
Zap Q-Learning
Fastest Convergent Q-Learning

Vistas in Control

50th birthday !

September 10-11, 2018

Sean Meyn

Department of Electrical and Computer Engineering — University of Florida

Based on joint research with Adithya M. Devraj and Ana Bušić + ...

Thanks to to the National Science Foundation

http://ccc.centers.ufl.edu/


Zap Q-Learning
Outline

1 Background and Goals

2 Stochastic Approximation

3 Reinforcement Learning

4 Zap Q-Learning

5 Conclusions & Future Work

6 References



Background and Goals

Reinforcement Learning for Control Scientists



Background and Goals

Approximate Dynamic Programming

Seminal paper, Watkins & Dayan, Q-learning, 1992:
compute optimal policy for an MDP

Many papers since, and rich theory developed by Tsitsiklis et. al.
Bertsekas & Tsitsiklis, NDP, 1996

1 / 35



Background and Goals

Approximate Dynamic Programming

Seminal paper, Watkins & Dayan, Q-learning, 1992:
compute optimal policy for an MDP

Many papers since, and rich theory developed by Tsitsiklis et. al.
Bertsekas & Tsitsiklis, NDP, 1996

Many papers since, and rich theory developed by Tsitsiklis et. al.
Bertsekas & Tsitsiklis, NDP, 1996

1 / 35



Background and Goals

Approximate Dynamic Programming

Seminal paper, Watkins & Dayan, Q-learning, 1992:
compute optimal policy for an MDP

Many papers since, and rich theory developed by Tsitsiklis et. al.
Bertsekas & Tsitsiklis, NDP, 1996

Magic ingredient may look familiar ...
Consider the discounted cost optimal control problem:

d

dt
xt = f(xt, ut) , J∗(x) = min

u

∫ ∞
0

e−γtc(xt, ut) dt

1 / 35



Background and Goals

Approximate Dynamic Programming

Many papers since, and rich theory developed by Tsitsiklis et. al.
Bertsekas & Tsitsiklis, NDP, 1996

Magic ingredient may look familiar ...
Consider the discounted cost optimal control problem:

d

dt
xt = f(xt, ut) , J∗(x) = min

u

∫ ∞
0

e−γtc(xt, ut) dt

Magic: Hamiltonian and HJB equation

min
u
{c(x, u) + f(x, u) · ∇J∗ (x)︸ ︷︷ ︸

Q-function

} = γJ∗(x)

Often easier to estimate Q∗ rather than the value function J∗

1 / 35



Background and Goals

Q-learning in control language
System: ẋ = f(x, u) cost: c(x, u)

Magic: Hamiltonian and HJB equation

min
u
{c(x, u) + f(x, u) · ∇J∗ (x)︸ ︷︷ ︸

Q-function

} = γJ∗(x)

Denote Q∗ = minuQ
∗(x, u) = γJ∗(x)

=⇒ Fixed point equation for Q-function

Q∗(x, u) = c(x, u) + f(x, u) · ∇J∗(x) = c(x, u) + γ−1f(x, u) · ∇Q∗ (x)

Parameterization set of approximations, {Qθ(x, u) : θ ∈ Rd}

Bellman error: Eθ(x, u) = γ[Qθ(x, u)− c(x, u)]− f(x, u) · ∇Qθ (x)

2 / 35



Background and Goals

Q-learning in control language
System: ẋ = f(x, u) cost: c(x, u)

Magic: Hamiltonian and HJB equation

min
u
{c(x, u) + f(x, u) · ∇J∗ (x)︸ ︷︷ ︸

Q-function

} = γJ∗(x)

Denote Q∗ = minuQ
∗(x, u) = γJ∗(x)

=⇒ Fixed point equation for Q-function

Q∗(x, u) = c(x, u) + f(x, u) · ∇J∗(x)

= c(x, u) + γ−1f(x, u) · ∇Q∗ (x)

Parameterization set of approximations, {Qθ(x, u) : θ ∈ Rd}

Bellman error: Eθ(x, u) = γ[Qθ(x, u)− c(x, u)]− f(x, u) · ∇Qθ (x)

2 / 35



Background and Goals

Q-learning in control language
System: ẋ = f(x, u) cost: c(x, u)

Magic: Hamiltonian and HJB equation

min
u
{c(x, u) + f(x, u) · ∇J∗ (x)︸ ︷︷ ︸

Q-function

} = γJ∗(x)

Denote Q∗ = minuQ
∗(x, u) = γJ∗(x)

=⇒ Fixed point equation for Q-function

Q∗(x, u) = c(x, u) + f(x, u) · ∇J∗(x)

= c(x, u) + γ−1f(x, u) · ∇Q∗ (x)

Parameterization set of approximations, {Qθ(x, u) : θ ∈ Rd}

Bellman error: Eθ(x, u) = γ[Qθ(x, u)− c(x, u)]− f(x, u) · ∇Qθ (x)

2 / 35



Background and Goals

Q-learning in control language
System: ẋ = f(x, u) cost: c(x, u)

Magic: Hamiltonian and HJB equation

min
u
{c(x, u) + f(x, u) · ∇J∗ (x)︸ ︷︷ ︸

Q-function

} = γJ∗(x)

Denote Q∗ = minuQ
∗(x, u) = γJ∗(x)

=⇒ Fixed point equation for Q-function

Q∗(x, u) = c(x, u) + f(x, u) · ∇J∗(x) = c(x, u) + γ−1f(x, u) · ∇Q∗ (x)

Parameterization set of approximations, {Qθ(x, u) : θ ∈ Rd}

Bellman error: Eθ(x, u) = γ[Qθ(x, u)− c(x, u)]− f(x, u) · ∇Qθ (x)

2 / 35



Background and Goals

Q-learning in control language
System: ẋ = f(x, u) cost: c(x, u)

Magic: Hamiltonian and HJB equation

min
u
{c(x, u) + f(x, u) · ∇J∗ (x)︸ ︷︷ ︸

Q-function

} = γJ∗(x)

Denote Q∗ = minuQ
∗(x, u) = γJ∗(x)

=⇒ Fixed point equation for Q-function

Q∗(x, u) = c(x, u) + f(x, u) · ∇J∗(x) = c(x, u) + γ−1f(x, u) · ∇Q∗ (x)

Parameterization set of approximations, {Qθ(x, u) : θ ∈ Rd}

Bellman error: Eθ(x, u) = γ[Qθ(x, u)− c(x, u)]− f(x, u) · ∇Qθ (x)

2 / 35



Background and Goals

Q-learning in control language
System: ẋ = f(x, u) cost: c(x, u)

Apply Magic:

Model Free Error Representation

Eθ(x, u) = γ[Qθ(x, u)− c(x, u)]− f(x, u) · ∇Qθ (x)

= γ[Qθ(x, u)− c(x, u)]− d

dt
Qθ (xt)

∣∣∣
x=x(t), u=u(t)

Q-learning and Quasi Stochastic Approximation

Find zeros of h(θ) = ∇E[Eθ(x∞, u∞)2] using QSA

(x∞, u∞) ergodic steady-state.

Choose input: stable feedback + mixture of sinusoids,
u(t) = −k(x(t)) + ω(t)

[9, 8]

Alert! Approximation based on online input-output measurements!

3 / 35



Background and Goals

Q-learning in control language
System: ẋ = f(x, u) cost: c(x, u)

Apply Magic: Model Free Error Representation

Eθ(x, u) = γ[Qθ(x, u)− c(x, u)]− f(x, u) · ∇Qθ (x)

= γ[Qθ(x, u)− c(x, u)]− d

dt
Qθ (xt)

∣∣∣
x=x(t), u=u(t)

Q-learning and Quasi Stochastic Approximation

Find zeros of h(θ) = ∇E[Eθ(x∞, u∞)2] using QSA

(x∞, u∞) ergodic steady-state.

Choose input: stable feedback + mixture of sinusoids,
u(t) = −k(x(t)) + ω(t)

[9, 8]

Alert! Approximation based on online input-output measurements!

3 / 35



Background and Goals

Q-learning in control language
System: ẋ = f(x, u) cost: c(x, u)

Apply Magic: Model Free Error Representation

Eθ(x, u) = γ[Qθ(x, u)− c(x, u)]− f(x, u) · ∇Qθ (x)

= γ[Qθ(x, u)− c(x, u)]− d

dt
Qθ (xt)

∣∣∣
x=x(t), u=u(t)

Q-learning and Quasi Stochastic Approximation

Find zeros of h(θ) = ∇E[Eθ(x∞, u∞)2] using QSA

(x∞, u∞) ergodic steady-state.

Choose input: stable feedback + mixture of sinusoids,
u(t) = −k(x(t)) + ω(t)

[9, 8]

Alert! Approximation based on online input-output measurements!

3 / 35



Background and Goals

Q-learning in control language
System: ẋ = f(x, u) cost: c(x, u)

Apply Magic: Model Free Error Representation

Eθ(x, u) = γ[Qθ(x, u)− c(x, u)]− f(x, u) · ∇Qθ (x)

= γ[Qθ(x, u)− c(x, u)]− d

dt
Qθ (xt)

∣∣∣
x=x(t), u=u(t)

Q-learning and Quasi Stochastic Approximation

Find zeros of h(θ) = ∇E[Eθ(x∞, u∞)2] using QSA

(x∞, u∞) ergodic steady-state.

