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Application Trends
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Performance and Power Efficiency Trends
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§ Increasing gap between performance 
and power efficiency

§ Diminishing performance/power 
efficiency gains from technology scaling

2002 2018
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Advances in von Neumann Computing

Wong, Salahuddin, Nature Nanotechnology, 2015

Monolithic 3D integration

Burr et al., IBM J. Res. Dev., 2008

Storage class memory

Minimize the time and distance to memory access
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von Neumann 
accelerators
(e.g. GPUs, 

ASICs)

CPU

New 

Virtuoso Core          

Stacked 
Memory

Stacked 
Memory

Near memory computing
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Go beyond von Neumann Computing

LeCun, Bengio, Hinton, Nature, 2015
Merolla et al., Science, 2014
Indiveri, Liu, Proc. IEEE, 2015

Spiking Neural Networks

Borghetti et al., Nature, 2010
Di Ventra and Pershin, Scientific American, 2015
Hosseini et al., Electron Dev. Lett., 2015

Computational memory

5

Enabling bio-mimetic Computation and Storage



IBM  Research - Zurich

Spin-torque transfer magnetic 
random access memory 

(STT-MRAM)

Conductive bridge random 
access memory (CBRAM)

Metal oxide random access 
memory (ReRAM)

Phase change memory 
(PCM)

§ Significant impact on memory/storage hierarchy
§ Monolithic integration of memories and computation units
§ Sufficient richness of dynamics for non-von Neumann computing

Charge-based memory/storage à resistance-based memory/storage

Neuromorphic and In-memory Computing: 
the Constituent Elements 
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Phase-Change Memory (PCM)
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§ Use two distinct solid phases of a Ge-Sb-Te metal alloy to store a bit
§ Use intermediate phases to obtain a continuum of different states or resistance levels
§ Transition between phases by controlled heating and cooling

Crystallize

Amorphize

High-resistance state Low-resistance state
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Phase-Change Devices in Spiking Neural Networks
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Ovshinsky, E\PCOS, 2004
Wright, Adv. Mater., 2011
Kuzum et al., Nano Lett., 2012
Jackson et al., ACM JETCS, 2013

Postsynaptic
potential
(“input”)

Synapse

Neuron

Tuma et al., Nature Nanotechnology, 2016
Pantazi et al., Nanotechnology, 2016
Tuma, et al., IEEE Electron Dev. Lett., 2016

Synapse

Neuron

All-PCM non-von Neumann architecture: Areal/energy efficiency 
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Neuronal Population Coding
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T. Tuma, et. al. Nature Nanotechnology, Aug. 2016

§ The internal state of the neuron is stored in the phase configuration of a PCM device
§ Neuronal dynamics emulated using the physics of crystallization
§ Exhibit inherent stochasticity, which is key for neuronal population coding

Spiking activitySpiking activity
Spiking 
Activity

High-speed, information-rich stimuli are processed by populations of slow 
(~10 Hz), stochastic, and unreliable neurons in our brain
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Application: Temporal Correlation Detection

Algorithmic goals

– Determine whether some data streams are statistically correlated
– Observe variations in the activity of the correlated input
– Quickly react to occurrence of correlated inputs
– Continuously and dynamically re-evaluate the learned statistics

FINANCE SCIENCE MEDICINE BIG DATA

… and more
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Purely unsupervised neuromorphic computation: 
No counting, no transfers between memory and CPU!

Input pattern Neuron #1: synaptic weights

Neuron #1: output

Neuron #2: synaptic weights

Neuron #2: outputA. Pantazi et al., Nanotechnology, 2016

Experiments with 30,000 PCM cells

Learning Patterns with a Spiking Neural Network
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In-memory Computing
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§ Perform “certain” computational tasks using “certain” memory cores/units 

without the need to shuttle data back and forth in the process

ü Logical operations

ü Arithmetic operations

ü Machine learning algorithms

§ Exploits the physical attributes and state dynamics of the memory devices

Processing unit & Conventional memory Processing unit & Computational memory

Borghetti et al, Nature, 2010

Di Ventra and Pershin, Scientific American, 2015

Hosseini et al., Elect. Dev. Lett., 2015

Sebastian et al., Nature Communications 2017
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Matrix-vector Multiplication
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=

MAP to 
conductance 

values

MAP to read 
voltage

DECIPHER from 
the current

Burr et al., Adv. Phys: X, 2017
Zidan et al., Nature Electronics, 2018

§ Matrix multiplication: Exploits multi-level storage capability and Kirchhoff and Ohm laws
§ A crossbar array performs fast matrix-vector multiplication without data movements in O(1)
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Matrix-vector Multiplication using PCM Devices
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§ A is a 256 X 256 Gaussian matrix coded in a PCM chip
§ x is a 256-long Gaussian vector applied as voltages
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Applications: Optimization Solvers
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High-dimensional 
signal

