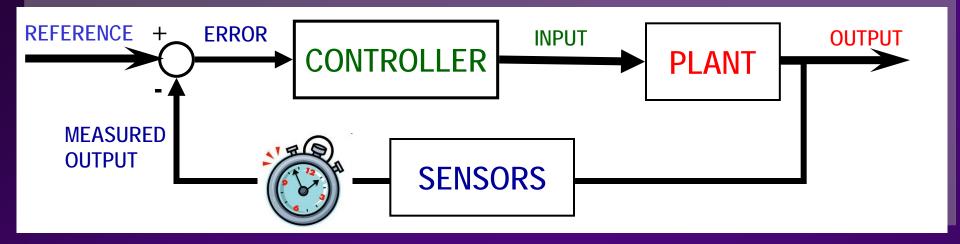
EVENT-DRIVEN AND DATA-DRIVEN CONTROL AND OPTIMIZATION IN CYBER-PHYSICAL SYSTEMS

C. G. Cassandras

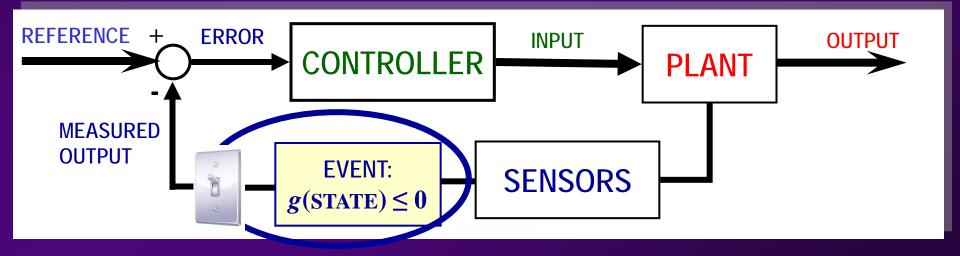
Division of Systems Engineering Dept. of Electrical and Computer Engineering Center for Information and Systems Engineering Boston University https://christosgcassandras.org

Christos G. Cassandras — CODES Lab. - Boston University

TIME-DRIVEN v EVENT-DRIVEN CONTROL

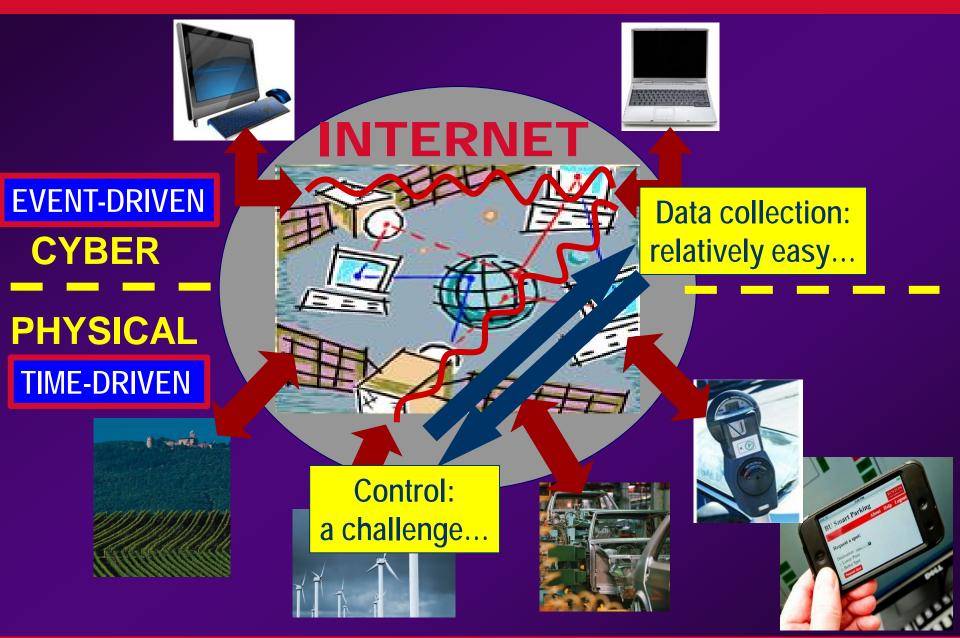


EVENT-DRIVEN CONTROL: Act only when needed (or on TIMEOUT) - not based on a clock



Christos G. Cassandras

CYBER-PHYSICAL SYSTEMS



Christos G. Cassandras

C/SE - CODES Lab. - Boston University

OUTLINE

Why EVENT-DRIVEN Control and Optimization ?

EVENT-DRIVEN Control in Distributed Multi-Agent Systems

A General Optimization Framework for Multi-Agent Systems

EVENT-DRIVEN + DATA-DRIVEN Control and Optimization: the IPA (Infinitesimal Perturbation Analysis) Calculus

REASONS FOR EVENT-DRIVEN MODELS, CONTROL, OPTIMIZATION

- Many systems are naturally Discrete Event Systems (DES) (e.g., Internet)
 - \rightarrow all state transitions are event-driven
- Most of the rest are Hybrid Systems (HS) \rightarrow some state transitions are event-driven
- Many systems are distributed

 → components interact asynchronously (through events)
- Time-driven sampling inherently inefficient ("open loop" sampling)

REASONS FOR *EVENT-DRIVEN* MODELS, CONTROL, OPTIMIZATION

Many systems are stochastic

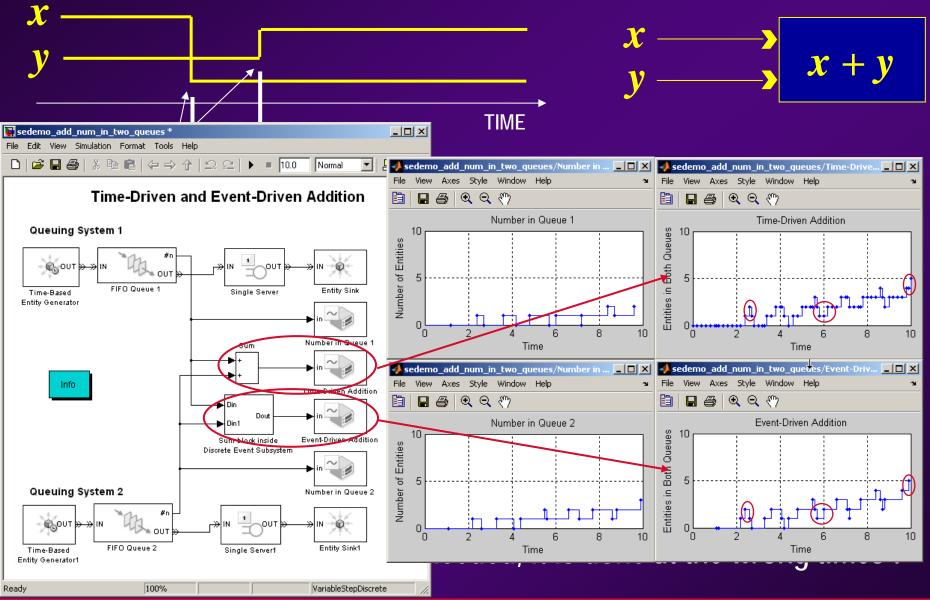
 \rightarrow actions needed in response to random events

Event-driven methods provide significant advantages in computation and estimation quality

 System performance is often more sensitive to event-driven components than to time-driven components

 Many systems are wirelessly networked → energy constrained
 → time-driven communication consumes significant energy UNNECESSARILY!