Choose input: stable feedback + mixture of sinusoids,
u(t) = −k(x(t)) + ω(t)

[9, 8]

Alert! Approximation based on online input-output measurements!

3 / 35



Background and Goals

Q-learning in practice

Questions to be addressed

How to select function class {Qθ}?

Go to CDC!

Controlled Lyapunov functions from Monday morning
Singular perturbation approximate models, and related
Fluid models for networks, and their workload relaxations [CTCN]
Mean field game solutions for multi-agent systems

Feature selection for neuro-dynamic programming, 2011 [8]

4 / 35



Background and Goals

Q-learning in practice

Questions to be addressed

How to select function class {Qθ}? Go to CDC!

Controlled Lyapunov functions from Monday morning
Singular perturbation approximate models, and related
Fluid models for networks, and their workload relaxations [CTCN]
Mean field game solutions for multi-agent systems

Feature selection for neuro-dynamic programming, 2011 [8]

4 / 35



Background and Goals

Q-learning in practice

Questions to be addressed

How to select function class {Qθ}? Go to CDC!

Controlled Lyapunov functions from Monday morning

Singular perturbation approximate models, and related
Fluid models for networks, and their workload relaxations [CTCN]
Mean field game solutions for multi-agent systems

Feature selection for neuro-dynamic programming, 2011 [8]

4 / 35



Background and Goals

Q-learning in practice

Questions to be addressed

How to select function class {Qθ}? Go to CDC!

Controlled Lyapunov functions from Monday morning
Singular perturbation approximate models, and related

Fluid models for networks, and their workload relaxations [CTCN]
Mean field game solutions for multi-agent systems

Feature selection for neuro-dynamic programming, 2011 [8]

4 / 35



Background and Goals

Q-learning in practice

Questions to be addressed

How to select function class {Qθ}? Go to CDC!

Controlled Lyapunov functions from Monday morning
Singular perturbation approximate models, and related
Fluid models for networks, and their workload relaxations [CTCN]

Mean field game solutions for multi-agent systems
Feature selection for neuro-dynamic programming, 2011 [8]

4 / 35



Background and Goals

Q-learning in practice

Questions to be addressed

How to select function class {Qθ}? Go to CDC!

Controlled Lyapunov functions from Monday morning
Singular perturbation approximate models, and related
Fluid models for networks, and their workload relaxations [CTCN]
Mean field game solutions for multi-agent systems

Feature selection for neuro-dynamic programming, 2011 [8]

4 / 35



Background and Goals

Q-learning in practice

Questions to be addressed

How to select function class {Qθ}? Go to CDC!

Controlled Lyapunov functions from Monday morning
Singular perturbation approximate models, and related
Fluid models for networks, and their workload relaxations [CTCN]
Mean field game solutions for multi-agent systems

Feature selection for neuro-dynamic programming, 2011 [8]

0 1 2 3 4 5 6 7 8 9 100 1 2 3 4 5 6 7 8 9 10

−0.06

0

0.06

0

1

-1 x 104

(individual state)

(ensemble state)

Agent 5 is barely controllable

Agent 4

Mean-field game used for basis construction for Q-learning
Resulting estimates are consistent with MFG solution

4 / 35



Background and Goals

Q-learning in practice

Questions to be addressed

How to select function class {Qθ}? Go to CDC!

Controlled Lyapunov functions from Monday morning
Singular perturbation approximate models, and related
Fluid models for networks, and their workload relaxations [CTCN]
Mean field game solutions for multi-agent systems

Feature selection for neuro-dynamic programming, 2011 [8]

How to make an algorithm work?

4 / 35



Background and Goals

Q-learning in practice

Questions to be addressed

How to select function class {Qθ}? Go to CDC!

Controlled Lyapunov functions from Monday morning
Singular perturbation approximate models, and related
Fluid models for networks, and their workload relaxations [CTCN]
Mean field game solutions for multi-agent systems

Feature selection for neuro-dynamic programming, 2011 [8]

How to make an algorithm work?

Let’s get started ...

4 / 35



E[f(θ,W)]
θ=θ∗

= 0

Stochastic Approximation



Stochastic Approximation Basic Algorithm

What is Stochastic Approximation?

A simple goal: Find the solution θ∗ to

f̄(θ∗) := E[f(θ,W )]
∣∣∣
θ=θ∗

= 0

What makes this hard?

1 The function f and the distribution of the random vector W may not
be known

2 Even if everything is known, computation of the expectation may be
expensive. For root finding, we may need to compute the expectation
for many values of θ

3 Motivates stochastic approximation: θ(n+ 1) = θ(n) +αnf(θ(n),W (n))

The recursive algorithms we come up with are often slow, and their
variance is often infinite

5 / 35



Stochastic Approximation Basic Algorithm

What is Stochastic Approximation?

A simple goal: Find the solution θ∗ to

f̄(θ∗) := E[f(θ,W )]
∣∣∣
θ=θ∗

= 0

What makes this hard?

1 The function f and the distribution of the random vector W may not
be known

2 Even if everything is known, computation of the expectation may be
expensive. For root finding, we may need to compute the expectation
for many values of θ

3 Motivates stochastic approximation: θ(n+ 1) = θ(n) +αnf(θ(n),W (n))

The recursive algorithms we come up with are often slow, and their
variance is often infinite

5 / 35



Stochastic Approximation Basic Algorithm

What is Stochastic Approximation?

A simple goal: Find the solution θ∗ to

f̄(θ∗) := E[f(θ,W )]
∣∣∣
θ=θ∗

= 0

What makes this hard?

1 The function f and the distribution of the random vector W may not
be known

2 Even if everything is known, computation of the expectation may be
expensive. For root finding, we may need to compute the expectation
for many values of θ

3 Motivates stochastic approximation: θ(n+ 1) = θ(n) +αnf(θ(n),W (n))

The recursive algorithms we come up with are often slow, and their
variance is often infinite

5 / 35



Stochastic Approximation Basic Algorithm

What is Stochastic Approximation?

A simple goal: Find the solution θ∗ to

f̄(θ∗) := E[f(θ,W )]
∣∣∣
θ=θ∗

= 0

What makes this hard?

1 The function f and the distribution of the random vector W may not
be known

2 Even if everything is known, computation of the expectation may be
expensive. For root finding, we may need to compute the expectation
for many values of θ

3 Motivates stochastic approximation: θ(n+ 1) = θ(n) +αnf(θ(n),W (n))

The recursive algorithms we come up with are often slow, and their
variance is often infinite

5 / 35



Stochastic Approximation ODE Method

Algorithm and Convergence Analysis

Algorithm:
θ(n+ 1) = θ(n) + αnf(θ(n),W (n))

Goal:
f̄(θ∗) := E[f(θ,W )]

∣∣∣
θ=θ∗

= 0

Interpretation: θ∗ ≡ stationary point of the ODE

d

dt
θ(t) = f̄(θ(t))

Analysis: Stability of the ODE ⊕ (See Borkar’s monograph) =⇒

lim
n→∞

θ(n) = θ∗

6 / 35



Stochastic Approximation ODE Method

Algorithm and Convergence Analysis

Algorithm:
θ(n+ 1) = θ(n) + αnf(θ(n),W (n))

Goal:
f̄(θ∗) := E[f(θ,W )]

∣∣∣
θ=θ∗

= 0

Interpretation: θ∗ ≡ stationary point of the ODE

d

dt
θ(t) = f̄(θ(t))

Analysis: Stability of the ODE ⊕ (See Borkar’s monograph) =⇒

lim
n→∞

θ(n) = θ∗

6 / 35



Stochastic Approximation SA Example

Stochastic Approximation Example
Example: Monte-Carlo

Monte-Carlo Estimation

Estimate the mean η = E[c(X)], where random variable X has density %:

η =

∫
c(x) %(x) dx

SA interpretation: Find θ∗ solving 0 = E[f(θ,X)] = E[c(X)− θ]

Algorithm: θ(n) =
1

n

n∑
i=1

c(X(i))

=⇒ (n+ 1)θ(n+ 1) =
n+1∑
i=1

c(X(i)) = nθ(n) + c(X(n+ 1))

=⇒ (n+ 1)θ(n+ 1) = (n+ 1)θ(n) + [c(X(n+ 1))− θ(n)]

SA Recursion: θ(n+ 1) = θ(n) + αnf(θ(n), X(n+ 1))

∑
αn =∞,

∑
α2
n <∞

7 / 35



Stochastic Approximation SA Example

Stochastic Approximation Example
Example: Monte-Carlo

Monte-Carlo Estimation

Estimate the mean η = E[c(X)]

SA interpretation: Find θ∗ solving 0 = E[f(θ,X)] = E[c(X)− θ]

Algorithm: θ(n) =
1

n

n∑
i=1

c(X(i))

=⇒ (n+ 1)θ(n+ 1) =

n+1∑
i=1

c(X(i)) = nθ(n) + c(X(n+ 1))

=⇒ (n+ 1)θ(n+ 1) = (n+ 1)θ(n) + [c(X(n+ 1))− θ(n)]

