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Shielded Control

Plant

Black-box Controller           
(e.g. data-driven, learned)

Shield   
(discrete-

event)

Shield can ensure safety and fairness (temporal-logic specification), 
performance (quantitative spec), and/or incremental regimes.



A1:

bool x := 0

loop

choice                         
| x := 0                        
| x := x+1 mod 2

end choice

end loop

Φ1:  ( x ¸ y )

A2:

bool y := 0

loop

choice                         
|  y := x      
|  y := x+1 mod 2

end choice

end loop

Φ2:  (y = 0)

Multiple Agents                                                                       
(e.g. plant, controller, shield; robotics)



State Space as Graph

8  (x ¸ y)

9  (x ¸ y)
00

10 11

01


X



State Space as Graph

8  (x ¸ y)

9  (x ¸ y)
00

10 11

01


X

hhA1i i  (x ¸ y)

hhA2i i  (y = 0)



00

00 00

10

10 10

01

01 01

11

1111

8  (x ¸ y)

9  (x ¸ y)

X



X

State Space as Game

hhA1i i  (x ¸ y)

hhA2i i  (y = 0)
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State Space as Game

If A2 keeps y = 0,      
then A1 can keep x ¸ y. 



Reactive Synthesis

Agent Synthesis (a.k.a. discrete-event control)
Given: agent A, specification Φ, and environment E
Find:  refinement A’ of A so that A’||E satisfies Φ
Solution:  A’ = winning strategy in game A against E for objective Φ



Reactive Synthesis

Agent Synthesis (a.k.a. discrete-event control)
Given: agent A, specification Φ, and environment E
Find:  refinement A’ of A so that A’||E satisfies Φ
Solution:  A’ = winning strategy in game A against E for objective Φ

Multi-Agent Synthesis (e.g. shielded or distributed control)
Given:

-two agents A1 and A2
-specifications Φ1 and Φ2 for A1 and A2

Find:
refinements A’1 and A’2 of A1 and A2 so that                                 
A’1||A’2||S satisfies Φ1 ÆΦ2 for every fair scheduler S



Mutual Exclusion

while( true ) {
flag[1] := true; turn := 2;

choice
| while( flag[1] ) nop;
| while( flag[2] ) nop;
| while( turn=1 ) nop;
| while( turn=2 ) nop;
| while( flag[1] & turn=2 ) nop;
| while( flag[1] & turn=1 ) nop;
| while( flag[2] & turn=1 ) nop;
| while( flag[2] & turn=2 ) nop;
end choice; 

CritSec; flag[1] := false; 
nonCritSec;

}

while( true ) {
flag[2] := true; turn :=1;

choice
| while( flag[1] ) nop;
| while( flag[2] ) nop;
| while( turn=1 ) nop;
| while( turn=2 ) nop;
| while( flag[1] & turn=2 ) nop;
| while( flag[1] & turn=1 ) nop;
| while( flag[2] & turn=1 ) nop;
| while( flag[2] & turn=2 ) nop;
end choice;

CritSec; flag[2] := false; 
nonCritSec;

}



Multi-Agent Synthesis Formulation 1

Do there exist refinements A’1 and A’2 so that  
[A’1 || A’2 || S] µ (Φ1 ÆΦ2) 

for every fair scheduler S ?

Solution: game A1||A2 against S for objective Φ1 ÆΦ2

Too weak 
(solution has A1 and A2 cooperate, e.g. alternate).



Do there exist refinements A’1 and A’2 so that
1. [A’1 || A2 || S] µ Φ1
2. [A1 || A’2 || S] µ Φ2

for every fair scheduler S ? 

Solution: two games A1 against A2||S for objective Φ1, 
and A2 against A1||S for objective Φ2

Too strong                                                                          
(answer is NO, e.g. because agent may stay in CritSec).

Multi-Agent Synthesis Formulation 2



Do there exist refinements A’1 and A’2 so that
1.  [A’1 || A2 || S] µ (Φ2 ) Φ1)
2.  [A1 || A’2 || S] µ (Φ1 ) Φ2)
3.  [A’1 || A’2 || S] µ (Φ1 ÆΦ2) 

for every fair scheduler S ?

Multi-Agent Synthesis Formulation 3



while( true ) {
flag[1] := true; turn := 2;

while( flag[2] & turn=1 ) nop;

CritSec; flag[1] := false; 
nonCritSec;

}

while( true ) {
flag[2] := true; turn := 1;

while( flag[1] & turn=2 ) nop;

CritSec; flag[2] := false; 
nonCritSec;

} 

Solution is exactly Peterson’s mutual-exclusion protocol.

