Temporal Logics for Multi-Agent Systems

Tom Henzinger

IST Austria

Joint work with Rajeev Alur, Guy Avni, Krish Chatterjee, Luca de Alfaro, Orna Kupferman, and Nir Piterman.

Shielded Control

Shield can ensure safety and fairness (temporal-logic specification), performance (quantitative spec), and/or incremental regimes.

Multiple Agents
 (e.g. plant, controller, shield; robotics)

A_{1} :
bool $\mathrm{x}:=0$
loop
choice

$$
\begin{aligned}
& \mid x:=0 \\
& \mid x:=x+1 \bmod 2
\end{aligned}
$$

end choice
end loop
$\Phi_{1}: \square(x, y)$
A_{2} :
bool y:=0
loop
choice
| $\mathrm{y}:=\mathrm{x}$
$\mid y:=x+1 \bmod 2$
end choice
end loop
$\Phi_{2}: \square(\mathrm{y}=0)$

State Space as Graph

$$
\begin{array}{ll}
x & 8 \square(x, y) \\
\checkmark & 9 \square(x, y)
\end{array}
$$

State Space as Graph

$$
\begin{array}{ll}
x & 8 \square(x, y) \\
\checkmark & 9 \square(x, y)
\end{array}
$$

$\operatorname{hbA}_{1} \mathrm{ii} \square(\mathrm{x}, \mathrm{y})$

$\mathrm{hh}_{2} \mathrm{ii} \square(\mathrm{y}=0)$

State Space as Game

$$
\begin{array}{ll}
x & 8 \square(x, y) \\
\checkmark & 9 \square(x, y)
\end{array}
$$

$X \quad \operatorname{hh} A_{1} \mathrm{ii} \square(\mathrm{x}, \mathrm{y})$
$\checkmark \operatorname{hhA}_{2} \mathrm{ii} \square(\mathrm{y}=0)$

State Space as Game

If A_{2} keeps $y=0$,
then A_{1} can keep $x, ~ y$.

Reactive Synthesis

Agent Synthesis (a.k.a. discrete-event control)
Given: agent A, specification Φ, and environment E Find: refinement A^{\prime} of A so that $A^{\prime}| | E$ satisfies Φ
Solution: $A^{\prime}=$ winning strategy in game A against E for objective Φ

Reactive Synthesis

Agent Synthesis (a.k.a. discrete-event control)
Given: agent A, specification Φ, and environment E
Find: refinement A^{\prime} of A so that $A^{\prime}| | E$ satisfies Φ
Solution: $A^{\prime}=$ winning strategy in game A against E for objective Φ
Multi-Agent Synthesis (e.g. shielded or distributed control)
Given:
-two agents A_{1} and A_{2}
-specifications Φ_{1} and Φ_{2} for A_{1} and A_{2}
Find:
refinements A_{1}^{\prime} and A_{2}^{\prime} of A_{1} and A_{2} so that
$\mathrm{A}_{1}^{\prime}\left\|\mathrm{A}_{2}^{\prime}\right\| \mathrm{S}$ satisfies $\Phi_{1} Æ E \Phi_{2}$ for every fair scheduler S

Mutual Exclusion

```
while( true ) {
    flag[1] := true; turn := 2;
    choice
    | while( flag[1] ) nop;
    | while( flag[2] ) nop;
    | while( turn=1 ) nop;
    | while( turn=2 ) nop;
    | while( flag[1] & turn=2 ) nop;
    | while( flag[1] & turn=1 ) nop;
    | while( flag[2] & turn=1 ) nop;
    | while( flag[2] & turn=2 ) nop;
    end choice;
```

 CritSec; flag[1] := false;
 nonCritSec;
 \}

```
while( true ) {
    flag[2] := true; turn :=1;
    choice
    | while( flag[1] ) nop;
    | while( flag[2] ) nop;
    | while( turn=1 ) nop;
    | while( turn=2 ) nop;
    | while( flag[1] & turn=2 ) nop;
    | while( flag[1] & turn=1 ) nop;
    | while( flag[2] & turn=1 ) nop;
    | while( flag[2] & turn=2 ) nop;
    end choice;
```

 CritSec; flag[2] := false;
 nonCritSec;
 \}

Multi-Agent Synthesis Formulation 1

Do there exist refinements A_{1}^{\prime} and A_{2}^{\prime} so that
$\left[A_{1}^{\prime}\left\|A_{2}^{\prime}\right\| S\right] \mu\left(\Phi_{1} \nVdash \Phi_{2}\right)$
for every fair scheduler S ?

