Least squares optimal identification of LTI dynamical systems

Bart De Moor

KU Leuven Dept.EE: ESAT - STADIUS

bart.demoor@kuleuven.be

Outline

- (Multi-)shift invariance
- 5 Quasi-Toeplitz matrices
- 6 System ID cases

Outline

- 2 Models and data
- 3 Menu
- (Multi-)shift invariance
- 5 Quasi-Toeplitz matrices
- 6 System ID cases
- 7 Conclusions

• Eigenvalues and vectors: For matrix $A \in \mathbb{R}^{n \times n}$:

$$Ax = x\lambda$$
, $x \in \mathbb{C}^n$, $\lambda \in \mathbb{C}$, $x \neq 0$.

• Characteristic equation - fundamental theorem of algebra

$$p(\lambda) = \det(\lambda I_n - A) = \lambda^n + \alpha_1 \lambda^{n-1} + \ldots + \alpha_{n-1} \lambda + \alpha_n = 0.$$

• Since Galois, for $n \ge 5$: no solution in radicals \implies iterative algorithms

Eigenvalue decomposition - Jordan Canonical Form (JCF)

$$A = XJX^{-1}.$$

- Spectra of
- Algebras
- Operators: $d e^{(\alpha \pm j\beta t)}/dt = (\alpha \pm j\beta t)e^{(\alpha \pm j\beta t)}$
- Geometrical shapes: moments inertia, eigenfrequencies, modal shapes, ...

- ..

Let Y_2 and Y_2 be two orthonormal matrices of size D by m, and let $w \in \text{span}(Y_1)$ and $v \in \text{span}(Y_2)$ be unit vectors. \mathbb{R}^{D}

The first principal angle/canoncial corr between $\operatorname{span}(Y_1)$ and $\operatorname{span}(Y_2)$ is

 $\cos \theta_1 = \max_{u \in \operatorname{spars}(Y_1)} \max_{v \in \operatorname{spars}(Y_2)} u'v, \quad \operatorname{subject to} \quad \|u\| = \|v\| = 1.$

Can. Corr./Principal Angles

Graph spectral analysis

Wave equation

Modal shapes

KU LEUVEN

Maxwell's laws

1.
$$\nabla \cdot \mathbf{D} = \rho_V$$

2. $\nabla \cdot \mathbf{B} = 0$
3. $\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$
4. $\nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} + \mathbf{J}$
Maxwell's field equations

Hear the shape of a drum?

RLC circuits

$$H(t)|\psi(t)\rangle = i\hbar \frac{\partial}{\partial t}|\psi(t)\rangle$$

Schrodinger equation

Matter curves spacetime moves matter

Gravitational waves

Controllability/observability

Pole placement

Observers	Kalman Filter	H_{∞} -filter			
	Riccati	Riccati			
	Hamil. EVP	Sympl. EVP			
Control	LQR	H_{∞} -control			
	Riccati	Riccati			
	Hamil. EVP	Sympl. EVP			

Kalman, Willems, bdm

Outline

- Eigenvalues
- 2 Models and data
- 3 Menu
- (Multi-)shift invariance
- 5 Quasi-Toeplitz matrices
- 6 System ID cases
- 7 Conclusions

Hypotheses non fingo. Newton. Let the data speak for themselves. Kalman.

Models are a matter of deduction, not inspiration. Jan Willems.

Errors using inadequate data are much less than those using no data at all. Charles Babbage.

How nonlinear is least squares linear system identification ?

	Nonlinearity	'Heuristic' remedy
State space	$x_{k+1} = \mathbf{A}\mathbf{x}_{\mathbf{k}} + Bu_k$	Subspace:
	Unknown $A imes x_k$	Oblique projection and SVD
PEM	Unknown parameters	Nonlinear optimization
	imes latency input e	
EIV	Unknown parameters	Instrumental Variables
	$ imes$ misfits $ ilde{u}, ilde{y}$	

But:

All 'nonlinearities' are sums of products of unkowns.

Hence multivariate polynomial.

- All 'nonlinearities' are multivariate polynomial and occur in the model and data equations
- The objective function (sum-of-squares) is polynomial
- Hence, the problem is a multivariate polynomial optimization problem: multivariate polynomial objective function and constraints
- Taking derivatives of multivariate polynomials (first order optimality) results in a set of multivariate polynomials equal to zero
- The roots of this set are local and global minima and maxima, and saddle points
- We only need the one or several roots that correspond to the global minimum of the objective function.
- Evaluate a multivariate polynomial (the objective function the critical polynomial) over the roots

How to find the roots of a set of multivariate polynomials ?

What do we mean by 'solution' and 'to solve' ?

- When do we consider a mathematical problem to be solved ?
 - A conjecture is 're'-solved: e.g. Fermat's Last Theorem; A mathematical proof;
 - There is an analytical solution: e.g. linear ODEs
 - Reduction to a set of linear equations
 - Reduction to a convex optimization problem
 - Reduction to an eigenvalue problem
 -
- The computational complexity can still be deceiving (e.g. worst case behavior of the simplex method for LP).
- Set of linear equations and/or EVP: 50 years of spectacular progress in numerical linear algebra (Matlab, sparsity, iterative methods, large scale (HPC), ...)

$$H(t)|\psi(t)\rangle = i\hbar \frac{\partial}{\partial t}|\psi(t)\rangle$$

Schrodinger equation

Matter curves spacetime moves matter

Gravitational waves

Controllability/observability

Pole placement

	Obse	ervers	Kalman Filter Biccati
			Ham. EVP
	Cont	trol	LQR
			Riccati
			Ham. EVP
KU LEU	VEN		

Outline

3 Menu

- (Multi-)shift invariance
- 6 System ID cases

Least squares optimal system identification of LTI models is an eigenvalue problem

- Realization theory in 1D and shift-invariant subspaces
- Realization theory in nD and multi-shift-invariant subspaces
- Roots in 1 variable: The null spaces of Toeplitz and Sylvester matrices are shift-invariant
- Roots in *n* variables: The null spaces of (quasi-Toeplitz) Macaulay and block Macaulay matrices are multi-shift-invariant
- Representative ID cases: MA, LS realization, dynamic TLS

Outline

- Eigenvalues
- 2 Models and data
- 3 Menu
- 4 (Multi-)shift invariance
- 6 Quasi-Toeplitz matrices
- 6 System ID cases
- 7 Conclusions

