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Approximate Dynamic Programming

Seminal paper, Watkins & Dayan, Q-learning, 1992:
compute optimal policy for an MDP

Many papers since, and rich theory developed by Tsitsiklis et. al.
Bertsekas & Tsitsiklis, NDP, 1996
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u

∫ ∞
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e−γtc(xt, ut) dt

Magic: Hamiltonian and HJB equation

min
u
{c(x, u) + f(x, u) · ∇J∗ (x)︸ ︷︷ ︸

Q-function

} = γJ∗(x)

Often easier to estimate Q∗ rather than the value function J∗
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Background and Goals

Q-learning in control language
System: ẋ = f(x, u) cost: c(x, u)

Magic: Hamiltonian and HJB equation

min
u
{c(x, u) + f(x, u) · ∇J∗ (x)︸ ︷︷ ︸

Q-function

} = γJ∗(x)

Denote Q∗ = minuQ
∗(x, u) = γJ∗(x)

=⇒ Fixed point equation for Q-function

Q∗(x, u) = c(x, u) + f(x, u) · ∇J∗(x) = c(x, u) + γ−1f(x, u) · ∇Q∗ (x)

Parameterization set of approximations, {Qθ(x, u) : θ ∈ Rd}

Bellman error: Eθ(x, u) = γ[Qθ(x, u)− c(x, u)]− f(x, u) · ∇Qθ (x)
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Background and Goals

Q-learning in control language
System: ẋ = f(x, u) cost: c(x, u)

Apply Magic:

Model Free Error Representation

Eθ(x, u) = γ[Qθ(x, u)− c(x, u)]− f(x, u) · ∇Qθ (x)

= γ[Qθ(x, u)− c(x, u)]− d

dt
Qθ (xt)

∣∣∣
x=x(t), u=u(t)

Q-learning and Quasi Stochastic Approximation

Find zeros of h(θ) = ∇E[Eθ(x∞, u∞)2] using QSA

(x∞, u∞) ergodic steady-state.

Choose input: stable feedback + mixture of sinusoids,
u(t) = −k(x(t)) + ω(t)

[9, 8]

Alert! Approximation based on online input-output measurements!
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Background and Goals

Q-learning in practice

Questions to be addressed

How to select function class {Qθ}?

Go to CDC!

Controlled Lyapunov functions from Monday morning
Singular perturbation approximate models, and related
Fluid models for networks, and their workload relaxations [CTCN]
Mean field game solutions for multi-agent systems

Feature selection for neuro-dynamic programming, 2011 [8]
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How to make an algorithm work?

Let’s get started ...
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E[f(θ,W)]
θ=θ∗

= 0

Stochastic Approximation



Stochastic Approximation Basic Algorithm

What is Stochastic Approximation?

A simple goal: Find the solution θ∗ to

f̄(θ∗) := E[f(θ,W )]
∣∣∣
θ=θ∗

= 0

What makes this hard?

1 The function f and the distribution of the random vector W may not
be known

2 Even if everything is known, computation of the expectation may be
expensive. For root finding, we may need to compute the expectation
for many values of θ

3 Motivates stochastic approximation: θ(n+ 1) = θ(n) +αnf(θ(n),W (n))

The recursive algorithms we come up with are often slow, and their
variance is often infinite
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Stochastic Approximation ODE Method

Algorithm and Convergence Analysis

Algorithm:
θ(n+ 1) = θ(n) + αnf(θ(n),W (n))

Goal:
f̄(θ∗) := E[f(θ,W )]

∣∣∣
θ=θ∗

= 0

Interpretation: θ∗ ≡ stationary point of the ODE

d

dt
θ(t) = f̄(θ(t))

Analysis: Stability of the ODE ⊕ (See Borkar’s monograph) =⇒

lim
n→∞

θ(n) = θ∗
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Stochastic Approximation SA Example

Stochastic Approximation Example
Example: Monte-Carlo

Monte-Carlo Estimation

Estimate the mean η = E[c(X)], where random variable X has density %:

η =

∫
c(x) %(x) dx

SA interpretation: Find θ∗ solving 0 = E[f(θ,X)] = E[c(X)− θ]

Algorithm: θ(n) =
1

n

n∑
i=1

c(X(i))

