
Cyber-physical Manufacturing Systems:  
Improving Productivity with 

Advanced Monitoring and Control

Dawn Tilbury
Professor, Mechanical Engineering

Professor, Electrical Engineering and Computer Science
University of Michigan



Outline

2

Introduction & Motivation

Collecting and integrating diverse data

Condition monitoring and adaptation

Conclusion and future work



Importance of Manufacturing

“The manufacturing industry represents 12% of the 
United States’ GDP, making it a major engine of our 
economy that provides millions of well-paying job 
opportunities”
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Also: 32% of 
energy 
consumed in 
the US

75% of US 
private sector 
R&D

Vorführender
Präsentationsnotizen
Environment:
Manufacturing accounts for 32% of energy consumed in the U.S. [U.S EIA, 2017]

Research & Development:
Manufacturing companies invest $202 billion representing 75% of total U.S. private sector R&D [McKinsey, 2017]




Common Overall Equipment Effectiveness (OEE) under 50% 

Manufacturing productivity shows downtrend or little 
improvement
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Problem

Performance

Availability

Quality

Equipment Failure
Unplanned Changes

Blockages and Starvations
Incorrect Process Parameters

Inconsistent Materials
Poor Process Setup

OEE
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Big picture problem



Worldwide studies indicate that the average Overall 
Equipment Effectiveness (OEE) rate in 
manufacturing plants is 60%

World Class OEE is considered to be 85% or better. 
Clearly, there is room for improvement in most 
manufacturing plants!

 Opportunity for control technologies
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Manufacturing opportunity



• Some major challenges:
– Supervise complex plant floor operations 
– Various sources of disturbances
– Multi-Domain Control Problem

• Production management
• Maintenance policies
• Sustainable Operations
• Quality Assurance
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Challenges

[www.quora.com]
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Bring example of conversation with Foxconn manager
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Productivity
Reliability
Energy
Quality

Control Framework for Manufacturing Systems
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Modeling and Analysis Framework to Support 
Monitoring, Assessment, and Control of 

Manufacturing Systems

Reference

Sensors

Disturbance

Controller Plant

Context-Sensitive
Anomaly Detection

Real-time hybrid
Simulation

Multi-Objective 
Decision Making 

Plant Floor
Data Processing

Vorführender
Präsentationsnotizen
My Approach



Data Collection & Analysis

On-site
Database

Local
Analysis

CNC Machines

Robots

Frequency 
Drives

Condition
Monitors

RFID 
Transceivers

Sensors

Ethernet
Switch

PLC

IoT-Cloud Agent

Tag Values

Data 
Packets

Cloud Storage 
& Analysis

Web Dashboard

I/O 
Signals



Big Data in Manufacturing: Opportunities

• Improve quality: Combine part, 
production, and warranty data 

• Reduce downtime: Monitor machine 
health using data and AI models

• Increase energy efficiency: Monitor 
energy consumption and develop energy 
saving policies 
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PRODUCTIVITY IMPROVEMENT AND COST SAVINGS



Big Data in Manufacturing: Challenges

• Heterogeneity: Different sources, 
languages, protocols, and types

• Scalability: Cost of extracting, storing, 
and processing Big Data

• Privacy and Ownership: Security and 
governance concerns
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BIG DATA, BIG OPPORTUNITIES, BIG CHALLENGES



Background:  Data Processing Architecture
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RFID CNC
machine

Robot
Sensors

Gantry Camera VFD Energy
meters

Conventional
Machine

Controller DAQ Controller Adapter

Cell workstation Line workstation

Public
Private

Device

Node

Edge

Cloud
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[4] T. Bangemann, et al. “State of the art in industrial automation,” in Industrial Cloud-Based Cyber-Physical Systems. Springer, 2014, pp. 23–47.




Objective

Improve data processing to support more efficient cloud 
and edge computing
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Solution:

 Transform the data on edge devices to a common language
 Reduce data prior to transmission
 Define rules and conditions for data storage and  

transmission



Data reduction
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REDUCE DIMENSIONALITY BY EXTRACTING FEATURES

o Geometry-based: Key 
dimensions from images

o Signal-based: Key 
characteristics in the time or 
frequency domain

o Condition-based: Additional 
information about events



Data Transmission

Use common communication protocols
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DEFINE CONDITIONS TO DATA TRANSMISSION

[   ]𝑓𝑓1,1
𝑓𝑓𝑛𝑛,𝑚𝑚

[1010010]

Collect data Extract features Transform (XML)
HTTP Get

Store
DEVICE NODE EDGE CLOUD

Storage
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Mention BOTH anomaly detection AND productivity analysis



Integration of Adapters
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Heterogeneous data sources and protocols

COMPATIBLE WITH DIFFERENT DEVICES AND NODES



Case Study: Description

• Serial-parallel manufacturing 
line for subtractive and additive 
manufacturing

• Used for research and 
education

• Supported by U-M and Rockwell 
Automation.
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Cell 2 Cell 1 