1D realization theory

Singular autonomous system, states $x_k \in \mathbb{R}^n$, outputs $y_k \in \mathbb{R}^l$, singular E:

$$\begin{aligned} Ex_{k+1} &= Ax_k, \\ y_k &= Cx_k, \end{aligned}$$

Convert $(E, A) \rightarrow (PEQ, PAQ)$ to Weierstrass Canonical Form (WCF) with regular state $x_k^R \in \mathbb{R}^{n_1}$, singular state $x_k^S \in \mathbb{R}^{n_2}$, $n_2 = n - \operatorname{rank}(E)$. Rearrange in an a-causal autonomous system, with E_1 nilpotent with nilpotency index ν : $E^k = 0, k \geq \nu$:

Characteristic polynomial with n_1 affine ('finite') and n_2 poles at infinity:

$$\det \begin{bmatrix} \begin{pmatrix} I_{n_1} & 0 \\ 0 & E_1 \end{pmatrix} z - \begin{pmatrix} A_1 & 0 \\ 0 & I_{n_2} \end{pmatrix} \end{bmatrix} = \det(zI_{n_1} - A_1)\det(zE_1 - I_{n_2}) = 0.$$

Realization problem:

Given
$$y^T = (y_0 \ y_1 \ \dots y_{N-1})$$
: find n , A_1 , E_1 , x_k^R and x_k^S .

Factorize $pl \times q$ (block) Hankel matrix (N = p + q - 1) e.g. via SVD:

$$Y = \begin{pmatrix} y_0 & y_1 & y_2 & \cdots & y_{q-2} & y_{q-1} \\ y_1 & y_2 & y_3 & \cdots & y_q & y_{q+1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ y_{p-2} & y_{p-1} & y_p & \cdots & y_{N-3} & y_{N-2} \\ y_{p-1} & y_p & \cdots & \cdots & y_{N-2} & y_{N-1} \end{pmatrix} = \Gamma \Delta$$

$$= \begin{pmatrix} C_R & 0 \\ C_R A_1 & 0 \\ \vdots & \vdots \\ \frac{C_R A_1^{n_1-1} & 0}{C_R A_1^{n_1} & 0} \\ \vdots & \vdots \\ \frac{C_R A_1^{n_2-1} & 0}{C_R A_1^{n_2-1} & 0} \\ \frac{C_R A_1^{n_2-1} & 0}{C_R A_1^{n_2-2} & C_S E_1 \\ C_R A_1^{n_2-2} & C_S E_1 \\ C_R A_1^{n_2-1} & C_S \end{pmatrix} \begin{pmatrix} x_0^R & A_1 x_0^R & \cdots & \cdots & \cdots & A_1^{N-p} x_0^R \\ 0 & \cdots & 0 & E_1^{\nu-1} x_{N-1}^S & \cdots & E_1 x_{N-1}^S & x_{N-1}^N \end{pmatrix}$$

. rank(Y) = n = total number of poles . $Y = \Gamma \Delta$ (e.g. via SVD); $\Gamma \in \mathbb{R}^{pl \times n}$, only unique up to within non-singular $T \in \mathbb{R}^{n \times n}$.

. 3 row zones in Γ independent of T:

 $\leftarrow I. First block rows: 'Affine-pole'-zone:$ Rank increases with at least 1 per block up to $block <math>n_1$ = number of affine poles;

← II. Middle block rows: 'Mind-the-gap'-zone: Rank does not increase;

← III. Last block rows: 'A-bout-du-souffle'-zone: Rank increases per block.

. *T* is a column compression (e.g. SVD): reduces column space of **first zone** to *n*₁ linear independent columns = number of affine poles.

The 'affine-pole'-column space is a shift-invariant subspace:

$$\underline{\Gamma}_{1} A_{1} = \overline{\Gamma}_{1} = \begin{pmatrix} C_{R} \\ C_{R}A_{1} \\ C_{R}A_{1}^{2} \\ \vdots \\ C_{R}A_{1}^{p-3} \\ C_{R}A_{1}^{p-2} \end{pmatrix} A_{1} = \begin{pmatrix} C_{R}A_{1} \\ C_{R}A_{1}^{2} \\ \vdots \\ C_{R}A_{1}^{p-3} \\ C_{R}A_{1}^{p-1} \end{pmatrix}$$

- Subspace is invariant after shifting up a block Range(<u>Γ</u>₁) = Range(<u>Γ</u>₁) (if A₁ is nonsingular).
- Allows to find A_1 by solving set of linear equations, e.g. $A_1 = \underline{\Gamma}_1^{\dagger} \overline{\Gamma}_1$.
- Affine poles are eigenvalues of A₁
- A shift invariant subspace is determined by the eigenvalues of its shift A₁ (uniquely for l = 1, also by C_R for l > 1).

nD realization theory

nD singular multi-dimensional autonomous systems on discrete grids (here illustrated for n = 2, WCF already applied):

with $A_1, A_2 \in \mathbb{R}^{n_1 \times n_1}$, $C_R \in \mathbb{R}^{l \times n_1}$, $C_S \in \mathbb{R}^{l \times n_2}$, $E_1, E_2 \in \mathbb{R}^{n_2 \times n_2}$, both nilpotent, $n = n_1 + n_2$. Commuting matrices (hence *Commutative Algebra*):

$$A_1A_2 = A_2A_1$$
, $E_1E_2 = E_2E_1$.

Realization problem:

Given $y_{k,l}$. Find $n, n_1, A_1, A_2, C_R, C_S, E_1, E_2, x_{k,l}^R, x_{k,l}^S$.

Factorize the generalized block Hankel matrix

		1_	y_{00}	y_{10}	y_{01}	y_{20}	y_{11}	y_{02}	y_{30}	··· `
			y_{10}	y_{20}	y_{11}	y_{30}	y_{21}	y_{12}	y_{40}	
		I _	y_{01}	y_{11}	y_{02}	y_{21}	y_{12}	y_{03}	y_{31}	
			y_{20}	y_{30}	y_{21}	y_{40}	y_{31}	y_{22}	y_{50}	
		I	y_{11}	y_{21}	y_{12}	y_{31}	y_{22}	y_{13}	y_{41}	
			y_{02}	y_{12}	y_{13}	y_{22}	y_{13}	y_{04}	y_{32}	
Y	=		y_{30}	y_{40}	y_{31}	y_{50}				
			y_{21}	y_{31}	y_{22}	y_{41}				
			y_{12}	y_{22}	y_{13}	y_{32}				
		_	y_{03}	y_{13}	y_{04}	y_{23}				
			y_{40}							
			:	:	:	:	•	:	•	÷
		1			-	:	-	:		: /
	_	г.	Δ							

Y is a quasi-block-Hankel-block matrix.

