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EVENT: 
g(STATE) ≤ 0 

EVENT-DRIVEN CONTROL:  Act only when needed (or on TIMEOUT) - not based on a clock 



CYBER-PHYSICAL SYSTEMS 
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INTERNET 

CYBER 

PHYSICAL 

Data collection: 
relatively easy… 

Control: 
a challenge… 

TIME-DRIVEN 

EVENT-DRIVEN 



OUTLINE  
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 Why EVENT-DRIVEN Control and Optimization ? 
 

 EVENT-DRIVEN Control in Distributed Multi-Agent Systems 

 A General Optimization Framework for Multi-Agent Systems 

 EVENT-DRIVEN + DATA-DRIVEN Control and Optimization:  

 the IPA (Infinitesimal Perturbation Analysis) Calculus 
  



REASONS FOR EVENT-DRIVEN  
 MODELS, CONTROL, OPTIMIZATION 
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 Many systems are naturally Discrete Event Systems (DES)  
   (e.g., Internet)  
   → all state transitions are event-driven 
 
 
 Most of the rest are Hybrid Systems (HS) 
   → some state transitions are event-driven 
 
 
 Many systems are distributed  
   → components interact asynchronously (through events) 
 
 
 Time-driven sampling inherently inefficient (“open loop” sampling) 



REASONS FOR EVENT-DRIVEN  
MODELS, CONTROL, OPTIMIZATION 
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 Many systems are stochastic  
   → actions needed in response to random events 
 
 
 Event-driven methods provide significant advantages in 
   computation and estimation quality 
 
 
 System performance is often more sensitive to event-driven 
   components than to time-driven components 

 
 Many systems are wirelessly networked → energy constrained  
   → time-driven communication consumes significant energy 
        UNNECESSARILY! 
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Time-driven (synchronous) implementation: 
- Sum repeatedly evaluated unnecessarily 
- When evaluation is actually needed, it is done at the wrong times ! 

TIME 

t1 t2 

TIME-DRIVEN (SYNCHRONOUS) v  
EVENT-DRIVEN (ASYNCHRONOUS) COMPUTATION 
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N system components  
(processors, agents, vehicles, nodes),  
one common objective: 



DISTRIBUTED COOPERATIVE OPTIMIZATION 
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Inter-node communication 



SYNCHRONIZED (TIME-DRIVEN) COOPERATION 
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COMMUNICATE + UPDATE 

Drawbacks: 
 Excessive communication (critical in wireless settings!) 
 Faster nodes have to wait for slower ones 
 Clock synchronization infeasible 
 Bandwidth limitations 
 Security risks 



ASYNCHRONOUS COOPERATION 
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 Nodes not synchronized, delayed information used 

Bertsekas and Tsitsiklis, 1997 

Update frequency for each node 
is bounded  
 +  
technical conditions 

⇒ 
))(()()1( kdksks iiii sα+=+

converges 



ASYNCHRONOUS (EVENT-DRIVEN) COOPERATION 
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3 

UPDATE 
COMMUNICATE 

 UPDATE at i :         locally determined, arbitrary (possibly periodic) 
 COMMUNICATE from i :   only when absolutely necessary 

1 



WHEN SHOULD A NODE COMMUNICATE? 
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AT ANY TIME t : 

   If node i knows how j estimates its state, then it can evaluate  )(tx j
i

   Node i uses  
• its own true state, xi(t) 
• the estimate that j uses,  )(tx j

i

… and evaluates an ERROR FUNCTION ( ))(),( txtxg j
ii

Error Function examples: 21
)()(     ,)()( txtxtxtx j

ii
j

ii −−

           : node i state estimated by node j )(tx j
i
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WHEN SHOULD A NODE COMMUNICATE? 

Node i communicates its state to node j only when it detects that  
its true state xi(t) deviates from  j’ estimate of it  
so that   

)(tx j
i

( ) i
j

ii txtxg δ≥)(),(

( ))(),( txtxg j
iiCompare ERROR FUNCTION             to THRESHOLD δi 

⇒ Event-Driven Control 
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CONVERGENCE  

Asynchronous distributed state update process at each i: 
))(()()1( kdksks i

iii s⋅+=+ α Estimates of other nodes, 
evaluated by node i 

THEOREM: Under certain conditions, there exist positive constants 
        α and Kδ such that 
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INTERPRETATION:  
 Event-driven cooperation achievable with 
 minimal communication requirements ⇒ energy savings 

Zhong and Cassandras, IEEE TAC, 2010 
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COONVERGENCE WHEN DELAYS ARE PRESENT 

Red curve:
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COONVERGENCE WHEN DELAYS ARE PRESENT 

ASSUMPTION: There exists a non-negative integer D such 
that if a message is sent before tk-D from node i to node j, it 
will be received before tk. 
INTERPRETATION: at most D state update events can occur between a node 
sending a message and all destination nodes receiving this message. 

Add a boundedness assumption: 

THEOREM: Under certain conditions, there exist positive constants 
         α and Kδ such that 
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NOTE: The requirements on α and Kδ depend on D and they are tighter. 

