
Temporal Logics for Multi-Agent Systems

Tom Henzinger

IST Austria

Joint work with Rajeev Alur, Guy Avni, Krish Chatterjee,
Luca de Alfaro, Orna Kupferman, and Nir Piterman.

Shielded Control

Plant

Black-box Controller
(e.g. data-driven, learned)

Shield
(discrete-

event)

Shield can ensure safety and fairness (temporal-logic specification),
performance (quantitative spec), and/or incremental regimes.

A1:

bool x := 0

loop

choice
| x := 0
| x := x+1 mod 2

end choice

end loop

Φ1:  (x ¸ y)

A2:

bool y := 0

loop

choice
| y := x
| y := x+1 mod 2

end choice

end loop

Φ2:  (y = 0)

Multiple Agents
(e.g. plant, controller, shield; robotics)

State Space as Graph

8  (x ¸ y)

9  (x ¸ y)
00

10 11

01


X

State Space as Graph

8  (x ¸ y)

9  (x ¸ y)
00

10 11

01


X

hhA1i i  (x ¸ y)

hhA2i i  (y = 0)

00

00 00

10

10 10

01

01 01

11

1111

8  (x ¸ y)

9  (x ¸ y)

X



X

State Space as Game

hhA1i i  (x ¸ y)

hhA2i i  (y = 0)

00

00 00

10

10 10

01

01 01

11

1111



State Space as Game

If A2 keeps y = 0,
then A1 can keep x ¸ y.

Reactive Synthesis

Agent Synthesis (a.k.a. discrete-event control)
Given: agent A, specification Φ, and environment E
Find: refinement A’ of A so that A’||E satisfies Φ
Solution: A’ = winning strategy in game A against E for objective Φ

Reactive Synthesis

Agent Synthesis (a.k.a. discrete-event control)
Given: agent A, specification Φ, and environment E
Find: refinement A’ of A so that A’||E satisfies Φ
Solution: A’ = winning strategy in game A against E for objective Φ

Multi-Agent Synthesis (e.g. shielded or distributed control)
Given:

-two agents A1 and A2
-specifications Φ1 and Φ2 for A1 and A2

Find:
refinements A’1 and A’2 of A1 and A2 so that
A’1||A’2||S satisfies Φ1 ÆΦ2 for every fair scheduler S

Mutual Exclusion

while(true) {
flag[1] := true; turn := 2;

choice
| while(flag[1]) nop;
| while(flag[2]) nop;
| while(turn=1) nop;
| while(turn=2) nop;
| while(flag[1] & turn=2) nop;
| while(flag[1] & turn=1) nop;
| while(flag[2] & turn=1) nop;
| while(flag[2] & turn=2) nop;
end choice;

CritSec; flag[1] := false;
nonCritSec;

}

while(true) {
flag[2] := true; turn :=1;

choice
| while(flag[1]) nop;
| while(flag[2]) nop;
| while(turn=1) nop;
| while(turn=2) nop;
| while(flag[1] & turn=2) nop;
| while(flag[1] & turn=1) nop;
| while(flag[2] & turn=1) nop;
| while(flag[2] & turn=2) nop;
end choice;

CritSec; flag[2] := false;
nonCritSec;

}

Multi-Agent Synthesis Formulation 1

Do there exist refinements A’1 and A’2 so that
[A’1 || A’2 || S] µ (Φ1 ÆΦ2)

for every fair scheduler S ?

Solution: game A1||A2 against S for objective Φ1 ÆΦ2

Too weak
(solution has A1 and A2 cooperate, e.g. alternate).

Do there exist refinements A’1 and A’2 so that
1. [A’1 || A2 || S] µ Φ1
2. [A1 || A’2 || S] µ Φ2

for every fair scheduler S ?

Solution: two games A1 against A2||S for objective Φ1,
and A2 against A1||S for objective Φ2

Too strong
(answer is NO, e.g. because agent may stay in CritSec).

Multi-Agent Synthesis Formulation 2

Do there exist refinements A’1 and A’2 so that
1. [A’1 || A2 || S] µ (Φ2) Φ1)
2. [A1 || A’2 || S] µ (Φ1) Φ2)
3. [A’1 || A’2 || S] µ (Φ1 ÆΦ2)

for every fair scheduler S ?

