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Introduction

taken from AJGpr.com

Social networks

Transportation systems

Robotic networks

Energy systems

2



Introduction

Goal

Optimize the performance of the network

Characteristics of the network

• Large scale – System with multiple interacting components

• Multi-agent – Components can perform computations, communicate with

each other, and cooperate to reach a common goal

• Heterogeneous – Different physical or technological constraints per agent;

different objectives per agent

• Uncertain – Endogenous and/or exogenous uncertainty affects the system

globally and/or locally

• Combinatorial – Discrete and continuous decision variables
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Introduction

Challenges

• Computation: Problem size too big, even combinatorial!

• Communication: Not all communication links at place; link failures

• Information privacy: Agents may not want to share information with

everyone

• Uncertainty: Neglecting uncertainty may lead to an infeasible solution;

uncertainty often known through data

Distributed data-based optimization

Find an optimal solution by solving in parallel smaller optimization problems local

to each agent while accounting for uncertainty known locally to each agent

through data
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Introduction

Why go distributed?

1. Scalable methodology

• Communication: Only between neighbors, limited amount of info

exchanged

• Computation: Only local; in parallel for all agents on a smaller

problem

2. Resilience to communication failures

3. Information privacy

• Agents do not reveal information about their preferences (encoded by

objective and constraint functions) to each other
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Outline

1. The deterministic case

• Problem set-up

• Distributed proximal algorithm

• Analysis (assumptions + convergence)

• Connection with other methods

2. The stochastic case

• Problem set-up

• Data-based approach

• Distributed data-based implementation

3. Constraint-coupled problem set-up

• Distributed dual decomposition algorithm

• Discrete case

4. Summary & Future work
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Building district energy management

building

Set-up

• Each building equipped with a chiller plant

• Shared cooling network that acts as a thermal storage device

Goal

Determine use of storage + zones temperature set-points to minimize the

cost of the electrical energy consumption of the chillers in the district
7



Building district energy management

1. Chiller plant

• Convert electrical energy into cooling energy

• Characterized via COP (ratio between cooling energy and electrical

energy)
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Building district energy management

2. Building energy contribution

• Walls-zones energy exchange – building thermal dynamics

• Energy due to people occupancy

• Zone thermal inertia

• Other internal energy contribution, e.g. internal lighting, radiation

through windows

3. Thermal storage

S(k + 1) = αS(k)−
∑
i

si (k)

• S(k): Energy stored

• si (k): Energy exchange between building i and storage

> 0: discharging the storage; < 0: charging

• α: Energy losses coefficient
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Building district energy management

Optimization problem

minimize Sum of costs of chillers electrical energy consumption

subject to

1. Chiller thermal energy request = Buildings energy request – Storage energy

2. Storage dynamics

3. Storage limits, chillers limits, comfort constraints

Compact form – x: temperature set-points, storage usage

minimize
∑
i

fi (x)

subject to

x ∈
⋂
i

Xi
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Problem set-up

Decision-coupled problem

minimize
∑
i

fi (x)

subject to

x ∈
⋂
i

Xi

• local objectives fi

• local constraints Xi

• coupled decision x
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Proposed distributed algorithm

Step 1: Local problem of agent i

minimize fi (xi ) + g(xi , zi )

subject to

xi ∈ Xi

}
⇒ x∗i (zi )

• xi : “copy” of x maintained by agent i

• Xi : local constraint set of agent i

• zi : information vector – constructed based on the info of agent’s i neighbors

• Objective function

fi (xi ): local cost/utility of agent i

g(xi , zi ): Proxy term, penalizing disagreement with other agents
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Proposed distributed algorithm

Step 1: Local problem of agent i

minimize fi (xi ) + g(xi , zi )

subject to

xi ∈ Xi

}
⇒ x∗i (zi )

Step 2a: Broadcast x∗i (zi ) to

neighbors

Step 2b: Receive neighbors’

solutions

Step 3: Update zi on the basis of information received

Go to Step 1
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Proposed distributed algorithm

Local problem of agent i

minimize fi (xi ) + g(xi , zi )

subject to

xi ∈ Xi

}
⇒ x∗i (zi )

• Specify

• Information vector zi

• Proxy term term g(xi , zi )

• Note that these terms change across algorithm iterations
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Proposed distributed algorithm

Local problem of agent i at iteration k + 1

zi (k) =
∑
j

ai
j(k)xj(k)

xi (k + 1) = arg min
xi∈Xi

fi (xi ) +
1

c(k)
‖xi − zi (k)‖2

• Information vector

• zi (k) =
∑

j ai
j(k)xj(k)

• ai
j(k): how agent i weights info of agent j

• Proxy term

• 1
c(k)
‖xi − zi (k)‖2: deviation from (weighted) average

• c(k): trade-off between optimality and agents’ disagreement
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Proposed distributed algorithm

Local problem of agent i at iteration k + 1

zi (k) =
∑
j

ai
j(k)xj(k)

xi (k + 1) = arg min
xi∈Xi

fi (xi ) +
1

c(k)
‖xi − zi (k)‖2

• Does this algorithm converge?