Mutual Exclusion



Games on Labeled Graphs

nodes

node labels

edges

edge labels

players

system states 

observations 

state transitions

transition costs

agents
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1-agent system without uncertainty.
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1-agent system with uncertainty.
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State q 2 Q
Strategy x: Q* ! D(Q)
x@q: probability space on Q!

x(q1) = q3
x(q1,q3) = {q4: 0.4; q5: 0.6}

} c (x)@q1 = 0.4          
avg (x)@q1 = 0.8
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Markov Decision Process

State q 2 Q
Strategy x: Q* ! D(Q)
x@q: probability space on Q!

x(q1) = q3

} c (x)@q1 = 0.4               
avg (x)@q1 = 1

13



Asynchronous 2-agent system without uncertainty.
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Asynchronous 2-agent system with uncertainty.
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Turn-based Game

State q 2 Q
Strategies x,y: Q* ! D(Q)
(x,y)@q: probability space on Q!

x(q1) = q3
y(q1,q3) = {q4: 0.4; q5: 0.6}

} c (x,y)@q1 = 0.4          
avg (x,y)@q1 = 0.8
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Stochastic Game

State q 2 Q
Strategies x,y: Q* ! D(Q)
(x,y)@q: probability space on Q!

x(q1) = q3
y(q1,q3,q4) = {q6: 0.4; q7: 0.6}

} c (x,y)@q1 = 0.4          
avg (x,y)@q1 = 0.92

13
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Concurrent Game

Player Left moves: 
{1,2}

Player Right moves: 
{1,2}

Synchronous 2-agent system without uncertainty.
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q2: 0.3
q3: 0.2
q4: 0.5
q5: 

q2: 0.1
q3: 0.1
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1
Matrix game 
at each node.

q1:

Synchronous 2-agent system with uncertainty.

Concurrent Stochastic Game

Player Row moves: 
{1,2}

Player Column moves: 
{1,2}
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Concurrent Game

Player Left moves: 
{1,2}

Player Right moves: 
{1,2}

State q 2 Q
Strategies x,y: Q* ! D(Moves)
(x,y)@q: probability space on Q!

x(q1) = 2
y(q1) = {1: 0.4; 2: 0.6}

} c (x,y)@q1 = 0.6               
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q1:

Concurrent Stochastic Game

Player Row moves: 
{1,2}

Player Column moves: 
{1,2}

State q 2 Q
Strategies x,y: Q* ! D(Moves)
(x,y)@q: probability space on Q!

x(q1) = 2
y(q1) = {1: 0.4; 2: 0.6}

} c (x,y)@q1 = 0.28               



Timed Games, Hybrid Games, etc.



Strategy Logic

1. first-order quantification over sorted strategies 
2. linear temporal formulas over observation sequences
3. interpreted over states 

q ² (9 x) (8 y) Á iff there exists a player-1 strategy x
such that for all player-2 strategies y
Á (x,y)@q = 1



Alternating-Time Temporal Logic

1. path quantifiers over sets of players
2. linear temporal formulas over observation sequences
3. interpreted over states 

q ² hhTii Á iff if the game starts from state q
the players in set T can ensure that 
the LTL formula Á holds with probability 1



Alternating-Time Temporal Logic

1. path quantifiers over sets of players
2. linear temporal formulas over observation sequences
3. interpreted over states 

q ² hhTii Á iff if the game starts from state q
the players in set T can ensure that 
the LTL formula Á holds with probability 1

hh;ii Á = 8 Á
hhUii Á = 9 Á where U is the set of all players          
[[T]] Á = : hhU\Tii : Á “the players in U\T cannot prevent Á”



ATL* µ SL

hhTii Á = (9 x1,…,xm 2 ¦ T) (8 y1,…,yn 2 ¦ U\T) Á



ATL* ( SL

Player 1 can ensure Á1 if player 2 ensures Á2:

(9 x)(8 y) ( ((8 x’) Á2(x’,y)) ) Á1(x,y) )



ATL* ( SL

Player 1 can ensure Á1 if player 2 ensures Á2:

(9 x)(8 y) ( ((8 x’) Á2(x’,y)) ) Á1(x,y) )

The strategy x dominates all strategies w.r.t. objective Á:

(8 x’)(8 y) ( Á(x’,y) ) Á(x,y) )



ATL* ( SL

Player 1 can ensure Á1 if player 2 ensures Á2:

(9 x)(8 y) ( ((8 x’) Á2(x’,y)) ) Á1(x,y) )

The strategy x dominates all strategies w.r.t. objective Á:

(8 x’)(8 y) ( Á(x’,y) ) Á(x,y) )

The strategy profile (x,y) is a secure Nash equilibrium:

(9 x)(9 y) ( (Á 1 ÆÁ 2) (x,y) 
Æ(8 y’) (Á 2 ) Á 1) (x,y’)
Æ(8 x’) (Á 1 ) Á 2) (x’,y) )



ATL

ATL is the fragment of ATL* in which every temporal operator is 
preceded by a path quantifier: 

hhTii ° a single-shot game
hhTii } b reachability game
hhTii � c safety game



ATL

ATL is the fragment of ATL* in which every temporal operator is 
preceded by a path quantifier: 

hhTii ° a single-shot game
hhTii } b reachability game
hhTii � c safety game

Not in ATL:

hhTi i �} c Buchi game
hhTi i Á ! -regular (parity) game



Pure Winning

miss hit

L,R
R,L

L,L
R,R

hhP2ii pure } hit
hhP2ii } hit

X

Player 1: 
{moveL,moveR}

Player 2: 
{throwL,throwR}

Player 2 needs randomness to win.