Cell 3 

Main Conveyor

Aux. 
Conveyor

Pallet travelling direction

Workblock on a pallet

Conveyor diverter
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Mention BOTH anomaly detection AND productivity analysis



Sensors

Machine

System

Case Study: Data extraction
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Data 
packets

Power
Presence Flow PresencePower Information Safety Image

CNC Robot Gantry Conveyor Network

PLC Human Interface

Cloud



Case Study: Architecture
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1. Plant floor data 
extraction

2. Data transformation 
and reduction

3. Cloud architecture

EDGE

Data Transformation:
Java Program

Data Storage: 
InfluxDB
SQLite

Image Processing
OpenCV

Data Analysis
R

Matlab



Case Study: Results
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o Geometry-based: Extract, send and 
store part features

o Signal-based: Monitor motor 
conveyor motor overload

o Condition-based: Identify event 
occurrence

Vorführender
Präsentationsnotizen
Mention BOTH anomaly detection AND productivity analysis



Challenges

Feature extraction: 
Identify what features to keep from 
different signals

Scalability:
Expert knowledge is required to define 
data transmission rules

Data collection
Latency constraints (50 – 1000ms)
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Modeling and Analysis Framework to Support 
Monitoring, Assessment, and Control of 

Manufacturing Systems

Reference

Sensors

Disturbance

Controller Plant

Context-Sensitive
Anomaly Detection

Real-time hybrid
Simulation

Multi-Objective 
Decision Making 

Plant Floor
Data Processing
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My Approach



Physics-
Based 
Model

Data-Driven 
Model

Expert 
Knowledge

Condition Monitoring: Background
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Machine

Model

Output
Errors

Detection

o Model development and parameter 
estimation 

o Bank of Observers to detect faults 
o Noise reduction using Kalman Filters 

• Fault detection based on vibration or 
temperature 

• Learn discrete states and transitions
• Energy signature analysis



Condition Monitoring
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Diagnosis

Sensor
• Accel
• Current

Signal Proc.
• Analog
• Digital

Partition
• Window

Feature 
Generation
• RMS
• Peak …

Feature 
Extraction
• PCA
• Ranking

Classification
• DoE
• Machine 

Learning

Instruction 
Change detection
Process
…

Supervised:
- SVM
- KNN
- D.Tree

Unsupervised
- SOM
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Condition Monitoring: Gaps

• Gap
o Combine different models for various machine-part interactions
o Diagnosis based on operational context of non-stationary signals
o Consider risks or severity in part and process

• Research Questions:
o How to detect anomalies in machines operating 

under different states?
o How to identify machine-part interactions?
o How to develop a context-sensitive multi-model 

framework?

Vorführender
Präsentationsnotizen
What have other done?
Gap?
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Leverage controller data and expert knowledge:
– Explicit operation descriptors: 

• Part (e.g.: type, material, supplier)
• Tool (e.g.: dimensions, features, material)
• Process step (e.g.: G-code, task, states)

– Implicit operation descriptors:
• Machine dynamics (e.g.: velocity, acceleration)
• Machine-part interactions (e.g.: side milling, drilling, 

welding)

Condition Monitoring: Solution
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- Sensor data: Encoder (𝑞𝑞, 𝑞̇𝑞) and energy (I,V)
- Context information: State, Process step, tool,…

Pre-process

Signal
Partitioning

Anomaly 
Detection

Cause 
Diagnosis

Signal Filtering and data fusion

Controller data 
collection

Identify operational context
- Machine-part interactions
- Transient states

Context-sensitive adaptive threshold limits

Context-specific classification models

Condition Monitoring: Solution



Modeling Framework:  
Global Operational States

Functional States
Idle, set-up, repair, 

processing, …

Dynamic States
(machine dynamics)
Accel, decel, constant 

velocity, …

Interactive States
(interact w/part)

Roughing, finishing, face 
milling, …

Process Descriptors
(part & process)
Part type, tool type, 

material, …
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Use Expert knowledge, Event detection, and 
Dynamic Time Warping to separate states



𝐺𝐺𝐺𝐺𝐺𝐺 𝑘𝑘 = (𝑆𝑆𝐹𝐹 𝑘𝑘 , 𝑆𝑆𝐷𝐷 𝑘𝑘 , 𝑆𝑆𝐼𝐼 𝑘𝑘 ,𝑝𝑝 𝑘𝑘 , 𝑡𝑡 𝑘𝑘 , 𝑠𝑠 𝑘𝑘 )
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Identify Operational Context Implicit Descriptors:
States: Functional

Dynamic
Interactive

Explicit Descriptors:
Part
Tool
Process StepDefine Discrete States

Functional states (SF): 
Reduced model of logic controller. 
e.g.: setup, repair, Idle, processing 

Dynamic states (SD): 
Discrete set describing 
continuous machine dynamics 
e.g.: Accel, Constant velocity, Decel,

Interactive states (SI): 
Describes consecutive operations 
to the part e.g.: drilling, roughing, 
finishing, side milling

Condition Monitoring: Solution



Identification of Interactive Events:

eI
1

eI
2

Face
milling

Side 
milling

Cutting 
air

eI
1

eI
2

min(DTW(eI,G))