Multi-Agent Synthesis Formulation 3

while(true) {
flag[1] := true; turn := 2;

while(flag[2] & turn=1) nop;

CritSec; flag[1] := false;
nonCritSec;

}

while(true) {
flag[2] := true; turn := 1;

while(flag[1] & turn=2) nop;

CritSec; flag[2] := false;
nonCritSec;

}

Solution is exactly Peterson’s mutual-exclusion protocol.

Mutual Exclusion

Games on Labeled Graphs

nodes

node labels

edges

edge labels

players

system states

observations

state transitions

transition costs

agents

=

=

=

=

=

1-agent system without uncertainty.

q1

q2 q3

a

b a

Labeled Graph

13

ac

0 1
q5q4

a

1-agent system with uncertainty.

0.4 0.6

q1

q3q2

q5q4

a

b

ac

Markov Decision Process

13

q1

q2 q3

a

b a

Labeled Graph

13

ac

0 1
q5q4

State q 2 Q
Strategy x: Q* ! D(Q)
x@q: probability space on Q!

x(q1) = q3
x(q1,q3) = {q4: 0.4; q5: 0.6}

} c (x)@q1 = 0.4
avg (x)@q1 = 0.8

a
0.4 0.6

q1

q3q2

q5q4

a

b

ac

Markov Decision Process

State q 2 Q
Strategy x: Q* ! D(Q)
x@q: probability space on Q!

x(q1) = q3

} c (x)@q1 = 0.4
avg (x)@q1 = 1

13

Asynchronous 2-agent system without uncertainty.

a

q1

q3q2

q5q4

a

b

ac

Turn-based Game

13

0 1

Asynchronous 2-agent system with uncertainty.

a
0.4 0.6

q1

q3q2

q5

q4

a

b

ac

q7q6
cb

Stochastic Game

13

0 1

a

q1

q3q2

q5q4

a

b

ac

Turn-based Game

State q 2 Q
Strategies x,y: Q* ! D(Q)
(x,y)@q: probability space on Q!

x(q1) = q3
y(q1,q3) = {q4: 0.4; q5: 0.6}

} c (x,y)@q1 = 0.4
avg (x,y)@q1 = 0.8

13

0 1

a
0.4 0.6

q1

q3q2

q5

q4

a

b

ac

q7q6
cb

Stochastic Game

State q 2 Q
Strategies x,y: Q* ! D(Q)
(x,y)@q: probability space on Q!

x(q1) = q3
y(q1,q3,q4) = {q6: 0.4; q7: 0.6}

} c (x,y)@q1 = 0.4
avg (x,y)@q1 = 0.92

13

0 1

a

ca

q1

bb
q2 q4 q5q3

1,1
1,2 2,1

2,2

Concurrent Game

Player Left moves:
{1,2}

Player Right moves:
{1,2}

Synchronous 2-agent system without uncertainty.

a

ca

q1

bb
q2 q4 q5q3

q2: 0.3
q3: 0.2
q4: 0.5
q5:

q2: 0.1
q3: 0.1
q4: 0.5
q5: 0.3

q2:
q3: 0.2
q4: 0.1
q5: 0.7

q2: 1.0
q3:
q4:
q5:

1 2

2

1
Matrix game
at each node.

q1:

Synchronous 2-agent system with uncertainty.

Concurrent Stochastic Game

Player Row moves:
{1,2}

Player Column moves:
{1,2}

a

ca

q1

bb
q2 q4 q5q3

1,1
1,2 2,1

2,2

Concurrent Game

Player Left moves:
{1,2}

Player Right moves:
{1,2}

State q 2 Q
Strategies x,y: Q* ! D(Moves)
(x,y)@q: probability space on Q!

x(q1) = 2
y(q1) = {1: 0.4; 2: 0.6}

} c (x,y)@q1 = 0.6

a

ca

q1

bb
q2 q4 q5q3

q2: 0.3
q3: 0.2
q4: 0.5
q5:

q2: 0.1
q3: 0.1
q4: 0.5
q5: 0.3

q2:
q3: 0.2
q4: 0.1
q5: 0.7

q2: 1.0
q3:
q4:
q5:

1 2

2

1

q1:

Concurrent Stochastic Game

Player Row moves:
{1,2}

Player Column moves:
{1,2}

State q 2 Q
Strategies x,y: Q* ! D(Moves)
(x,y)@q: probability space on Q!

x(q1) = 2
y(q1) = {1: 0.4; 2: 0.6}

} c (x,y)@q1 = 0.28

Timed Games, Hybrid Games, etc.

