

14

Relay IR

• Relay is the IR used to build computational graphs in TVM

• Its authors defines Relay a “statically typed, purely functional, differentiable IR”

• This example describes a graph including two nodes:

• Relays uses functions to represent graphs

• The text form is similar to “traditional” middle-end IRs

15

High-level optimizations in TVM

16

Tensor Expression language: Compute

• VM introduces a tensor expression language to support code generation for the graph nodes (kernels)

• Unlike high-level computation graph languages, where the implementation of tensor operations is
opaque, each operation is described in an index formula expression language

– Programmers have to specify how each output element (e.g., out[i]) is computed

– symbolic variables are created by specifying their shapes, and define how the program will be
computed

import tvm

A = tvm.te.placeholder((n,), name='a')

B = tvm.te.placeholder((n,), name='b’)

C = tvm.te.compute(A.shape, lambda i: A[i] + B[i], name='c')

17

Tensor Expression language: Scheduling

• Create high-performance implementations of a tensor expression for each hardware platform
is extremely challenging

• An optimized low-level program is always the result of different combinations of scheduling
strategies

• TVM adopts the principle of decoupling compute descriptions from schedule optimizations.

– Schedules are the specific rules that lower compute descriptions down to back-end-
optimized implementations.

#Generate a schedule

s = tvm.te.create_schedule(C.op)

Execution plan (C pseudo-code)

tvm.lower(s, [A, B, C], simple_mode=True)

18

Tensor Expression language: Build and execute

• After defining computation and schedule, we can generate an object (called module) for
execution

Build the executable module from the schedule

mod = tvm.build(s, [A, B, C])

Execute the module

mod(a, b, c)

Save the module

mod.export_library('vector-add.tar’)

Load the module

loaded_mod = tvm.runtime.load_module('vector-add.tar')

19

Schedule primitives

21

Outline

o Introduction: A quick recap of the compiler architecture

o Compilers serving AI tasks: A new era for compilers

o AI tasks serving compilers: A look at the future

o Conclusion: Do we really trust these technologies?

22

Compilers to optimize DL → DL to optimize compilers

• DL compilers aim at adapting compiler principles to the DL domain, but …

• … could we also use DL to optimize compiler optimization passes???

• CompilerGym is a toolkit for applying reinforcement learning to compiler
optimization (https://compilergym.com/)

– Built by Facebook AI

– Based on OpenAI Gym framework

– three compiler problems: phase ordering using LLVM, flag tuning using
GCC, and loop nest generation using CUDA

https://compilergym.com/

23

CompilerGym

24

An interesting case study: Phase ordering

• Phase ordering is the selection of the right set of compiler optimizations for a particular code segment

– This is a hard problem!

• In LLVM, an agent can choose an optimization pass to run next from a set of 100+ distinct optimizations

• LLVM environments provided by CompilerGym support optimizing for runtime, compiler binary size, and
instruction count

• Testing environment provided by Facebook AI:
https://colab.research.google.com/github/facebookresearch/CompilerGym/blob/development/examples/getting
-started.ipynb?fbclid=IwAR0zbD4MzfcErpVzRwJrb61d4sAq33HBqfOpNvr1h0Xjev_rOh9jSA-LbfM

https://colab.research.google.com/github/facebookresearch/CompilerGym/blob/development/examples/getting-started.ipynb?fbclid=IwAR0zbD4MzfcErpVzRwJrb61d4sAq33HBqfOpNvr1h0Xjev_rOh9jSA-LbfM
https://colab.research.google.com/github/facebookresearch/CompilerGym/blob/development/examples/getting-started.ipynb?fbclid=IwAR0zbD4MzfcErpVzRwJrb61d4sAq33HBqfOpNvr1h0Xjev_rOh9jSA-LbfM

25

Can we compile a program using an LLM?