SA Recursion: θ(n+ 1) = θ(n) + αnf(θ(n), X(n+ 1))

∑
αn =∞,

∑
α2
n <∞

7 / 35



Stochastic Approximation SA Example

Stochastic Approximation Example
Example: Monte-Carlo

Monte-Carlo Estimation

Estimate the mean η = E[c(X)]

SA interpretation: Find θ∗ solving 0 = E[f(θ,X)] = E[c(X)− θ]

Algorithm: θ(n) =
1

n

n∑
i=1

c(X(i))

=⇒ (n+ 1)θ(n+ 1) =

n+1∑
i=1

c(X(i)) = nθ(n) + c(X(n+ 1))

=⇒ (n+ 1)θ(n+ 1) = (n+ 1)θ(n) + [c(X(n+ 1))− θ(n)]

SA Recursion: θ(n+ 1) = θ(n) + αnf(θ(n), X(n+ 1))

∑
αn =∞,

∑
α2
n <∞

7 / 35



Stochastic Approximation Fastest Stochastic Approximation

Performance Criteria

Two standard approaches to evaluate performance, θ̃(n) := θ(n)− θ∗:
1 Finite-n bound:

P{‖θ̃(n)‖ ≥ ε} ≤ exp(−I(ε, n)) , I(ε, n) = O(nε2)

2 Asymptotic covariance:

Σ = lim
n→∞

nE
[
θ̃(n)θ̃(n)T

]
,

√
nθ̃(n) ≈ N(0,Σ)

8 / 35



Stochastic Approximation Fastest Stochastic Approximation

Asymptotic Covariance
Σ = lim

n→∞
Σn = lim

n→∞
nE

[
θ̃(n)θ̃(n)T] , √

nθ̃(n) ≈ N(0,Σ)

SA recursion for covariance:

Σn+1 ≈ Σn + 1
n

{
(A+ 1

2I)Σn + Σn(A+ 1
2I)T + Σ∆

}
A = d

dθ f̄ (θ∗)

Conclusions

1 If Reλ(A) ≥ −1
2 for some eigenvalue then Σ is (typically) infinite

2 If Reλ(A) < −1
2 for all, then Σ = limn→∞Σn is the unique solution

to the Lyapunov equation:

0 = (A+ 1
2I)Σ + Σ(A+ 1

2I)T + Σ∆

9 / 35



Stochastic Approximation Stochastic Newton Raphson

Optimal Asymptotic Covariance

Introduce a d× d matrix gain sequence {Gn}:

θ(n+ 1) = θ(n) +
1

n+ 1
Gnf(θ(n), X(n))

Assume it converges, and linearize:

θ̃(n+ 1) ≈ θ̃(n) +
1

n+ 1
G
(
Aθ̃(n) + ∆(n+ 1)

)
, A =

d

dθ
f̄ (θ∗) .

If G = G∗ :=−A−1 then

Resembles Monte-Carlo estimate

Resembles Newton-Rapshon

It is optimal: Σ∗ = G∗Σ∆G
∗T ≤ ΣG any other G

Polyak-Ruppert averaging is also optimal, but first two bullets are missing.

10 / 35



Stochastic Approximation Stochastic Newton Raphson

Optimal Asymptotic Covariance

Introduce a d× d matrix gain sequence {Gn}:

θ(n+ 1) = θ(n) +
1

n+ 1
Gnf(θ(n), X(n))

Assume it converges, and linearize:

θ̃(n+ 1) ≈ θ̃(n) +
1

n+ 1
G
(
Aθ̃(n) + ∆(n+ 1)

)
, A =

d

dθ
f̄ (θ∗) .

If G = G∗ :=−A−1 then

Resembles Monte-Carlo estimate

Resembles Newton-Rapshon

It is optimal: Σ∗ = G∗Σ∆G
∗T ≤ ΣG any other G

Polyak-Ruppert averaging is also optimal, but first two bullets are missing.

10 / 35



Stochastic Approximation Stochastic Newton Raphson

Optimal Asymptotic Covariance

Introduce a d× d matrix gain sequence {Gn}:

θ(n+ 1) = θ(n) +
1

n+ 1
Gnf(θ(n), X(n))

Assume it converges, and linearize:

θ̃(n+ 1) ≈ θ̃(n) +
1

n+ 1
G
(
Aθ̃(n) + ∆(n+ 1)

)
, A =

d

dθ
f̄ (θ∗) .

If G = G∗ :=−A−1 then

Resembles Monte-Carlo estimate

Resembles Newton-Rapshon

It is optimal: Σ∗ = G∗Σ∆G
∗T ≤ ΣG any other G

Polyak-Ruppert averaging is also optimal, but first two bullets are missing.

10 / 35



Stochastic Approximation Stochastic Newton Raphson

Optimal Asymptotic Covariance

Introduce a d× d matrix gain sequence {Gn}:

θ(n+ 1) = θ(n) +
1

n+ 1
Gnf(θ(n), X(n))

Assume it converges, and linearize:

θ̃(n+ 1) ≈ θ̃(n) +
1

n+ 1
G
(
Aθ̃(n) + ∆(n+ 1)

)
, A =

d

dθ
f̄ (θ∗) .

If G = G∗ :=−A−1 then

Resembles Monte-Carlo estimate

Resembles Newton-Rapshon

It is optimal: Σ∗ = G∗Σ∆G
∗T ≤ ΣG any other G

Polyak-Ruppert averaging is also optimal, but first two bullets are missing.

10 / 35



Stochastic Approximation Stochastic Newton Raphson

Optimal Variance

Example: return to Monte-Carlo

θ(n+ 1) = θ(n) +
g

n+ 1

(
−θ(n) +X(n+ 1)

)

11 / 35



Stochastic Approximation Stochastic Newton Raphson

Optimal Variance

Example: return to Monte-Carlo

θ(n+ 1) = θ(n) +
g

n+ 1

(
−θ(n) +X(n+ 1)

)
∆(n) = X(n)− E[X(n)]

11 / 35



Stochastic Approximation Stochastic Newton Raphson

Optimal Variance

∆(n) = X(n)− E[X(n)]Normalization for analysis:

θ̃(n+ 1) = θ̃(n) +
g

n+ 1

(
−θ̃(n) + ∆(n+ 1)

)

11 / 35



Stochastic Approximation Stochastic Newton Raphson

Optimal Variance

∆(n) = X(n)− E[X(n)]Normalization for analysis:

θ̃(n+ 1) = θ̃(n) +
g

n+ 1

(
−θ̃(n) + ∆(n+ 1)

)
Example: X(n) = W 2(n), W ∼ N(0, 1)

11 / 35



Stochastic Approximation Stochastic Newton Raphson

Optimal Variance

∆(n) = X(n)− E[X(n)]Normalization for analysis:

θ̃(n+ 1) = θ̃(n) +
g

n+ 1

(
−θ̃(n) + ∆(n+ 1)

)
Example: X(n) = W 2(n), W ∼ N(0, 1)

0 1 2 3 4 5 g

σ2
∆

Σ =
σ2
∆

2

g2

g − 1/2

Asymptotic variance as a function of g

11 / 35



Stochastic Approximation Stochastic Newton Raphson

Optimal Variance

∆(n) = X(n)− E[X(n)]Normalization for analysis:

θ̃(n+ 1) = θ̃(n) +
g

n+ 1

(
−θ̃(n) + ∆(n+ 1)

)
Example: X(n) = W 2(n), W ∼ N(0, 1)

0 1 2 3 4 5

t 10
4

0.4

0.6

0.8

1

1.2

(t
)

  20     30.8

  10     15.8

   1        3

  0.5     

  0.1     

g    

SA estimates of E[W 2], W ∼ N(0, 1)

11 / 35



Stochastic Approximation Stochastic Newton Raphson

Optimal Asymptotic Covariance and Zap-SNR

Zap-SNR (designed to emulate deterministic Newton-Raphson)

Requires Ân ≈ A(θn) :=
d

dθ
f̄ (θn)

Zap-SNR (designed to emulate deterministic Newton-Raphson)

θ(n+ 1) = θ(n) + αn(−Ân)−1f(θ(n), X(n))

Ân = Ân−1 + γn(An − Ân−1), An =
d

dθ
f(θ(n), X(n))

Ân ≈ A(θn) requires high-gain,
γn
αn
→∞, n→∞

Always: αn = 1/n. Numerics that follow: γn = (1/n)ρ, ρ ∈ (0.5, 1)

ODE for Zap-SNR

d

dt
xt = −

[
A(xt)

]−1
f̄ (xt), A(x) =

d

dx
f̄ (x)

Not necessarily stable (just like in deterministic Newton-Raphson)
General conditions for convergence open

12 / 35



Stochastic Approximation Stochastic Newton Raphson

Optimal Asymptotic Covariance and Zap-SNR

Zap-SNR (designed to emulate deterministic Newton-Raphson)

θ(n+ 1) = θ(n) + αn(−Ân)−1f(θ(n), X(n))

Ân = Ân−1 + γn(An − Ân−1), An =
d

dθ
f(θ(n), X(n))

Ân ≈ A(θn) requires high-gain,
γn
αn
→∞, n→∞

Always: αn = 1/n. Numerics that follow: γn = (1/n)ρ, ρ ∈ (0.5, 1)