Strategy Logic

1. first-order quantification over sorted strategies
2. linear temporal formulas over observation sequences
3. interpreted over states

q ² (9 x) (8 y) Á iff there exists a player-1 strategy x
such that for all player-2 strategies y
Á (x,y)@q = 1

Alternating-Time Temporal Logic

1. path quantifiers over sets of players
2. linear temporal formulas over observation sequences
3. interpreted over states

q ² hhTii Á iff if the game starts from state q
the players in set T can ensure that
the LTL formula Á holds with probability 1

Alternating-Time Temporal Logic

1. path quantifiers over sets of players
2. linear temporal formulas over observation sequences
3. interpreted over states

q ² hhTii Á iff if the game starts from state q
the players in set T can ensure that
the LTL formula Á holds with probability 1

hh;ii Á = 8 Á
hhUii Á = 9 Á where U is the set of all players
[[T]] Á = : hhU\Tii : Á “the players in U\T cannot prevent Á”

ATL* µ SL

hhTii Á = (9 x1,…,xm 2 ¦ T) (8 y1,…,yn 2 ¦ U\T) Á

ATL* (SL

Player 1 can ensure Á1 if player 2 ensures Á2:

(9 x)(8 y) (((8 x’) Á2(x’,y))) Á1(x,y))

ATL* (SL

Player 1 can ensure Á1 if player 2 ensures Á2:

(9 x)(8 y) (((8 x’) Á2(x’,y))) Á1(x,y))

The strategy x dominates all strategies w.r.t. objective Á:

(8 x’)(8 y) (Á(x’,y)) Á(x,y))

ATL* (SL

Player 1 can ensure Á1 if player 2 ensures Á2:

(9 x)(8 y) (((8 x’) Á2(x’,y))) Á1(x,y))

The strategy x dominates all strategies w.r.t. objective Á:

(8 x’)(8 y) (Á(x’,y)) Á(x,y))

The strategy profile (x,y) is a secure Nash equilibrium:

(9 x)(9 y) ((Á 1 ÆÁ 2) (x,y)
Æ(8 y’) (Á 2) Á 1) (x,y’)
Æ(8 x’) (Á 1) Á 2) (x’,y))

ATL

ATL is the fragment of ATL* in which every temporal operator is
preceded by a path quantifier:

hhTii ° a single-shot game
hhTii } b reachability game
hhTii � c safety game

ATL

ATL is the fragment of ATL* in which every temporal operator is
preceded by a path quantifier:

hhTii ° a single-shot game
hhTii } b reachability game
hhTii � c safety game

Not in ATL:

hhTi i �} c Buchi game
hhTi i Á ! -regular (parity) game

Pure Winning

miss hit

L,R
R,L

L,L
R,R

hhP2ii pure } hit
hhP2ii } hit

X

Player 1:
{moveL,moveR}

Player 2:
{throwL,throwR}

Player 2 needs randomness to win.

Limit Winning

wait

hit
W,W

R,T

hhP1ii } home
hhP1ii limit } home

homeR,W
W,T

Player 1:
{Wait,Run}

Player 2:
{Wait,Throw}

Player 1 can win with probability arbitrarily close to 1.


X

Quantitative ATL

hhP1ii Á = (9 x) (8 y) (Á(x,y) = 1)

hhP1ii limit Á = (supx infy Á(x,y)) = 1

Quantitative ATL

hhP1ii Á = (9 x) (8 y) (Á(x,y) = 1)

hhP1ii limit Á = (supx infy Á(x,y)) = 1

hhP1ii val Á = supx infy Á(x,y)

Complexity of Formula Evaluation
(a.k.a. model checking)

CTL: linear in formula, linear/NLOGSPACE in graph
Pure ATL: linear in formula, linear/PTIME in graph
Quantitative ATL: linear in formula, quadratic in graph

CTL*: PSPACE in formula (convert to word automaton)
ATL*: 2EXPTIME in formula (convert to tree automaton)