TIME-DRIVEN (SYNCHRONOUS) v EVENT-DRIVEN (ASYNCHRONOUS) COMPUTATION



Christos G. Cassandras

SELECTED REFERENCES - EVENT-DRIVEN CONTROL, COMMUNICATION, ESTIMATION, OPTIMIZATION

Astrom, K.J., and B. M. Bernhardsson, "Comparison of Riemann and Lebesgue sampling for first order stochastic systems," *Proc. 41st Conf. Decision and Control*, pp. 2011–2016, 2002.
T. Shima, S. Rasmussen, and P. Chandler, "UAV Team Decision and Control using Efficient Collaborative Estimation," *ASME J. of Dynamic Systems, Measurement, and Control*, vol. 129, no. 5, pp. 609–619, 2007.

- Heemels, W. P. M. H., J. H. Sandee, and P. P. J. van den Bosch, "Analysis of event-driven controllers for linear systems," *Intl. J. Control*, 81, pp. 571–590, 2008.

- P. Tabuada, "Event-triggered real-time scheduling of stabilizing control tasks," *IEEE Trans. Autom. Control*, vol. 52, pp. 1680–1685, 2007.

- J. H. Sandee, W. P. M. H. Heemels, S. B. F. Hulsenboom, and P. P. J. van den Bosch, "Analysis and experimental validation of a sensor-based event-driven controller," *Proc. American Control Conf.*, pp. 2867–2874, 2007.

- J. Lunze and D. Lehmann, "A state-feedback approach to event-based control," *Automatica*, 46, pp. 211–215, 2010.

P. Wan and M. D. Lemmon, "Event triggered distributed optimization in sensor networks," *Proc. of 8th ACM/IEEE Intl. Conf. on Information Processing in Sensor Networks*, 2009.
Zhong, M., and Cassandras, C.G., "Asynchronous Distributed Optimization with Event-Driven Communication", *IEEE Trans. on Automatic Control*, AC-55, 12, pp. 2735-2750, 2010.

Christos G. Cassandras

EVENT-DRIVEN DISTRIBUTED OPTIMIZATION

DISTRIBUTED COOPERATIVE OPTIMIZATION

N system components (processors, agents, vehicles, nodes), one common objective:

$$\min_{s_1,\ldots,s_N} H(s_1,\ldots,s_N)$$

s.t. constraints on each s_i

$$\min_{s_1} H(s_1,\ldots,s_N)$$

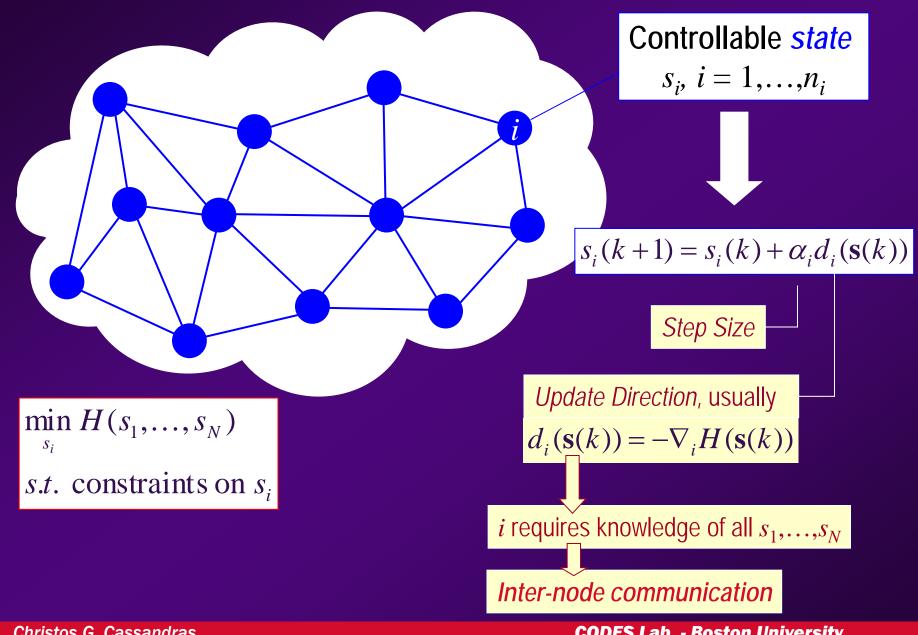
s.t. constraints on
$$s_1$$

$$\min_{s_N} H(s_1, \dots, s_N)$$

s.t. constraints on s_N

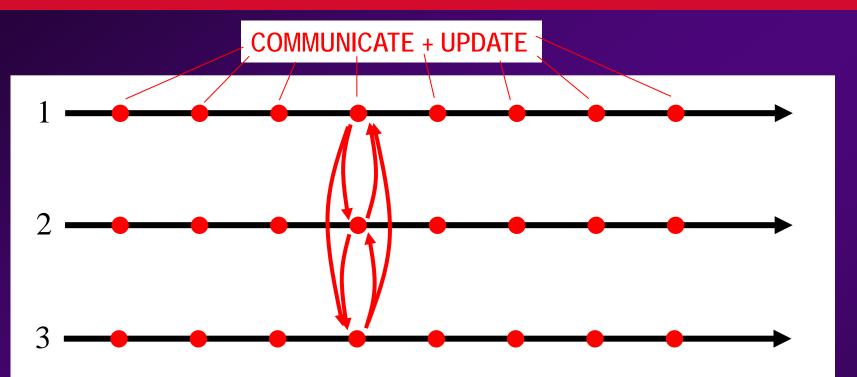
Christos G. Cassandras

DISTRIBUTED COOPERATIVE OPTIMIZATION



Christos G. Cassandras

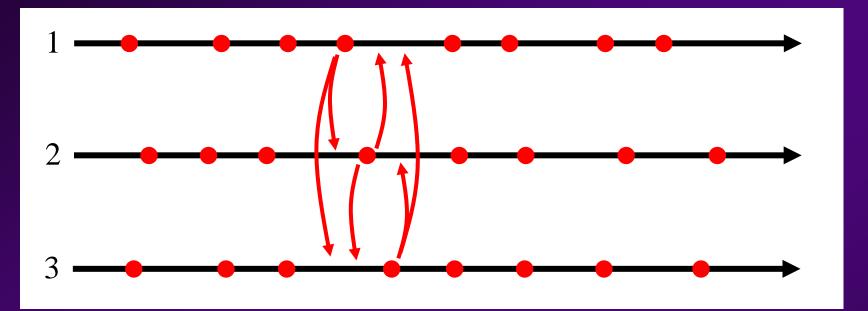
SYNCHRONIZED (TIME-DRIVEN) COOPERATION



Drawbacks:

- Excessive communication (critical in wireless settings!)
- Faster nodes have to wait for slower ones
- Clock synchronization infeasible
- Bandwidth limitations
- Security risks

ASYNCHRONOUS COOPERATION



Nodes not synchronized, delayed information used

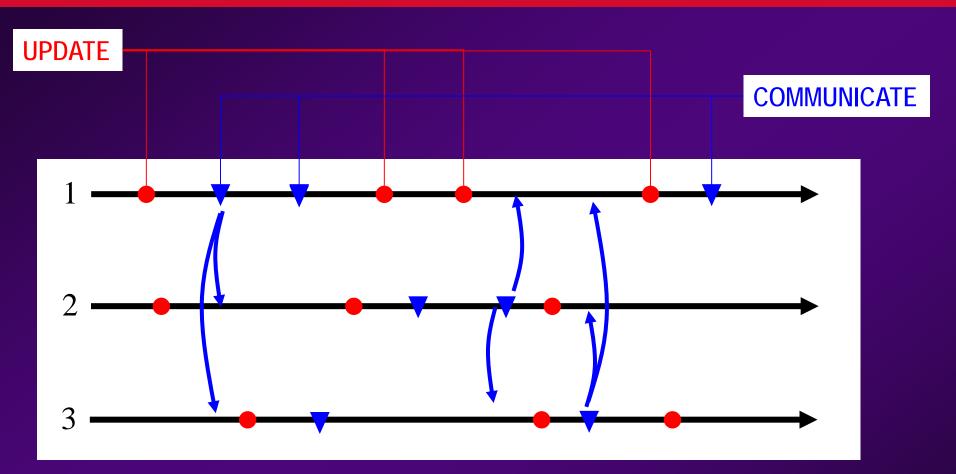
Update frequency for each node is bounded

technical conditions

 $\Rightarrow \frac{s_i(k+1) = s_i(k) + \alpha_i d_i(\mathbf{s}(k))}{\text{converges}}$

Bertsekas and Tsitsiklis, 1997

ASYNCHRONOUS (EVENT-DRIVEN) COOPERATION



UPDATE at *i* : locally determined, arbitrary (possibly periodic)
 COMMUNICATE from *i* : only when absolutely necessary

Christos G. Cassandras

WHEN SHOULD A NODE COMMUNICATE?

AT ANY TIME *t* :

- $x_i^j(t)$: node *i* state estimated by node *j*
- If node *i* knows how *j* estimates its state, then it can evaluate $x_i^j(t)$
- Node *i* uses
 - its own true state, $x_i(t)$
 - the estimate that j uses, $x_i^j(t)$

... and evaluates an ERROR FUNCTION $g(x_i(t), x_i^j(t))$

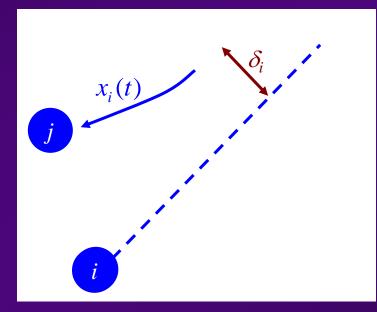
Error Function examples:
$$\left\|x_{i}(t) - x_{i}^{j}(t)\right\|_{1}, \quad \left\|x_{i}(t) - x_{i}^{j}(t)\right\|_{2}$$

Christos G. Cassandras

WHEN SHOULD A NODE COMMUNICATE?

Compare ERROR FUNCTION $g(x_i(t), x_i^j(t))$ to THRESHOLD δ_i

Node *i* communicates its state to node *j* only when it detects that its *true state* $x_i(t)$ deviates from *j*' *estimate of it* $x_i^j(t)$ so that $g(x_i(t), x_i^j(t)) \ge \delta_i$



⇒ *Event-Driven* Control

Christos G. Cassandras

CONVERGENCE

Asynchronous distributed state update process at each *i*:

$$s_i(k+1) = s_i(k) + \alpha \cdot d_i(\mathbf{s}^i(k))$$

Estimates of other nodes, evaluated by node i

$$\delta_i(k) = \begin{cases} K_{\delta} \left\| d_i(\mathbf{s}^i(k)) \right\| & \text{if } k \text{ sends update} \\ \delta_i(k-1) & \text{otherwise} \end{cases}$$

THEOREM: Under certain conditions, there exist positive constants α and K_{δ} such that

 $\lim_{k\to\infty}\nabla H(\mathbf{s}(k))=0$

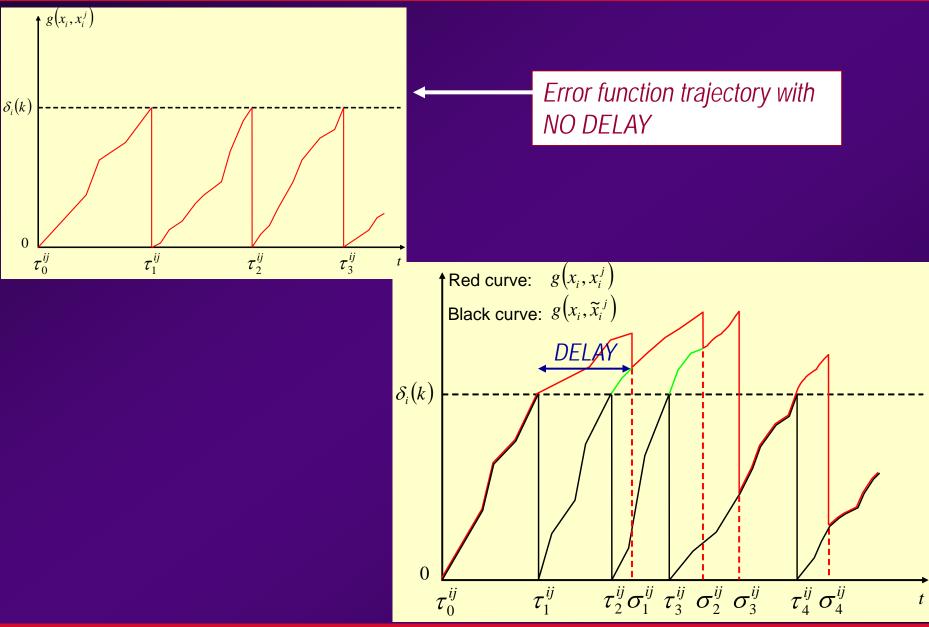
Zhong and Cassandras, IEEE TAC, 2010

INTERPRETATION:

Event-driven cooperation achievable with minimal communication requirements \Rightarrow *energy savings*

Christos G. Cassandras

COONVERGENCE WHEN DELAYS ARE PRESENT



Christos G. Cassandras

COONVERGENCE WHEN DELAYS ARE PRESENT

Add a boundedness assumption:

ASSUMPTION: There exists a non-negative integer *D* such that if a message is sent before t_{k-D} from node *i* to node *j*, it will be received before t_k .