=⇒ (n+ 1)θ(n+ 1) =
n+1∑
i=1

c(X(i)) = nθ(n) + c(X(n+ 1))

=⇒ (n+ 1)θ(n+ 1) = (n+ 1)θ(n) + [c(X(n+ 1))− θ(n)]

SA Recursion: θ(n+ 1) = θ(n) + αnf(θ(n), X(n+ 1))

∑
αn =∞,

∑
α2
n <∞
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Stochastic Approximation Fastest Stochastic Approximation

Performance Criteria

Two standard approaches to evaluate performance, θ̃(n) := θ(n)− θ∗:
1 Finite-n bound:

P{‖θ̃(n)‖ ≥ ε} ≤ exp(−I(ε, n)) , I(ε, n) = O(nε2)

2 Asymptotic covariance:

Σ = lim
n→∞

nE
[
θ̃(n)θ̃(n)T

]
,

√
nθ̃(n) ≈ N(0,Σ)

8 / 35



Stochastic Approximation Fastest Stochastic Approximation

Asymptotic Covariance
Σ = lim

n→∞
Σn = lim

n→∞
nE

[
θ̃(n)θ̃(n)T] , √

nθ̃(n) ≈ N(0,Σ)

SA recursion for covariance:

Σn+1 ≈ Σn + 1
n

{
(A+ 1

2I)Σn + Σn(A+ 1
2I)T + Σ∆

}
A = d

dθ f̄ (θ∗)

Conclusions

1 If Reλ(A) ≥ −1
2 for some eigenvalue then Σ is (typically) infinite

2 If Reλ(A) < −1
2 for all, then Σ = limn→∞Σn is the unique solution

to the Lyapunov equation:

0 = (A+ 1
2I)Σ + Σ(A+ 1

2I)T + Σ∆

9 / 35



Stochastic Approximation Stochastic Newton Raphson

Optimal Asymptotic Covariance

Introduce a d× d matrix gain sequence {Gn}:

θ(n+ 1) = θ(n) +
1

n+ 1
Gnf(θ(n), X(n))

Assume it converges, and linearize:

θ̃(n+ 1) ≈ θ̃(n) +
1

n+ 1
G
(
Aθ̃(n) + ∆(n+ 1)

)
, A =

d

dθ
f̄ (θ∗) .

If G = G∗ :=−A−1 then

Resembles Monte-Carlo estimate

Resembles Newton-Rapshon

It is optimal: Σ∗ = G∗Σ∆G
∗T ≤ ΣG any other G

Polyak-Ruppert averaging is also optimal, but first two bullets are missing.
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Stochastic Approximation Stochastic Newton Raphson

Optimal Variance

Example: return to Monte-Carlo

θ(n+ 1) = θ(n) +
g

n+ 1

(
−θ(n) +X(n+ 1)

)
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(
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∆(n) = X(n)− E[X(n)]
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Stochastic Approximation Stochastic Newton Raphson

Optimal Variance

∆(n) = X(n)− E[X(n)]Normalization for analysis:

θ̃(n+ 1) = θ̃(n) +
g

n+ 1

(
−θ̃(n) + ∆(n+ 1)

)
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Stochastic Approximation Stochastic Newton Raphson

Optimal Asymptotic Covariance and Zap-SNR

Zap-SNR (designed to emulate deterministic Newton-Raphson)

Requires Ân ≈ A(θn) :=
d

dθ
f̄ (θn)

Zap-SNR (designed to emulate deterministic Newton-Raphson)

θ(n+ 1) = θ(n) + αn(−Ân)−1f(θ(n), X(n))

Ân = Ân−1 + γn(An − Ân−1), An =
d

dθ
f(θ(n), X(n))

Ân ≈ A(θn) requires high-gain,
γn
αn
→∞, n→∞

Always: αn = 1/n. Numerics that follow: γn = (1/n)ρ, ρ ∈ (0.5, 1)

ODE for Zap-SNR

d

dt
xt = −

[
A(xt)

]−1
f̄ (xt), A(x) =

d

dx
f̄ (x)

Not necessarily stable (just like in deterministic Newton-Raphson)
General conditions for convergence open
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Ân ≈ A(θn) requires high-gain,
γn
αn
→∞, n→∞