SL: extra exponential for every quantifier elimination

1. Number of players: 1 (graph), 1.5 (MDP), 2 , 2.5, k agents

2. Alternation: turn-based or concurrent

3. Formulas: zero-sum (ATL) or equilibria (SL)

4. Strategies: pure or randomized; how much memory needed

5. Values: qualitative (boolean) or quantitative (real)

6. Objectives: Borel 1 (�), 2 (�}), 2.5 (! -regular), 3 (lim avg)

Summary: Classification of Graph Games

1. Number of players: 1 (graph), 1.5 (MDP), 2 , 2.5, k agents

2. Alternation: turn-based or concurrent

3. Formulas: zero-sum (ATL) or equilibria (SL)

4. Strategies: pure or randomized; how much memory needed

5. Values: qualitative (boolean) or quantitative (real)

6. Objectives: Borel 1 (�), 2 (�}), 2.5 (! -regular), 3 (lim avg)

7. Full or partial information (can be undecidable!)

Summary: Classification of Graph Games

-optimal strategies always exist [McIver/Morgan]

-in the non-stochastic case, pure finite-memory optimal strategies
exist for ω-regular objectives [Gurevich/Harrington]

-for parity objectives, pure memoryless optimal strategies exist
[Emerson/Jutla; Condon], hence NP Å coNP

Turn-based Games are Pleasant

-determinacy for randomized but not for pure strategies

-optimal strategies may not exist and ε-close strategies may
require infinite memory

-sup inf values may be irrational

Concurrent Games are Difficult

Bidding Game

Each player has a budget.
At each node, each player bids part of their budget.
The winning player chooses the transition.

Richman bidding: the winning bid goes to the losing player.
Poorman bidding: the winning bid goes to the “bank.”
Recharging: the budgets are increased by transition weights.

Difficulty: infinitely many possible moves (bids).

Richman Bidding

a a a b

The sum of the budgets of players 1 and 2 is 1.

What is the threshold budget for player 1 to win } b ?

q1 q3 q4q2

Richman Bidding

a a a b

The sum of the budgets of players 1 and 2 is 1.

What is the threshold budget for player 1 to win } b ?

q1 q3 q4q2

0X

Richman Bidding

a a a b

The sum of the budgets of players 1 and 2 is 1.

What is the threshold budget for player 1 to win } b ?

q1 q3 q4q2

0X 0.5+²

Richman Bidding

a a a b

The sum of the budgets of players 1 and 2 is 1.

What is the threshold budget for player 1 to win } b ?

q1 q3 q4q2

0X 0.5+²0.75+²

Richman Bidding

a a a b

The sum of the budgets of players 1 and 2 is 1.

What is the threshold budget for player 1 to win } b ?

q1 q3 q4q2

0X 1/3+²2/3+²

Some References

Alternating-time temporal logic: JACM 2002

Multi-agent (assume-guarantee) synthesis: TACAS 2007

Concurrent reachability games: TCS 2007

Strategy logic: Information & Computation 2010

Infinite-duration bidding games: CONCUR 2017

	Foliennummer 1
	Foliennummer 2
	Foliennummer 3
	Foliennummer 4
	Foliennummer 5
	Foliennummer 6
	Foliennummer 7
	Reactive Synthesis
	Reactive Synthesis
	Mutual Exclusion
	Multi-Agent Synthesis Formulation 1
	Multi-Agent Synthesis Formulation 2
	Multi-Agent Synthesis Formulation 3
	Mutual Exclusion
	Foliennummer 15
	Foliennummer 16
	Foliennummer 17
	Foliennummer 18
	Foliennummer 19
	Foliennummer 20
	Foliennummer 21
	Foliennummer 22
	Foliennummer 23
	Foliennummer 24
	Foliennummer 25
	Foliennummer 26
	Foliennummer 27
	Foliennummer 28
	Foliennummer 29
	Foliennummer 30
	Foliennummer 31
	Foliennummer 32
	Foliennummer 33
	Foliennummer 34
	Foliennummer 35
	Foliennummer 36
	Foliennummer 37
	Foliennummer 38
	Foliennummer 39
	Foliennummer 40
	Foliennummer 41
	Foliennummer 42
	Foliennummer 43
	Foliennummer 44
	Foliennummer 45
	Foliennummer 46
	Foliennummer 47
	Foliennummer 48
	Foliennummer 49
	Foliennummer 50
	Foliennummer 51
	Foliennummer 52