INTERPRETATION: at most **D** state update events can occur between a node sending a message and all destination nodes receiving this message.

THEOREM: Under certain conditions, there exist positive constants α and K_{δ} such that

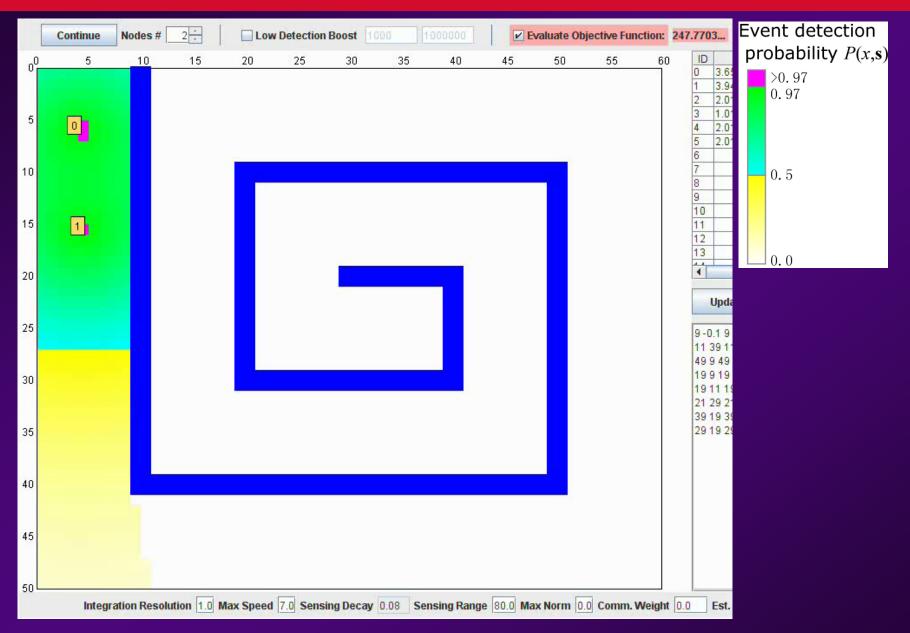
 $\lim_{k\to\infty}\nabla H(\mathbf{s}(k))=0$

NOTE: The requirements on α and K_{δ} depend on **D** and they are tighter.

Zhong and Cassandras, IEEE TAC, 2010

Christos G. Cassandras

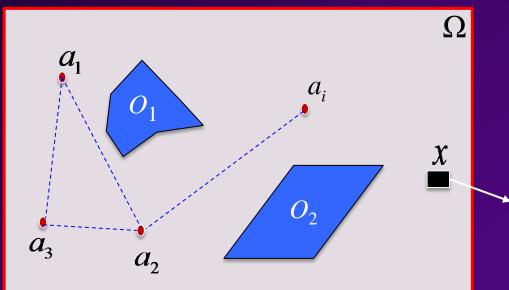
OPTIMAL COVERAGE IN A MAZE



Christos G. Cassandras

A GENERAL OPTIMIZATION FRAMEWORK FOR MULTI-AGENT SYSTEMS

NETWORKED MULTI-AGENT OPTIMIZATION: PROBLEM 1: PARAMETRIC OPTIMIZATION



- *s_i*: agent state, *i* = 1,..., *N s*=[*s*₁, ..., *s*_N]
- *O_j*: obstacle (constraint)
- R(x): property of point x
- P(x, s): reward function

$$\max_{\mathbf{s}} H(\mathbf{s}) = \int_{\Omega} P(x, \mathbf{s}) R(x) dx$$
$$s_i \in F \subset \Omega \quad i = 1 \cdots N$$

GOAL: Find the best state vector $s = [s_1, ..., s_N]$ so that agents achieve a maximal reward from interacting with the mission space

Christos G. Cassandras

NETWORKED MULTI-AGENT OPTIMIZATION: PROBLEM 2: DYNAMIC OPTIMIZATION

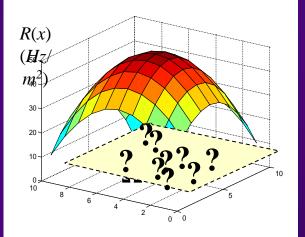
$$\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\end{array}\\
\end{array}\\
\end{array}\\
\end{array}\\
\end{array}\\
\begin{array}{c}
\end{array}\\
\end{array}\\
\end{array}\\
\begin{array}{c}
\end{array}\\
\end{array}\\
\end{array}\\
\begin{array}{c}
\end{array}\\
\end{array}\\
\begin{array}{c}
\end{array}\\
\end{array}\\
\end{array}\\
\begin{array}{c}
\end{array}\\
\end{array}$$
\left(\begin{array}{c}
\end{array}\\
\end{array}\\
\end{array}
\left(\begin{array}{c}
\end{array}\\
\end{array}\\
\end{array}
\left(\begin{array}{c}
\end{array}
\left(\begin{array}{c}
\end{array}
\left(\end{array})
\left(\begin{array}{c}
\end{array}
\left(\end{array})
\left(T)
\left(T)
\left(T)
\left(T)
\left(T)
\left(T)
\left(T)
\left(T)

Christos G. Cassandras

PROBLEMS THAT FIT THIS FRAMEWORK

COVERAGE

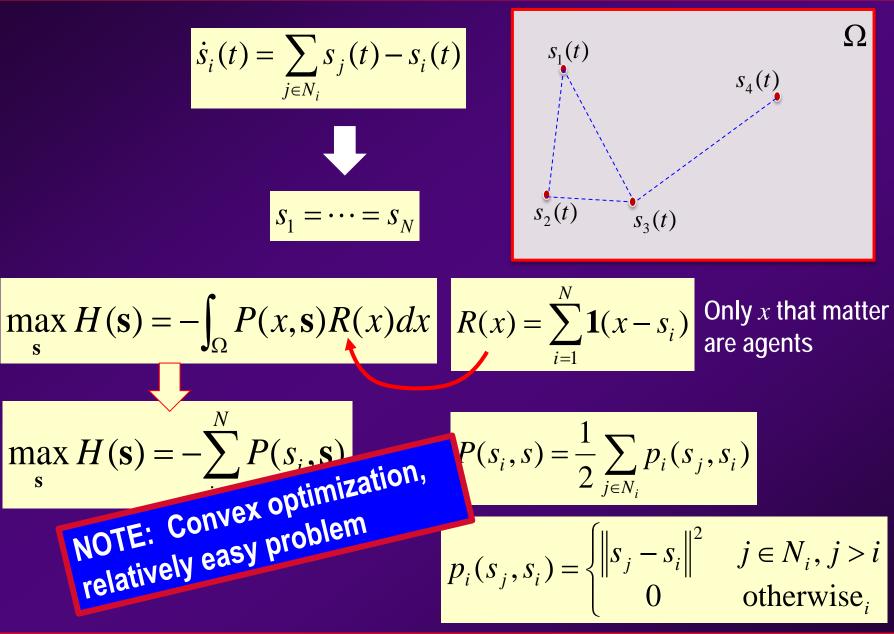
Deploy sensors to maximize "event" detection probability - unknown event locations



$$\max_{\mathbf{s}} H(\mathbf{s}) = \int_{\Omega} P(x, \mathbf{s}) R(x) dx$$

Joint event detection probability: $P(x, \mathbf{s}) = 1 - \prod_{i=1}^{N} \left[1 - p_i(x, s_i) \right]$ Event sensing probability *Event density*: Prior estimate of event occurrence frequency