Zhong and Cassandras, IEEE TAC, 2010 



OPTIMAL COVERAGE IN A MAZE 
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OPTIMIZATION FRAMEWORK 

FOR 
MULTI-AGENT SYSTEMS 
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 R(x): property of point x 

 P(x, s): reward function 

 Oj: obstacle (constraint) 
ia

O1 

O2 

 si: agent state, i = 1,…, N 
     s=[s1, … , sN ] 
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NETWORKED MULTI-AGENT OPTIMIZATION: 
 PROBLEM 1: PARAMETRIC OPTIMIZATION 

 Ω  

GOAL:  Find the best  state vector s=[s1, … , sN ] so that agents achieve 
 a maximal reward from interacting with the mission space  
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 Ω  

GOAL:  Find the best  state trajectories si(t), 0 ≤ t ≤  T so that agents 
achieve  a maximal reward from interacting with the mission space  

Nitusfs iiii ,,1   ),,,(  ==

May also have dynamics 

NETWORKED MULTI-AGENT OPTIMIZATION:  
 PROBLEM 2: DYNAMIC OPTIMIZATION 
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FRAMEWORK 
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COVERAGE 

∫Ω
= dxxRxPH )(),()(max ss
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Event density: Prior 
estimate of event 
occurrence frequency 

Joint event detection probability: 
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Deploy sensors to maximize “event” detection 
probability - unknown event locations 
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PERSISTENT MONITORING 

AGENT MODEL Nitusfs iiii ,,1   ),,,(  ==
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GOAL:  Find the best  state trajectories si(t), 0 ≤ t ≤  T so that agents 
achieve  a maximal reward from interacting with the mission space  

ENVIRONMENT MODEL 

SENSING MODEL  
(how agents interact with environment) 
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PERSISTENT MONITORING 

s(t) 

x 

ENVIRONMENT MODEL:  Associate to x Uncertainty Function R(x,t) 
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THE INTERNET OF CARS… 
With traffic lights 
(non-Cooperative) 

No traffic lights: decentralized 
control of CAVs (Cooperative) 

One of the worst-designed double intersections ever…  
(BU Bridge – Commonwealth Ave, Boston) 

Zhang et al, Proc. of IEEE, 2018 Malikopoulos, Cassandras, Zhang et al, Automatica, 2018 
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1.  SCALABILITY  
2.  AUTONOMY 

3.   COMMUNICATION 

4.   NON-CONVEXITY 

5.   EXLOIT DATA  
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NETWORKED MULTI-AGENT OPTIMIZATION–  
       CHALLENGES 

Distributed Algorithms 
(Decentralization) 

Global optimality, 
escape local optima 

Event-driven (asynchronous) 
Algorithms 

Data-Driven Algorithms 
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DATA-DRIVEN STOCHASTIC OPTIMIZATION 

CONTROL/DECISION 
(Parameterized by θ) SYSTEM PERFORMANCE 

NOISE 
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)]([ θLE

)]([max θ
θ

LE
Θ∈

GOAL: 

DIFFICULTIES:  - E[L(θ)] NOT available in closed form 
 -       not easy to evaluate 
 -         may not be a good estimate of  

)(θL∇
)(θL∇ )]([ θLE∇

L(θ) GRADIENT 
ESTIMATOR 

)(1 nnnn L θηθθ ∇+=+

x(t) L(θ) ∆ 

REAL-TIME DATA 



REAL-TIME STOCHASTIC OPTIMIZATION FOR DES: 
INFINITESIMAL PERTURBATION ANALYSIS (IPA)  

CONTROL/DECISION 
(Parameterized by θ) 

Discrete Event 
System (DES) 

PERFORMANCE 

L(θ) 
IPA 

NOISE 

)(1 nnnn L θηθθ ∇+=+

Sample path 

For many (but NOT all) DES: 
- Unbiased estimators 
- General distributions 
- Simple on-line implementation 

)]([ θLE
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x(t) 
Model 

x(t) 

L(θ) ∆ 

Ho and Cao, 1991; Glasserman, 1991; Cassandras, 1993;  
Cassandras and Lafortune, 2008 



REAL-TIME STOCHASTIC OPTIMIZATION: 
HYBRID SYSTEMS, CYBER-PHYSICAL SYSTEMS 

CONTROL/DECISION 
(Parameterized by θ) 

HYBRID 
SYSTEM 

PERFORMANCE 

L(θ) 
IPA )(1 nnnn L θηθθ ∇+=+

A general framework for an IPA theory in Hybrid Systems? 

