Temporal Logics for Multi-Agent Systems

Tom Henzinger

IST Austria

Joint work with Rajeev Alur, Guy Avni, Krish Chatterjee, Luca de Alfaro, Orna Kupferman, and Nir Piterman.

Shielded Control

Shield can ensure safety and fairness (temporal-logic specification), performance (quantitative spec), and/or incremental regimes.

Multiple Agents (e.g. plant, controller, shield; robotics)

A₁: **A**₂: bool y := 0bool x := 0loop loop choice choice | x := 0 y := x | y := x+1 mod 2 $x := x+1 \mod 2$ end choice end choice end loop end loop

 $\Phi_1: \Box(x, y)$

 Φ_2 : \Box (y = 0)

State Space as Graph

State Space as Graph

X 8 □ (x , y)
✓ 9 □ (x , y)

 $hhA_1ii \Box (x, y)$ $hhA_2ii \Box (y = 0)$

State Space as Game

Reactive Synthesis

Agent Synthesis (a.k.a. discrete-event control) Given: agent A, specification Φ , and environment E Find: refinement A' of A so that A'||E satisfies Φ Solution: A' = winning strategy in game A against E for objective Φ

Reactive Synthesis

Agent Synthesis (a.k.a. discrete-event control) Given: agent A, specification Φ , and environment E Find: refinement A' of A so that A'||E satisfies Φ Solution: A' = winning strategy in game A against E for objective Φ

Multi-Agent Synthesis (e.g. shielded or distributed control) Given:

-two agents A_1 and A_2

-specifications Φ_1 and Φ_2 for A_1 and A_2

Find:

refinements A'_1 and A'_2 of A_1 and A_2 so that

 $A'_1||A'_2||S$ satisfies $\Phi_1 \not E \Phi_2$ for every fair scheduler S

Mutual Exclusion

```
while(true) {
 flag[1] := true; turn := 2;
 choice
 | while( flag[1] ) nop;
 while(flag[2]) nop;
 while( turn=1 ) nop;
 while(turn=2) nop;
 while( flag[1] & turn=2 ) nop;
 while(flag[1] & turn=1) nop;
 while(flag[2] & turn=1) nop;
 | while( flag[2] & turn=2 ) nop;
 end choice;
```

```
CritSec; flag[1] := false;
nonCritSec;
```

```
while( true ) {
  flag[2] := true; turn :=1;
```

choice | while(flag[1]) nop; | while(flag[2]) nop; | while(turn=1) nop; | while(turn=2) nop; | while(flag[1] & turn=2) nop; | while(flag[1] & turn=1) nop; | while(flag[2] & turn=1) nop; | while(flag[2] & turn=2) nop; end choice;

```
CritSec; flag[2] := false;
nonCritSec;
```

Multi-Agent Synthesis Formulation 1

Do there exist refinements A'_1 and A'_2 so that $[A'_1 || A'_2 || S] \mu (\Phi_1 \mathcal{E} \Phi_2)$ for every fair scheduler S ?

Solution: game $A_1 || A_2$ against S for objective $\Phi_1 \not E \Phi_2$

Too weak (solution has A_1 and A_2 cooperate, e.g. alternate).

Multi-Agent Synthesis Formulation 2

Do there exist refinements A'_1 and A'_2 so that 1. $[A'_1 \parallel A_2 \parallel S] \mu \Phi_1$ 2. $[A_1 \parallel A'_2 \parallel S] \mu \Phi_2$ for every fair scheduler S ?

Solution: two games A_1 against $A_2 ||S$ for objective Φ_1 , and A_2 against $A_1 ||S$ for objective Φ_2

Too strong (answer is NO, e.g. because agent may stay in CritSec).

Multi-Agent Synthesis Formulation 3

Do there exist refinements A'_1 and A'_2 so that 1. $[A'_1 || A_2 || S] \mu (\Phi_2) \Phi_1$ 2. $[A_1 || A'_2 || S] \mu (\Phi_1) \Phi_2$ 3. $[A'_1 || A'_2 || S] \mu (\Phi_1 \not{E} \Phi_2)$ for every fair scheduler S ?