Always: αn = 1/n. Numerics that follow: γn = (1/n)ρ, ρ ∈ (0.5, 1)

ODE for Zap-SNR

d

dt
xt = −

[
A(xt)

]−1
f̄ (xt), A(x) =

d

dx
f̄ (x)

Not necessarily stable (just like in deterministic Newton-Raphson)

General conditions for convergence open

12 / 35



Reinforcement Learning
and Stochastic Approximation



Reinforcement Learning
and Stochastic Approximation



Reinforcement Learning RL & SA

SA and RL Design

Functional equations in Stochastic Control

Always of the form
0 = E[F (h∗,Φ(n+ 1)) | Φ0 . . . Φ(n)] , h∗ = ?

Galerkin relaxation:
0 = E[F (hθ

∗
,Φ(n+ 1))ζn] , θ∗ = ?

Necessary Ingredients:

Parameterized family {hθ : θ ∈ Rd}
Adapted, d-dimensional stochastic process {ζn}

Examples are TD- and Q-Learning

These algorithms are thus special cases of stochastic approximation
(as we all know)
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Reinforcement Learning MDP Theory

Stochastic Optimal Control

MDP Model

X is a stationary controlled Markov chain, with input U

For all states x and sets A,

P{X(n+ 1) ∈ A | X(n) = x, U(n) = u, and prior history} = Pu(x,A)

c : X× U→ R is a cost function

β < 1 a discount factor

Value function:

h∗(x) = min
U

∞∑
n=0

βnE[c(X(n), U(n)) | X(0) = x]

Bellman equation:

h∗(x) = min
u
{c(x, u) + βE[h∗(X(n+ 1)) | X(n) = x, U(n) = u]}
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Reinforcement Learning Q-Learning

Q-function

Bellman equation:

h∗(x) = min
u
{c(x, u) + βE[h∗(X(n+ 1)) | X(n) = x, U(n) = u]}

Q-function:

Q∗(x, u) := c(x, u) + βE[h∗(X(n+ 1)) | X(n) = x, U(n) = u]

h∗(x) = min
u
Q∗(x, u)

Another Bellman equation:

Q∗(x, u) = c(x, u) + βE[Q∗(X(n+ 1)) | X(n) = x, U(n) = u]

Q∗(x) = min
u
Q∗(x, u)

Q-function: trick to swap expectation and minimum
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Reinforcement Learning Q-Learning

Q-Learning and Galerkin Relaxation

Dynamic programming

Find function Q∗ that solves

E
[
c(X(n), U(n)) + βQ∗(X(n+ 1))−Q∗(X(n), U(n)) | Fn

]
= 0

Q-Learning

Find θ∗ that solves

E
[(
c(X(n), U(n)) + βQθ

∗
((X(n+ 1))−Qθ∗((X(n), U(n))

)
ζn
]

= 0

The family {Qθ} and eligibility vectors {ζn} are part of algorithm design.
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Reinforcement Learning Q-Learning

Watkins’ Q-learning

Big Question: Can we Zap Q-Learning?

Find θ∗ that solves

E
[(
c(X(n), U(n)) + βQθ

∗
((X(n+ 1))−Qθ∗((X(n), U(n))

)
ζn
]

= 0

Watkin’s algorithm is Stochastic Approximation

The family {Qθ} and eligibility vectors {ζn} in this design:

Linearly parameterized family of functions: Qθ(x, u) = θTψ(x, u)

ζn ≡ ψ(Xn, Un)

ψi(x, u) = 1{x = xi, u = ui} (complete basis)

Asymptotic covariance is infinite for β ≥ 1/2 [NIPS 2017]
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Zap Q-Learning

Asymptotic Covariance of Watkins’ Q-Learning
Improvements are needed!