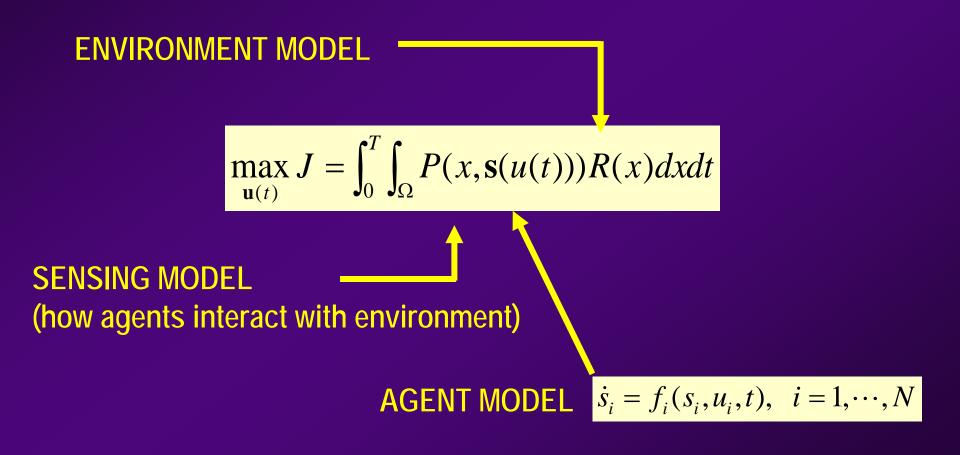
CONSENSUS



Christos G. Cassandras

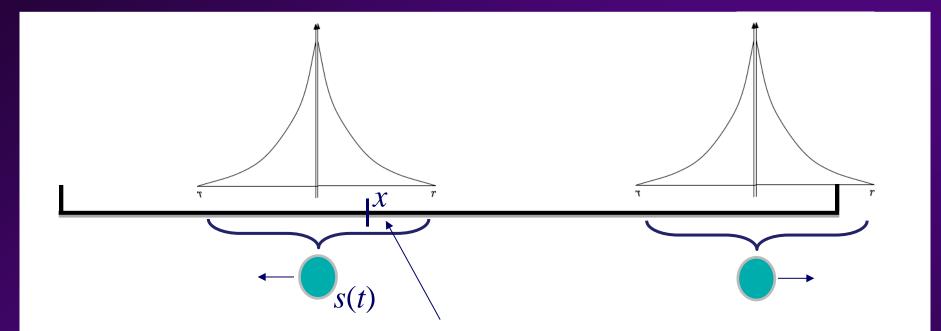
PERSISTENT MONITORING

GOAL: Find the best state trajectories $s_i(t)$, $0 \le t \le T$ so that agents achieve a maximal reward from interacting with the mission space



Christos G. Cassandras

PERSISTENT MONITORING



ENVIRONMENT MODEL: Associate to *x* Uncertainty Function *R*(*x*,*t*)

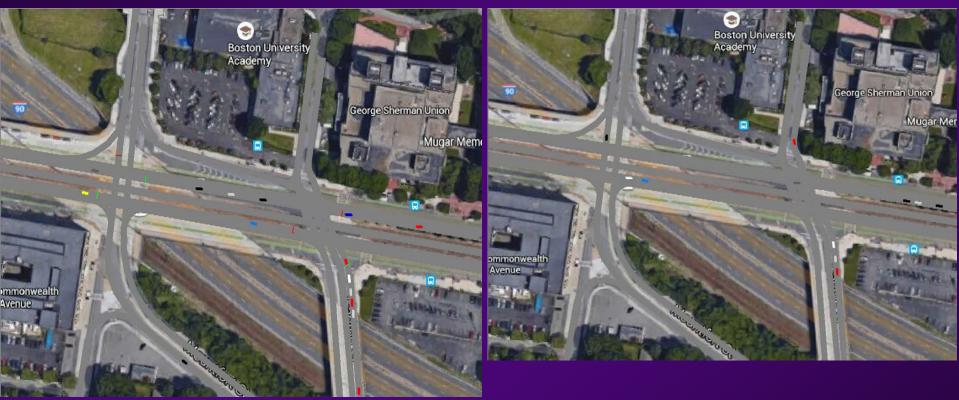
$$\dot{R}(x,t) = \begin{cases} 0 & \text{if } R(x,t) = 0, A(x) < Bp(x,s(t)) \\ A(x) - Bp(x,s(t)) & \text{otherwise} \end{cases}$$
NOTE: Could be stochastic !

Christos G. Cassandras

THE INTERNET OF CARS...

With traffic lights (non-Cooperative)

No traffic lights: decentralized control of CAVs (Cooperative)



One of the worst-designed double intersections ever... (BU Bridge – Commonwealth Ave, Boston)

Malikopoulos, Cassandras, Zhang et al, Automatica, 2018

Zhang et al, Proc. of IEEE, 2018

Christos G. Cassandras

C/SE - CODES Lab. - Boston University

RELATED WORK

COVERAGE AND FORMATION CONTROL

Choset 2001, Leonard and Olshevsky 2013, Tron et al 2014, Egerstedt and Hu 2001

Cortes et al 2004 Zhong and Cassandras 2010, Sun and Cassandras 2016

CONSENSUS

Jadbabaie et al, 2003, Olfati-Saber and Murray, 2004, Ren and Beard 2005 Nedich et al, 2010

SAMPLING AND TRACKING

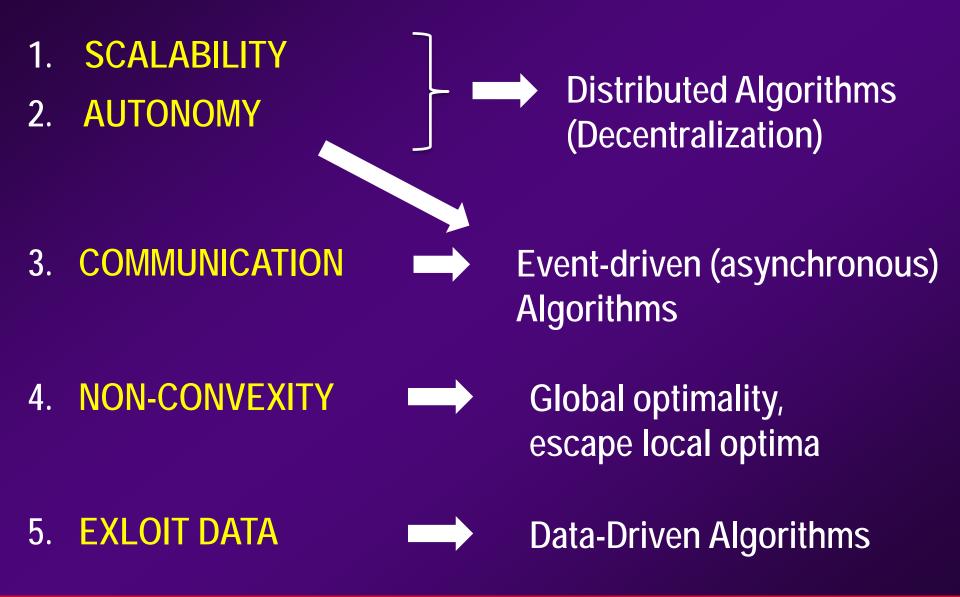
Leonard and Zhang 2010, Ashley and Andersson 2016