ODE for Zap-SNR

d

dt
xt = −

[
A(xt)

]−1
f̄ (xt), A(x) =

d

dx
f̄ (x)

Not necessarily stable (just like in deterministic Newton-Raphson)

General conditions for convergence open

12 / 35



Stochastic Approximation Stochastic Newton Raphson

Optimal Asymptotic Covariance and Zap-SNR

Zap-SNR (designed to emulate deterministic Newton-Raphson)

θ(n+ 1) = θ(n) + αn(−Ân)−1f(θ(n), X(n))

Ân = Ân−1 + γn(An − Ân−1), An =
d

dθ
f(θ(n), X(n))

Ân ≈ A(θn) requires high-gain,
γn
αn
→∞, n→∞

Always: αn = 1/n. Numerics that follow: γn = (1/n)ρ, ρ ∈ (0.5, 1)

ODE for Zap-SNR

d

dt
xt = −

[
A(xt)

]−1
f̄ (xt), A(x) =

d

dx
f̄ (x)

Not necessarily stable (just like in deterministic Newton-Raphson)

General conditions for convergence open

12 / 35



Stochastic Approximation Stochastic Newton Raphson

Optimal Asymptotic Covariance and Zap-SNR

Zap-SNR (designed to emulate deterministic Newton-Raphson)

θ(n+ 1) = θ(n) + αn(−Ân)−1f(θ(n), X(n))

Ân = Ân−1 + γn(An − Ân−1), An =
d

dθ
f(θ(n), X(n))

Ân ≈ A(θn) requires high-gain,
γn
αn
→∞, n→∞

Always: αn = 1/n. Numerics that follow: γn = (1/n)ρ, ρ ∈ (0.5, 1)

ODE for Zap-SNR

d

dt
xt = −

[
A(xt)

]−1
f̄ (xt), A(x) =

d

dx
f̄ (x)

Not necessarily stable (just like in deterministic Newton-Raphson)

General conditions for convergence open

12 / 35



Stochastic Approximation Stochastic Newton Raphson

Optimal Asymptotic Covariance and Zap-SNR

Zap-SNR (designed to emulate deterministic Newton-Raphson)

θ(n+ 1) = θ(n) + αn(−Ân)−1f(θ(n), X(n))

Ân = Ân−1 + γn(An − Ân−1), An =
d

dθ
f(θ(n), X(n))

Ân ≈ A(θn) requires high-gain,
γn
αn
→∞, n→∞

Always: αn = 1/n. Numerics that follow: γn = (1/n)ρ, ρ ∈ (0.5, 1)

ODE for Zap-SNR

d

dt
xt = −

[
A(xt)

]−1
f̄ (xt), A(x) =

d

dx
f̄ (x)

Not necessarily stable (just like in deterministic Newton-Raphson)

General conditions for convergence open

12 / 35



Stochastic Approximation Stochastic Newton Raphson

Optimal Asymptotic Covariance and Zap-SNR

Zap-SNR (designed to emulate deterministic Newton-Raphson)

θ(n+ 1) = θ(n) + αn(−Ân)−1f(θ(n), X(n))

Ân = Ân−1 + γn(An − Ân−1), An =
d

dθ
f(θ(n), X(n))

Ân ≈ A(θn) requires high-gain,
γn
αn
→∞, n→∞

Always: αn = 1/n. Numerics that follow: γn = (1/n)ρ, ρ ∈ (0.5, 1)

ODE for Zap-SNR

d

dt
xt = −

[
A(xt)

]−1
f̄ (xt), A(x) =

d

dx
f̄ (x)

Not necessarily stable (just like in deterministic Newton-Raphson)

General conditions for convergence open

12 / 35



Reinforcement Learning
and Stochastic Approximation



Reinforcement Learning
and Stochastic Approximation



Reinforcement Learning RL & SA

SA and RL Design

Functional equations in Stochastic Control

Always of the form
0 = E[F (h∗,Φ(n+ 1)) | Φ0 . . . Φ(n)] , h∗ = ?

Galerkin relaxation:
0 = E[F (hθ

∗
,Φ(n+ 1))ζn] , θ∗ = ?

Necessary Ingredients:

Parameterized family {hθ : θ ∈ Rd}
Adapted, d-dimensional stochastic process {ζn}

Examples are TD- and Q-Learning

These algorithms are thus special cases of stochastic approximation
(as we all know)

13 / 35



Reinforcement Learning RL & SA

SA and RL Design

Functional equations in Stochastic Control

Always of the form
0 = E[F (h∗,Φ(n+ 1)) | Φ0 . . . Φ(n)] , h∗ = ?

Φ(n) = (state, action)

Galerkin relaxation:
0 = E[F (hθ

∗
,Φ(n+ 1))ζn] , θ∗ = ?

Necessary Ingredients:

Parameterized family {hθ : θ ∈ Rd}
Adapted, d-dimensional stochastic process {ζn}

Examples are TD- and Q-Learning

These algorithms are thus special cases of stochastic approximation
(as we all know)

13 / 35



Reinforcement Learning RL & SA

SA and RL Design

Functional equations in Stochastic Control

Always of the form
0 = E[F (h∗,Φ(n+ 1)) | Φ0 . . . Φ(n)] , h∗ = ?

Galerkin relaxation:
0 = E[F (hθ

∗
,Φ(n+ 1))ζn] , θ∗ = ?

Necessary Ingredients:

Parameterized family {hθ : θ ∈ Rd}
Adapted, d-dimensional stochastic process {ζn}

Examples are TD- and Q-Learning

These algorithms are thus special cases of stochastic approximation
(as we all know)

13 / 35



Reinforcement Learning RL & SA

SA and RL Design

Functional equations in Stochastic Control

Always of the form
0 = E[F (h∗,Φ(n+ 1)) | Φ0 . . . Φ(n)] , h∗ = ?

Galerkin relaxation:
0 = E[F (hθ

∗
,Φ(n+ 1))ζn] , θ∗ = ?

Necessary Ingredients:

Parameterized family {hθ : θ ∈ Rd}
Adapted, d-dimensional stochastic process {ζn}

Examples are TD- and Q-Learning

These algorithms are thus special cases of stochastic approximation
(as we all know)

13 / 35



Reinforcement Learning RL & SA

SA and RL Design

Functional equations in Stochastic Control

Always of the form
0 = E[F (h∗,Φ(n+ 1)) | Φ0 . . . Φ(n)] , h∗ = ?

Galerkin relaxation:
0 = E[F (hθ

∗
,Φ(n+ 1))ζn] , θ∗ = ?

Necessary Ingredients:

Parameterized family {hθ : θ ∈ Rd}
Adapted, d-dimensional stochastic process {ζn}

Examples are TD- and Q-Learning

These algorithms are thus special cases of stochastic approximation
(as we all know)

13 / 35



Reinforcement Learning MDP Theory

Stochastic Optimal Control

MDP Model

X is a stationary controlled Markov chain, with input U

For all states x and sets A,

P{X(n+ 1) ∈ A | X(n) = x, U(n) = u, and prior history} = Pu(x,A)

c : X× U→ R is a cost function

β < 1 a discount factor

Value function:

h∗(x) = min
U

∞∑
n=0

βnE[c(X(n), U(n)) | X(0) = x]

Bellman equation:

h∗(x) = min
u
{c(x, u) + βE[h∗(X(n+ 1)) | X(n) = x, U(n) = u]}

14 / 35



Reinforcement Learning MDP Theory

Stochastic Optimal Control

MDP Model

X is a stationary controlled Markov chain, with input U

For all states x and sets A,

P{X(n+ 1) ∈ A | X(n) = x, U(n) = u, and prior history} = Pu(x,A)

c : X× U→ R is a cost function

β < 1 a discount factor

Value function:

h∗(x) = min
U

∞∑
n=0

βnE[c(X(n), U(n)) | X(0) = x]

Bellman equation:

h∗(x) = min
u
{c(x, u) + βE[h∗(X(n+ 1)) | X(n) = x, U(n) = u]}

14 / 35



Reinforcement Learning MDP Theory

Stochastic Optimal Control

MDP Model

X is a stationary controlled Markov chain, with input U

For all states x and sets A,

P{X(n+ 1) ∈ A | X(n) = x, U(n) = u, and prior history} = Pu(x,A)

c : X× U→ R is a cost function

β < 1 a discount factor

Value function:

h∗(x) = min
U

∞∑
n=0

βnE[c(X(n), U(n)) | X(0) = x]

Bellman equation:

h∗(x) = min
u
{c(x, u) + βE[h∗(X(n+ 1)) | X(n) = x, U(n) = u]}

14 / 35



Reinforcement Learning Q-Learning

Q-function

Bellman equation:

h∗(x) = min
u
{c(x, u) + βE[h∗(X(n+ 1)) | X(n) = x, U(n) = u]}

Q-function:

Q∗(x, u) := c(x, u) + βE[h∗(X(n+ 1)) | X(n) = x, U(n) = u]

h∗(x) = min
u
Q∗(x, u)

Another Bellman equation:

Q∗(x, u) = c(x, u) + βE[Q∗(X(n+ 1)) | X(n) = x, U(n) = u]

Q∗(x) = min
u
Q∗(x, u)