- . $\operatorname{rank}(Y) = n =$ state space dimension
- . $Y = \Gamma \Delta$ (e.g. via SVD); $\Gamma \in \mathbb{R}^{pl \times n}$, only unique up to within non-singular $T \in \mathbb{R}^{n \times n}$.

. 3 row zones in Γ independent of T:

 $\leftarrow \textbf{I. First block rows: 'Regular'-zone:} \\ \textbf{Rank increases with at least 1 per block up to block <math>n_1 = \text{dimension of regular state space;} \end{cases}$

← III. Last block rows: 'A-bout-du-souffle'-zone: Rank increases per block.

. T is a column compression (e.g. SVD)

The 'regular'-column space is a multi-shift-invariant subspace:

$$\underline{\Gamma}_{1} A_{1} = S_{1} \Gamma = \begin{pmatrix} \frac{C_{R}}{C_{R}A_{1}} \\ \frac{C_{R}A_{2}}{C_{R}A_{1}^{2}} \\ \frac{C_{R}A_{1}A_{2}}{C_{R}A_{1}^{2}} \\ \frac{C_{R}A_{1}A_{2}}{C_{R}A_{1}^{2}} \\ \vdots \\ \frac{C_{R}A_{1}^{p-2}}{C_{R}A_{1}^{p-3}A_{2}} \\ \vdots \\ C_{R}A_{1}^{p-3}A_{2} \\ \vdots \\ C_{R}A_{2}^{p-2} \end{pmatrix} A_{1} = \begin{pmatrix} \frac{C_{R}A_{1}}{C_{R}A_{1}^{2}} \\ \frac{C_{R}A_{1}A_{2}}{C_{R}A_{1}A_{2}} \\ \frac{C_{R}A_{1}A_{2}}{C_{R}A_{1}A_{2}} \\ \vdots \\ C_{R}A_{1}^{p-1}A_{2} \\ \vdots \\ C_{R}A_{1}^{p-1}A_{2} \\ \vdots \\ C_{R}A_{1}A_{2}^{p-2} \end{pmatrix} \text{ and } \underline{\Gamma}_{1} A_{2} = S_{2}\Gamma$$

- Selector matrix S_1 selects the block rows $(2, 4, 5, 7, 8, 9, \ldots)$.
- Selector matrix S_2 selects the block rows $(3, 5, 6, 8, 9, 10, \ldots)$.
- Allows to find A₁, A₂ by solving set of linear equations

$$A_1 = \underline{\Gamma}_1^{\dagger} S_1 \Gamma_1$$
 and $A_2 = \underline{\Gamma}_1^{\dagger} S_2 \Gamma_1$.

• A multi-shift invariant subspace is determined by the eigenvalues of its shifts A_1 and A_2 (uniquely for l = 1, also by C_R for l > 1).

Outline

- 1 Eigenvalues
- 2 Models and data
- 3 Menu
- (Multi-)shift invariance
- 5 Quasi-Toeplitz matrices
- 6 System ID cases

7 Conclusions

Univariate polynomial of degree 3:

$$x^3 + a_1 x^2 + a_2 x + a_3 = 0,$$

having three distinct roots x_1 , x_2 and x_3

$$\begin{bmatrix} a_3 & a_2 & a_1 & 1 & 0 & 0 \\ 0 & a_3 & a_2 & a_1 & 1 & 0 \\ 0 & 0 & a_3 & a_2 & a_1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ x_1 & x_2 & x_3 \\ x_1^2 & x_2^2 & x_3^2 \\ x_1^3 & x_2^3 & x_3^3 \\ x_1^4 & x_2^4 & x_3^4 \\ x_1^5 & x_2^5 & x_3^5 \end{bmatrix} = 0 \qquad \begin{array}{l} \bullet & \text{Banded Toeplitz; linear homogeneous equations} \\ \bullet & \text{Null space: (Confluent)} \\ \bullet & \text{Corank (nullity)} = n \\ number of solutions \\ \bullet & \text{Realization theory in null space: eigenvalue problem} \end{array}$$

(Confluent)

theory in null

Two univariate polynomials: common roots ?

$$\begin{array}{rcl} f(x) & = & x^3 - 6x^2 + 11x - 6 = (x-1)(x-2)(x-3) \\ g(x) & = & -x^2 + 5x - 6 = -(x-2)(x-3) \end{array}$$

James Joseph Sylvester

$$\begin{aligned} f(x) &= 0 \\ x \cdot f(x) &= 0 \\ g(x) &= 0 \\ x^2 \cdot g(x) &= 0 \\ x^2 \cdot g(x) &= 0 \end{aligned} \qquad \begin{bmatrix} 1 & x & x^2 & x^3 & x^4 \\ -6 & 11 & -6 & 1 & 0 \\ -6 & 5 & -1 & & \\ -6 & 5 & -1 & & \\ & -6 & 5 & -1 \\ & & -6 & 5 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ x_1 & x_2 \\ x_1^2 & x_2^2 \\ x_1^3 & x_2^3 \\ x_1^4 & x_2^4 \end{bmatrix} = 0$$

where $x_1 = 2$ and $x_2 = 3$ are the common roots of f and g

- Nullity of Sylvester matrix = number of common zeros
- Null space = intersection of null spaces of two banded Toeplitz matrices = shift invariant subspace
- Common roots follow from realization theory in null space
- Notice 'double' Toeplitz-structure of Sylvester matrix