• If yes, does it provide the same solution with the centralized problem (had

we been able to solve it)?
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Algorithm analysis

1. Convexity and compactness

• fi (·): convex for all i

• Xi : compact, convex, non-empty interior for all i

⇒ fi (·): Lipschitz continuous on Xi

2. Choice of the proxy term

•
{

c(k)
}
k
: non-increasing

• Should not decrease too fast∑
k

c(k) =∞∑
k

c(k)2 <∞

• E.g., harmonic series
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Algorithm analysis

3. Information mix

• Weights ai
j(k): non-zero lower bound if link between i − j present

⇒ Info mixing at a non-diminishing rate

• Weights ai
j(k): form a doubly stochastic matrix

⇒ Agents influence each other equally in the long run

4. Network connectivity – All information flows (eventually)

• Any pair of agents communicates infinitely often

• Bounded intercommunication time
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Algorithm analysis

Main result

Under the structural + network assumptions, the proposed proximal algorithm

converges to some minimizer x∗ of the centralized problem, i.e.,

lim
k→∞

‖xi (k)− x∗‖ = 0, for all i

• Asymptotic agreement and optimality

• Rate no faster than c(k) – “slow enough” to trade agreement and

optimality
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Comparison with other methods

• Proximal algorithms vs. gradient/subgradient methods
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Comparison with other methods

• Proximal algorithms

xi (k + 1) = arg min
xi∈Xi

fi (xi ) +
1

c(k)
‖xi − zi (k)‖2

• Gradient algorithms

xi (k + 1) = PXi

[
zi (k)− c(k)∇fi (zi (k))

]
• Proximal algorithms allow for

• No gradient/subgradient calculation – user can feed problem data in

any solver

• Heterogeneous constraint sets

• No differentiability assumptions

19



Comparison with subgradient

Optimal power allocation in cellular networks (non-differentiable objective)

proposed solution vs. gradient-based approach
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Building district problem revisited – Simulation results

Set-up

• 3 buildings - 3 zones each (different chiller per building)

• Pair-wise communication (gossip)

Implementation

• Simulation in MATLAB

• Optimization solver SEDUMI via the MATLAB interface YALMIP
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Simulation results – Temperature set-points

Optimal zone temperature profiles of building 1 (consensus solution).
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Simulation results – Storage usage
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Simulation results – Storage usage

Time [h]

0

25

50

75

100

125

150

175

200

St
or

ed
 e

ne
rg

y 
[M

J]

-10

-7.5

-5

-2.5

0

2.5

5

7.5

10

En
er

gy
 e

xc
ha

ng
e 

[M
J]

 E
 es

s
1

 es
2

 es
3

10 12 14 16 18 20 22 240 2 4 6 8

At consensus, the small-chiller building (“orange”) uses the storage charged

by the others

22



Simulation results – Chillers usage
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Simulation results – Chillers usage

0 2 4 6 8 10 12 14 16 18 20 22 24
Time [h]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

C
O

P

 Medium
 Small
 Large

COP of the chillers in the optimally shared storage case

24



Simulation results

Solution computed based on nominal disturbance profiles...
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Problem set-up

Decision-coupled problem

minimize
∑
i

fi (x)

subject to

x ∈
⋂
i

Xi
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Problem set-up

Decision-coupled problem with uncertainty

minimize
∑
i

fi (x)

subject to

x ∈
⋂
i

Xi (δ), for all δ ∈ ∆

• Stochastic set-up

• δ: Uncertain parameter δ ∼ P
• ∆: (Possibly) continuous set

• Semi-infinite optimization program
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Data-based approach

Decision-coupled problem with uncertainty

minimize
∑
i

fi (x)

subject to

x ∈
⋂
i

⋂
δ∈S

Xi (δ)

• Replace ∆ with S

27



Data-based approach

Decision-coupled problem with uncertainty

minimize
∑
i

fi (x)

subject to

x ∈
⋂
i

⋂
δ∈S

Xi (δ)

Two cases:

1. Agents have the same data set S

2. Agents have different data sets
{

Si

}
i
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Data-based approach

Common data set – distributed implementation

minimize
∑
i

fi (x)

subject to

x ∈
⋂
i

⋂
δ∈S

Xi (δ)

• Apply proximal algorithm with
⋂
δ∈S Xi (δ) in place of Xi

• Let x∗S denote the converged solution
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Probabilistic feasibility – Common data set

Data-based program PS

minimize
∑
i

fi (x)

subject to → x∗S

x ∈
⋂
i

⋂
δ∈S

Xi (δ)

Robust program P∆

minimize
∑
i

fi (x)

subject to

x ∈
⋂
i

⋂
δ∈∆

Xi (δ)

• Is x∗S feasible for P∆?