Q-function: trick to swap expectation and minimum

15 / 35



Reinforcement Learning Q-Learning

Q-function

Bellman equation:

h∗(x) = min
u
{c(x, u) + βE[h∗(X(n+ 1)) | X(n) = x, U(n) = u]}

Q-function:

Q∗(x, u) := c(x, u) + βE[h∗(X(n+ 1)) | X(n) = x, U(n) = u]

Q-function:

Q∗(x, u) := c(x, u) + βE[h∗(X(n+ 1)) | X(n) = x, U(n) = u]

h∗(x) = min
u
Q∗(x, u)

Another Bellman equation:

Q∗(x, u) = c(x, u) + βE[Q∗(X(n+ 1)) | X(n) = x, U(n) = u]

Q∗(x) = min
u
Q∗(x, u)

Q-function: trick to swap expectation and minimum

15 / 35



Reinforcement Learning Q-Learning

Q-function

Bellman equation:

h∗(x) = min
u
{c(x, u) + βE[h∗(X(n+ 1)) | X(n) = x, U(n) = u]}

Q-function:

Q∗(x, u) := c(x, u) + βE[h∗(X(n+ 1)) | X(n) = x, U(n) = u]

h∗(x) = min
u
Q∗(x, u)

Another Bellman equation:

Q∗(x, u) = c(x, u) + βE[Q∗(X(n+ 1)) | X(n) = x, U(n) = u]

Q∗(x) = min
u
Q∗(x, u)

Q-function: trick to swap expectation and minimum

15 / 35



Reinforcement Learning Q-Learning

Q-function

Bellman equation:

h∗(x) = min
u
{c(x, u) + βE[h∗(X(n+ 1)) | X(n) = x, U(n) = u]}

Q-function:

Q∗(x, u) := c(x, u) + βE[h∗(X(n+ 1)) | X(n) = x, U(n) = u]

h∗(x) = min
u
Q∗(x, u)

Another Bellman equation:

Q∗(x, u) = c(x, u) + βE[Q∗(X(n+ 1)) | X(n) = x, U(n) = u]

Q∗(x) = min
u
Q∗(x, u)

Q-function: trick to swap expectation and minimum

15 / 35



Reinforcement Learning Q-Learning

Q-function

Bellman equation:

h∗(x) = min
u
{c(x, u) + βE[h∗(X(n+ 1)) | X(n) = x, U(n) = u]}

Q-function:

Q∗(x, u) := c(x, u) + βE[h∗(X(n+ 1)) | X(n) = x, U(n) = u]

h∗(x) = min
u
Q∗(x, u)

Another Bellman equation:

Q∗(x, u) = c(x, u) + βE[Q∗(X(n+ 1)) | X(n) = x, U(n) = u]

Q∗(x) = min
u
Q∗(x, u)

Q-function: trick to swap expectation and minimum
15 / 35



Reinforcement Learning Q-Learning

Q-Learning and Galerkin Relaxation

Dynamic programming

Find function Q∗ that solves

E
[
c(X(n), U(n)) + βQ∗(X(n+ 1))−Q∗(X(n), U(n)) | Fn

]
= 0

Q-Learning

Find θ∗ that solves

E
[(
c(X(n), U(n)) + βQθ

∗
((X(n+ 1))−Qθ∗((X(n), U(n))

)
ζn
]

= 0

The family {Qθ} and eligibility vectors {ζn} are part of algorithm design.

16 / 35



Reinforcement Learning Q-Learning

Q-Learning and Galerkin Relaxation

Dynamic programming

Find function Q∗ that solves

E
[
c(X(n), U(n)) + βQ∗(X(n+ 1))−Q∗(X(n), U(n)) | Fn

]
= 0

That is,
0 = E[F (Q∗,Φ(n+ 1)) | Φ0 . . . Φ(n)] ,

with Φ(n+ 1) = (X(n+ 1), X(n), U(n)).

Q-Learning

Find θ∗ that solves

E
[(
c(X(n), U(n)) + βQθ

∗
((X(n+ 1))−Qθ∗((X(n), U(n))

)
ζn
]

= 0

The family {Qθ} and eligibility vectors {ζn} are part of algorithm design.

16 / 35



Reinforcement Learning Q-Learning

Q-Learning and Galerkin Relaxation

Dynamic programming

Find function Q∗ that solves

E
[
c(X(n), U(n)) + βQ∗(X(n+ 1))−Q∗(X(n), U(n)) | Fn

]
= 0

Q-Learning

Find θ∗ that solves

E
[(
c(X(n), U(n)) + βQθ

∗
((X(n+ 1))−Qθ∗((X(n), U(n))

)
ζn
]

= 0

The family {Qθ} and eligibility vectors {ζn} are part of algorithm design.

16 / 35



Reinforcement Learning Q-Learning

Watkins’ Q-learning

Big Question: Can we Zap Q-Learning?

Find θ∗ that solves

E
[(
c(X(n), U(n)) + βQθ

∗
((X(n+ 1))−Qθ∗((X(n), U(n))

)
ζn
]

= 0

Watkin’s algorithm is Stochastic Approximation

The family {Qθ} and eligibility vectors {ζn} in this design:

Linearly parameterized family of functions: Qθ(x, u) = θTψ(x, u)

ζn ≡ ψ(Xn, Un)

ψi(x, u) = 1{x = xi, u = ui} (complete basis)

Asymptotic covariance is infinite for β ≥ 1/2 [NIPS 2017]

17 / 35



Reinforcement Learning Q-Learning

Watkins’ Q-learning

Big Question: Can we Zap Q-Learning?

Find θ∗ that solves

E
[(
c(X(n), U(n)) + βQθ

∗
((X(n+ 1))−Qθ∗((X(n), U(n))

)
ζn
]

= 0

Watkin’s algorithm is Stochastic Approximation

The family {Qθ} and eligibility vectors {ζn} in this design:

Linearly parameterized family of functions: Qθ(x, u) = θTψ(x, u)

ζn ≡ ψ(Xn, Un)

ψi(x, u) = 1{x = xi, u = ui} (complete basis)

Asymptotic covariance is infinite for β ≥ 1/2 [NIPS 2017]

17 / 35



Reinforcement Learning Q-Learning

Watkins’ Q-learning

Big Question: Can we Zap Q-Learning?

Find θ∗ that solves

E
[(
c(X(n), U(n)) + βQθ

∗
((X(n+ 1))−Qθ∗((X(n), U(n))

)
ζn
]

= 0

Watkin’s algorithm is Stochastic Approximation

The family {Qθ} and eligibility vectors {ζn} in this design:

Linearly parameterized family of functions: Qθ(x, u) = θTψ(x, u)

ζn ≡ ψ(Xn, Un)

ψi(x, u) = 1{x = xi, u = ui} (complete basis)

Asymptotic covariance is infinite for β ≥ 1/2 [NIPS 2017]

17 / 35



Reinforcement Learning Q-Learning

Watkins’ Q-learning

Big Question: Can we Zap Q-Learning?

Find θ∗ that solves

E
[(
c(X(n), U(n)) + βQθ

∗
((X(n+ 1))−Qθ∗((X(n), U(n))

)
ζn
]

= 0

Watkin’s algorithm is Stochastic Approximation

The family {Qθ} and eligibility vectors {ζn} in this design:

Linearly parameterized family of functions: Qθ(x, u) = θTψ(x, u)

ζn ≡ ψ(Xn, Un)

ψi(x, u) = 1{x = xi, u = ui} (complete basis)

Asymptotic covariance is infinite for β ≥ 1/2 [NIPS 2017]

17 / 35



0 1 2 3 4 5 6 7 8 9 10 1050

20

40

60

80

100 Watkins, Speedy Q-learning,
Polyak-Ruppert Averaging

Zap

Be
llm

an
 E

rr
or

n

Zap Q-Learning



Zap Q-Learning

Asymptotic Covariance of Watkins’ Q-Learning
Improvements are needed!

1
4

65
3 2

Histogram of parameter estimates after 106 iterations.