Solution: game $\mathrm{A}_{1} \| \mathrm{A}_{2}$ against S for objective Φ_{1} Æ Φ_{2}
Too weak
(solution has A_{1} and A_{2} cooperate, e.g. alternate).

Multi-Agent Synthesis Formulation 2

Do there exist refinements A_{1}^{\prime} and A_{2}^{\prime} so that

1. $\left[\mathrm{A}_{1}^{\prime}\left\|\mathrm{A}_{2}\right\| \mathrm{S}\right] \mu \Phi_{1}$
2. $\left[A_{1}\left\|A_{2}^{\prime}\right\| S\right] \mu \Phi_{2}$
for every fair scheduler S ?
Solution: two games A_{1} against $A_{2} \| S$ for objective Φ_{1}, and A_{2} against $A_{1} \| S$ for objective Φ_{2}

Too strong
(answer is NO, e.g. because agent may stay in CritSec).

Multi-Agent Synthesis Formulation 3

Do there exist refinements A_{1}^{\prime} and A_{2}^{\prime} so that

1. $\left.\left[A_{1}^{\prime}\left\|A_{2}\right\| S\right] \mu\left(\Phi_{2}\right) \Phi_{1}\right)$
2. $\left.\left[A_{1}\left\|A_{2}^{\prime}\right\| S\right] \mu\left(\Phi_{1}\right) \Phi_{2}\right)$
3. $\left[A_{1}^{\prime}\left\|A_{2}^{\prime}\right\| S\right] \mu\left(\Phi_{1}\right.$ Æ $\left.\Phi_{2}\right)$
for every fair scheduler S ?

Mutual Exclusion

```
while( true ) {
    flag[1] := true; turn := 2;
    while( flag[2] & turn=1 ) nop;
    CritSec; flag[1] := false;
    nonCritSec;
}
```

while(true) \{
flag[2] := true; turn := 1;
while(flag[1] \& turn=2) nop;
CritSec; flag[2] := false;
nonCritSec;
\}

Solution is exactly Peterson's mutual-exclusion protocol.

Games on Labeled Graphs

nodes $=$ system states
node labels = observations
edges $=$ state transitions
edge labels $=$ transition costs
players = agents

Labeled Graph

1-agent system without uncertainty.

Markov Decision Process

1-agent system with uncertainty.

Labeled Graph

State q 2 Q
Strategy x: Q* ${ }^{\text {! }} \mathrm{D}(\mathrm{Q})$ $x @ q$: probability space on $\mathrm{Q}^{\text {! }}$
\} c (x)@q1 = 0.4
avg (x)@q1 = 0.8

Markov Decision Process

State q 2 Q
Strategy x: Q*! D(Q)
$x @ q$: probability space on $\mathrm{Q}^{!}$
\} c (x)@q1 = 0.4
avg (x)@q1 = 1

Turn-based Game

Asynchronous 2-agent system without uncertainty.

Stochastic Game

Asynchronous 2-agent system with uncertainty.

Turn-based Game

State q 2 Q
Strategies x, y : Q^{*} ! $D(Q)$
Strategies x, y $(x, y) @ q$: probability space on Q !

Stochastic Game

State q 2 Q
Strategies x, y : Q^{*} ! $D(Q)$ $(\mathrm{x}, \mathrm{y}) @ \mathrm{q}:$ probability space on Q !
\} c (x,y)@q1 = 0.4
avg (x, y)@q1=0.92

Concurrent Game

Synchronous 2-agent system without uncertainty.

Concurrent Stochastic Game

Synchronous 2-agent system with uncertainty.

Concurrent Game

Player Left moves: \{1,2\}

State q 2 Q
Strategies x, y : $Q^{*}!~ D(M o v e s)$ $(x, y) @ q$: probability space on Q !

$$
\begin{aligned}
& x(q 1)=2 \\
& y(q 1)=\{1: 0.4 ; 2: 0.6\} \\
& \} c(x, y) @ q 1=0.6
\end{aligned}
$$

Concurrent Stochastic Game

Timed Games, Hybrid Games, etc.