• Is this true for any S?
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Probabilistic feasibility – Common data set

Data-based program PS

minimize
∑
i

fi (x)

subject to → x∗S

x ∈
⋂
i

⋂
δ∈S

Xi (δ)

Robust program P∆

minimize
∑
i

fi (x)

subject to

x ∈
⋂
i

⋂
δ∈∆

Xi (δ)

Feasibility link [Calafiore & Campi, TAC 2006]

Fix β ∈ (0, 1) and S . With confidence ≥ 1− β, x∗S is feasible with probability

≥ 1− ε(d , |S |, β), i.e.

P
(
δ ∈ ∆ : x∗S /∈

⋂
i

Xi (δ)
)
≤ ε(d , |S |, β) with prob. ≥ 1− β

30



Probabilistic feasibility – Common data set

Feasibility link

Fix β ∈ (0, 1) and S . With confidence ≥ 1− β, x∗S is feasible for P∆ with

probability ≥ 1− ε(d , |S |, β), i.e.

P
(
δ ∈ ∆ : x∗S /∈

⋂
i

Xi (δ)
)
≤ ε(d , |S |, β) with prob. ≥ 1− β

• On which parameters does ε depends on?

ε =
2

|S |

(
d + ln

1

β

)

• Logarithmic in β: β can be set close to 0

• Linear in |S |−1: The more data the better the result

• Linear in d : # decision variables
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Data-based approach

Different data set – distributed implementation

minimize
∑
i

fi (x)

subject to

x ∈
⋂
i

⋂
δ∈Si

Xi (δ)

• Apply proximal algorithm with
⋂
δ∈Si

Xi (δ) in place of Xi

• Let x∗S denote the converged solution, S = {Si}i
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Probabilistic feasibility – Different data sets

Single-agent - a posteriori

Fix βi ∈ (0, 1) and Si . With confidence ≥ 1− βi ,

P
(
δ ∈ ∆ : x∗S /∈ Xi (δ)

)
≤ εi (dSi

i , |Si |, βi )

A posteriori result

• dSi
i : empirical estimate of “support” samples (wait and see)

Changing Si the result will change

• Complexity of εi (dSi
i , |Si |, βi ) as in the previous case

• Result thanks to [Campi, Garatti & Ramponi, CDC 2015]
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Probabilistic feasibility – Different data sets

Single-agent - a posteriori

Fix βi ∈ (0, 1) and Si . With confidence ≥ 1− βi ,

P
(
δ ∈ ∆ : x∗S /∈ Xi (δ)

)
≤ εi (dSi

i )

• Two-agent example, d = 2

dS1
1 = 1 and dS2

2 = 1 dS1
1 = 0 and dS2

2 = 2
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Probabilistic feasibility – Different data sets

Multi-agent - a posteriori

Fix β ∈ (0, 1) and
{

Si

}
i
. With confidence ≥ 1− β,

P
(
δ ∈ ∆ : x∗S /∈

⋂
i

Xi (δ)
)
≤
∑
i

εi (dSi
i )

A posteriori result

• Can we turn it into an a priori statement?

• What is the worst-case value for
∑

i εi (dSi
i ) that we can “observe”?

• Conservative bound: dSi
i ≤ d for all i

• Sharper bound:
∑

i dSi
i ≤ d (# decision variables)
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Probabilistic feasibility – Different data sets

Multi-agent - a priori

Fix β ∈ (0, 1) and
{

Si

}
i
. With confidence ≥ 1− β,

P
(
δ ∈ ∆ : x∗S /∈

⋂
i

Xi (δ)
)
≤ ε

where

ε = maximize
∑
i

εi (di )

subject to∑
i

di ≤ d
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Common vs. different data sets

Number of agents - m
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P
ro

ba
bi

lit
y 

of
 v

io
la

tio
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

"e"
"

Approach using different constraint sets

• Close to the case of common data sets

• Less conservative than the worst case bound

37



Literature comparison

Closest approach1

• almost sure convergence results

(need to sample constraints infinitely many times)