1000 200 300 400 486.6
0

10

20

30

40

n = 106

Histogram for θ

θ*

n(15)

(15)

Example from Devraj & M 2017

18 / 35



Zap Q-Learning Watkin’s algorithm

Zap Q-learning
Zap Q-Learning ≡ Zap-SNR for Q-Learning

0 = f̄(θ) = E
[
f(θ,W (n))

]
:= E

[
ζn
(
c(X(n), U(n)) + βQθ(X(n+ 1))−Qθ(X(n), U(n))

)]
A(θ) = d

dθ f̄ (θ); At points of differentiability:

A(θ) = E
[
ζn
[
βψ(X(n+ 1), φθ(X(n+ 1)))− ψ(X(n), U(n))

]T]
φθ(X(n+ 1)) := arg min

u
Qθ(X(n+ 1), u)

Algorithm:

θ(n+ 1)= θ(n) + αn(−Ân)−1f(θ(n),Φ(n)) , Ân = Ân−1 + γn(An − Ân−1)

An+1 :=
d

dθ
f (θn,Φ(n))

= ζn
[
βψ(X(n+ 1), φθn(X(n+ 1)))− ψ(X(n), U(n))

]T

19 / 35



Zap Q-Learning Watkin’s algorithm

Zap Q-learning
Zap Q-Learning ≡ Zap-SNR for Q-Learning

0 = f̄(θ) = E
[
f(θ,W (n))

]
:= E

[
ζn
(
c(X(n), U(n)) + βQθ(X(n+ 1))−Qθ(X(n), U(n))

)]
A(θ) = d

dθ f̄ (θ); At points of differentiability:

A(θ) = E
[
ζn
[
βψ(X(n+ 1), φθ(X(n+ 1)))− ψ(X(n), U(n))

]T]
φθ(X(n+ 1)) := arg min

u
Qθ(X(n+ 1), u)

Algorithm:

θ(n+ 1)= θ(n) + αn(−Ân)−1f(θ(n),Φ(n)) , Ân = Ân−1 + γn(An − Ân−1)

An+1 :=
d

dθ
f (θn,Φ(n))

= ζn
[
βψ(X(n+ 1), φθn(X(n+ 1)))− ψ(X(n), U(n))

]T

19 / 35



Zap Q-Learning Watkin’s algorithm

Zap Q-learning
Zap Q-Learning ≡ Zap-SNR for Q-Learning

ODE Analysis: change of variables q = Q∗(ς)
Functional Q∗ maps cost functions to Q-functions:

q(x, u) = ς(x, u) + β
∑
x′
Pu(x, x′) min

u′
q(x′, u′)

ODE for Zap-Q

qt = Q∗(ςt),
d

dt
ςt = −ςt + c

⇒ convergence, optimal covariance, ...

20 / 35



Zap Q-Learning Watkin’s algorithm

Zap Q-learning
Zap Q-Learning ≡ Zap-SNR for Q-Learning

ODE Analysis: change of variables q = Q∗(ς)
Functional Q∗ maps cost functions to Q-functions:

q(x, u) = ς(x, u) + β
∑
x′
Pu(x, x′) min

u′
q(x′, u′)

ODE for Zap-Q

qt = Q∗(ςt),
d

dt
ςt = −ςt + c

⇒ convergence, optimal covariance, ...

20 / 35



Zap Q-Learning Watkin’s algorithm

Zap Q-Learning
Example: Stochastic Shortest Path

1
4

65
3 2

Convergence with Zap gain γn = n−0.85

Watkins’ algorithm has infinite asymptotic covariance with αn = 1/n

Optimal scalar gain is approximately αn = 1500/n

0 1 2 3 4 5 6 7 8 9 10 1050

20

40

60

80

100 Watkins, Speedy Q-learning,
Polyak-Ruppert Averaging

Zap

Be
llm

an
 E

rr
or

n0 1 2 3 4 5 6 7 8 9 10 1050

20

40

60

80

100 Watkins, Speedy Q-learning,
Polyak-Ruppert Averaging

Zap

Be
llm

an
 E

rr
or

n

Zap, γn = αn

0 1 2 3 4 5 6 7 8 9 10 1050

20

40

60

80

100 Watkins, Speedy Q-learning,
Polyak-Ruppert Averaging

Zap

Be
llm

an
 E

rr
or

n

Watkins, g = 1500

Zap, γn = αn

Convergence of Zap-Q Learning

Discount factor: β = 0.99

21 / 35



Zap Q-Learning Watkin’s algorithm

Zap Q-Learning
Example: Stochastic Shortest Path

1
4

65
3 2

Convergence with Zap gain γn = n−0.85

Watkins’ algorithm has infinite asymptotic covariance with αn = 1/n

Optimal scalar gain is approximately αn = 1500/n

0 1 2 3 4 5 6 7 8 9 10 1050

20

40

60

80

100 Watkins, Speedy Q-learning,
Polyak-Ruppert Averaging

Zap

Be
llm

an
 E

rr
or

n

0 1 2 3 4 5 6 7 8 9 10 1050

20

40

60

80

100 Watkins, Speedy Q-learning,
Polyak-Ruppert Averaging

Zap

Be
llm

an
 E

rr
or

n

Zap, γn = αn

0 1 2 3 4 5 6 7 8 9 10 1050

20

40

60

80

100 Watkins, Speedy Q-learning,
Polyak-Ruppert Averaging

Zap

Be
llm

an
 E

rr
or

n

Watkins, g = 1500

Zap, γn = αn

Convergence of Zap-Q Learning

Discount factor: β = 0.99

21 / 35



Zap Q-Learning Watkin’s algorithm

Zap Q-Learning
Example: Stochastic Shortest Path

1
4

65
3 2

Convergence with Zap gain γn = n−0.85

Watkins’ algorithm has infinite asymptotic covariance with αn = 1/n

Optimal scalar gain is approximately αn = 1500/n

0 1 2 3 4 5 6 7 8 9 10 1050

20

40

60

80

100 Watkins, Speedy Q-learning,
Polyak-Ruppert Averaging

Zap

Be
llm

an
 E

rr
or

n

0 1 2 3 4 5 6 7 8 9 10 1050

20

40

60

80

100 Watkins, Speedy Q-learning,
Polyak-Ruppert Averaging

Zap

Be
llm

an
 E

rr
or

n

Zap, γn = αn

0 1 2 3 4 5 6 7 8 9 10 1050

20

40

60

80

100 Watkins, Speedy Q-learning,
Polyak-Ruppert Averaging

Zap

Be
llm

an
 E

rr
or

n

Watkins, g = 1500

Zap, γn = αn

Convergence of Zap-Q Learning

Discount factor: β = 0.99

21 / 35



Zap Q-Learning Watkin’s algorithm

Zap Q-Learning
Example: Stochastic Shortest Path

1
4

65
3 2

Convergence with Zap gain γn = n−0.85

Watkins’ algorithm has infinite asymptotic covariance with αn = 1/n

Optimal scalar gain is approximately αn = 1500/n

0 1 2 3 4 5 6 7 8 9 10 1050

20

40

60

80

100 Watkins, Speedy Q-learning,
Polyak-Ruppert Averaging

Zap

Be
llm

an
 E

rr
or

n0 1 2 3 4 5 6 7 8 9 10 1050

20

40

60

80

100 Watkins, Speedy Q-learning,
Polyak-Ruppert Averaging

Zap

Be
llm

an
 E

rr
or

n

Zap, γn = αn

0 1 2 3 4 5 6 7 8 9 10 1050

20

40

60

80

100 Watkins, Speedy Q-learning,
Polyak-Ruppert Averaging

Zap

Be
llm

an
 E

rr
or

n

Watkins, g = 1500

Zap, γn = αn

Convergence of Zap-Q Learning

Discount factor: β = 0.99

21 / 35



Zap Q-Learning Watkin’s algorithm

Zap Q-Learning
Optimize Walk to Cafe

1
4

65
3 2

Convergence with Zap gain γn = n−0.85

-20 -10 0 10 -20 -10 0 10 -8 -6 -4 -2 0 2 4 6 8 103-8 -6 -4 -2 0 2 4 6 8

n = 104 n = 106

Theoritical pdf Experimental pdf Empirical: 1000 trialsWn =
√

nθ̃n

Entry #18:  n = 104 n = 106Entry #10:  

CLT gives good prediction of finite-n performance

22 / 35



Zap Q-Learning Watkin’s algorithm

Zap Q-Learning
Optimize Walk to Cafe

1
4

65
3 2

Convergence with Zap gain γn = n−0.85

-20 -10 0 10 -20 -10 0 10 -8 -6 -4 -2 0 2 4 6 8 103-8 -6 -4 -2 0 2 4 6 8

n = 104 n = 106

Theoritical pdf Experimental pdf Empirical: 1000 trialsWn =
√

nθ̃n

Entry #18:  n = 104 n = 106Entry #10:  

CLT gives good prediction of finite-n performance

Discount factor: β = 0.99

23 / 35



Zap Q-Learning Optimal stopping

Zap Q-Learning
Model of Tsitsiklis and Van Roy: Optimal Stopping Time in Finance

State space: R100

Parameterized Q-function: Qθ with θ ∈ R10

i
0 1 2 3 4 5 6 7 8 9 10

-100

-10-1

-10-2

-10-3

-10-4

-10-5

-10-6

Real for every eigenvalue λ

Asymptotic covariance is in�nite 

λ > −1

2
Real λi(A)

i
0 1 2 3 4 5 6 7 8 9 10

-100

-10-1

-10-2

-10-3

-10-4

-10-5

-10-6

Real for every eigenvalue λ

Authors observed slow convergence
Proposed a matrix gain sequence  

(see refs for details)

Asymptotic covariance is in�nite 

λ > −1

2
Real λi(A)

{Gn}
i

0 1 2 3 4 5 6 7 8 9 10
-100

-10-1

-10-2

-10-3

-10-4

-10-5

-10-6

-0.525-30 -25 -20 -15 -10 -5
-10

-5

0

5

10

Re (λ(GA))

C
o

(λ
(G

A
))

λi(GA)Real λi(A)