KU LEUVEN

The vectors in the Vandermonde kernel K obey a 'shift structure':

$$\begin{bmatrix} 1 & 1 \\ x_1 & x_2 \\ x_1^2 & x_2^2 \\ x_1^3 & x_2^3 \end{bmatrix} \begin{bmatrix} x_1 & 0 \\ 0 & x_2 \end{bmatrix} = \begin{bmatrix} x_1 & x_2 \\ x_1^2 & x_2^2 \\ x_1^3 & x_2^3 \\ x_1^4 & x_2^4 \end{bmatrix}$$

or

$$\underline{K}.D = S_1 K D = \overline{K} = S_2 K$$

The Vandermonde kernel K is not available directly, instead we compute Z, for which ZV=K. We now have

$$S_1 KD = S_2 K$$

$$S_1 ZVD = S_2 ZV$$

leading to the generalized eigenvalue problem

$$(S_2 Z)V = (S_1 Z)VD$$

Two polynomials in two variables

• Consider

$$\left\{ \begin{array}{rrr} p(x,y) &=& x^2+3y^2-15=0\\ q(x,y) &=& y-3x^3-2x^2+13x-2=0 \end{array} \right.$$

• Fix a monomial order, e.g., $1 < x < y < x^2 < xy < y^2 < x^3 < x^2y < \ldots$

• Construct quasi-Toeplitz Macaulay matrix M:

v 110

-1

/ 1

-10

$$\begin{cases} p(x,y) &= x^2 + 3y^2 - 15 = 0\\ q(x,y) &= y - 3x^3 - 2x^2 + 13x - 2 = 0 \end{cases}$$

Continue to enlarge M:

- $\bullet~\#$ rows grows faster than $\#~{\rm cols}$ \Rightarrow overdetermined system
- If solution exists: rank deficient by construction!

Eigenvalues Models and data Menu (Multi-)shift invariance Quasi-Toeplitz matrices System ID cases Conclusions

nD realization in the null space after column compression to deflate the zeros at ∞ :

• Macaulay matrix M:

$$M = \begin{bmatrix} x & x & x & x & 0 & 0 & 0 \\ 0 & x & x & x & x & 0 & 0 \\ 0 & 0 & x & x & x & x & 0 \\ 0 & 0 & 0 & x & x & x & x \end{bmatrix}$$

• Solutions generate vectors in kernel of M:

MK = 0

• Number of solutions *s* follows from rank decisions 'mind-the-gap':

Vandermonde nullspace Kbuilt from s solutions (x_i, y_i) :

1	1		1
x_1	x_2		x_s
y_1	y_2		y_s
x_{1}^{2}	x_{2}^{2}		x_s^2
x_1y_1	x_2y_2		$x_s y_s$
y_{1}^{2}	y_{2}^{2}		y_s^2
x_{1}^{3}	x_{2}^{3}		x_s^3
$x_1^2 y_1$	$x_{2}^{2}y_{2}$		$x_s^2 y_s$
$x_1 y_1^2$	$x_2 y_2^2$		$x_s y_s^2$
y_{1}^{3}	y_2^3		y_s^3
x_1^4	x_2^4		x_4^4
$x_1^3 y_1$	$x_{2}^{3}y_{2}$		$x_s^3 y_s$
$x_{1}^{2}y_{1}^{2}$	$x_{2}^{2}y_{2}^{2}$		$x_s^2 y_s^2$
$x_1 y_1^3$	$x_2 y_2^3$		$x_s y_s^3$
y_{1}^{4}	y_{2}^{4}		y_s^4
Ŀ	:	÷	:

Francis Sowerby Macaulay

32 / 69

Setting up an eigenvalue problem in x

• Choose s linear independent rows in K

S_1K

 This corresponds to finding linear dependent columns in M

1	1		1
x_1	x_2		x_s
y_1	y_2		y_s
x_1^2	x_{2}^{2}		x_s^2
x_1y_1	x_2y_2		$x_s y_s$
y_1^2	y_{2}^{2}		y_s^2
x_1^3	x_2^3		x_s^3
$x_{1}^{2}y_{1}$	$x_{2}^{2}y_{2}$		$x_s^2 y_s$
$x_1 y_1^2$	$x_2 y_2^2$		$x_s y_s^2$
y_1^3	y_{2}^{3}		y_s^3
x_1^4	x_{2}^{4}		x_4^4
$x_{1}^{3}y_{1}$	$x_2^3y_2$		$x_s^3 y_s$
$x_{1}^{2}y_{1}^{2}$	$x_2^2 y_2^2$		$x_s^2 y_s^2$
$x_1 y_1^3$	$x_2 y_2^3$		$x_s y_s^3$
y_1^4	y_{2}^{4}		y_s^4
:	:	:	:
- ·	•	· ·	· · _

KU LEUVEN

"shift with x" \rightarrow

Shifting the selected rows gives (shown for 3 columns)

1	1	1
x_1	x_2	x_3
y_1	y_2	y_3
x_{1}^{2}	x_{2}^{2}	x_{3}^{2}
$x_{1}y_{1}$	$x_{2}y_{2}$	x_3y_3
y_{1}^{2}	y_{2}^{2}	y_{3}^{2}
x_{1}^{3}	x_{2}^{3}	x_{3}^{3}
$x_{1}^{2}y_{1}$	$x_{2}^{2}y_{2}$	$x_{3}^{2}y_{3}$
$x_1 y_1^2$	$x_2y_2^2$	$x_{3}y_{3}^{2}$
y_{1}^{3}	y_2^3	y_3^3
x_{1}^{4}	x_2^4	x_4^4
$x_{1}^{3}y_{1}$	$x_{2}^{3}y_{2}$	$x_{3}^{3}y_{3}$
$x_{1}^{2}y_{1}^{2}$	$x_{2}^{2}y_{2}^{2}$	$x_{3}^{2}y_{3}^{2}$
$x_1y_1^3$	$x_2y_2^3$	$x_{3}y_{3}^{3}$
y_{1}^{4}	y_{2}^{4}	y_{3}^{4}
	:	:

	1	1 -
x_1	x_2	x_3
y_1	y_2	y_3
x_{1}^{2}	x_{2}^{2}	x_{3}^{2}
$x_{1}y_{1}$	$x_{2}y_{2}$	x_3y_3
y_{1}^{2}	y_{2}^{2}	y_{3}^{2}
x_{1}^{3}	x_{2}^{3}	x_{3}^{3}
$x_{1}^{2}y_{1}$	$x_{2}^{2}y_{2}$	$x_{3}^{2}y_{3}$
$x_1 y_1^2$	$x_2 y_2^2$	$x_{3}y_{3}^{2}$
y_{1}^{3}	y_2^3	y_3^3
$\begin{smallmatrix} x_1^4 \\ x_1^3 y_1 \end{smallmatrix}$	$\begin{array}{c} x_2^4 \\ x_2^3 y_2 \end{array}$	$\begin{array}{c} x_4^4 \\ x_3^3 y_3 \end{array}$
$x_1^2 y_1^2$	$x_{2}^{2}y_{2}^{2}$	$x_{3}^{2}y_{3}^{2}$
$x_1y_1^3$	$x_2y_2^3$	$x_{3}y_{3}^{3}$
y_{1}^{4}	y_{2}^{4}	y_3^4
:		
L		

simplified:

Finding the *x*-roots

Let $D_x = \operatorname{diag}(x_1, x_2, \ldots, x_s)$, then

$$S_1 KD_x = S_x K,$$

where S_1 and S_x select rows from K w.r.t. shift property We have

$$S_1 KD_x = S_x K$$

Generalized Vandermonde K is not known as such, instead a null space basis Z is calculated, which is a linear transformation of K:

$$ZV = K$$

which leads to

$$(S_x Z)V = (S_1 Z)VD_x$$

Here, V is the matrix with eigenvectors, D_x contains the roots x as eigenvalues.

KU LEUVEN

Setting up an eigenvalue problem in y

It is possible to shift with y as well...

We find

$$S_1 K D_y = S_y K$$

with D_y diagonal matrix of y-components of roots, leading to

$$(S_y Z)V = (S_1 Z)VD_y$$

Some interesting observations:

- same eigenvectors V!
- $(S_xZ)^{-1}(S_1Z)$ and $(S_yZ)^{-1}(S_1Z)$ commute \implies 'commutative algebra'

Rank, nullity and null space: SVD-ize the Macaulay matrix

Basic Algorithm outline

Find a basis for the nullspace of M using an SVD:

$$M = \begin{bmatrix} \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{0} \end{bmatrix} = \begin{bmatrix} X & Y \end{bmatrix} \begin{bmatrix} \Sigma_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} W^T \\ Z^T \end{bmatrix}$$

Hence,

MZ = 0

Deflate roots at ∞ by detecting 'mind-the-gap' and column compression:

$$ZT = \left(\begin{array}{cc} Z_{11} & 0\\ Z_{21} & Z_{22} \end{array}\right)$$

We have

$$S_1 KD = S_{\text{shift}} K$$

with K generalized Vandermonde, not known as such. Instead a basis \mathbb{Z}_{11} is computed as

$$Z_{11}V = K$$

which leads to

$$(S_{\text{shift}}Z_{11})V = (S_1Z_{11})VD$$

 S_1 selects linear independent rows. S_{shift} selects rows 'hit' by the shift.

KU LEUVEN

Outline

- 1 Eigenvalues
- 2 Models and data
- 3 Menu
- (Multi-)shift invariance
- 5 Quasi-Toeplitz matrices
- 6 System ID cases
- 7 Conclusions

SISO transfer function (with $\mathcal{Z}{x_k} = x(z)$), e.g. ARMAX:

$$y(z)=\frac{b(z)}{a(z)}u(z)+\frac{c(z)}{a(z)}e(z),$$

with polynomial a(z) (monic), b(z), c(z) (monic) of degree n_a, n_b, n_c .

Corresponding difference equation with $\alpha_i, \beta_i, \gamma_i \in \mathbb{R}$:

$$y_{k+n_a} + \alpha_1 y_{k+n_a-1} + \ldots + \alpha_{n_a} y_k = \beta_0 u_{k+n_b} + \beta_1 y_{k+n_b-1} + \ldots + \alpha_{n_b} u_k + e_{k+n_c} + \gamma_1 e_{k+n_c-1} + \ldots + \gamma_{n_c} e_k$$

Algebraic representation, e.g. ARMAX.

$$T_a y = T_b u + T_c e$$

where $y^T = (y_0 \ y_1 \ \dots \ y_N)$ and e, u alike.

 T_a, T_b, T_c are banded Toeplitz convolution operators, e.g. T_c :

What we will not do here

- Experiment design, preprocessing data, validation, ...
- Which LTI model class to choose.
- Assessing optimal degrees n_a, n_b, n_c
- Bringing in a priori information in the objective function (weighting, a priori known coloring, missing variables)
- Identifiability conditions: persistancy of excitation, sufficient richness, ...
- Second order optimality conditions
- Interpretations/assumptions ('Hypotheses non fingo') such as maximum likelihood, statistical efficiency ...
- Error-covariance matrices, sensitivity, condition numbers

Latency case: Moving average: Given $y \in \mathbb{R}^N$.

6

$$\min_{e \in \mathbb{R}^{N+n_c}} \sigma^2 = \|e\|_2^2 \text{ subject to } y = T_c e.$$

 $T_c \in \mathbb{R}^{N \times (N+n_c)}$ = banded Toeplitz of full row rank (monic: $\gamma_0 = 1$). $e \in \mathbb{R}^{N+n_c}$ because of n_c initial conditions. Underdetermined set of linear equations: minimum norm solution

$$e = T_c^{\dagger} y = T_c^T (T_c T_c^T)^{-1} y,$$

so that

$$\sigma^2 = \|e\|_2^2 = e^T e = y^T (T_c T_c^T)^{-1} y = y^T D_c^{-1} y ,$$

where D_c is symm. pos. def. banded Toeplitz, quadratic in the γ_i .

Interpretation: We look for a metric D_c^{-1} in which the weighted norm of y is minimal. T_c^{\dagger} is a 'whitening' filter.

First order optimality conditions from $\sigma^2 = y^T D_c^{-1} y$:

$$\frac{\partial \sigma^2}{\partial \gamma_i} = y^T \frac{\partial D_c^{-1}}{\partial \gamma_i} y = y^T D_c^{-1} \frac{\partial D_c}{\partial \gamma_i} D_c^{-1} y = 0 , \ i = 1, \dots, n_c.$$
(1)

These are n_c 'nonlinear' equations in the n_c unknowns $\gamma_i.$ Since

$$D_c^{-1} = \operatorname{adj}(D_c) / \det(D_c),$$

where the adjugate matrix $\operatorname{adj}(D_c)$ is multivariate polynomial in the γ_i , equations (1) constitute n_c multivariate polynomials in n_c variables γ_i :

$$\frac{\partial \sigma^2}{\partial \gamma_i} = 0 = y^T \operatorname{adj}(D_c) \frac{\partial D_c}{\partial \gamma_i} \operatorname{adj}(D_c) y , i = 1, \dots, n_c.$$

The γ_i are the roots of a set of n_c multivariate polynomials in n_c unkowns.

