September 11, 2018

Brain-inspired non-von Neumann Computing for AI applications

Evangelos Eleftheriou, IBM Fellow **IBM Research - Zurich**

Application Trends

Performance and Power Efficiency Trends

- Increasing gap between performance and power efficiency
- Diminishing performance/power efficiency gains from technology scaling

Advances in von Neumann Computing

Monolithic 3D integration

Wong, Salahuddin, Nature Nanotechnology, 2015

Minimize the time and distance to memory access

Go beyond von Neumann Computing

Spiking Neural Networks

LeCun, Bengio, Hinton, *Nature*, 2015 Merolla *et al.*, *Science*, 2014 Indiveri, Liu, *Proc. IEEE*, 2015

Computational memory

Borghetti et al., *Nature*, 2010 Di Ventra and Pershin, *Scientific American*, 2015 Hosseini et al., *Electron Dev. Lett.*, 2015

Enabling bio-mimetic *Computation* and *Storage*

Neuromorphic and In-memory Computing:

the Constituent Elements

Charge-based memory/storage \rightarrow resistance-based memory/storage

- Significant impact on memory/storage hierarchy
- Monolithic integration of memories and computation units
- Sufficient richness of dynamics for non-von Neumann computing

Phase-Change Memory (PCM)

High-resistance state

Low-resistance state

- Use two distinct solid phases of a Ge-Sb-Te metal alloy to store a bit
- Use intermediate phases to obtain a continuum of different states or resistance levels
- Transition between phases by controlled heating and cooling

Phase-Change Devices in Spiking Neural Networks

vnapse

Neuronal Population Coding

High-speed, information-rich stimuli are processed by populations of slow (~10 Hz), stochastic, and unreliable neurons in our brain

POPULATION OF NEURONS

T. Tuma, et. al. Nature Nanotechnology, Aug. 2016

• The internal state of the neuron is stored in the phase configuration of a PCM device

- Neuronal dynamics emulated using the physics of crystallization
- Exhibit inherent stochasticity, which is key for neuronal population coding

Application: Temporal Correlation Detection

Algorithmic goals

- Determine whether some data streams are statistically correlated
- Observe variations in the activity of the correlated input
- Quickly react to occurrence of correlated inputs
- Continuously and dynamically re-evaluate the learned statistics

... and more

Learning Patterns with a Spiking Neural Network

Experiments with 30,000 PCM cells

Purely unsupervised neuromorphic computation: No counting, no transfers between memory and CPU!

In-memory Computing

Processing unit & Conventional memory

Processing unit & Computational memory

Borghetti et al, *Nature*, 2010 Di Ventra and Pershin, *Scientific American*, 2015 Hosseini et al., *Elect. Dev. Lett.*, 2015 Sebastian et al., *Nature Communications* 2017

- Perform "certain" computational tasks using "certain" memory cores/units without the need to shuttle data back and forth in the process
 - ✓ Logical operations
 - ✓ Arithmetic operations
 - ✓ Machine learning algorithms
- Exploits the physical attributes and state dynamics of the memory devices

Matrix-vector Multiplication

Matrix multiplication: Exploits multi-level storage capability and Kirchhoff and Ohm laws

A crossbar array performs fast matrix-vector multiplication without data movements in O(1)

Matrix-vector Multiplication using PCM Devices

• A is a 256 X 256 Gaussian matrix coded in a PCM chip

• x is a 256-long Gaussian vector applied as voltages

Applications: Optimization Solvers

- Compressed sensing: Acquire a large signal at sub-Nyquist sampling rates and subsequently reconstruct that signal accurately
- Applications in MRI, facial recognition, holography, audio restoration or in mobile phone camera sensors

Compressed Sensing and Recovery

Le Gallo et al., *IEDM*, 2017 Le Gallo et al., *IEEE TED*, 2018

Complexity reduction: $O(NM) \rightarrow O(N)$; Potential 10⁵ speed-up on 1000 x 1000 pixel image with 10-fold compression ratio

Compressive Imaging: Experimental Results

Experimental result: 128X128 image, 50% sampling rate, Computation memory unit with 131,072 PCM devices

Original image

Reconstructed image

Le Gallo et al., *IEDM*, 2017 Le Gallo et al., *IEEE TED*, 2018

Estimated power reduction of 50x compared to using an optimized 4-bit FPGA matrix-vector multiplier that delivers same reconstruction accuracy at same speed

Can We Compute with the Dynamics of PCM?

A nanoscale non-volatile integrator

Sebastian et al., Nature Communications, 2014

Nonvolatile nanoscale integrator but stochastic and nonlinear

Unsupervised Learning of Temporal Correlations

IBM

Devices interfaced to the correlated processes go to a high conductance state

Experimental Results (1 Million PCM Devices)

Processes

- Very weak correlation of c = 0.01
- No shuttling back and forth of data
- Massively parallel

IBM Research - Zurich

Conductance

Comparative Study

Sebastian et al., Nature Communications, 2017

Complexity reduction: O(N) → O(klog(N)). For 10⁷ parallel processes a 200X improvement in computation time is expected ! 2 orders of magnitude energy improvement

What if Arbitrarily High-precision is Needed?

Mixed-precision computing to the rescue!

Bulk of computations in low-precision Computational Memory
Refinement in high-precision digital processing engine

Application: Linear Equation Solver

if Ax = b, find x

Le Gallo et al., Nature Electronics, 2018

- Solution iteratively updated with low-precision error-correction term
- Error-correction term obtained using inexact inner solver

High-precision processing unit

The matrix multiplications in the inner solver are performed using a PCM array

Linear Equation Solver: Experimental Results

Experimental result: 10,000x10,000 matrix, 959,376 PCM devices

Le Gallo et al., Nature Electronics, 2018

Mixed-precision computing provides a pathway for arbitrarily precise computation using computational memory.

System-Level Performance Analysis

Significant improvement in the time/energy to solution metrics

• The higher the accuracy of the computational memory, the higher the gain

Application: Mixed-Precision Deep Learning

Nandakumar et al., *arXiv*:1712.01192, 2017 Nandakumar et al., *ISCAS*, 2018

- Synaptic weights always reside in the computational memory
- Forward/backward propagation performed in place (with low precision)
- The desired weight updates accumulated in high precision
- Programming pulses issued to the memory devices to alter the synaptic weights

Mixed-precision DL: Simulations

In-memory Computing: Future perspectives

Orders of magnitude improvements in speed and efficiency are possible

Acknowledgements

- Exploratory memory and cognitive technologies, IBM Zurich
 - Irem Boybat
 - Benedikt Kersting
 - Iason Giannopoulos
 - Riduan Khaddam-Aljameh
 - Manuel Le Gallo
 - Christophe Piveteau
 - Vinay Manikrao
 - Timoleon Moraitis
 - Stanislaw Wozniak
 - Varaprasad Jonnalagadda
 - Angeliki Pantazi
 - Giovanni Cherubini
 - Abu Sebastian
- Foundations of cognitive solutions, Cloud storage and analytics
- M. BrightSky, IBM T.J. Watson Research Center
- G. W. Burr, IBM Research Almaden
- University of Patras, RWTH Aachen, NJIT, Oxford, Exeter, EPFL, ETH