24 / 35



Zap Q-Learning Optimal stopping

Zap Q-Learning
Model of Tsitsiklis and Van Roy: Optimal Stopping Time in Finance

State space: R100

Parameterized Q-function: Qθ with θ ∈ R10

i
0 1 2 3 4 5 6 7 8 9 10

-100

-10-1

-10-2

-10-3

-10-4

-10-5

-10-6

Real for every eigenvalue λ

Asymptotic covariance is in�nite 

λ > −1

2
Real λi(A)

i
0 1 2 3 4 5 6 7 8 9 10

-100

-10-1

-10-2

-10-3

-10-4

-10-5

-10-6

Real for every eigenvalue λ

Authors observed slow convergence
Proposed a matrix gain sequence  

(see refs for details)

Asymptotic covariance is in�nite 

λ > −1

2
Real λi(A)

{Gn}

i
0 1 2 3 4 5 6 7 8 9 10

-100

-10-1

-10-2

-10-3

-10-4

-10-5

-10-6

-0.525-30 -25 -20 -15 -10 -5
-10

-5

0

5

10

Re (λ(GA))

C
o

(λ
(G

A
))

λi(GA)Real λi(A)

24 / 35



Zap Q-Learning Optimal stopping

Zap Q-Learning
Model of Tsitsiklis and Van Roy: Optimal Stopping Time in Finance

State space: R100

Parameterized Q-function: Qθ with θ ∈ R10

i
0 1 2 3 4 5 6 7 8 9 10

-100

-10-1

-10-2

-10-3

-10-4

-10-5

-10-6

Real for every eigenvalue λ

Asymptotic covariance is in�nite 

λ > −1

2
Real λi(A)

i
0 1 2 3 4 5 6 7 8 9 10

-100

-10-1

-10-2

-10-3

-10-4

-10-5

-10-6

Real for every eigenvalue λ

Authors observed slow convergence
Proposed a matrix gain sequence  

(see refs for details)

Asymptotic covariance is in�nite 

λ > −1

2
Real λi(A)

{Gn}

i
0 1 2 3 4 5 6 7 8 9 10

-100

-10-1

-10-2

-10-3

-10-4

-10-5

-10-6

-0.525-30 -25 -20 -15 -10 -5
-10

-5

0

5

10

Re (λ(GA))

C
o

(λ
(G

A
))

λi(GA)Real λi(A)

Eigenvalues of A and GA for the finance example

Favorite choice of gain in [25] barely meets the criterion Re(λ(GA)) < −1
2

24 / 35



Zap Q-Learning Optimal stopping

Zap Q-Learning
Model of Tsitsiklis and Van Roy: Optimal Stopping Time in Finance

State space: R100. Parameterized Q-function: Qθ with θ ∈ R10

Zap-Q

G-Q
-1000 0 1000 2000 3000 -600 -400 -200 0 200 400 600 800

-250 -200 -150 -100 -50 0 50 100 -200 -100 0 100 200 300

Theoritical pdf Experimental pdf Empirical: 1000 trialsWn =
√

nθ̃n

Entry #1:  n = 2 × 106 Entry #7:  n = 2 × 106

25 / 35



Zap Q-Learning Optimal stopping

Zap Q-Learning
Model of Tsitsiklis and Van Roy: Optimal Stopping Time in Finance

State space: R100.
Parameterized Q-function: Qθ with θ ∈ R10

Histograms of the average reward obtained using the different algorithms:

1 1.05 1.1 1.15 1.2 1.25
0

20

40

60

80

100

1 1.05 1.1 1.15 1.2 1.25
0

100

200

300

400

500

600

1 1.05 1.1 1.15 1.2 1.25
0

5

10

15

20

25

30

35 G-Q(0)
G-Q(0)

Zap-Q
Zap-Q ρ = 0.8

ρ = 1.0

(gain doubled)

Zap-Q ρ = 0.85

n = 2 × 104 n = 2 × 105 n = 2 × 106

Zap-Q � G-Q

26 / 35



Conclusions & Future Work

Conclusions & Future Work
Conclusions

Reinforcement Learning is not just cursed by dimension,
but also by variance

We need better design tools to improve performance

The asymptotic covariance is an awesome design tool.
It is also predictive of finite-n performance.

Example: g∗ = 1500 was chosen based on asymptotic covariance

Future work:

Q-learning with function-approximation

Obtain conditions for a stable algorithm in a general setting

Optimal stopping time problems

Adaptive optimization of algorithm parameters

Zapped Momentum Methods [2]

27 / 35



Conclusions & Future Work

Conclusions & Future Work
Conclusions

Reinforcement Learning is not just cursed by dimension,
but also by variance

We need better design tools to improve performance

The asymptotic covariance is an awesome design tool.
It is also predictive of finite-n performance.

Example: g∗ = 1500 was chosen based on asymptotic covariance

Future work:

Q-learning with function-approximation

Obtain conditions for a stable algorithm in a general setting

Optimal stopping time problems

Adaptive optimization of algorithm parameters

Zapped Momentum Methods [2]

27 / 35



Conclusions & Future Work

Conclusions & Future Work
Conclusions

Reinforcement Learning is not just cursed by dimension,
but also by variance

We need better design tools to improve performance

The asymptotic covariance is an awesome design tool.
It is also predictive of finite-n performance.

Example: g∗ = 1500 was chosen based on asymptotic covariance

Future work:

Q-learning with function-approximation

Obtain conditions for a stable algorithm in a general setting

Optimal stopping time problems

Adaptive optimization of algorithm parameters

Zapped Momentum Methods [2]

27 / 35



Conclusions & Future Work

Conclusions & Future Work
Conclusions

Reinforcement Learning is not just cursed by dimension,
but also by variance

We need better design tools to improve performance

The asymptotic covariance is an awesome design tool.
It is also predictive of finite-n performance.

Example: g∗ = 1500 was chosen based on asymptotic covariance

Future work:

Q-learning with function-approximation

Obtain conditions for a stable algorithm in a general setting

Optimal stopping time problems

Adaptive optimization of algorithm parameters

Zapped Momentum Methods [2]

27 / 35



Conclusions & Future Work

Conclusions & Future Work
Opportunities for the controls community

We Are Q!

Apply your favorite model-reduction technique,
or class of policies, or family of value functions,
and create your own RL algorithm

Unshackle conventions of the RL research community.
This lecture is reinforcement learning ≡ on online optimization.
If you have a model, you have many options.

The most exciting applications may be for your favorite model:

d

dt
xt = f(xt, ut) , J∗(x) = min

u

∫ ∞
0

c(xt, ut) dt , x0 = x

Forget about Markov chains and randomized policies!

Follow your heart

Åström, Cassandras, Jovanovic, Jain, Kristic, friends@NREL ... we are Q!

28 / 35



Conclusions & Future Work

Conclusions & Future Work
Opportunities for the controls community

We Are Q!

Apply your favorite model-reduction technique,
or class of policies, or family of value functions,
and create your own RL algorithm

Unshackle conventions of the RL research community.
This lecture is reinforcement learning ≡ on online optimization.
If you have a model, you have many options.

The most exciting applications may be for your favorite model:

d

dt
xt = f(xt, ut) , J∗(x) = min

u

∫ ∞
0

c(xt, ut) dt , x0 = x

Forget about Markov chains and randomized policies!

Follow your heart

Åström, Cassandras, Jovanovic, Jain, Kristic, friends@NREL ... we are Q!

28 / 35



Conclusions & Future Work

Conclusions & Future Work
Opportunities for the controls community

We Are Q!

Apply your favorite model-reduction technique,
or class of policies, or family of value functions,
and create your own RL algorithm

Unshackle conventions of the RL research community.
This lecture is reinforcement learning ≡ on online optimization.
If you have a model, you have many options.

The most exciting applications may be for your favorite model:

d

dt
xt = f(xt, ut) , J∗(x) = min

u

∫ ∞
0

c(xt, ut) dt , x0 = x

Forget about Markov chains and randomized policies!

Follow your heart

Åström, Cassandras, Jovanovic, Jain, Kristic, friends@NREL ... we are Q!

28 / 35



Conclusions & Future Work

Conclusions & Future Work
Opportunities for the controls community

We Are Q!

Apply your favorite model-reduction technique,
or class of policies, or family of value functions,
and create your own RL algorithm

Unshackle conventions of the RL research community.
This lecture is reinforcement learning ≡ on online optimization.

If you have a model, you have many options.

The most exciting applications may be for your favorite model:

d

dt
xt = f(xt, ut) , J∗(x) = min

u

∫ ∞
0

c(xt, ut) dt , x0 = x

Forget about Markov chains and randomized policies!

Follow your heart

Åström, Cassandras, Jovanovic, Jain, Kristic, friends@NREL ... we are Q!

28 / 35



Conclusions & Future Work

Conclusions & Future Work
Opportunities for the controls community

We Are Q!

Apply your favorite model-reduction technique,
or class of policies, or family of value functions,
and create your own RL algorithm

Unshackle conventions of the RL research community.
This lecture is reinforcement learning ≡ on online optimization.
If you have a model, you have many options.

The most exciting applications may be for your favorite model:

d

dt
xt = f(xt, ut) , J∗(x) = min

u

∫ ∞
0

c(xt, ut) dt , x0 = x

Forget about Markov chains and randomized policies!

Follow your heart

Åström, Cassandras, Jovanovic, Jain, Kristic, friends@NREL ... we are Q!

28 / 35



Conclusions & Future Work

Conclusions & Future Work
Opportunities for the controls community

We Are Q!