Strategy Logic

1. first-order quantification over sorted strategies
2. linear temporal formulas over observation sequences
3. interpreted over states
$q^{2}(9 x)(8 y) A$ Aff there exists a player-1 strategy x such that for all player-2 strategies y Á (x, y)@q=1

Alternating-Time Temporal Logic

1. path quantifiers over sets of players
2. linear temporal formulas over observation sequences
3. interpreted over states
q^{2} hiTii Á iff if the game starts from state q
the players in set T can ensure that the LTL formula Á holds with probability 1

Alternating-Time Temporal Logic

1. path quantifiers over sets of players
2. linear temporal formulas over observation sequences
3. interpreted over states
q^{2} hiTii Á iff $\quad \begin{aligned} & \text { if the game starts from state } q \\ & \text { the players in set T can ensure that } \\ & \text { the LTL formula Á holds with probability } 1\end{aligned}$
hh;ii Á = 8 Á
hやii Á = 9 Á
[[T]] Á = : hЊUTTii : Á "the players in UlT cannot prevent Á"

ATL* ${ }^{*}$ SL

hitii $A ́=\left(9 x_{1}, \ldots, x_{m} 2\right.$ T) $\left(8 y_{1}, \ldots, y_{n} 2\right.$ i ut $)$ Á

ATL* (SL

Player 1 can ensure A_{1} if player 2 ensures A_{2} :

$$
\left.(9 x)(8 y)\left(\left(\left(8 x^{\prime}\right) \hat{A}_{2}\left(x^{\prime}, y\right)\right)\right) \quad A_{1}(x, y)\right)
$$

ATL* ${ }^{*}$ SL

Player 1 can ensure A_{1} if player 2 ensures A_{2} :

$$
\left.(9 x)(8 y)\left(\left(\left(8 x^{\prime}\right) \dot{A}_{2}\left(x^{\prime}, y\right)\right)\right) \quad \dot{A}_{1}(x, y)\right)
$$

The strategy x dominates all strategies w.r.t. objective Á:

$$
\left.\left(8 x^{\prime}\right)(8 y)\left(A ́\left(x^{\prime}, y\right)\right) \quad A ́(x, y)\right)
$$

ATL* (SL

Player 1 can ensure A_{1} if player 2 ensures A_{2} :

$$
\left.(9 x)(8 y)\left(\left(\left(8 x^{\prime}\right) \hat{A}_{2}\left(x^{\prime}, y\right)\right)\right) \quad \hat{A}_{1}(x, y)\right)
$$

The strategy x dominates all strategies w.r.t. objective Á:

$$
\left.\left(8 x^{\prime}\right)(8 y)\left(A ́\left(x^{\prime}, y\right)\right) \quad A ́(x, y)\right)
$$

The strategy profile (x, y) is a secure Nash equilibrium:

$$
\begin{aligned}
& (9 \mathrm{x})(9 \mathrm{y})\left(\left(\mathrm{A}_{1} \not Æ \mathrm{~A}_{2}\right)(\mathrm{x}, \mathrm{y})\right. \\
& \text { Æ(8 } \left.\left.y^{\prime}\right)\left(A_{2}\right) \quad A_{1}\right)\left(x, y^{\prime}\right) \\
& \left.\left.\nLeftarrow\left(8 x^{\prime}\right)\left(A_{1}\right) \quad A_{2}\right)\left(x^{\prime}, y\right)\right)
\end{aligned}
$$

ATL

ATL is the fragment of ATL* in which every temporal operator is preceded by a path quantifier:

Tii ${ }^{\circ} \mathrm{a}$	single-shot game
hiTii \} b	reachability game
hhiii $\square \mathrm{c}$	safety game

ATL

ATL is the fragment of ATL* in which every temporal operator is preceded by a path quantifier:

hねTii	a	single-shot game
hفTii \}	b	reachability game
hWii	\square c	safety game

Not in ATL:

> hhTii $\square\}$ c hhTii Á

Buchi game
! -regular (parity) game

Pure Winning

Player 1:
\{moveL,moveR\}

Player 2: \{throwL,throwR\}
$X \quad$ hhP2ii $\left.{ }_{\text {pure }}\right\}$ hit hhP2ii \} hit

Player 2 needs randomness to win.