Limit Winning

wait

hit
W,W

R,T

hhP1ii } home
hhP1ii limit } home

homeR,W
W,T

Player 1: 
{Wait,Run}

Player 2: 
{Wait,Throw}

Player 1 can win with probability arbitrarily close to 1.


X



Quantitative ATL

hhP1ii Á =  (9 x) (8 y) ( Á(x,y) = 1 )

hhP1ii limit Á = ( supx infy Á(x,y) ) = 1



Quantitative ATL

hhP1ii Á =  (9 x) (8 y) ( Á(x,y) = 1 )

hhP1ii limit Á = ( supx infy Á(x,y) ) = 1

hhP1ii val Á = supx infy Á(x,y) 



Complexity of Formula Evaluation                            
(a.k.a. model checking)

CTL: linear in formula, linear/NLOGSPACE in graph
Pure ATL: linear in formula, linear/PTIME in graph
Quantitative ATL: linear in formula, quadratic in graph

CTL*: PSPACE in formula (convert to word automaton)      
ATL*: 2EXPTIME in formula (convert to tree automaton)

SL: extra exponential for every quantifier elimination



1. Number of players: 1 (graph), 1.5 (MDP), 2 , 2.5, k agents

2. Alternation: turn-based or concurrent

3. Formulas: zero-sum (ATL) or equilibria (SL)

4. Strategies: pure or randomized; how much memory needed

5. Values: qualitative (boolean) or quantitative (real)

6. Objectives: Borel 1 (�), 2 (�} ), 2.5 (! -regular), 3 (lim avg)

Summary: Classification of Graph Games



1. Number of players: 1 (graph), 1.5 (MDP), 2 , 2.5, k agents

2. Alternation: turn-based or concurrent

3. Formulas: zero-sum (ATL) or equilibria (SL)

4. Strategies: pure or randomized; how much memory needed

5. Values: qualitative (boolean) or quantitative (real)

6. Objectives: Borel 1 (�), 2 (�} ), 2.5 (! -regular), 3 (lim avg)

7. Full or partial information (can be undecidable!)  

Summary: Classification of Graph Games



-optimal strategies always exist [McIver/Morgan]

-in the non-stochastic case, pure finite-memory optimal strategies 
exist for ω-regular objectives [Gurevich/Harrington]

-for parity objectives, pure memoryless optimal strategies exist 
[Emerson/Jutla; Condon], hence NP Å coNP

Turn-based Games are Pleasant

-determinacy for randomized but not for pure strategies

-optimal strategies may not exist and ε-close strategies may 
require infinite memory

-sup inf values may be irrational

Concurrent Games are Difficult



Bidding Game

Each player has a budget.
At each node, each player bids part of their budget.
The winning player chooses the transition.

Richman bidding: the winning bid goes to the losing player.
Poorman bidding: the winning bid goes to the “bank.”
Recharging: the budgets are increased by transition weights.

Difficulty: infinitely many possible moves (bids).



Richman Bidding

a a a b

The sum of the budgets of players 1 and 2 is 1.

What is the threshold budget for player 1 to win } b ?

q1 q3 q4q2



Richman Bidding

a a a b

The sum of the budgets of players 1 and 2 is 1.

What is the threshold budget for player 1 to win } b ?

q1 q3 q4q2

0X



Richman Bidding

a a a b

The sum of the budgets of players 1 and 2 is 1.

What is the threshold budget for player 1 to win } b ?

q1 q3 q4q2

0X 0.5+²



Richman Bidding

a a a b

The sum of the budgets of players 1 and 2 is 1.

What is the threshold budget for player 1 to win } b ?

q1 q3 q4q2

0X 0.5+²0.75+²



Richman Bidding

a a a b

The sum of the budgets of players 1 and 2 is 1.

What is the threshold budget for player 1 to win } b ?

q1 q3 q4q2

0X 1/3+²2/3+²



Some References

Alternating-time temporal logic: JACM 2002

Multi-agent (assume-guarantee) synthesis: TACAS 2007

Concurrent reachability games: TCS 2007

Strategy logic: Information & Computation 2010 

Infinite-duration bidding games: CONCUR 2017
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