Sample path 

  Christos G. Cassandras    CISE - CODES Lab. - Boston University 
 

)]([ θLE

NOISE 

x(t) L(θ) ∆ 



 
 
 
 
 
 

THE IPA CALCULUS 
 
 
 
 
 
 
 



HYBRID AUTOMATA STOCHASTIC HYBRID AUTOMATA 

),  ,( txfx k=

Event at time τk(θ) Event at time τk+1(θ) 

kth discrete state (mode) 

θ : control parameter,             (system design parameter,  
               parameter of an input process,  
               or parameter that characterizes a control policy) 

Θ∈θ

θ 



IPA: THREE FUNDAMENTAL EQUATIONS 

1. Continuity at events:             
 

      Take d/dθ : 
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System dynamics over (τk(θ), τk+1(θ)]:  ),,( txfx k θ=

( ) ( ) ( )
θ
θττ

θ
θ

∂
∂

=′
∂

∂
=′ k

k
txtx    ,,

NOTATION: 



IPA: THREE FUNDAMENTAL EQUATIONS 

Solve                       over (τk(θ), τk+1(θ)]:  
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2.   Take d/dθ of system dynamics         over (τk(θ), τk+1(θ)]:  ),,( txfx k θ=

θ∂
∂

+
∂

∂
=

)()(')()(' tftx
x
tf

dt
tdx kk

NOTE: If there are no events (pure time-driven system), 
 IPA reduces to this equation 



3. Get     depending on the event type: 

IPA: THREE FUNDAMENTAL EQUATIONS 

kτ ′
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Ignoring resets and induced events:  

IPA: THREE FUNDAMENTAL EQUATIONS 
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Cassandras et al, Europ. J. Control, 2010 



IPA PROPERTIES 

Back to performance metric:  ( ) ∑ ∫
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at event times 
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between event times 

  Christos G. Cassandras    CISE - CODES Lab. - Boston University 
 



IPA PROPERTIES: ROBUSTNESS 

THEOREM 1: If either 1,2 holds, then dL(θ)/dθ  depends only on 
information available at event times τk: 
 
1. L(x,θ,t) is independent of t over [τk(θ), τk+1(θ)] for all k 

2. L(x,θ,t) is only a function of x and for all t over [τk(θ), τk+1(θ)]: 
 
 
 

0=
∂
∂

=
∂
∂

=
∂
∂

θ
kkk f

dt
d

x
f

dt
d

x
L

dt
d

IMPLICATION:  - Performance sensitivities can be obtained from information 
    limited to event times, which is easily observed  
  - No need to track system in between events ! 
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Yao and Cassandras, J. DEDS, 2011 



IPA PROPERTIES 

EVENTS 

Evaluating         requires full knowledge of w and f values (obvious)  );( θtx

However,            may be independent of w and f values (NOT obvious) 
θ

θ
d
tdx );(

It often depends only on:   - event times τk  
    - possibly  )( 1

−
+kf τ

);,,,( θtwuxfx =

τk τk+1 
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IPA PROPERTIES: SCALABILITY 

IPA estimators are EVENT-DRIVEN 
⇒  IPA scales with the EVENT SET, not the STATE SPACE ! 
⇒  no time discretization needed 
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As a complex system grows with the addition of more states, 
the number of EVENTS often remains unchanged or increases at a 
much lower rate. 
 
EXAMPLE: A queueing network may become very large, but the basic 
events used by IPA are still “arrival” and “departure” at different nodes. 



 
 
 
 

DECENTRALIZING 
CAN BE HARD 

 
 
 
 
 

DECENTRALIZED SOLUTION      =      CENTRALIZED SOLUTION 
(AGENTS ACTING USING ONLY LOCAL INFO.)   

(no performance loss due to decentralization) 



Agent Network 
(time-varying) 

Agent-Target 
Interaction Network 
(time-varying) 
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PERSISTENT MONITORING WITH KNOWN TARGETS 

Hard to decentralize in the presence of 
time-varying agent-environment interactions  
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THREE TYPES OF NEIGHBORHOODS 
(conventional) 

  𝐴5 

  𝐴2 
  𝐴3 

  𝐴1 

  𝐴4 
𝑇2 

𝑇1 

𝑇3 

𝑇5 

𝑇4 
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“ALMOST DECENTRALIZATION” RESULT 

- Show that optimal trajectories consist of hybrid dynamics:  
     segments defined by observable EVENTS 
     e.g., agent enters target sensing range, agent leaves neighborhood 

- Develop EVENT-DRIVEN gradient-based algorithms using the  
     Infinitesimal Pertubation Analysis (IPA) calculus: 
     Each agent evaluates its IPA derivative  

- Does an agent’s IPA derivative depend only on LOCAL events?  

THEOREM:: Each agent’s IPA derivative depends only on LOCAL events 
     except for one global event  

Zhou et al, IEEE TAC 2018 

DECENTRALIZATION   EVENT OBSERVABILITY   



1.  SCALABILITY  
2.  AUTONOMY 

3.   COMMUNICATION 

4.   NON-CONVEXITY 

5.   EXLOIT DATA  
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NETWORKED MULTI-AGENT OPTIMIZATION–  
       CHALLENGES 

Distributed Algorithms 
(Decentralization) 

Global optimality, 
escape local optima 

Event-driven (asynchronous) 
Algorithms 

Data-Driven Algorithms 

When are these possible? 
How to design? 

Can this be done in a distributed manner? Is convergence guaranteed? 

How do Event-Driven algorithms perform compared to Time-Driven ones? 

Solve stochastic optimization problems robust to modeling assumptions 
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