• A prompt for GPT-4:

I want to compile a C file for a RISC-V target using the LLVM toolchain.
The clang flags are: -O3 --target=riscv32 -march=rv32imfc -mabi=ilp32f -S -
emit-llvm
Generate the LLVM IR for this file and provide me only the resulting LLVM IR
code with no explanation:

{code}

26

A classic example: Matrix multiplication

void matmul(float* out, float* in1, float* in2, int m, int n, int o) {

 // Initialize the output matrix with zeros

 for (int i = 0; i < m; i++) {

 for (int j = 0; j < o; j++) {

 out[i * o + j] = 0.0f;

 }

 }

 // Perform matrix multiplication

 for (int i = 0; i < m; i++) {

 for (int j = 0; j < o; j++) {

 for (int k = 0; k < n; k++) {

 out[i * o + j] += in1[i * n + k] * in2[k * o + j];

 }

 }

 }

}

27

Answer provided by GPT-4

define void @matmul(float* %out, float* %in1, float* %in2, i32 %m, i32 %n, i32 %o) {

entry:

 %0 = alloca float*, align 4

 %1 = alloca float*, align 4

 %2 = alloca float*, align 4

 %3 = alloca i32, align 4

 %4 = alloca i32, align 4

 %5 = alloca i32, align 4

 store float* %out, float** %0, align 4

 store float* %in1, float** %1, align 4

 store float* %in2, float** %2, align 4

 store i32 %m, i32* %3, align 4

 store i32 %n, i32* %4, align 4

 store i32 %o, i32* %5, align 4

 ...

????

28

Code generated using the LLVM 18 toolchain

define dso_local void @matmul(ptr nocapture noundef %out, ptr nocapture noundef readonly
%in1, ptr nocapture noundef readonly %in2, i32 noundef %m, i32 noundef %n, i32 noundef
%o) local_unnamed_addr #0 {

entry:

 %cmp63 = icmp sgt i32 %m, 0

 %cmp261 = icmp sgt i32 %o, 0

 %or.cond = and i1 %cmp63, %cmp261

 br i1 %or.cond, label %for.cond14.preheader.lr.ph.split.us, label %for.cond.cleanup11

...

29

Can we modify the compiler toolchain using LLMs?

(define_insn "abssf2"

 [(set (match_operand:SF 0 "register_operand" "=d")

 (abs:SF (match_operand:SF 1 "register_operand" "d")))]

 "TARGET_USE_FPU"

 {

 static const char * asmcode[] =

 {

 "insert\t%0, %1, 0, 31, 1",

 "abs.f\t%0,%1"

 };

 if (TRIC_18UP) return asmcode[1]; else return asmcode[0];

 }

 [(set_attr "pipe" "fp2")])

This is a pattern in the GCC backend for the
Tricore architecture:
'''{code}'''
Can I programmatically change the value of the
"pipe" attr based on the same condition
defined for the asmcode choice in the code
snippet?
Consider the following "pipe" values
associated to instructions (format is
"instruction name -> attr value"):
- insert -> ip
- abf.f -> fp2
...

This is a pattern in the GCC backend for the
Tricore architecture:
'''{code}'''
Can I programmatically change the value of the
"pipe" attr based on the same condition
defined for the asmcode choice in the code
snippet?
Consider the following "pipe" values
associated to instructions (format is
"instruction name -> attr value"):
- insert -> ip
- abf.f -> fp2
...

30

(define_insn "abssf2"

 [(set (match_operand:SF 0 "register_operand" "=d")

 (abs:SF (match_operand:SF 1 "register_operand" "d")))]

 "TARGET_USE_FPU"

 {

 static const char * asmcode[] =

 {

 "insert\t%0, %1, 0, 31, 1",

 "abs.f\t%0,%1"

 };

 if (TRIC_18UP) return asmcode[1]; else return asmcode[0];

 }

 [(set_attr "pipe"

 (if_then_else (symbol_ref "TRIC_18UP") ;; Check if TRIC_18UP is defined

 (const_string "ip")

 (const_string "fp2")))])

31

(define_insn "abssf2"

 [(set (match_operand:SF 0 "register_operand" "=d")

 (abs:SF (match_operand:SF 1 "register_operand" "d")))]

 "TARGET_USE_FPU"

 {

 static const char * asmcode[] =

 {

 "insert\t%0, %1, 0, 31, 1",

 "abs.f\t%0,%1"

 };

 if (TRIC_18UP) return asmcode[1]; else return asmcode[0];

 }

 [(set (attr "pipe")

 (if_then_else (symbol_ref "TRIC_18UP") ;; Check if TRIC_18UP is defined

 (const_string "ip")

 (const_string "fp2")))])

32

Is GPT-4 aware of the difference between these constructs?