𝑒𝑒𝐼𝐼 = 𝑌𝑌𝑟𝑟𝑟𝑟𝑟𝑟 1 …𝑌𝑌𝑟𝑟𝑟𝑟𝑟𝑟 𝑛𝑛 𝑇𝑇

𝐺𝐺 = 𝑌𝑌 1 …𝑌𝑌 𝑚𝑚 𝑇𝑇

Cutting 
air

eI
3

eI
3 31

Condition Monitoring: Solution
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Multi-model Specification:

Adaptive Threshold Limits:

𝑀𝑀 = 𝐺𝐺𝐺𝐺𝐺𝐺,𝑈𝑈,𝑋𝑋,𝑌𝑌,𝐹𝐹,𝐻𝐻
GOS: Global Operational State
U: Continuous inputs
X: State variables
Y: Output variables
F: Mapping of state variable functions
H: Mapping of  output variable functions

Δr𝐺𝐺𝐺𝐺𝐺𝐺 = 𝜇𝜇 ± 𝜓𝜓𝑅𝑅𝑍𝑍𝑍𝑍
𝝁𝝁:𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝝈𝝈: 𝑆𝑆𝑆𝑆𝑆𝑆,𝒁𝒁: 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝝍𝝍𝑹𝑹:𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

Condition Monitoring: Solution
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Condition Monitoring: Solution

• Context-Specific Classification:
1. Partition signal by Context

2. Generate Features
Time domain: {F1: RMS, F2: Max, … }
Frequency domain:

3. Extract Features 

4. Classify 

[𝐺𝐺𝐺𝐺𝑆𝑆1 …𝐺𝐺𝐺𝐺𝑆𝑆3 …𝐺𝐺𝐺𝐺𝑆𝑆1 …𝐺𝐺𝐺𝐺𝑆𝑆𝑛𝑛]

{F3: Peak Freq. ,
F4: Amplitude, … } F1,1 F1,2 F1,4

Fm,1 Fm,2 Fm,4

… … …F1,3

Fm,3

…
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Physical

SoftwareNetwork

Sensors data
Dynamic models
Part information

Control logic
Commands
Algorithms

DeviceNet
Ethernet/IP

Internet of Things
(IoT)

G21

G90
G00 X143.135 Y107.226 S3500 
M03

Z60.237

G03 X-.627 Y.627 Z0 I-.627 J0. K0 
….

Cyber-Physical Manufacturing Systems

Condition Monitoring: Case Study



35

• Inputs: Sensor data and Context information
Process step            Artificial vision Energy signature+ +

Condition Monitoring: Case Study
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Functional:
Processing, Idle

Dynamic:
Accel, Const, …

Interactive:
No Int, Drilling,..

Global Operational State (GOS):

Information:
Tool, Part, Step 

Condition Monitoring: Case Study
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• Multi-Model Framework:
State GOS 1 GOS 2 GOS 3 GOS 4 GOS 5 GOS 6 GOS 7 GOS 8

Functional Proc. Proc. Proc. Proc. Proc. Proc. Proc. Proc.
Dynamic 2 in/sec 5 in/sec 50 in/sec 2 in/sec 2in/sec 2 in/sec 50 in/sec 5 in/sec
Interactive No Int. Side Int. No Int. Side Int. No Int. End Int. No Int. Side Int.

𝐼𝐼 = 𝐽𝐽𝐽𝐽 + 𝑀𝑀𝐹𝐹𝐹𝑞̇𝑞 + 𝑀𝑀𝐹𝐹𝐹 sin 𝑞̇𝑞 /𝜓𝜓 𝜙𝜙𝐼𝐼 𝐵𝐵 𝐼𝐼 = 𝜙𝜙𝐼𝐼1 𝐵𝐵 𝑞𝑞 + 𝜙𝜙𝐼𝐼2 𝐵𝐵 𝑞̈𝑞 + ε
Single Mass dynamic model Autoregressive model

Condition Monitoring: Case Study



Entire signal: 75%
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Use supervised learning (SVM) to separate worn tool from wrong material

Partition by 
part feature: 81.2%

Partition by 
part feature 
and GOS: 93.6%

Condition Monitoring: Case Study
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Develop context-specific diagnosis rules: 
• Extract context information
• Identify fault patterns
• Define classification rules

Diagnose tool breakage under 
different operational context

Condition Monitoring: Case Study
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0

Control
Data

Network
Information

Identification of machine-part 
interaction to enable context-
sensitive analysis

Improve anomaly detection and 
diagnosis using a multi-model 
framework

Impact: Support condition 
monitoring for more effective 
maintenance actions

Condition Monitoring: Contribution
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Virtual world reflects real time 
“ground truth” of the plant 
floor

Improved information 
visualization leads to better 
understanding of system 
operation, rapid fault 
diagnosis and reduced 
downtime

Monitoring system real-time data



Productivity
Reliability
Energy
Quality

Using data to improve manufacturing operations

• Better knowledge  better decisions
– Maintenance
– Scheduling
– Reconfiguration

43
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