Limit Winning

Player 1: \{Wait,Run\}

Player 2: \{Wait, Throw\}

Player 1 can win with probability arbitrarily close to 1.

Quantitative ATL

$$
\begin{aligned}
\text { hiP1ii }_{A}^{A} & =(9 x)(8 y)(\hat{A}(x, y)=1) \\
\text { hiflii }_{\text {linit }} A & =\left(\sup _{x} \text { inf }_{y} A ́(x, y)\right)=1
\end{aligned}
$$

Quantitative ATL

$$
\begin{aligned}
& \text { hねP1ii } A=(9 x)(8 y)(A ́(x, y)=1) \\
& \text { hเP1ii }{ }_{\text {limit }} A=\left(\sup _{x} \inf _{y} A ́(x, y)\right)=1 \\
& \text { hłP1ii val } A=\sup _{x} \inf _{y} A(x, y)
\end{aligned}
$$

Complexity of Formula Evaluation (a.k.a. model checking)

CTL: linear in formula, linear/NLOGSPACE in graph Pure ATL: linear in formula, linear/PTIME in graph Quantitative ATL: linear in formula, quadratic in graph

CTL*: PSPACE in formula (convert to word automaton)
ATL*: 2EXPTIME in formula (convert to tree automaton)
SL: extra exponential for every quantifier elimination

Summary: Classification of Graph Games

1. Number of players: 1 (graph), 1.5 (MDP), 2 , 2.5, k agents
2. Alternation: turn-based or concurrent
3. Formulas: zero-sum (ATL) or equilibria (SL)
4. Strategies: pure or randomized; how much memory needed
5. Values: qualitative (boolean) or quantitative (real)
6. Objectives: Borel 1 (\square), 2 (\square)), 2.5 (! -regular), 3 (lim avg)

Summary: Classification of Graph Games

1. Number of players: 1 (graph), 1.5 (MDP), 2 , 2.5, k agents
2. Alternation: turn-based or concurrent
3. Formulas: zero-sum (ATL) or equilibria (SL)
4. Strategies: pure or randomized; how much memory needed
5. Values: qualitative (boolean) or quantitative (real)
6. Objectives: Borel 1 (\square), 2 (\square)), 2.5 (! -regular), 3 (lim avg)
7. Full or partial information (can be undecidable!)

Turn-based Games are Pleasant

-optimal strategies always exist [Mclver/Morgan]
-in the non-stochastic case, pure finite-memory optimal strategies exist for ω-regular objectives [Gurevich/Harrington]
-for parity objectives, pure memoryless optimal strategies exist [Emerson/Jutla; Condon], hence NP Å coNP

Concurrent Games are Difficult

-determinacy for randomized but not for pure strategies
-optimal strategies may not exist and ε-close strategies may require infinite memory
-sup inf values may be irrational

Bidding Game

Each player has a budget.
At each node, each player bids part of their budget.
The winning player chooses the transition.
Richman bidding: the winning bid goes to the losing player. Poorman bidding: the winning bid goes to the "bank." Recharging: the budgets are increased by transition weights.

Difficulty: infinitely many possible moves (bids).

Richman Bidding

The sum of the budgets of players 1 and 2 is 1 .
What is the threshold budget for player 1 to win \} b ?

Richman Bidding

The sum of the budgets of players 1 and 2 is 1 .
What is the threshold budget for player 1 to win \} b ?

Richman Bidding

The sum of the budgets of players 1 and 2 is 1 .
What is the threshold budget for player 1 to win \} b ?

Richman Bidding

The sum of the budgets of players 1 and 2 is 1 .
What is the threshold budget for player 1 to win \} b ?

Richman Bidding

The sum of the budgets of players 1 and 2 is 1 .
What is the threshold budget for player 1 to win \} b ?

Some References

Alternating-time temporal logic: JACM 2002
Multi-agent (assume-guarantee) synthesis: TACAS 2007
Concurrent reachability games: TCS 2007
Strategy logic: Information \& Computation 2010
Infinite-duration bidding games: CONCUR 2017