33

Phase Ordering with LLM (1/2)

• Investigated by Meta AI [1]

• Model architecture: Llama 2 7B

• Dataset: 1,000,000 LLVM IR functions (373M tokens)

• Training: for 30,000 steps on 64 V100s for (620 GPU days)

• Comparison with the state-of-the-art:

[1] Cummins, Chris, et al. "Large language models for compiler optimization." arXiv preprint arXiv:2309.07062 (2023).
[2] Haj-Ali, Ameer, et al. "AutoPhase: Juggling HLS Phase Orderings in Random Forests with Deep Reinforcement Learning." Proceedings of Machine Learning and Systems 2 (2020): 70-81.
[3] Liang, Youwei, et al. "Learning Compiler Pass Orders using Coreset and Normalized Value Prediction." International Conference on Machine Learning. PMLR, 2023.

[2]

[3]

[3]

34

Phase Ordering with LLM (2/2)

Input → 39 instructions Autotuner→ 14 instructions
-reg2mem -instcombine -Os -O1

Result after testing 26k different
pass orderings

LLM →13 instructions
-reg2mem -simplifycfg -mem2reg
-jump-threading –Os

This pass list appears 5 times in the
training set

35

LLM Compiler: The Holy Grail (?) of LLM compiler research

• LLM Compiler is a family of foundation models that have already been trained to understand the semantics of
compiler IRs and assemblies and to emulate the compiler

• At the same time, it simplifies fine-tuning with minimal data for specific downstream compiler optimization tasks

• Trained on IR and assembly code generated by LLVM version 17.0.6.

Cummins, Chris, et al. "Meta Large Language Model Compiler: Foundation Models of Compiler Optimization." arXiv preprint arXiv:2407.02524 (2024).

36

Compiler emulation fine-tuning

• Compiler emulation dataset → applying random lists of between 1 and 50 optimization passes to unoptimized
programs

Cummins, Chris, et al. "Meta Large Language Model Compiler: Foundation Models of Compiler Optimization." arXiv preprint arXiv:2407.02524 (2024).

37

Reducing the binary size (baseline –Oz)

Cummins, Chris, et al. "Meta Large Language Model Compiler: Foundation Models of Compiler Optimization." arXiv preprint arXiv:2407.02524 (2024).

38

Outline

o Introduction: A quick recap of the compiler architecture

o Compilers serving AI tasks: A new era for compilers

o AI tasks serving compilers: A look at the future

o Conclusion: Do we really trust these technologies?

39

Conclusion

• Most of these papers are published on arXiv→ Even if the quality is good and code is provided, a peer-review
process is missing

• What are the real advantages of using LLMs?

• Can we ask really people to send their IPs to external servers?

40

THANK YOU FOR YOUR ATTENTION!!!!

	Slide 1: The New Frontiers of Compilers in the AI Era
	Slide 2: Outline
	Slide 3: Anatomy of a compiler
	Slide 4: LLVM compilation flow: From C to Assembly (1/4)
	Slide 5: LLVM compilation flow: From C to Assembly (2/4)
	Slide 6: LLVM compilation flow: From C to Assembly (3/4)
	Slide 7: LLVM compilation flow: From C to Assembly (4/4)
	Slide 8: Compiler Explorer: Democratizing Compiler Optimization Passes!
	Slide 9: Anatomy of a compiler
	Slide 10: Outline
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 21: Outline
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38: Outline
	Slide 39: Conclusion
	Slide 40: THANK YOU FOR YOUR ATTENTION!!!!