Proposed solution

• weaker guarantees but with a finite number of samples

1S. Lee and A. Nedic, Distributed random projection algorithm for convex

optimization, IEEE Journal on Selected Topics in Signal Processing 2013.
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Addressed problems

min
x

m∑
i=1

fi (x)

s.t. x ∈
m⋂
i=1

Xi

• local objectives fi

• coupled decision x

• local constraints Xi

Decision-coupled problem

min
x1,...,xm

m∑
i=1

fi (xi )

s.t.
m∑
i=1

gi (xi ) ≤ 0

xi ∈ Xi ∀i

• local objectives fi

• local decisions xi

• coupling constraint∑m
i=1 gi (xi ) ≤ 0

Constraint-coupled problem
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Proposed solution for constraint-coupled problems

At each iteration k , agent i

`i (k)←
∑
j∈Ni

aij(k)λj(k)

xi (k+1)← arg min
xi∈Xi

f̃i (xi )

λi (k+1)← arg max
λi≥0

ϕ̃i (λi )

where

f̃i (xi ) = fi (xi ) + `i (k)>gi (xi )

ϕ̃i (λi ) = λ>i gi (xi (k+1))

− 1
c(k) ‖λi − `i (k)‖2

2

min
x1,...,xm

m∑
i=1

fi (xi )

s.t.
m∑
i=1

gi (xi ) ≤ 0

xi ∈ Xi ∀i

• local objectives fi

• local decisions xi

• coupling constraint∑m
i=1 gi (xi ) ≤ 0
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Algorithm analysis

Main result (Convergence & optimality)

Under the structural + network assumptions, the proposed algorithm combining

dual decomposition and proximal minimization converges to the set of minimizers

of the centralized problem.

Probabilistic feasibility results for the stochastic case have been developed.
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Problem set-up – discrete decision variables

P : min
x1,...,xm

m∑
i=1

c>i xi

subject to:
m∑
i=1

Aixi ≤ b

xi ∈ Xi ∀i = 1, . . . ,m

Features

• local decision vectors xi

• local linear objectives c>i xi

• p coupling linear constraints
∑m

i=1 Aixi ≤ b

• local mixed-integer polyhedral constraint sets Xi
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Problem set-up – discrete decision variables

P : min
x1,...,xm

m∑
i=1

c>i xi

subject to:
m∑
i=1

Aixi ≤ b

xi ∈ Xi ∀i = 1, . . . ,m

Features

• local decision vectors xi

• local linear objectives c>i xi

• p coupling linear constraints
∑m

i=1 Aixi ≤ b

• local mixed-integer polyhedral constraint sets Xi ⇒ combinatorial

complexity
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Constraint-coupled MILPs

The problem fits the structure of a constraint-coupled problem

but...

It is non-convex, hence the distributed algorithms developed for convex problems

have no guarantees

we then aim at

1. providing a feasible (possibly sub-optimal) solution

2. quantifying the quality of the solution
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Constraint-coupled MILPs

Goal

1. provide a feasible (possibly sub-optimal) solution

2. quantifying the quality of the solution

Literature

Some problem-specific approaches to recover a feasible solution

[Vujanic et al., 2016]2

More general duality-based approach to recover a feasible solution with

sub-optimality guarantees

2R. Vujanic, P. M. Esfahani, P. J. Goulart, S. Mariethoz, and M. Morari, A

decomposition method for large scale MILPs, with performance guarantees and a

power system application, Automatica, 2016
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Proposed solution

Main idea of [Vujanic et al., 2016]

1. tighten the coupling constraint by a specific amount ρ̃ ≥ 0

2. obtain the dual optimal solution λ?ρ̃

3. recover a feasible primal solution using λ?ρ̃

Proposed solution

A distributed iterative algorithm that merges:

• the procedure for solving constraint-coupled problems

• adaptive tightening of coefficient ρ based on the same idea of

[Vujanic et al., 2016]
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Theoretical results

Fact

By construction, ρ→ ρ̄ ≤ ρ̃ (often <)

Theorem (Feasibility)

After a finite number of iterations, the algorithm provides a solution that is

feasible for P

Theorem (Performance)

The performance are no-worse than that of [Vujanic et al., 2016] (often better)
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Summary & Future work

Performance optimization of a network

• General distributed optimization framework accounting for different

complexity features , i.e., heterogeneity of the agents, privacy of their

local info, uncertainty, combinatorial complexity

Applications

• energy management of a building district

• power allocation in cellular networks

• plug-in electric vehicles charging scheduling

What comes next?

• Convergence rate analysis

• Rolling horizon implementations

• Uncertain constraint-coupled MILP

• Application to Mixed Logical Dynamical (MLD) systems

• More applications
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