PERSISTENT MONITORING

Smith et al, 2011, Michael et al, 2011, Lan and Schwager, 2014

Cassandras et al, 2013, Yu et al, 2017

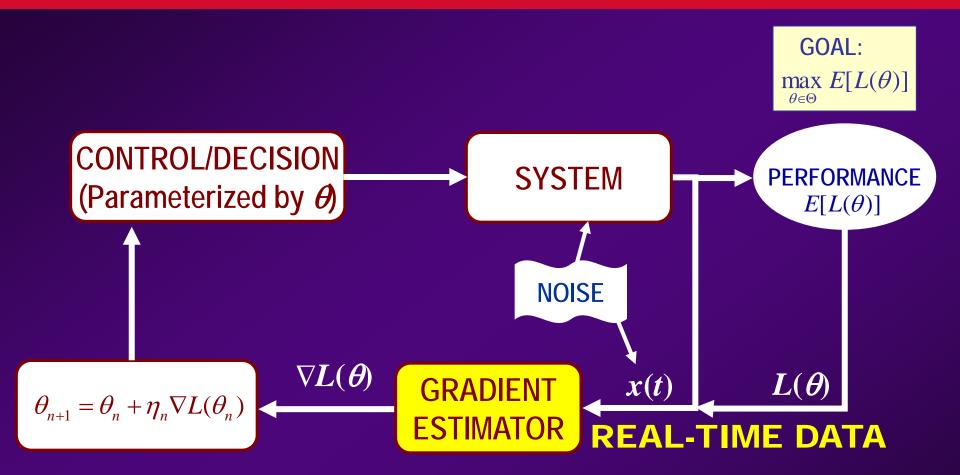
NETWORKED MULTI-AGENT OPTIMIZATION-CHALLENGES



Christos G. Cassandras

EVENT-DRIVEN + DATA-DRIVEN OPTIMIZATION

DATA-DRIVEN STOCHASTIC OPTIMIZATION



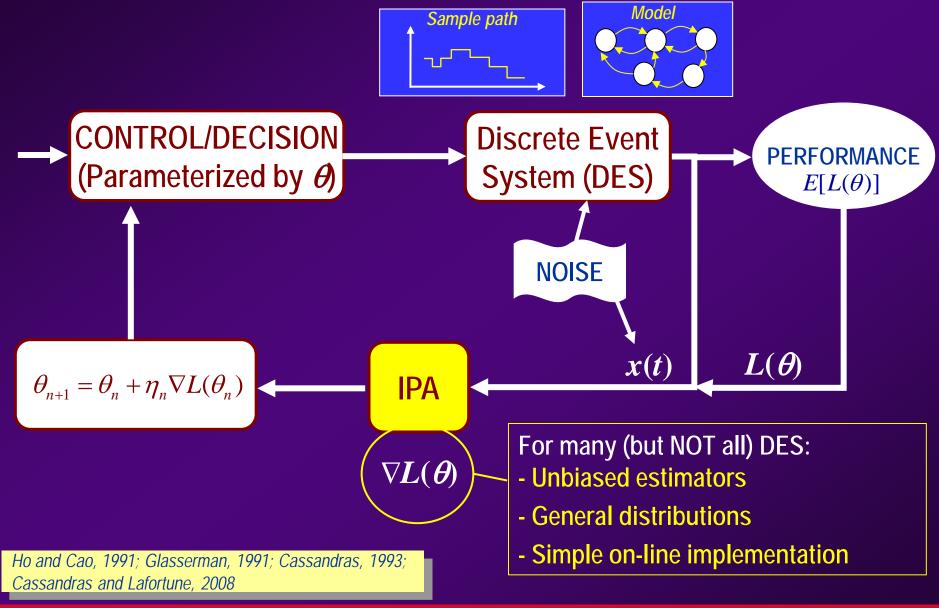
DIFFICULTIES: - $E[L(\theta)]$ NOT available in closed form

- - $\nabla L(\theta)$ not easy to evaluate
- $-\nabla L(\theta)$ may not be a good estimate of $\nabla E[L(\theta)]$

Christos G. Cassandras

C/SE - CODES Lab. - Boston University

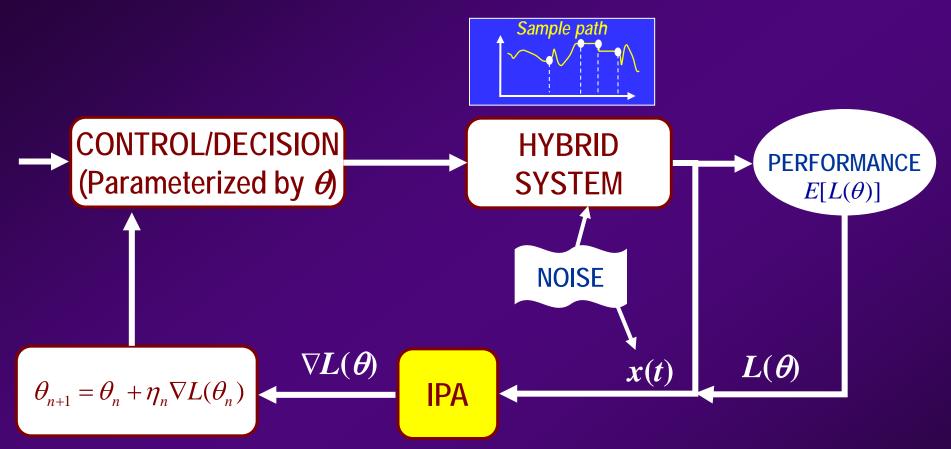
REAL-TIME STOCHASTIC OPTIMIZATION FOR DES: INFINITESIMAL PERTURBATION ANALYSIS (IPA)