Compressed
measurements

Le Gallo et al., IEDM, 2017
Le Gallo et al., IEEE TED, 2018

§ Compressed sensing: Acquire a large signal at sub-Nyquist sampling rates 
and subsequently reconstruct that signal accurately

§ Applications in MRI, facial recognition, holography, audio restoration or in 
mobile phone camera sensors 

High-dimensional 
signal

(recovered)
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Compressed Sensing and Recovery
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Le Gallo et al., IEDM, 2017
Le Gallo et al., IEEE TED, 2018

Complexity reduction: O(NM) → O(N); 
Potential 105 speed-up on 1000 x 1000 pixel image with 10-fold compression ratio
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Compressive Imaging: Experimental Results
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Le Gallo et al., IEDM, 2017
Le Gallo et al., IEEE TED, 2018

Estimated power reduction of 50x compared to using an optimized 4-bit FPGA 
matrix-vector multiplier that delivers same reconstruction accuracy at same speed

Experimental result: 128X128 image, 50% sampling rate, 
Computation memory unit with 131,072 PCM devices
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Can We Compute with the Dynamics of PCM?
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Sebastian et al., Nature Communications, 2014

Nonvolatile nanoscale integrator but stochastic and nonlinear

A nanoscale non-volatile integrator
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Unsupervised Learning of Temporal Correlations
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Devices interfaced to the correlated processes go to a high conductance state

Sebastian et al., Nature Communication, 2017

Modulate the amplitude or width of the applied pulse  based on: 
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Experimental Results (1 Million PCM Devices)

§ Very weak correlation of c = 0.01
§ No shuttling back and forth of data
§ Massively parallel 

Processes Conductance 

20
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Comparative Study 
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Complexity reduction: O(N) à O(klog(N)).
For 107 parallel processes a 200X improvement in computation 

time is expected !
2 orders of magnitude energy improvement

Sebastian et al., Nature Communications, 2017 

IBM POWER8+ Architecture
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What if Arbitrarily High-precision is Needed?

§ Bulk of computations in low-precision Computational Memory
§ Refinement in high-precision digital processing engine 

Mixed-precision computing to the rescue!

22
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Application: Linear Equation Solver
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§ Solution iteratively updated with low-precision error-correction term 
§ Error-correction term obtained using inexact inner solver 
§ The matrix multiplications in the inner solver are performed using a PCM array 

High-precision processing unit
Low-precision matrix-vector 

multiplication based on PCM array

Le Gallo et al.,  Nature Electronics,  2018
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Linear Equation Solver: Experimental Results

Mixed-precision computing provides a pathway for arbitrarily precise 
computation using computational memory.

24

Experimental result: 10,000x10,000 matrix, 
959,376 PCM devices

Matrix A:

6x less digital 
multiplications

Le Gallo et al.,  Nature Electronics,  2018
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§ Significant improvement in the time/energy to solution metrics
§ The higher the accuracy of the computational memory, the higher the gain

System-Level Performance Analysis

25
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Application: Mixed-Precision Deep Learning
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§Synaptic weights always reside in the computational memory 
§Forward/backward propagation performed in place (with low precision)
§The desired weight updates accumulated in high precision
§Programming pulses issued to the memory devices to alter the synaptic weights

Nandakumar et al., arXiv:1712.01192, 2017
Nandakumar et al., ISCAS, 2018
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Test accuracies:

float32 Precision
86.02%

Mixed-Precision
86.89%

ÞBetter than floating 
point precision 
accuracy due to 
regularization effect!

Mixed-precision DL: Simulations
§ CIFAR-10 classification problem
§ Network: 6 convolution layers, 3 fully connected layer
§ Training 400 epochs@ batch size = 100
§ Model used: Most realistic device model  known

PCM model

Conv 3x3
48 kernels
ReLU

Conv 3x3
48 kernels
ReLU
Maxpool
Dropout

Conv 3x3
96 kernels
ReLU

Conv 3x3
96 kernels
ReLU
Maxpool
Dropout

Conv 3x3
192 kernels
ReLU

Conv 3x3
192 kernels
ReLU
Maxpool
Dropout
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Orders of magnitude improvements in speed and efficiency are possible

Arrays of analog 
memory elements, 
mixed precision

1x

In-memory
Computing 

Speed up

GPU

10x 50-100x
Traditional 
CMOS 

Speed up10x 100x 1000x 10,000x
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RPUMixed-precision 
in-memory computing

New 

Virtuoso Core          

Stacked 
Memory

Stacked 
Memory

Brain-inspired 
Computing Spiking Neural Networks (SNNs) ?

Algorithms and 
Architectures 
for approximate computing

In-memory Computing: Future perspectives
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