Mutual Exclusion

```
while( true ) {
  flag[1] := true; turn := 2;
```

```
while( flag[2] & turn=1 ) nop;
```

```
CritSec; flag[1] := false;
nonCritSec;
}
```

while(true) {
 flag[2] := true; turn := 1;

while(flag[1] & turn=2) nop;

```
CritSec; flag[2] := false;
nonCritSec;
```

Solution is exactly Peterson's mutual-exclusion protocol.

}

Games on Labeled Graphs

- nodes = system states
- node labels = observations
 - edges = state transitions
- edge labels = transition costs
 - players = agents

Labeled Graph

1-agent system without uncertainty.

Markov Decision Process

1-agent system with uncertainty.

Labeled Graph

State q 2 Q Strategy x: Q^{*} ! D(Q) x@q: probability space on Q[!]

c(x)@q1 = 0.4avg(x)@q1 = 0.8

Markov Decision Process

State q 2 Q Strategy x: Q^{*} ! D(Q) x@q: probability space on Q[!]

} c (x)@q1 = 0.4 avg (x)@q1 = 1

Turn-based Game

Asynchronous 2-agent system without uncertainty.

Stochastic Game

Asynchronous 2-agent system with uncertainty.

Turn-based Game

State q 2 Q Strategies x,y: Q^{*} ! D(Q) (x,y)@q: probability space on Q[!]

} c (x,y)@q1 = 0.4 avg (x,y)@q1 = 0.8

Stochastic Game

State q 2 Q Strategies x,y: Q^{*} ! D(Q) (x,y)@q: probability space on Q[!]

} c (x,y)@q1 = 0.4 avg (x,y)@q1 = 0.92

Concurrent Game

Synchronous 2-agent system without uncertainty.

Concurrent Stochastic Game

Synchronous 2-agent system with uncertainty.

Concurrent Game

State q 2 Q Strategies x,y: Q^{*} ! D(Moves) (x,y)@q: probability space on Q[!] x(q1) = 2y(q1) = {1: 0.4; 2: 0.6} } c (x,y)@q1 = 0.6

Concurrent Stochastic Game

(x,y)@q: probability space on $Q^!$

} c (x,y)@q1 = 0.28

Timed Games, Hybrid Games, etc.

Strategy Logic

first-order quantification over sorted strategies
 linear temporal formulas over observation sequences
 interpreted over states

iff

q ² (9 x) (8 y) Á

there exists a player-1 strategy x such that for all player-2 strategies y $\hat{A}(x,y)@q = 1$

Alternating-Time Temporal Logic

- path quantifiers over sets of players
 linear temporal formulas over observation sequences
 interpreted over states
- q² hhTii Á iff if the game starts from state q the players in set T can ensure that the LTL formula Á holds with probability 1

Alternating-Time Temporal Logic

- 1. path quantifiers over sets of players
- 2. linear temporal formulas over observation sequences
- 3. interpreted over states
- q² hhTii Á iff if the game starts from state q the players in set T can ensure that the LTL formula Á holds with probability 1
- hh;ii Á = 8 Á hhUii Á = 9 Á [[T]] Á = : hhU\Tii : Á

where U is the set of all players "the players in U\T cannot prevent Á"

$ATL^* \mu SL$

hhTii Á = $(9 x_1, ..., x_m 2 \mid T) (8 y_1, ..., y_n 2 \mid U \setminus T)$ Á

ATL^{*} (SL

Player 1 can ensure A_1 if player 2 ensures A_2 :

 $(9 x)(8 y) (((8 x') A_2(x',y))) A_1(x,y))$

ATL^{*} (SL

Player 1 can ensure A_1 if player 2 ensures A_2 :

 $(9 x)(8 y) (((8 x') \acute{A}_2(x',y))) \acute{A}_1(x,y))$

The strategy x dominates all strategies w.r.t. objective Á:

 $(8 x')(8 y) (\dot{A}(x',y)) \dot{A}(x,y))$

ATL^{*} (SL

Player 1 can ensure A_1 if player 2 ensures A_2 :

 $(9 x)(8 y) (((8 x') \acute{A}_2(x',y))) \acute{A}_1(x,y))$

The strategy x dominates all strategies w.r.t. objective Á:

 $(8 x')(8 y) (\dot{A}(x',y)) \dot{A}(x,y))$

The strategy profile (x,y) is a secure Nash equilibrium:

 $\begin{array}{c} (9 \ x)(9 \ y) \ (\ (\acute{A}_{1} \ \mathcal{E}\acute{A}_{2}) \ (x,y) \\ \mathcal{E}(8 \ y') \ (\acute{A}_{2}) \ \acute{A}_{1}) \ (x,y') \\ \mathcal{E}(8 \ x') \ (\acute{A}_{1}) \ \acute{A}_{2}) \ (x',y) \) \end{array}$

ATL

ATL is the fragment of ATL^{*} in which every temporal operator is preceded by a path quantifier:

hhTii °a hhTii }b hhTii □c single-shot game reachability game safety game

ATL

ATL is the fragment of ATL^{*} in which every temporal operator is preceded by a path quantifier:

hhTii °a hhTii }b hhTii □c single-shot game reachability game safety game

Not in ATL:

hhTii □} c hhTii Á Buchi game ! -regular (parity) game

Pure Winning

Player 2: {throwL,throwR}

X hhP2ii pure } hit
 ✓ hhP2ii } hit

Player 2 needs randomness to win.

Limit Winning

 \checkmark

Player 1 can win with probability arbitrarily close to 1.

hhP1ii limit } home

Quantitative ATL

hhP1ii Á = (9 x) (8 y) (A(x,y) = 1)hhP1ii _{limit} Á = $(sup_x inf_y A(x,y)) = 1$

Quantitative ATL

hhP1iiÁ=(9 x) (8 y) (A(x,y) = 1)hhP1iiImitÁ= $(sup_x inf_y A(x,y)) = 1$ hhP1iiValÁ= $sup_x inf_y A(x,y)$

Complexity of Formula Evaluation (a.k.a. model checking)

CTL: linear in formula, linear/NLOGSPACE in graph Pure ATL: linear in formula, linear/PTIME in graph Quantitative ATL: linear in formula, quadratic in graph

CTL^{*}: PSPACE in formula (convert to word automaton) ATL^{*}: 2EXPTIME in formula (convert to tree automaton)

SL: extra exponential for every quantifier elimination

Summary: Classification of Graph Games

- 1. Number of players: 1 (graph), 1.5 (MDP), 2, 2.5, k agents
- 2. Alternation: turn-based or concurrent
- 3. Formulas: zero-sum (ATL) or equilibria (SL)
- 4. Strategies: pure or randomized; how much memory needed
- 5. Values: qualitative (boolean) or quantitative (real)
- 6. Objectives: Borel 1 (□), 2 (□}), 2.5 (! -regular), 3 (lim avg)

Summary: Classification of Graph Games

- 1. Number of players: 1 (graph), 1.5 (MDP), 2, 2.5, k agents
- 2. Alternation: turn-based or concurrent
- 3. Formulas: zero-sum (ATL) or equilibria (SL)
- 4. Strategies: pure or randomized; how much memory needed
- 5. Values: qualitative (boolean) or quantitative (real)
- 6. Objectives: Borel 1 (□), 2 (□}), 2.5 (! -regular), 3 (lim avg)
- 7. Full or partial information (can be undecidable!)

Turn-based Games are Pleasant

-optimal strategies always exist [Mclver/Morgan]

-in the non-stochastic case, pure finite-memory optimal strategies exist for ω -regular objectives [Gurevich/Harrington]

-for parity objectives, pure memoryless optimal strategies exist [Emerson/Jutla; Condon], hence NP Å coNP

Concurrent Games are Difficult

-determinacy for randomized but not for pure strategies

- -optimal strategies may not exist and ϵ -close strategies may require infinite memory
- -sup inf values may be irrational

Bidding Game

Each player has a budget. At each node, each player bids part of their budget. The winning player chooses the transition.

Richman bidding: the winning bid goes to the losing player. Poorman bidding: the winning bid goes to the "bank." Recharging: the budgets are increased by transition weights.

Difficulty: infinitely many possible moves (bids).

The sum of the budgets of players 1 and 2 is 1.

The sum of the budgets of players 1 and 2 is 1.

The sum of the budgets of players 1 and 2 is 1.

The sum of the budgets of players 1 and 2 is 1.

The sum of the budgets of players 1 and 2 is 1.

Some References

Alternating-time temporal logic: JACM 2002

Multi-agent (assume-guarantee) synthesis: TACAS 2007

Concurrent reachability games: TCS 2007

Strategy logic: Information & Computation 2010

Infinite-duration bidding games: CONCUR 2017