Christos G. Cassandras

CISE - CODES Lab. - Boston University

REAL-TIME STOCHASTIC OPTIMIZATION: *HYBRID SYSTEMS, CYBER-PHYSICAL SYSTEMS*



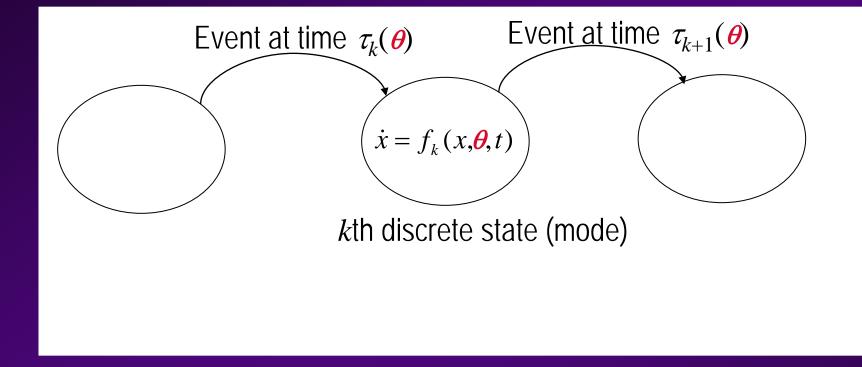
A general framework for an IPA theory in Hybrid Systems?

Christos G. Cassandras

C/SE - CODES Lab. - Boston University

THE IPA CALCULUS

STOCHASTIC HYBRID AUTOMATA



 θ : control parameter, $\theta \in \Theta$ (system design parameter,parameter of an input process,or parameter that characterizes a control policy)

System dynamics over
$$(\tau_k(\theta), \tau_{k+1}(\theta)]$$
: $\dot{x} = f_k(x, \theta, t)$

OTATION:
$$x'(t) = \frac{\partial x(\theta, t)}{\partial \theta}, \quad \tau'_k = \frac{\partial \tau_k(\theta)}{\partial \theta}$$

1. Continuity at events: $x(\tau_k^+) = x(\tau_k^-)$

Take $d/d\theta$:

Ν

$$x'(\tau_k^+) = x'(\tau_k^-) + [f_{k-1}(\tau_k^-) - f_k(\tau_k^+)]\tau'_k$$

If no continuity, use reset condition \Rightarrow

$$x'(\tau_k^+) = \frac{d\rho(q, q', x, \upsilon, \delta)}{d\theta}$$

Christos G. Cassandras

2. Take $d/d\theta$ of system dynamics $\dot{x} = f_k(x, \theta, t)$ over $(\tau_k(\theta), \tau_{k+1}(\theta)]$:

$$\frac{dx'(t)}{dt} = \frac{\partial f_k(t)}{\partial x} x'(t) + \frac{\partial f_k(t)}{\partial \theta}$$

Solve
$$\frac{dx'(t)}{dt} = \frac{\partial f_k(t)}{\partial x} x'(t) + \frac{\partial f_k(t)}{\partial \theta}$$
 over $(\tau_k(\theta), \tau_{k+1}(\theta)]$:

$$x'(t) = e^{\int_{\tau_k}^{t} \frac{\partial f_k(u)}{\partial x} du} \left[\int_{\tau_k}^{t} \frac{\partial f_k(v)}{\partial \theta} e^{-\int_{\tau_k}^{v} \frac{\partial f_k(u)}{\partial x} du} dv + x'(\tau_k^+) \right]$$

initial condition from 1 above

NOTE: If there are no events (pure time-driven system), IPA reduces to this equation

Christos G. Cassandras

3. Get τ'_k depending on the event type:

- Exogenous event: By definition, $\tau'_k = 0$
- Endogenous event: occurs when $g_k(x(\theta, \tau_k), \theta) = 0$

$$\tau'_{k} = -\left[\frac{\partial g}{\partial x}f_{k}(\tau_{k}^{-})\right]^{-1}\left(\frac{\partial g}{\partial \theta} + \frac{\partial g}{\partial x}x'(\tau_{k}^{-})\right)$$

- Induced events:

$$\tau'_{k} = -\left[\frac{\partial y_{k}(\tau_{k})}{\partial t}\right]^{-1} y'_{k}(\tau_{k}^{+})$$

Christos G. Cassandras

Ignoring resets and induced events:

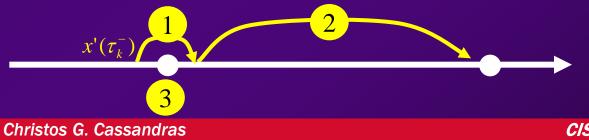
1.
$$x'(\tau_k^+) = x'(\tau_k^-) + [f_{k-1}(\tau_k^-) - f_k(\tau_k^+)] \cdot \tau'_k$$

2. $x'(\tau_k) = e^{\int_{\tau_{k-1}}^{\tau_k} \frac{\partial f_k(u)}{\partial x} du} \int_{\tau_k}^{\tau_k} \frac{\partial f_k(v)}{\partial \theta} e^{-\int_{\tau_{k-1}}^{v} \frac{\partial f_k(u)}{\partial x} du} dv + x'(\tau_{k-1}^+)$

 τ_{k-1}

$$x'(t) = \frac{\partial x(\theta, t)}{\partial \theta}$$
$$\tau'_{k} = \frac{\partial \tau_{k}(\theta)}{\partial \theta}$$

3.
$$\tau'_{k} = 0$$
 or $\tau'_{k} = -\left[\frac{\partial g}{\partial x}f_{k}(\tau_{k}^{-})\right]^{-1}\left(\frac{\partial g}{\partial \theta} + \frac{\partial g}{\partial x}x'(\tau_{k}^{-})\right)$



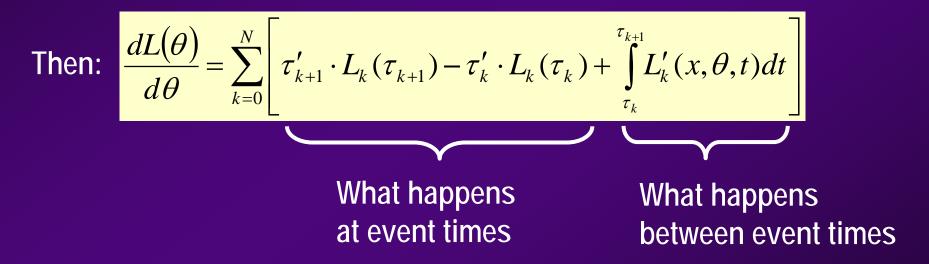
Cassandras et al, Europ. J. Control, 2010

IPA PROPERTIES

Back to performance metric:

$$L(\theta) = \sum_{k=0}^{N} \int_{\tau_k}^{\tau_{k+1}} L_k(x,\theta,t) dt$$

NOTATION:
$$L'_k(x,\theta,t) = \frac{\partial L_k(x,\theta,t)}{\partial \theta}$$



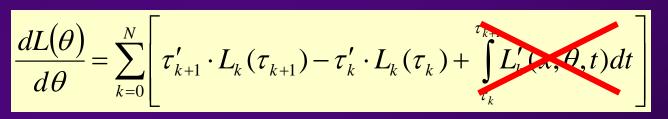
IPA PROPERTIES: *ROBUSTNESS*

THEOREM 1: If either 1,2 holds, then $dL(\theta)/d\theta$ depends only on information available at event times τ_k :