1
4

65
3 2

Histogram of parameter estimates after 106 iterations.
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Example from Devraj & M 2017
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Zap Q-Learning Watkin’s algorithm

Zap Q-learning
Zap Q-Learning ≡ Zap-SNR for Q-Learning

0 = f̄(θ) = E
[
f(θ,W (n))

]
:= E

[
ζn
(
c(X(n), U(n)) + βQθ(X(n+ 1))−Qθ(X(n), U(n))

)]
A(θ) = d

dθ f̄ (θ); At points of differentiability:

A(θ) = E
[
ζn
[
βψ(X(n+ 1), φθ(X(n+ 1)))− ψ(X(n), U(n))

]T]
φθ(X(n+ 1)) := arg min

u
Qθ(X(n+ 1), u)

Algorithm:

θ(n+ 1)= θ(n) + αn(−Ân)−1f(θ(n),Φ(n)) , Ân = Ân−1 + γn(An − Ân−1)

An+1 :=
d

dθ
f (θn,Φ(n))

= ζn
[
βψ(X(n+ 1), φθn(X(n+ 1)))− ψ(X(n), U(n))

]T
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Zap Q-Learning Watkin’s algorithm

Zap Q-learning
Zap Q-Learning ≡ Zap-SNR for Q-Learning

ODE Analysis: change of variables q = Q∗(ς)
Functional Q∗ maps cost functions to Q-functions:

q(x, u) = ς(x, u) + β
∑
x′
Pu(x, x′) min

u′
q(x′, u′)

ODE for Zap-Q

qt = Q∗(ςt),
d

dt
ςt = −ςt + c

⇒ convergence, optimal covariance, ...
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Zap Q-Learning Watkin’s algorithm

Zap Q-Learning
Example: Stochastic Shortest Path

1
4
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Convergence with Zap gain γn = n−0.85

Watkins’ algorithm has infinite asymptotic covariance with αn = 1/n

Optimal scalar gain is approximately αn = 1500/n
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Watkins, g = 1500

Zap, γn = αn

Convergence of Zap-Q Learning

Discount factor: β = 0.99
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Zap Q-Learning Watkin’s algorithm

Zap Q-Learning
Optimize Walk to Cafe
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CLT gives good prediction of finite-n performance
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Zap Q-Learning Optimal stopping

Zap Q-Learning
Model of Tsitsiklis and Van Roy: Optimal Stopping Time in Finance

State space: R100

Parameterized Q-function: Qθ with θ ∈ R10
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Zap Q-Learning Optimal stopping

Zap Q-Learning
Model of Tsitsiklis and Van Roy: Optimal Stopping Time in Finance

State space: R100. Parameterized Q-function: Qθ with θ ∈ R10
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Zap Q-Learning Optimal stopping

Zap Q-Learning
Model of Tsitsiklis and Van Roy: Optimal Stopping Time in Finance

State space: R100.
Parameterized Q-function: Qθ with θ ∈ R10

Histograms of the average reward obtained using the different algorithms:
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Conclusions

Reinforcement Learning is not just cursed by dimension,
but also by variance

We need better design tools to improve performance

The asymptotic covariance is an awesome design tool.
It is also predictive of finite-n performance.

Example: g∗ = 1500 was chosen based on asymptotic covariance

Future work:

Q-learning with function-approximation

Obtain conditions for a stable algorithm in a general setting

Optimal stopping time problems

Adaptive optimization of algorithm parameters

Zapped Momentum Methods [2]
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Opportunities for the controls community

We Are Q!

Apply your favorite model-reduction technique,
or class of policies, or family of value functions,
and create your own RL algorithm

Unshackle conventions of the RL research community.
This lecture is reinforcement learning ≡ on online optimization.
If you have a model, you have many options.

The most exciting applications may be for your favorite model:

d

dt
xt = f(xt, ut) , J∗(x) = min

u

∫ ∞
0

c(xt, ut) dt , x0 = x

Forget about Markov chains and randomized policies!

Follow your heart

Åström, Cassandras, Jovanovic, Jain, Kristic, friends@NREL ... we are Q!
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Åström, Cassandras, Jovanovic, Jain, Kristic, friends@NREL ... we are Q!

28 / 35



Conclusions & Future Work

Conclusions & Future Work
Opportunities for the controls community

We Are Q!

Apply your favorite model-reduction technique,
or class of policies, or family of value functions,
and create your own RL algorithm

Unshackle conventions of the RL research community.
This lecture is reinforcement learning ≡ on online optimization.
If you have a model, you have many options.

The most exciting applications may be for your favorite model:

d

dt
xt = f(xt, ut) , J∗(x) = min

u

∫ ∞
0

c(xt, ut) dt , x0 = x

Forget about Markov chains and randomized policies!

Follow your heart
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Thank you!

thankful
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