Call $f = D_c^{-1}y$, then, with $\sigma^2 = y^T D_c^{-1}y$:

$$\begin{pmatrix} D_c & y \\ y^T & \sigma^2 \end{pmatrix} \begin{pmatrix} f \\ -1 \end{pmatrix} = 0.$$
 (2)

First order optimality conditions: Chain rule with $D_c^{\gamma_i} = \partial D_c / \partial \gamma_i$, $f^{\gamma_i} = \partial f / \partial \gamma_i$ and $\partial \sigma^2 / \partial \gamma_i = 0$:

$$\begin{pmatrix} D_c^{\gamma_i} & 0\\ 0 & 0 \end{pmatrix} \begin{pmatrix} f\\ -1 \end{pmatrix} + \begin{pmatrix} D_c & y\\ y^T & \sigma^2 \end{pmatrix} \begin{pmatrix} f^{\gamma_i}\\ 0 \end{pmatrix} = 0.$$
(3)

 $(N + 1)(n_c + 1)$ equations: N + 1 in (2) and $n_c.(N + 1)$ in (3). $(N + 1)(n_c + 1)$ unknowns: $N(f) + n_c.N(f^{\gamma_i}) + n_c(\gamma_i) + 1(\sigma^2)$.

The last row of (2) defines σ^2 .

The last row of (3) defines n_c orthogonality relations $y^T f^{\gamma_i} = 0, i = 1, \dots, n_c$.

Orthogonality

$$y^{T} f^{\gamma_{i}} = 0$$

= $y^{T} D_{c}^{-1} D_{c}^{\gamma_{i}} f$
= $y^{T} D_{c}^{-1} T_{c}^{\gamma_{i}} T_{c}^{T} f$
= $y^{T} D_{c}^{-1} T_{c}^{\gamma_{i}} e, i = 1, \dots, n_{c}.$

$$y^{T} D_{c}^{-1} \begin{pmatrix} e_{-n_{c}} & e_{-n_{c}+1} & \dots & e_{-1} \\ e_{-n_{c}+1} & e_{-n_{c}+2} & \dots & e_{0} \\ e_{-n_{c}+2} & e_{-n_{c}+3} & \dots & e_{1} \\ \vdots & \vdots & \vdots & \vdots \\ e_{N-n_{c}} & e_{N-n+c+1} & \dots & e_{N-1} \end{pmatrix} = 0.$$

The data vector y is orthogonal to the column space of the $N\times n_c$ Hankel matrix with the latency estimates, in the metric given by $D_c^{-1}.$

Latency case: MA ($n_c = 1$)

$$\left(\begin{array}{ccc} D_c^{\gamma} & D_c & 0\\ D_c & 0 & y\\ 0 & y^T & 0 \end{array}\right) \left(\begin{array}{c} f\\ f^{\gamma}\\ -1 \end{array}\right) = 0.$$

For N = 4:

(2γ	1	0	0	$1 + \gamma^2$	γ	0	0	0)	f_0	
(1	2γ	1	0	γ	$1 + \gamma^{2}$	γ	0	0	$\begin{pmatrix} f_1 \end{pmatrix}$	
	0	1	2γ	1	0	γ	$1 + \gamma^{2}$	γ	0	f_2	
	0	0	1	2γ	0	0	γ	$1 + \gamma^2$	0	f_3	
-	$1 + \gamma^2$	γ	0	0	0	0	0	0	y_0	$f_{Q_{i}}^{\gamma}$	= 0.
	γ	$1 + \gamma^{2}$	γ	0	0	0	0	0	y_1	f_{1}'	
	0	γ	$1 + \gamma^{2}$	γ	0	0	0	0	y_2		
	0	0	γ	$1 + \gamma^2$	0	0	0	0	y_3	$\left(\frac{f_3}{1} \right)$	
/-	0	0	0	0	y_0	y_1	y_2	y_3	0 /	\ -1 /	

Regroup as quadratic eigenvalueproblem and 'linearize' :

$$(A_2\gamma^2 + A_1\gamma + A_0)z = 0 \text{ with } z = \begin{pmatrix} -1 \\ f \\ f^{\gamma} \end{pmatrix} \Longrightarrow \begin{pmatrix} 0 & I \\ A_0 & A_1 \end{pmatrix} \begin{pmatrix} z \\ z\gamma \end{pmatrix} = \begin{pmatrix} I & 0 \\ 0 & -A_2 \end{pmatrix} \begin{pmatrix} z \\ z\gamma \end{pmatrix} \gamma.$$

Only need eigenvalue that minimizes objective function ! The latency $e=T_c^Tf,\,f$ is part of corresponding eigenvector.

KU LEUVEN

Latency case MA ($n_c = 2$)

$$\left(\begin{array}{ccc} D_c^{\gamma i} & D_c & 0 \\ D_c & 0 & y \\ 0 & y^T & 0 \end{array} \right) \left(\begin{array}{c} f \\ f^{\gamma i} \\ -1 \end{array} \right) = 0 \ , \ i = 1,2$$

Regroup in a multi-parameter eigenvalue problem with $z^T=(-1\;f^T\;(f^{\gamma_1})^T\;(f^{\gamma_2})^T\;)$:

$$(A_{00} + A_{10}\gamma_1 + A_{01}\gamma_2 + A_{20}\gamma_1^2 + A_{11}\gamma_1\gamma_2 + A_{02}\gamma_2^2) \begin{pmatrix} \frac{z}{z\gamma_1} \\ \frac{z\gamma_2}{z\gamma_1^2} \\ \frac{z\gamma_1}{z\gamma_1^2} \\ z\gamma_1^2 \\ z\gamma_1^2 \end{pmatrix} = 0.$$

and build up block Macaulay recursively (quasi-Toeplitz-ify) until 'mind-the-gap' starts in the null space, which is **multi-shift invariant**:

	1	γ_1	γ_2	γ_1^2	$\gamma_1\gamma_2$	γ_2^2	γ_1^3	$\gamma_1^2 \gamma_2$	$\gamma_1 \gamma_2^2$	γ_2^3	γ_1^4		(z)
1	(A_{00})	A_{10}	A_{01}	A_{20}	A_{11}	A_{02}	0	0	0	0	0)	$\left(\frac{z\gamma_1}{z\gamma_1}\right)$
$\times \gamma_1$	0	A_{00}	0	A_{10}	A_{01}	0	A_{20}	A_{11}	A_{02}	0	0]	$z\gamma_2$
$\times \gamma_2$	0	0	A_{00}	0	A_{10}	A_{01}	0	A_{20}	A_{11}	A_{02}	0		$\frac{1}{z\gamma_1^2}$
$\times \gamma_1^2$	0	0	0	A_{00}	0	0	A_{10}	A_{01}	0	0	A_{20}		$z\gamma_1\gamma_2 = 0$
$\times \gamma_1 \gamma_2$	0	0	0	0	A_{00}	0	0	A_{10}	A_{01}	0	0		$\frac{2}{2}\gamma^{2} = 0$
$\times \gamma_2^2$	0	0	0	0	0	A_{00}	0	0	A_{10}	A_{01}	0		~ /
												.	2.91
:	1:	:										: /	
						-	-					. ,	

Next do 2D realization theory in the multi-shift invariant null space !

Misfit case: Least squares realization (n_a)

Misfit case: Least squares realization (n_a)

$$\sigma^2 = \|\tilde{y}\|_2^2$$

Misfit case: Least squares realization

$$\min \|\tilde{y}\|_2^2 \text{ subject to } \begin{array}{l} y = \hat{y} + \tilde{y}, \\ T_a \hat{y} = 0. \end{array}$$

Obviously

$$T_a y = T_a \tilde{y}.$$

Minimum norm solution using pseudo-inverse and T_a full row rank:

$$\tilde{y} = T_a^{\dagger} T_a y = T_a^T (T_a T_a^T)^{-1} T_a y = \Pi_a y.$$

 Π_a = orthogonal projector onto row space of T_a . Define $D_a = T_a T_a^T$ and $f = D_a^{-1} T_a y$:

$$y = \hat{y} + \tilde{y} = \hat{y} + T_a^T f \Longrightarrow \hat{y} \perp \tilde{y} = T_a^T f.$$

$$\tilde{y} = T_a^T f.$$

The least squares residual

- = f through FIR filter determined by a
- = Finite dimensional form of Beurling - Lax - Halmos theorem

Let

$$\sigma^2 = \|\tilde{y}\|_2^2 = y^T T_a^T (T_a T_a^T)^{-1} T_a y.$$

With $f = D_a^{-1}T_a y$:

$$\begin{pmatrix} D_a & T_a y\\ y^T T_a^T & \sigma^2 \end{pmatrix} \begin{pmatrix} f\\ -1 \end{pmatrix} = 0.$$
 (4)

First order optimality conditions and chain rule:

$$\begin{pmatrix} D_a^{\alpha_i} & T_a^{\alpha_i}y \\ y^T (T_a^{\alpha_i})^T & 0 \end{pmatrix} \begin{pmatrix} f \\ -1 \end{pmatrix} + \begin{pmatrix} D_a & T_ay \\ y^T T_a^T & \sigma^2 \end{pmatrix} \begin{pmatrix} f^{\alpha_i} \\ -1 \end{pmatrix} = 0, \ i = 1, \dots, n_a.$$
(5)

Then:

- Define $z^T = (-1 f^T (f^{\alpha_1})^T \dots (f^{\alpha_{n_a}})^T).$
- Quasi-Toeplitz-ify eqs. (4) (5) in block Macaulay with blocks in $1, \alpha_1, \ldots, \alpha_{n_a}, \alpha_1^2, \alpha_1 \alpha_2, \ldots$
- Null space will be multi-shift invariant.
- Do nD realization theory in the null space.
- The last row of (4) allows to evaluate σ^2 in the roots
- The last row of (5) delivers interesting orthogonality properties (not derived here)
- Misfit vector $\tilde{y} = T_a^T f$ follows from eigenvector

Misfit case: Dynamic Total Least Squares (n_a, n_b)

$$\sigma^2 = \|\tilde{u}\|_2^2 + \|\tilde{y}\|_2^2$$

Misfit case: dynamic total least squares

$$\begin{array}{l} u = \hat{u} + \tilde{u} \\ \min \|\tilde{u}\|_2^2 + \|\tilde{y}\|_2^2 \text{ subject to } & y = \hat{y} + \tilde{y} \\ & T_a \hat{y} + T_b \hat{u} = 0 \end{array} .$$

Then:

$$T_a y + T_b u = (T_a \ T_b) \begin{pmatrix} \tilde{y} \\ \tilde{u} \end{pmatrix}.$$

Pseudo-inverse minimum norm solution:

$$\left(\begin{array}{c} \tilde{y} \\ \tilde{u} \end{array} \right) = \left(\begin{array}{c} T_a^T \\ T_b^T \end{array} \right) (T_a T_a^T + T_b T_b^T)^{-1} (T_a \ T_b \) \left(\begin{array}{c} y \\ u \end{array} \right) = \Pi_{ab} \left(\begin{array}{c} y \\ u \end{array} \right).$$

Again 'Thales orthogonal decomposition' and 'Beurling-Lax-Halmos':

$$y = \hat{y} + \tilde{y} \Longrightarrow \begin{array}{c} \left(\begin{array}{c} T_a & T_b \end{array}\right) \left(\begin{array}{c} \hat{y} \\ \hat{u} \end{array}\right) = 0 \\ \left(\begin{array}{c} \tilde{y} \\ \tilde{u} \end{array}\right) = \left(\begin{array}{c} T_a^T \\ T_b^T \end{array}\right) f \end{array}$$

with

$$D_{ab} = (T_a T_a^T + T_b T_b^T) \text{ and } f = D_{ab}^{-1} (T_a \ T_b) \begin{pmatrix} y \\ u \end{pmatrix}$$