- 1. $L(x, \theta, t)$ is independent of t over $[\tau_k(\theta), \tau_{k+1}(\theta)]$ for all k
- 2. $L(x, \theta, t)$ is only a function of x and for all t over $[\tau_k(\theta), \tau_{k+1}(\theta)]$:

 $\frac{d}{dt}\frac{\partial L_k}{\partial x} = \frac{d}{dt}\frac{\partial f_k}{\partial x} = \frac{d}{dt}\frac{\partial f_k}{\partial \theta} = 0$

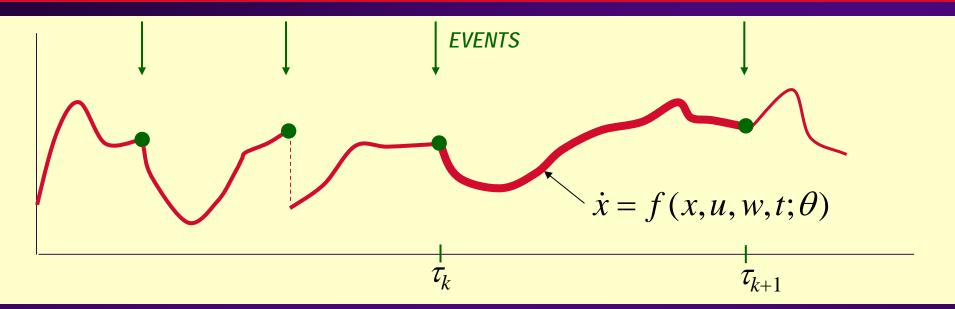
Yao and Cassandras, J. DEDS, 2011



 IMPLICATION: - Performance sensitivities can be obtained from information limited to event times, which is easily observed
 - No need to track system in between events !

Christos G. Cassandras

IPA PROPERTIES



Evaluating $x(t; \theta)$ requires full knowledge of w and f values (obvious)

However, $\frac{dx(t;\theta)}{d\theta}$ may be *independent* of *w* and *f* values (*NOT* obvious)

It often depends only on: - event times τ_k - possibly $f(\tau_{k+1}^-)$

Christos G. Cassandras

IPA estimators are EVENT-DRIVEN \Rightarrow IPA scales with the EVENT SET, not the STATE SPACE ! \Rightarrow no time discretization needed

As a complex system grows with the addition of more states, the number of EVENTS often remains unchanged or increases at a much lower rate.

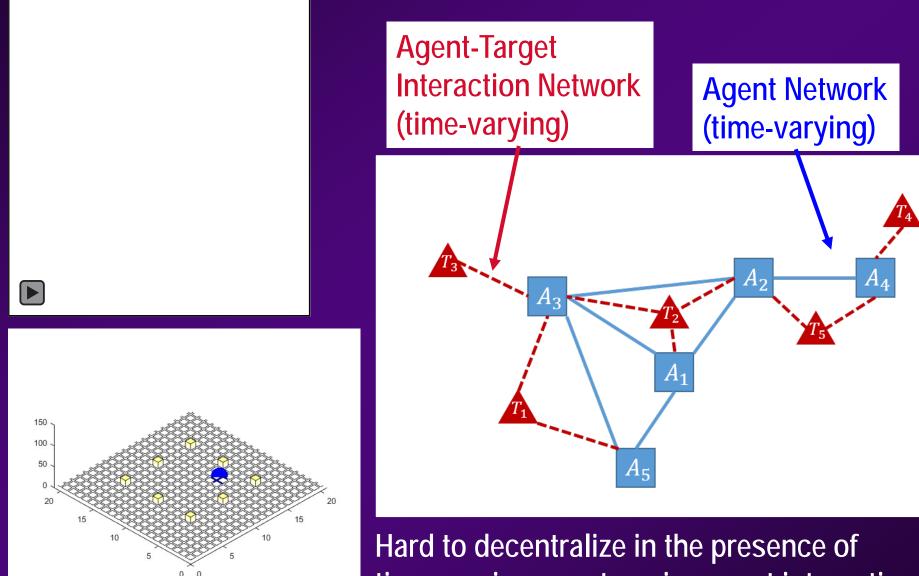
EXAMPLE: A queueing network may become very large, but the basic events used by IPA are still "arrival" and "departure" at different nodes.

DECENTRALIZING CAN BE HARD

DECENTRALIZED SOLUTION = CENTRALIZED SOLUTION (AGENTS ACTING USING ONLY LOCAL INFO.)

(no performance loss due to decentralization)

PERSISTENT MONITORING WITH KNOWN TARGETS



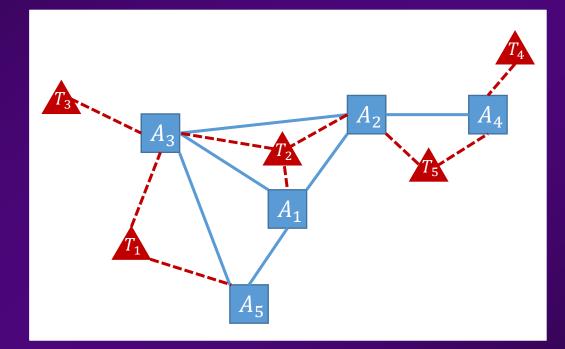
time-varying agent-environment interactions

Christos G. Cassandras

CODES Lab. - Boston University

THREE TYPES OF NEIGHBORHOODS

The agent neighborhood of an agent (conventional) The agent neighborhood of agent j is the set $\mathcal{A}_j(t) = \{k : ||s_k(t) - s_j(t)|| \le r_c, k \ne j, k = 1, \dots, N\}.$ The target neighborhood of an agent The target neighborhood of agent j is the set $\mathcal{T}_{j}(t) = \{i : |x_{i} - s_{j}(t)| \le r_{j}, i = 1, ..., M\}.$



The agent neighborhood of an target The agent neighborhood of target *i* is the set $\mathcal{B}_i(t) = \{j : |s_j(t) - x_i| \le r_j, j = 1, ..., N\}.$

Christos G. Cassandras

CODES Lab. - Boston University

"ALMOST DECENTRALIZATION" RESULT

- Show that optimal trajectories consist of *hybrid dynamics*: segments defined by observable *EVENTS* e.g., agent enters target sensing range, agent leaves neighborhood
- Develop EVENT-DRIVEN gradient-based algorithms using the Infinitesimal Pertubation Analysis (IPA) calculus: Each agent evaluates its IPA derivative
- Does an agent's IPA derivative depend only on LOCAL events?
 DECENTRALIZATION EVENT OBSERVABILITY

THEOREM: Each agent's IPA derivative depends only on LOCAL events except for one global event

Zhou et al, IEEE TAC 2018

Christos G. Cassandras

CODES Lab. - Boston University

NETWORKED MULTI-AGENT OPTIMIZATION-CHALLENGES