Apply your favorite model-reduction technique,
or class of policies, or family of value functions,
and create your own RL algorithm

Unshackle conventions of the RL research community.
This lecture is reinforcement learning ≡ on online optimization.
If you have a model, you have many options.

The most exciting applications may be for your favorite model:

d

dt
xt = f(xt, ut) , J∗(x) = min

u

∫ ∞
0

c(xt, ut) dt , x0 = x

Forget about Markov chains and randomized policies!

Follow your heart

Åström, Cassandras, Jovanovic, Jain, Kristic, friends@NREL ... we are Q!

28 / 35



Conclusions & Future Work

Conclusions & Future Work
Opportunities for the controls community

We Are Q!

Apply your favorite model-reduction technique,
or class of policies, or family of value functions,
and create your own RL algorithm

Unshackle conventions of the RL research community.
This lecture is reinforcement learning ≡ on online optimization.
If you have a model, you have many options.

The most exciting applications may be for your favorite model:

d

dt
xt = f(xt, ut) , J∗(x) = min

u

∫ ∞
0

c(xt, ut) dt , x0 = x

Forget about Markov chains and randomized policies!

Follow your heart

Åström, Cassandras, Jovanovic, Jain, Kristic, friends@NREL ... we are Q!

28 / 35



Conclusions & Future Work

Conclusions & Future Work
Opportunities for the controls community

We Are Q!

Apply your favorite model-reduction technique,
or class of policies, or family of value functions,
and create your own RL algorithm

Unshackle conventions of the RL research community.
This lecture is reinforcement learning ≡ on online optimization.
If you have a model, you have many options.

The most exciting applications may be for your favorite model:

d

dt
xt = f(xt, ut) , J∗(x) = min

u

∫ ∞
0

c(xt, ut) dt , x0 = x

Forget about Markov chains and randomized policies!

Follow your heart

Åström, Cassandras, Jovanovic, Jain, Kristic, friends@NREL ... we are Q!

28 / 35



Conclusions & Future Work

Thank you!

thankful

29 / 35



References

Control Techniques
FOR

Complex Networks

Sean Meyn

Pre-publication version for on-line viewing. Monograph available for purchase at your favorite retailer   
More information available at  http://www.cambridge.org/us/catalogue/catalogue.asp?isbn=9780521884419

Markov Chains
and

Stochastic Stability

S. P. Meyn and  R. L. Tweedie

August 2008 Pre-publication version for on-line viewing.   Monograph to appear Februrary 2009 

π
(f

)
<

∞

∆V (x) ≤ −f(x) + bIC(x)

‖Pn(x, · ) − π‖f → 0

su
p

C
E
x [S

τ
C
(f

)]
<

∞

References

30 / 35

http://www.meyn.ece.ufl.edu/archive/spm_files/CTCN/CTCN.html
http://www.meyn.ece.ufl.edu/archive/spm_files/book.html


References

This lecture

A. M. Devraj and S. P. Meyn, Zap
Q-learning. Advances in Neural Information
Processing Systems (NIPS). Dec. 2017.

A. M. Devraj and S. P. Meyn, Fastest
convergence for Q-learning. Available on
ArXiv. Jul. 2017.

Berkeley short course, March 2018

Part I (Basics, with focus on variance of algorithms)
https://www.youtube.com/watch?v=dhEF5pfYmvc

Part II (Zap Q-learning)
https://www.youtube.com/watch?v=Y3w8f1xIb6s

31 / 35

https://www.youtube.com/watch?v=dhEF5pfYmvc
https://www.youtube.com/watch?v=Y3w8f1xIb6s


References

Selected References I

[1] A. M. Devraj and S. P. Meyn. Fastest convergence for Q-learning. ArXiv , July 2017
(extended version of NIPS 2017).

[2] A. M. Devraj, A. Bušić, and S. Meyn. Zap Q Learning – a user’s guide. In Proceedings of
the fifth Indian Control Conference, 9-11 January, 2019 2019.

[3] A. Benveniste, M. Métivier, and P. Priouret. Adaptive algorithms and stochastic
approximations, volume 22 of Applications of Mathematics (New York). Springer-Verlag,
Berlin, 1990. Translated from the French by Stephen S. Wilson.

[4] V. S. Borkar. Stochastic Approximation: A Dynamical Systems Viewpoint. Hindustan
Book Agency and Cambridge University Press, Delhi, India and Cambridge, UK, 2008.

[5] V. S. Borkar and S. P. Meyn. The ODE method for convergence of stochastic
approximation and reinforcement learning. SIAM J. Control Optim., 38(2):447–469, 2000.

[6] S. P. Meyn and R. L. Tweedie. Markov chains and stochastic stability. Cambridge
University Press, Cambridge, second edition, 2009. Published in the Cambridge
Mathematical Library.

[7] S. P. Meyn. Control Techniques for Complex Networks. Cambridge University Press, 2007.
See last chapter on simulation and average-cost TD learning

32 / 35

https://arxiv.org/abs/1707.03770


References

Selected References II

[8] D. Huang, W. Chen, P. Mehta, S. Meyn, and A. Surana. Feature selection for
neuro-dynamic programming. In F. Lewis, editor, Reinforcement Learning and
Approximate Dynamic Programming for Feedback Control. Wiley, 2011.

[9] P. G. Mehta and S. P. Meyn. Q-learning and Pontryagin’s minimum principle. In IEEE
Conference on Decision and Control, pages 3598–3605, Dec. 2009.

[10] D. Ruppert. A Newton-Raphson version of the multivariate Robbins-Monro procedure.
The Annals of Statistics, 13(1):236–245, 1985.

[11] D. Ruppert. Efficient estimators from a slowly convergent Robbins-Monro processes.
Technical Report Tech. Rept. No. 781, Cornell University, School of Operations Research
and Industrial Engineering, Ithaca, NY, 1988.

[12] B. T. Polyak. A new method of stochastic approximation type. Avtomatika i
telemekhanika (in Russian). translated in Automat. Remote Control, 51 (1991), pages
98–107, 1990.

[13] B. T. Polyak and A. B. Juditsky. Acceleration of stochastic approximation by averaging.
SIAM J. Control Optim., 30(4):838–855, 1992.

[14] V. R. Konda and J. N. Tsitsiklis. Convergence rate of linear two-time-scale stochastic
approximation. Ann. Appl. Probab., 14(2):796–819, 2004.

33 / 35



References

Selected References III

[15] E. Moulines and F. R. Bach. Non-asymptotic analysis of stochastic approximation
algorithms for machine learning. In Advances in Neural Information Processing Systems
24, pages 451–459. Curran Associates, Inc., 2011.

[16] C. Szepesvári. Algorithms for Reinforcement Learning. Synthesis Lectures on Artificial
Intelligence and Machine Learning. Morgan & Claypool Publishers, 2010.

[17] C. J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis, King’s College,
Cambridge, Cambridge, UK, 1989.

[18] C. J. C. H. Watkins and P. Dayan. Q-learning. Machine Learning, 8(3-4):279–292, 1992.

[19] R. S. Sutton.Learning to predict by the methods of temporal differences. Mach. Learn.,
3(1):9–44, 1988.

[20] J. N. Tsitsiklis and B. Van Roy. An analysis of temporal-difference learning with function
approximation. IEEE Trans. Automat. Control, 42(5):674–690, 1997.

[21] C. Szepesvári. The asymptotic convergence-rate of Q-learning. In Proceedings of the 10th
Internat. Conf. on Neural Info. Proc. Systems, pages 1064–1070. MIT Press, 1997.

[22] M. G. Azar, R. Munos, M. Ghavamzadeh, and H. Kappen. Speedy Q-learning. In
Advances in Neural Information Processing Systems, 2011.

34 / 35



References

Selected References IV

[23] E. Even-Dar and Y. Mansour. Learning rates for Q-learning. Journal of Machine Learning
Research, 5(Dec):1–25, 2003.

[24] J. N. Tsitsiklis and B. Van Roy. Optimal stopping of Markov processes: Hilbert space
theory, approximation algorithms, and an application to pricing high-dimensional financial
derivatives. IEEE Trans. Automat. Control, 44(10):1840–1851, 1999.

[25] D. Choi and B. Van Roy. A generalized Kalman filter for fixed point approximation and
efficient temporal-difference learning. Discrete Event Dynamic Systems: Theory and
Applications, 16(2):207–239, 2006.

[26] S. J. Bradtke and A. G. Barto. Linear least-squares algorithms for temporal difference
learning. Mach. Learn., 22(1-3):33–57, 1996.

[27] J. A. Boyan. Technical update: Least-squares temporal difference learning. Mach. Learn.,
49(2-3):233–246, 2002.

[28] A. Nedic and D. Bertsekas. Least squares policy evaluation algorithms with linear function
approximation. Discrete Event Dyn. Systems: Theory and Appl., 13(1-2):79–110, 2003.

35 / 35


	Background and Goals
	Stochastic Approximation
	Basic Algorithm
	ODE Method
	SA Example
	Fastest Stochastic Approximation
	Stochastic Newton Raphson

	Reinforcement Learning
	RL & SA
	MDP Theory
	Q-Learning

	Zap Q-Learning
	Watkin's algorithm
	Optimal stopping

	Conclusions & Future Work
	References