Then

$$\sigma^2 = \|\tilde{u}\|_2^2 + \|\tilde{y}\|_2^2 = \left(\begin{array}{cc} y^T & u^T \end{array}\right) \left(\begin{array}{c} T_{a_T}^T \\ T_b^T \end{array}\right) D_{ab}^{-1} \left(\begin{array}{c} T_a & T_b \end{array}\right) \left(\begin{array}{c} y \\ u \end{array}\right)$$

so that

$$\begin{pmatrix} D_{ab} & T_a y + T_b u \\ y^T T_a^T + u^T T_b^T & \sigma^2 \end{pmatrix} \begin{pmatrix} f \\ -1 \end{pmatrix} = 0.$$
 (6)

First order optimality and chain rule:

Then

- Define $z^T = (-1 f^T (f^{\alpha_1})^T \dots (f^{\alpha_{n_a}})^T (f^{\beta_1})^T \dots (f^{\beta_{n_b}})^T).$
- Quasi-Toeplitz-ify in block Macaulay with blocks in $1, \alpha_1, \ldots, \alpha_{n_a}, \beta_0, \beta_1, \ldots, \alpha_1^2, \alpha_1 \alpha_2, \ldots$
- Null space will be multi-shift invariant.
- Do nD realization theory in the null space.
- The last row of (6) allows to evaluate σ^2 in the roots
- The last rows of (7) and (8) deliver interesting orthogonality properties (not derived here)
- Misfit vectors \tilde{y} and \tilde{u} follow from eigenvector

Latency case: ARMAX (n_a, n_b, n_c)

Misfit case: Output Error (n_a, n_b)

$$\sigma^2 = \|\tilde{y}\|_2^2$$

Misfit+Latency case: ARMAX with I/O Misfit(n_a, n_b, n_c)

Name	u	e	α	β	γ	a	b	с	d
Exact data									
Autonomous system	0	0	∞	∞	∞	a	1	1	1
Exact FIR	u	0	∞	∞	∞	1	b	1	1
Diff. eq.	u	0	∞	∞	∞	a	b	1	1
:									
Latency									
MA	0	e	∞	∞	1	1	1	c	1
AR	0	e.	∞	~	1	1	1	1	d
ARMA	Ō	e.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	00	1	1	1	c	d
ARMAX	u.	e	~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1	a	\overline{b}	c	a
									-
:									
Mistit									
LS Realization	0	0	1	∞	∞		1	1	1
UE FIR	u	0	1	∞	∞	1	6	1	1
IE FIR	u	0	∞	1	∞	1	Ь	1	1
IE+OE FIR	u	0	α	β	∞	1	Ь	1	1
OE	u	0	1	∞	∞	a	Ь	1	1
IE	u	0	∞	1	∞	a	Ь	1	1
Dynamic TLS	u	0	α	β	∞	a	Ь	1	1
:									
Misfit + Latency									
ARMAX with M+L	u	e	α	β	γ	a	b	c	a

Outline

- 1 Eigenvalues
- 2 Models and data
- 3 Menu
- (Multi-)shift invariance
- 5 Quasi-Toeplitz matrices
- 6 System ID cases

What have we done ?

- System identification of LTI dynamical system least squares minimizing misfit and/or latency is solved!
- It is an eigenvalue problem, because
 - It is a multivariate polynomial optimization problem.
 - The first order optimality conditions generate a set of multivariate polynomials.
 - The optimal parameters belong to the roots of this set.
 - To find them, we recursively quasi-Toeplitz-ify the first order optimality conditions into 'growing' (block) Macaulay matrices.
 - The null spaces of these quasi-Toeplitz matrices are multi-shift invariant subspace, with 3 zones:
 - A 'regular' zone, recovered by rank tests and a column compression, that 'contains' the affine roots
 - A 'mind-the-gap'-zone that seperates the affine roots from those at infinity;
 - An 'a-bout-du-souffle'-zone that 'contains' the roots at infinity.
 - We apply nD realization theory in these multi-shift invariant subspaces
 - The roots are eigenvalues of the n shift matrices.
- We only need the minimizing affine roots (not covered here)

What did we use ?

System and control theory: (Singular) observability matrices, parametrizations, ...

Optimization theory: Optimality conditions, Lagrange multipliers, ...

Advanced linear algebra: Cayley-Hamilton, SVD, JCF, WCF, ...

Algebraic geometry: 'queen of mathematics':

- Hilbert's theorem (nullstellensatz, basis thm, syzygies), ...
- 'Intersection' of fundamental theorem of algebra and linear algebra (null spaces and multi-shift invariance)
- Multi-parameter eigenvalue problems
- Translate (symbolic algebraic geometry: Grobner bases) into numerical linear algebra (floating point arithmetic)

Operator theory: shift-invariant subspaces, Beurling-Lax,

What are we to do in the (near) future ?

- Algorithms:
- Numerical linear algebra: Large scale HPC implementation (exploiting structure (quasi-Toeplitz and multi-shift invariance), sparsity,....)
- Compute only eigenvalues for minimum: power method and extensions (Lanczos, Krylov,....)
- Recursiveness in the degrees n_a, n_b, n_c and in the number of data N: 'root loci' and 'stabilization diagrams'
- Analyse all existing 'heuristic' approaches: PEM, VAPRO, IQML, Cadzow's iteration, (e.g. local versus global minima)
- Least squares and orthogonality: many interesting structured orthogonality results to be uncovered.
- Sensitivity, condition numbers, persistancy of excitation, sufficiently rich,
- Second-order optimality conditions, error covariance matrices, ...
- Extension for MIMO (find approach in state space so that 'non-uniqueness of parametrization does not matter, i.e. modulo non-uniqueness
- H₂ model reduction is solved: it's an eigenvalue problem. Bring in more operator theory (e.g. Commutant Lifting Theorem)
- Theory of multi-shift invariant spaces
- Least squares system id for linear partial difference equations

"What is difficult to solve in a low dimensional space, is easier to solve in a high dimensional space." *Ex.: least squares realization is solved exactly by nD realization*

"What is difficult to solve in a low dimensional space, is easier to solve in a high dimensional space." *Ex.: least squares realization is solved exactly by nD realization*

"Generalize to solve"

"What is difficult to solve in a low dimensional space, is easier to solve in a high dimensional space." *Ex.: least squares realization is solved exactly by nD realization*

"Generalize to solve"

"At the end of the day, the only thing we really understand, is linear algebra."

